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Vision-and-language (V-L) tasks require the system to understand both vision content and natural language, thus learning fine-grained
joint representations of vision and language (a.k.a. V-L representations) are of paramount importance. Recently, various pre-trained
V-L models are proposed to learn V-L representations and achieve improved results in many tasks. However, the mainstream models
process both vision and language inputs with the same set of attention matrices. As a result, the generated V-L representations are
entangled in one common latent space. To tackle this problem, we propose DiMBERT (short for DisentangledMultimodal-Attention
BERT), which is a novel framework that applies separated attention spaces for vision and language, and the representations of
multi-modalities can thus be disentangled explicitly. To enhance the correlation between vision and language in disentangled spaces,
we introduce the visual concepts to DiMBERT which represent visual information in textual format. In this manner, visual concepts
help to bridge the gap between the two modalities. We pre-train DiMBERT on a large amount of image-sentence pairs on two tasks:
bidirectional language modeling and sequence-to-sequence language modeling. After pre-train, DiMBERT is further fine-tuned for
the downstream tasks. Experiments show that DiMBERT sets new state-of-the-art performance on three tasks (over four datasets),
including both generation tasks (image captioning and visual storytelling) and classification tasks (referring expressions). The proposed
DiM (short for Disentangled Multimodal-Attention) module can be easily incorporated into existing pre-trained V-L models to boost
their performance, up to a 5% increase on the representative task. Finally, we conduct a systematic analysis and demonstrate the
effectiveness of our DiM and the introduced visual concepts.
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1 INTRODUCTION

Recently, there is a surge of research interests in vision-and-language (V-L) tasks, such as image captioning [11] and
visual storytelling [28]. In V-L tasks, it is vital to learn the alignments and relationships between V-L modalities and
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2 Liu et al.

Table 1. Comparison between our DiMBERT and other works on learning vision-language representations. The Red colored texts
indicate differences from most existing works. ESA and DiM stands for the Entangled Self-Attention and Disentangled Multimodal-
Attention. ISRP, BLM, MOP, S2SLM are short for Image-Sentence Relationship Prediction, Bidirectional Language Modeling, Masked
Object Prediction and Seq-to-Seq Language Modeling, respectively.

Method Basic Module Visual Features Textual Features Pre-train Captioning Datasets Pre-training Tasks Downstream Tasks

B2T2 [1]

ESA-based
Transformer Image RoIs Sentence Words

Conceptual Captions [67] ISRP + BLM

Classification Task

VisualBERT [44] MSCOCO caption [11] ISRP + BLM

Unicoder-VL [39] Conceptual Captions [67] ISRP + BLM + MOP

VL-BERT [69] Conceptual Captions [67] BLM + MOP

UNITER [12]

Conceptual Captions [67]
+ VG Captions [37]

+ MSCOCO caption [11]
+ SBU Captions [62]

ISRP + BLM + MOP

VLP [97] Conceptual Captions [67] BLM + S2SLM
Classification Task

+ Generation TaskDiMBER [Ours] DiM-based
Transformer

Image RoIs
+ Visual Concepts Sentence Words Conceptual Captions [67] BLM + S2SLM

generate fine-grained V-L representations [12, 52, 55, 69]. However, many existing systems are task-specific models,
focusing on individual tasks only. As a result, learning universal V-L representations and empowering models with the
ability to adapt to a wide range of downstream V-L tasks are now becoming the critical topics in current V-L research.

Inspired by the successful pre-training models like ResNet [24] in computer vision and BERT [15] in natural language
processing, several attempts [1, 55, 69, 73, 97] have been conducted to learn such universal V-L representations. Table 1
summarizes some representative works in image domain. As we can see, most systems adopt the Transformer framework
[15, 74] as the backbone, feeding both visual and textual features into the same stacked transformers. In the pre-train
stage, these systems use large-scale image-sentence pairs to adapt the transformers to the V-L scenarios; In the fine-tune
stage, the transformers are further optimized for downstream tasks. Although these pre-training V-L systems receive
performance gains across multiple downstream tasks, there are still some potential directions for further improvement:

• Entangled Attention: Existing works feed both the visual and textual features into the same set of stacked
transformers. In this manner, the same set of attention matrices are used to transform both visual and textual embeddings.
We denote such type of attention mechanism as Entangled Attention, because the visual and textual embeddings are
projected to one common latent space. Despite the pre-training on image-sentence pairs, the initial parameters of current
systems [12, 39, 44, 69, 97] are usually directly inherited from BERT [15] or BERT-based models, e.g., UniLM [16], which
is optimized for language modeling only1, to boost the performance. On one hand, it could be in-appropriate to apply
the parameters that are trained in language modality to the features in visual modality; On the other hand, the ability
of language modeling brought by the original BERT could be somewhat affected by the introduced visual modality.
Besides, during parameter optimization, the model needs to consider the intra-relationships of both visual and textual
embeddings, as well as the inter-relationships across V-L embeddings. Modeling these three kinds of relations with
only one shared set of attention matrices could be insufficient.

• Modality Gap: Most V-L systems only use the region-of-interests (RoIs) / video frames as the visual features.
Although the transformers are proved to be effective in mining correlations, there are still huge gaps between the visual
and language modalities.

1Some works, e.g., VL-BERT [69], attempt to pre-train the V-L systems on a large amount of text-only datasets in the initial pre-training stage.
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• Generation Task: Most systems can only be fine-tuned directly on classification tasks, lacking the capability to
handle generation tasks. Although VideoBERT [71] and CBT [70] have been proposed to support the generation tasks
in video domain, they have to train a separate video-to-text decoder to perform the generation tasks, because they
pre-train the V-L systems only as encoders.

To tackle the above three concerns, in this paper, we present the DiMBERT, which takes both visual features
(i.e., RoIs and visual concepts) from images and textual features (i.e., sentence words) from sentences as input, and
then applies a single cross-modal Transformer to learn vision-language grounded representations. In particular, we
propose Disentangled Multimodal-Attention (DiM) module to explicitly disentangle visual and textual modalities. In
implementations, DiM module introduces separate projection matrices to project visual and textual modalities into
their corresponding visual and textual latent spaces. Following common practice [1, 12, 39, 44, 69, 97], the weights of
textual projection matrices are initialized with the pre-trained parameters from BERT [15], while the weights of visual
projection matrices are trained from scratch.

To enhance the correlation between visual and textual modalities, we introduce the visual concepts [18], which
capture a wide range of high-level visual semantic information from images [41, 63, 89]. The visual concepts transform
visual features to a set of words describing object (e.g., cat), attribute (e.g., small) and relationship (e.g., standing) of images,
which 1) provide a more semantic representation of visual information and thus help shorten the gap between vision
and language modalities; 2) contain rich visual semantics and thus help understand vision and language effectively.

Inspired by the work of [97], we pre-train the proposed DiMBERT on the Conceptual Captions [67] with two
unsupervised language modeling objectives: bidirectional language modeling [15] and sequence-to-sequence language
modeling [16], where the latter enables the direct fine-tuning of DiMBERT on generation tasks. We conduct comprehen-
sive experiments and systematic analysis on three tasks: image captioning [11], visual storytelling [28] and referring
expressions [33]. The proposed DiMBERT sets new state-of-the-arts on three tasks (over four benchmark datasets)
and the DiM module boosts the performance of various pre-trained V-L models on referring expressions task, which
validate our motivation and corroborate the effectiveness and universality of our approach.

2 RELATEDWORK

Our work relates to the vision-and-language problems, the joint representations of vision and language (a.k.a. V-L
representations) and the efforts in developing pre-trained models.

2.1 Vision-and-Language Problems

Vision-and-language (V-L) problems, which including image captioning [11], visual storytelling [28], referring expression
[33] and image caption retrieval [61], and others, have drawn remarkable attention in both natural language processing
and computer vision. These tasks combine image and language understanding together at the same time, are tough yet
practical. However, current works usually design a task-specific model to deal with one single task at one time. In this
paper, we propose a generic framework to conduct various V-L tasks and further improve the performance of each task.

2.2 V-L Representations

For a variety of vision-and-language problems, an important goal is to understand the image and language despite their
different application scenarios, which justifies the acquisition of fine-grained V-L representations. In the literature, to
represent the images, visual features extracted by CNNs or Region-CNNs are most-widely used [3, 83], while visual
concepts consisting of a set of textual words are also proposed [18]. To represent the language, textual features extracted
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by RNNs or off-the-shelf NLP models are most-widely used [15, 17, 25]. Therefore, in previous task-specific V-L models,
the features derived from off-the-shelf computer vision and NLP models are combined in an ad-hoc way to acquire the
V-L representations for specific tasks. Model training is performed on the dataset for the specific task only, without any
generic V-L pre-training. As a result, these task-specific models, which are directly trained for the specific target task,
may well suffer from overfitting when the data for the target task is scarce.

2.3 Pre-trained Models

In computer vision (CV), pre-trained models, such as ResNet [24], VGG [68] and GoogLeNet [72], pre-trained on
ImageNet [14], have achieved early successes in promoting various downstream CV tasks. Transformer-based pre-
trained NLP models, such as BERT [15], XLNet [87] and RoBERTa [16], have also achieved great success in advancing
the state-of-the-arts for a wide range of NLP tasks. Recently, UniLM [16], which is adapted from the BERT architecture,
has been proposed to enable BERT to work for both natural language understanding and generation tasks.

Most recently, several pre-trained V-L models [1, 6–10, 12, 13, 19–23, 26, 29, 30, 34, 35, 38, 39, 42–47, 55, 56, 58–
60, 69–71, 73, 76, 80, 82, 91, 94, 97, 98] have been proposed to learn vision-language representations for various V-L
tasks (Table 1 summarizes some representative works). However, most existing works do not consider to learn such
representations by explicitly disentangling multi-modalities and incorporating visual concepts, and are unable to
perform downstream generation tasks directly. It is worth noticing that, VideoBERT [71], CBT [70] and VLP [97]
proposed recently, are capable of performing generation tasks, and are thus the most relevant works to our approach.
However, they were still entangling visual and textual modalities, and did not attempt to take the visual concepts
into consideration. Besides, for VideoBERT [71] and CBT [70], they pre-train the systems only as encoders to learn
V-L representations, so they have to train a separate decoder for the generation tasks. For VLP [97], our DiMBERT
outperforms it on image captioning tasks and our superiority is further validated on a long text generation task, i.e.,
visual storytelling [28].

3 APPROACH

In this section, we first introduce our model in detail. Next, we describe the pre-training tasks to learn vision-language
grounded representations. Figure 1 gives an overview of our DiMBERT.

3.1 Model Overview

As shown in Figure 1, our DiMBERT consists of three parts: 1) the embeddings of input visual features from images and
textual features from sentences; 2) a single cross-modal transformer to learn the alignments and relationships between
visual and textual modalities; and 3) the embeddings of learned V-L representations.

3.1.1 Input Embeddings. There are 4 types of input embeddings: RoIs, visual concepts, sentence words and four special
tokens.

RoI Embedding. In our approach, we use 𝑁 = 36 RoIs for each input image. RoIs are extracted by a variant of Faster
R-CNN [65] with ResNeXt-101 FPN backbone [81], which is pre-trained on Visual Genome [37], following [3].

Specifically, the appearance feature 𝒓𝑖 ∈ R𝑑𝑟 is the extracted region feature, which is the output of fc6 layer. The
visual geometry feature 𝒈𝑖 ∈ R𝑑𝑔 is used to encode the geometry location of the RoI in the input image, where
𝒈𝑖 =

(
𝑥TL
𝑊

,
𝑦TL
𝐻

,
𝑥BR
𝑊

,
𝑦BR
𝐻

, 𝐴𝑟

)
, in which (𝑥TL, 𝑦TL) and (𝑥BR, 𝑦BR) denote the coordinates of the top-left and bottom-right

corner, respectively, of the region bounding box;𝑊 , 𝐻 are the width and height of the input image; and 𝐴𝑟 represents
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DiMBERT

1-th Disentangled Multimodal-Attention

…

…

[CLS] … [SEP] a coat… [END][SEP] woman red…
Sentence: 
a person holding a red umbrella 
wearing a yellow rain coat. [MASK]umbrella

Input
Embeddings

Cross-Modal
Transformer

Output
Embeddings

person

Visual Concepts:
"woman", "umbrella", "holding", 
"yellow", … , "wearing", "red"

L-th Disentangled Multimodal-Attention

… … …

… … …

Fig. 1. Illustration of the proposed DiMBERT, which consists of a single cross-modal Transformer [69, 74] and takes visual features
(i.e., RoIs and visual concepts), textual features (i.e., sentence words) and four special tokens (i.e., [CLS], [SEP], [MASK] and [END])
as input. In particular, we introduce the Disentangled Multimodal-Attention to implement the Transformer.

the relative area, i.e., the area ratio of RoI bounding box to the entire image. Besides, following [57, 96], to enrich region
features, we inject the region class information 𝒄𝑖 into 𝒈𝑖 , defined as: 𝑔∗

𝑖
=

[
LN

(
𝑊𝑔𝑔𝑖

)
; LN (𝑊𝑐𝑐𝑖 )

]
, where [;] and LN

stand for concatenation and layer normalization [4], respectively;𝑊𝑔 and𝑊𝑐 are learnable parameters; 𝒄𝑖 ∈ R𝑑𝑐 is
the prediction scores (probabilities) of region object label, where 𝑑𝑐 = 1600 is the number of object categories. The
segment embedding is used to indicate which input segment it belongs to. For RoIs, we adopt the embedding of [RoI]
token E[RoI] as segment embedding. Finally, the RoI embedding 𝐻𝑅𝑖 ∈ R𝑑model is calculated by a weighted sum of these
aforementioned embeddings.

Visual Concept Embedding. Visual concepts contain rich visual semantics, and have been used to provide explicit
high-level semantic information of an image [78]. Following [18], we adopt a weakly-supervised approach of Multiple
Instance Learning [93] to build the visual concepts extractor, which is trained on the MSCOCO caption dataset for
1,000 visual concepts. For each image, only the top𝑀 = 20 visual concepts are selected. We sort these extracted visual
concepts by prediction scores, which means that the position embedding of each visual concept indicates its relevance
to the image. Following BERT, the visual concepts use the Word-Piece embeddings [79]. They will then be further
combined with position embeddings and a segment token [CEP]. The result is denoted as the visual concept embedding
𝐻𝑐𝑖 ∈ R𝑑model .

Sentence Word Embedding. Similar as in the visual concept embeddings, we tokenize the sentence into WordPieces
[79]. After that, a position embedding and a segment token [SEN] embedding are assigned to each sentence word,
where the position embedding indicates its order in the input sentence. We denote each sentence word embedding as
𝐻𝑠𝑖 ∈ R𝑑model .

At last, following BERT [15], we define a small set of special tokens: [CLS], [END], [SEP] and [MASK]. [CLS]
and [END] are inserted at the first and last position, representing the start and the end of the sentence, respectively.
[SEP] token is added as the boundary between two different input segments, and [MASK] token indicates the random
masked-out word, which need to be predicted by DiMBERT based on all the other available elements, including RoIs,
visual concepts and available sentence words. Thus, the input embeddings can be written as:

𝐻0 =
{
𝐻[CLS], 𝐻𝑅, 𝐻[SEP], 𝐻𝑐 , 𝐻[SEP], 𝐻𝑠 , 𝐻[END]

}
, (1)

where the 𝐻𝑅 , 𝐻𝑐 and 𝐻𝑠 are the sets of related vectors.
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6 Liu et al.

3.1.2 Single Cross-Modal Transformer. Our DiMBERT is adapted from BERTBASE, thus the backbone of our approach
is the 12-layer (𝐿) Transformer [74], with 768 hidden units (𝑑model) in each layer. In implementation, we propose the
Disentangled Multimodal-Attention (DiM) to replace the Self-Attention (SA) in Transformer. So we hereby describe the
difference between DiM and SA. First, we denote the intermediate representations of 𝑙-th layer as 𝐻 𝑙 =

{
𝐻 𝑙
𝑅
, 𝐻 𝑙

𝑐 , 𝐻
𝑙
𝑠

}
(the representations of four special tokens are omitted for conciseness). And we find that 𝐻 𝑙

𝑅
extracted from the image

belongs to the visual modality 𝐻 𝑙
V, while 𝐻

𝑙
𝑐 extracted from the image and 𝐻 𝑙

𝑠 extracted from the sentence belong to the

textual modality 𝐻 𝑙
T, which we write as 𝐻 𝑙 =

{
𝐻 𝑙
V, 𝐻

𝑙
T

}
.

Self-Attention (SA). In current pre-trained V-L systems [12, 39, 44, 69, 97], to learn the alignments and relationships
between the visual modality 𝐻 𝑙

V and textual modality 𝐻 𝑙
T, they adopt SA, which consists of 𝑛 = 12 parallel heads with

each head SA𝑖 defined as:

SA𝑖 (𝐻V, 𝐻T) = softmax

([
𝐻V𝑊

𝑞

T
𝐻T𝑊

𝑞

T

] [
𝐻V𝑊

𝑘
T

𝐻T𝑊
𝑘
T

]𝑇 ) [
𝐻V𝑊

𝑣
T

𝐻T𝑊
𝑣
T

]
, (2)

where𝑊 𝑞

T ,𝑊
𝑘
T ,𝑊

𝑣
T are parameters initialized with pre-trained parameters from BERT, which are pre-trained on text

data only. Besides, the divisor
√︁
𝑑𝑘 (𝑑𝑘 = 𝑑model/𝑛 = 64) is omitted in equations for conciseness, please see [15, 74] for

details. As we can see, SA first projects visual and textual modalities into one common latent space, resulting in the
entanglements between the two modalities. After SA, they use a position-wise feed-forward network (FFN) [15, 74],
which keeps on processing the features with mixed modalities and thus loses the capability to learn the relationships
between the two modalities [95]. After that, the intermediate representations of (𝑙+1)-th layer 𝐻 𝑙+1 are obtained by:
𝐻 𝑙+1
V , 𝐻 𝑙+1

T = FFN(SA(𝐻 𝑙
V, 𝐻

𝑙
T)).

DisentangledMultimodal-Attention (DiM). As we can see, due to the entanglements between the visual and textual
modalities in SA, the models have to devote most of its capability on disentangling them, which makes it hard for
systems to learn the relationships between visual and textual modalities efficiently. To this end, we propose Disentangled
Multimodal-Attention (DiM) to explicitly disentangle visual and textual modalities. In implementation, the DiM also
consists of 𝑛 parallel heads but with each head DiM𝑖 defined as:

DiM𝑖 (𝐻V, 𝐻T) = softmax

([
𝐻V𝑊

𝑞

V
𝐻T𝑊

𝑞

T

] [
𝐻V𝑊

𝑘
V

𝐻T𝑊
𝑘
T

]𝑇 ) [
𝐻V𝑊

𝑣
V

𝐻T𝑊
𝑣
T

]
(3)

where𝑊 𝑞

T ,𝑊
𝑘
T ,𝑊

𝑣
T are initialized with UniLM [16] parameters pre-trained on text data only; and the𝑊 𝑞

V ,𝑊
𝑘
V ,𝑊

𝑣
V are

new learnable parameters (randomly initialized). After that, following SA, we obtain the intermediate representations
of (𝑙+1)-th layer 𝐻 𝑙+1 by: 𝐻 𝑙+1

V , 𝐻 𝑙+1
T = FFN(DiM(𝐻 𝑙

V, 𝐻
𝑙
T)).

The reason that we adopt the proposedDisentangledMultimodal-Attention is to learn the alignments and relationships
between visual and textual modalities in a more efficient way.

3.1.3 Output Embeddings. After multiple DiM layers, we use the output of last layer as the output embeddings. (𝐻𝐿
𝑅
,

𝐻𝐿
𝑐 and 𝐻𝐿

𝑠 denotes RoIs, concepts and sentence representations, respectively)

3.2 Pre-Training Tasks

In our work, we pre-train DiMBERT on the training split [97] of a large scale image-sentence dataset: i.e., Conceptual
Captions dataset [67], which contains around 3.3M image-sentence pairs. To pre-train DiMBERT, we introduce two
Manuscript submitted to ACM
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unsupervised language modeling tasks, which are adapted from the masked language modeling (MLM) task: 1) bidi-
rectional language modeling (BLM) [15]: which learns to predict the randomly masked sentence words based on all
available input information, i.e., the visual and textual features; 2) sequence-to-sequence language modeling (S2SLM)
[16]: which learns to predict the randomly masked sentence words based on partial input information, i.e., all the
visual features and the sentence words on the left side of the word to be predicted in the sentence, which satisfies the
auto-regressive property and enables our DiMBERT to perform downstream generation tasks. In this section, we will
describe these pre-training task in detail.

Masked Language Modeling (MLM). Following BERT, during the pre-training stage, we randomly mask out the
input sentence words with 15% probability, replacing the word with 80%, 10% and 10% probabilities of [MASK] token,
random word and original word, respectively. Thus, the objective of MLM is to predict the randomly masked sentence
word based on the available information. We denote trainable parameters as 𝜃 , and a pair (𝑤m, 𝑒a) of input with the
masked word as𝑤m, and all available elements as 𝑒a, which are sampled from the training set 𝐷 . The MLM is trained
via minimizing negative log likelihood, defined as:

LMLM (𝜃 ) = −𝐸 (𝑤m,𝑒a)∼𝐷 log (𝑝𝜃 (𝑤m |𝑒a)) , (4)

where the masked tokens are predicted as a classification problem.

Bidirectional Language Modeling (BLM) and Seq-to-Seq Language Modeling (S2SLM). The main difference
between two LM tasks is the different portion of available information that can be used to predict the masked word
𝑤m. For BLM, as in BERT [15], the model is allowed to use all the input embeddings on both left and right side of the
[MASK] token. Thus 𝑒a consists of all RoIs 𝑹, all visual concepts 𝒄 and all other sentence words 𝒔\𝑤m . The loss function
is defined as:

LBLM (𝜃 ) = −𝐸 (𝑤m,𝑒a)∼𝐷 log
(
𝑝𝜃

(
𝑤m |𝑹, 𝒄, 𝒔\𝑤m

))
. (5)

For S2SLM, in order to enable the encoder-decoder and auto-regressive properties in self-attention layer, each visual
elements (i.e., RoIs and visual concepts) in the first two segments is only allowed to attend to other visual elements
within the first two segments, which constitutes a visual encoder; for predicting the masked sentence word, only the
left side elements of the [MASK] token can be used, which constitutes a sentence decoder. If we denote the position of
[MASK] token in the input sentence as 𝑡 , then the usable elements are all the RoIs 𝑹, all the visual concepts 𝒄 and all
the left side of the [MASK] token in the sentence 𝒔1:𝑡 , and the loss function is:

LS2SLM (𝜃 ) = −𝐸 (𝑤m,𝑒a)∼𝐷 log (𝑝𝜃 (𝑤m |𝑹, 𝒄, 𝒔1:𝑡 )) . (6)

In implementation, the two LM tasks, which are alternated with random sampling, participate in the pre-training
stage at a ratio of 25% and 75%, respectively. We pre-train DiMBERT on 8 GPUs (Tesla V100) with a batch size of 512 for
30 epochs. We use the Adam optimizer [36] with initial learning rates of 3e-4. Through pre-training on Conceptual
Captions dataset, our model is capable to learn vision-language grounded representations. Following VisualBERT [44],
to let our DiMBERT better adapt to the downstream target domains, we further pre-train DiMBERT using the data from
downstream tasks. Eventually, we get the final pre-trained model by averaging the last 20 checkpoints.

4 EXPERIMENTS

We evaluate DiMBERT on three representative vision-and-language tasks, i.e., two generation tasks (image captioning
[11] and visual storytelling [28]) and a classification task (referring expressions [33]).
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DiMBERT (Visual Storytelling)

[CLS] …RoI1 RoI2 … RoI3 … RoI4 … RoI5 … [SEP] …CEP1 CEP2 … CEP3 … [SEP] SEN [END]… SEN

{ {
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Fig. 2. Illustration of fine-tuning the pre-trained DiMBERT on various vision-and-language downstream tasks, including two
generation tasks, i.e., image captioning and visual storytelling, and a classification task, i.e., referring expressions.

4.1 Image Captioning

The task of image captioning aims to generate a descriptive sentence for an input image and has received extensive
research interests.

Datasets and Metrics. We use the popular Flickr30k [90] and MSCOCO [11] datasets to evaluate our reported results.
The datasets contain 31,783 images and 123,287 images, respectively, with 5 sentences paired to each image. To make
fair comparisons [27, 86, 97], we use the widely-used splits in the work of Karpathy and Li [32] to report our results.
As a result, there are 5,000 images each in the validation set and the test set for MSCOCO, and 1,000 images as for
Flickr30k.

We test the model performance with MSCOCO captioning evaluation toolkit [11], which reports the widely-used
automatic evaluation metrics SPICE [2], CIDEr [75], ROUGE [49], METEOR [5, 48] and BLEU [64]. SPICE is based on
scene graph matching and CIDEr is based on n-gram matching. They both incorporate the consensus of a reference set
for an example. These two metrics are specifically designed for the evaluation of image captioning systems. ROUGE is
proposed for automatic evaluation of the extracted text summarization. METEOR and BLEU are originally designed for
machine translation evaluation.

Fine-Tuning and Inference. Figure 2 illustrates the details of fine-tuning. As we can see, we apply the Seq-to-Seq
Language Modeling task to fine-tune (cross-entropy optimization) the pre-trained DiMBERT on the image captioning
task. The pre-trained DiMBERT is fine-tuned on 8 GPUs with a batch size of 512 for 30 epochs. We use the learning
rate of 3e-5 and 1e-4 for parameter optimization on Flickr30k and MSCOCO datasets, respectively. Furthermore, for
fair comparisons with state-of-art works [27, 86] on the MSCOCO dataset, we further perform CIDEr-based training
objective using reinforcement training [66] with a learning rate of 1e-6.

In the inference stage, we initialize the input of model with {[CLS], RoIs, [SEP], Concepts, [SEP], [MASK]}, then
the model will generate a word1 from the position of [MASK] token. Next, DiMBERT takes the {[CLS], RoIs, [SEP],
Concepts, [SEP], word1, [MASK]} as input. The entire inference process repeats such generation until DiMBERT outputs
an [END] token. Following common practice [27, 54, 84, 86, 88, 97], we apply beam search with beam size = 3 during
inference.
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Table 2. Comparisons with the state-of-the-art task-specific models and pre-training models on various downstream tasks, i.e., image
captioning (Flickr30k and MSCOCO datasets (with CIDEr optimization)), visual storytelling (VIST dataset) and referring expression
(RefCOCO+ dataset). B-4, M, R, C and S are short for BLEU-4, METEOR, ROUGE-L, CIDEr and SPICE, respectively. For referring
expression task, following common practice [12, 69], we evaluate on both ground-truth RoIs (val, testA, testB) and detected boxes
(val𝑑 , testA𝑑 , testB𝑑 ) provided by [92]. The models of referring expression are evaluated in terms of accuracy (%).

Methods
RefCOCO+ VIST Flickr30k Image Captioning MSCOCO Image Captioning

val testA testB val𝑑 testA𝑑 testB𝑑 B-4 M R C B-4 M R C S B-4 M R C S

Ta
sk
-S
pe
ci
fic

M
od

el
s

MAttNet [92] 71.0 75.1 66.1 65.3 71.6 56.0 - - - - - - - - - - - - - -
AREL [77] - - - - - - 14.1 35.0 29.5 9.4 - - - - - - - - - -
VSCMR [41] - - - - - - 14.3 35.5 30.2 9.0 - - - - - - - - - -
GVD [96] - - - - - - - - - - 27.3 22.5 - 62.3 16.5 - - - - -
SGAE [86] - - - - - - - - - - - - - - - 39.0 28.4 58.9 129.1 22.2
AoANet [27] - - - - - - - - - - - - - - - 38.9 29.2 58.8 129.8 22.4

Pr
e-
Tr
ai
ni
ng

M
od

el
s

ViLBERT [55] - - - 72.3 78.5 62.6 - - - - - - - - - - - - - -
VL-BERTLARGE [1] 80.3 83.6 75.5 72.6 78.6 62.3 - - - - - - - - - - - - - -
UNITERLARGE [12] 84.0 85.9 78.9 74.9 81.4 65.4 - - - - - - - - - - - - - -
XGPT [80] - - - - - - - - - - 31.8 23.6 - 70.9 17.6 37.2 28.6 - 120.1 21.8
VLP [97] - - - - - - - - - - 31.1 23.0 - 68.5 17.2 39.5 29.3 - 129.3 23.2

DiMBERT [Ours] 84.6 86.0 79.7 75.6 81.6 66.9 15.3 36.0 31.3 13.8 32.4 24.1 50.7 72.3 17.9 40.7 29.7 59.6 135.3 23.7

Table 3. Leaderboard performance on the online MSCOCO image captioning evaluation server. c5 means comparing to 5 references
and c40 means comparing to 40 references. As we can see, our DiMBERT outperforms all state-of-the-art models across all metrics
over the board, including AoANet [27] that uses 4-model ensemble, in a single model submission.

Methods
BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST [66] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down [3] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
CAVP [51] 80.1 94.9 64.7 88.8 50.0 79.7 37.9 69.0 28.1 37.0 58.2 73.1 121.6 123.8
ETA [40] 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
RFNet [31] 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GLIED [53] 80.1 94.6 64.7 88.9 50.2 80.4 38.5 70.3 28.6 37.9 58.3 73.8 123.3 125.6
GCN-LSTM [88] - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE [86] 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet [27] 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6

DiMBERT [Ours] 81.7 96.1 66.4 91.0 51.8 83.0 39.7 73.1 29.5 39.2 59.3 75.0 129.9 133.1

Results. We compare our DiMBERT with two types of existing works: 1) The state-of-the-art task-specific models like
GVD [96] on Flickr30k and AoANet [27] on MSCOCO image captioning datasets. 2) The pre-training based models, like
VLP [97]. The results are shown in Table 2. As we can see, the proposed DiMBERT outperforms all baselines across all
metrics over the board, which demonstrates the capability of DiMBERT to achieve consistent performance gains over
different datasets.

We also evaluate our DiMBERT on the online MSCOCO evaluation server2, where the ground truth captions are
not available. We compare with the top-performing entries on the leaderboard whose methods are published, which
including AoANet [27], SGAE [86], ETA [40]. For online evaluation, nearly all of the recent submitted systems use model
ensemble [3, 27, 31, 86, 88]. From Table 3, we can find that our DiMBERT is able to outperform these state-of-the-art
models across all metrics over the board, in a single model submission. It further demonstrates the effectiveness of the
proposed DiMBERT.

2https://competitions.codalab.org/competitions/3221#results
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4.2 Visual Storytelling

Visual storytelling task belongs to long text generation tasks. The goal is to generate a reasonable and coherent
paragraph-level story based on the image stream.

Datasets andMetrics. In visual storytelling, our reported results are evaluated on the VIST dataset [28], which contains
210,819 unique images in 10,117 Flickr albums. Each sample contains one story, describing five selected images. We
follow the standard split [77] for fair comparisons. There are 40,098 / 4,988 / 5,050 images for training / validation
/ testing, respectively. Following common practice [41, 77, 85], we adopt four evaluation metrics, including BLEU,
ROUGE, METEOR and CIDEr, for the evaluation of our approach.

Fine-Tuning and Inference. For the visual storytelling task, we adopt the same fine-tuning and inference strategy
as the image captioning task. These two tasks differ solely in the input format. As illustrated in Figure 2, the visual
storytelling task takes five images as input. For each image, we first extract corresponding RoIs and concepts. Then we
feed the embeddings of these RoIs and concepts into DiMBERT from Image 1 to Image 5.

Results. We choose two recently proposed state-of-the-art models AREL [77] and VSCMR [41] for comparison. As
shown in Table 2, the DiMBERT outperforms the AREL and VSCMR by a large margin of 46.8% and 53.3% in terms of
CIDEr scores, respectively, and sets a new state-of-the-art, which shows that the proposed DiMBERT also works well
on generating long texts.

4.3 Referring Expressions

Referring Expressions belongs to classification tasks which aims to locate a target image region given a textual query.

Datasets and Metrics. We evaluate our model on RefCOCO+ dataset [33], which consists of 141k expressions for 50k
referred objects in 20k images in the MSCOCO dataset [50]. The referring expressions in RefCOCO+ are forbidden from
using absolute location words, e.g. right car. Therefore the referring expressions focus on purely appearance-based
descriptions. RefCOCO+ is split into train, validation and two test sets (testA and testB). Specifically, images containing
multiple people are in testA set, while images containing multiple objects of other categories are in testB set. Following
common practice [12, 69], we evaluate on both ground-truth RoIs (val, testA, testB) and detected boxes (val𝑑 , testA𝑑 ,
testB𝑑 ) provided by [92]. We choose MAttNet [92], ViLBERT [55], VL-BERT [69] and UNITER [12] for comparison,
where the first one MAttNet is the state-of-the-art task-specific model, while the rest are pre-training models. The
models are evaluated in terms of accuracy (%).

Fine-Tuning and Inference. As illustrated in Figure 2, we add a linear layer on the 𝐻𝐿
𝑉
to output the classification

scores for all the input RoIs, and take the RoI with the highest score as the final prediction. DiMBERT is fine-tuned
under a binary cross-entropy loss on 8 GPUs with a batch size of 256 for 20 epochs.

Results. Table 2 shows that our DiMBERT outperforms all models, which validates the effectiveness of DiMBERT in
referring expressions task. In particular, DiMBERT outperforms VL-BERTLARGE and UNITERLARGE which are developed
from a larger model BERTLARGE [15], while DiMBERT is adapted from BERTBASE [15]. In other word, DiMBERT can
achieve higher accuracy with much less parameters. Furthermore, in addition to Conceptual Captions dataset [67],
UNITERLARGE uses extra a large amount of image-sentence pairs (see Table 1), e.g., VG Captions [37] and SBU Captions
[62], to pre-train the model. This proves the efficiency of DiMBERT in pre-training datasets and parameters.

In all, these results suggest that the DiMBERT can be applied to a wide range of downstream tasks, no matter what
the type of task is (e.g., classification task and generation task). More encouragingly, our approach outperforms existing
Manuscript submitted to ACM
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Table 4. Ablation study of our proposed DiMBERT which is performed on MSCOCO (with cross-entropy optimization only) and
RefCOCO+.

Components Init. from
BERT [15]

Init. from
UniLM [16] BLM S2SLM Image-Sentence

Relationship Prediction
Masked Obj.
Prediction

Masked ViCo
Prediction DiM

RefCOCO+ MSCOCO

val𝑑 B-4 M C S

Base 68.5 35.5 28.0 113.7 20.8

(1)
√

68.7 35.2 28.2 113.9 20.9
(1)

√
68.8 36.0 28.4 115.7 21.4

(2)
√ √

72.3 37.5 28.4 118.2 21.5
(2)

√ √
71.5 37.8 28.5 118.8 21.7

(2)
√ √ √

73.4 38.0 28.5 119.3 21.7

(3)
√ √ √ √

72.6 36.3 28.3 116.4 21.6
(3)

√ √ √ √
73.3 35.8 28.2 114.9 21.0

(3)
√ √ √ √

71.5 36.4 28.4 115.6 21.3

DiMBERT
√ √ √ √

75.6 38.1 28.7 123.4 22.0

published state-of-the-art models, including the task-specific models and pre-training models, across all aforementioned
tasks, which further confirms the effectiveness and universality of the proposed DiMBERT.

5 ANALYSIS

In this section, we conduct a series of analysis on a generation task, i.e., image captioning (MSCOCO), and a classification
task, i.e., referring expressions (RefCOCO+), to provide some insights and answer the following questions: (1) What is
the contribution of each component in DiMBERT? (2) What is the effect of Disentangled Multimodal-Attention module?
(3) What is the contribution of visual concepts? (4) Why DiMBERT can adapt effectively to a wide range of downstream
tasks? (5) Where does the actual improvement in the evaluation scores comes from? Please note that the performance on
MSCOCO image captioning dataset reported in this section is different from the ones reported in Section 4: As for fair
comparisons with state-of-art works [27, 86], we further perform CIDEr-based training objective using reinforcement
training [66]. While in this section, for simplicity, we directly do fine-tuning with cross entropy loss.

5.1 Ablation Study

In this section, we conduct the ablation analysis on RefCOCO+ and MSCOCO image captioning datasets. To analyze
the effect of each component, we evaluate from the following three perspectives:

• Parameter Initialization: the initial parameters inherited from BERT[15] or UniLM [16].
• Language Model Pre-train Strategies: the pre-train on the textual part of DiMBERT: Bidirectional Language

Modeling (BLM) and Seq-to-Seq Language Modeling (S2SLM).
• Language-Vision Pre-train Strategies: (1) Image-Sentence Relationship Prediction: predict whether an image

and a sentence match each other, this task is introduced by LXMERT [73]; (2) Masked Object Prediction: predict the
label of masked region; (3) Masked Visual Concept (ViCo) Prediction task, predict the masked visual concept.

Table 4 shows the results in which the base model denote the one trained from scratch on downstream tasks without
parameter initialization and pre-train, DiMBERT denotes the full model proposed in this paper. We can find that:

• Initializing the parameters from existing models like BERT is beneficial, as the pre-trained language models could
better capture the contextual representations and the structure of sentences.
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Table 5. Impact of DiM. ESABERT and DiMBERT represent the vanilla BERT model and “BERT w/ DiM”, respectively.

Methods
RefCOCO+ MSCOCO

val𝑑 B-4 M C S

ESABERT 73.4 38.0 28.5 119.3 21.7
w/ DiM (DiMBERT) 75.6 38.1 28.7 123.4 22.0

Table 6. Analysis about the effectiveness and universality of DiM. We perform the analysis on the RefCOCO+ dataset.

Methods
RefCOCO+

Methods
RefCOCO+

val𝑑 testA𝑑 testB𝑑 val𝑑 testA𝑑 testB𝑑

UNITERBASE [12] 71.5 77.0 60.1 VL-BERTBASE [69] 70.7 76.8 60.3
w/ DiM 72.7 78.6 62.1 w/ DiM 73.2 78.9 63.2

ViLBERT [55] 72.4 78.3 62.5 ESABERT 73.4 79.3 63.7
w/ DiM 74.3 80.1 64.7 w/ DiM (DiMBERT) 75.6 83.2 66.9

• Comparing the results of (1) and (2) in Table 4, both pre-training tasks Bidirectional Language Modeling and
Seq-to-Seq Language Modeling in DiMBERT can facilitate referring expressions and image captioning. Pre-training
only on the textual part of DiMBERT is helpful for downstream tasks.

• The introduction of Image-Sentence Relationship Prediction, Masked Object Prediction and Masked ViCo Prediction
pre-training tasks actually hurts the performance. For Masked Object Prediction, it may due to the introduction of
noise when there exists overlapped regions or wrongly detected labels [97]. For Masked ViCo Prediction, it may due to
masking and predicting wrongly extracted visual concepts, which mislead the model to learn relationships between
visual and textual features. For Image-Sentence Relationship Prediction, the unmatched image-sentence training pairs
could hinder the training of other pre-training tasks [69, 97].

5.2 Effect of DiM Module

In this subsection, we evaluate the effectiveness of the proposed Disentangled Multimodal-Attention (DiM) mechanism.
We compare DiM with Entangled Self-Attention (ESA) which applies the same set of attention matrices to sentences,
RoIs and concepts. As shown in Table 5, the DiMBERT equipped DiM outperforms ESABERT equipped with ESA on
both image caption and referring expressions tasks. Specifically, the DiM promotes the performance of DiMBERT from
73.4% to 75.6% and from 119.3 to 123.4 in terms of accuracies for RefCOCO+ and CIDEr for MSCOCO respectively.

This performance increase may attribute to disentangled attention. DiM explicitly use different attention matrices to
model the visual and textual modalities, enabling better usage of the pre-trained BERT. As to the Entangled Self-Attention
(ESA), the same set of attention matrices are used to model inner-vision, inner-language and mutual vision-language
relations. Such multiple target optimization could affect language model’s capability of the per-trained BERT.

DiM can also be easily integrated into existing pre-trained models. In this section, we further equip UNITERBASE [12],
VL-BERTBASE [69] and ViLBERT [55] with DiM. Specifically, we pre-train these models on the Conceptual Captions
dataset and evaluate the accuracy on the referring expression task. As shown in Table 6, DiM can successfully boost all
baselines, with the most significant improvement up to relatively 4%, 5% and 5% for val𝑑 , testA𝑑 and testB𝑑 , respectively.
The significant improvements demonstrate the effectiveness and universality of the proposed DiM module.
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Table 7. Impact of visual concepts (ViCo). We further list the breakdown of SPICE F-scores [2], for a better understanding of the
contribution of visual concepts.

Methods
RefCOCO+

B-4 M C
S

val𝑑 All Objects Attributes Relations Color

Base 68.5 35.5 28.0 113.7 20.8 37.9 10.2 6.2 10.2
w/o ViCo 66.6 35.4 27.9 112.9 20.4 37.3 9.3 5.8 9.5

DiMBERT 75.6 38.1 28.7 123.4 22.0 40.0 11.1 7.3 11.5
w/o ViCo 74.3 37.9 28.5 120.2 21.5 39.4 9.9 5.7 10.4

Table 8. Analysis about the effect of the number of visual concepts. All variants are conducted on the base model. We also report the
performance of visual concept extractor in terms of the Precision, Recall and F1 scores. As we can see, when the number of visual
concepts𝑀 is 20, the visual concept extractor and the base model get the highest F1 score and highest performance.

Number Precision
(%)

Recall
(%)

F1
(%)

RefCOCO+ MSCOCO

val𝑑 B-4 M C S

𝑀=0 - - - 67.4 35.0 27.7 112.7 20.4
𝑀=10 72.6 29.8 44.3 68.1 35.3 27.9 113.4 20.6
𝑀=20 52.9 45.1 49.5 68.3 35.5 28.0 113.7 20.8
𝑀=30 42.2 54.2 47.4 67.9 35.1 27.8 113.5 20.6
𝑀=40 35.1 59.9 43.8 67.7 35.2 27.8 113.0 20.5

5.3 Effect of Visual Concepts

We conduct some experiments to investigate the contribution of visual concepts (ViCo) in our model. Table 7 shows
that the visual concepts promote the baselines over all metrics, especially in Attributes and Color. The reason is that the
visual concepts contain more attribute words and color words than the sentence. The abundant visual semantics in
visual concepts can greatly enrich semantic representations of image regions. It can be confirmed in Figure 3 (c), which
illustrates the image representations refined by DiMBERT w/o ViCo. Compared with the image representations refined
by DiMBERT (Figure 3 (b)), it is obvious that the DiMBERT w/o ViCo is insufficient in providing suitable semantic
information for image regions. It is worth noticing that given the absence of input sentence, most existing models won’t
work well, but our model can still refine the image representations. The Figure 3 (d) shows the semantic-grounded
image representations [52] refined by our DiMBERT without input sentence.

Table 8 shows that when the number of visual concepts 𝑀 is 20, the visual concept extractor and the model get
the highest F1 score and highest performance, respectively, which is the reason why the value of𝑀 is set to 20 in our
DiMBERT. For other variants, we speculate that when𝑀 is set to small values (lower recall score), the model will suffer
from the inadequacy of information. When𝑀 is set to large values (lower precision score), the module will introduce
more noisy information.

5.4 Visualization of DiMBERT

To evaluate the effectiveness of DiMBERT, we visualize the alignments between visual regions and semantic words
according to the attention weights in the last Disentangled Multimodal-Attention layer. Figure 3 (a) and (b) show
the examples of vision-language representations learned by our DiMBERT. As we can see, the model provides visual
references for the input sentence, e.g., the sentence word man is aligned to the blue, yellow and red regions. The
visual-referred sentence representations play an important role in understanding the sentence correctly, because the
visual references help alleviate semantic ambiguity, e.g., the word bank can either refer to a financial organization or
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Fig. 3. Average attention weights of all heads in the last Disentangled Multimodal-Attention layer of DiMBERT. Please view in color.
We show the alignments of a typical sentence word, i.e., man, with top-3 image regions, i.e., text-to-RoI attention, in (a), and the the
alignments of a typical image region, i.e., the Red region, with top-3 semantic words, i.e., RoI-to-text attention, in (b), (c) and (d) .
Specifically, (a) and (b) show that DiMBERT can provide visual-referred sentence representations and semantic-grounded image
representations, respectively; (c) shows that the model is insufficient in providing suitable semantic information for regions without
visual concepts; (d) shows that DiMBERT still works well even without input sentence.

Error Type: Visual Similarity

Visual Concepts: “tennis”, “holding”, “man”, “surfboard”, “standing”, “woman”, “white”.

Reference: A pretty woman in a white bikini holding a surfboard over her head.

DiMBERT: A man is holding a white surfboard and standing on the beach.

Error Type: Noise

Visual Concepts: “dog”, “room”, “kitchen”, “clock”, “living”, “chair”, “white”. 

Reference: A large dog sitting in a living room in front of a fireplace.

DiMBERT: A dog laying on a living room floor near a clock.

1) Baseline: A table standing next to a green chair.

2) DiMBERT: A bunch of pink flowers on wall with a wooden table and chairs nearby.

3) w/o ViCo: A table on a field with chairs and flowers nearby.

4) w/o DiM: A bunch of pink flowers sitting on a wooden table.

1) Baseline: A dog holding a frisbee standing on a field.

2) DiMBERT: A brown dog walking across a green field carrying a white frisbee in its mouth.

3) w/o ViCo: A dog carrying a frisbee in its mouth on top of a grass field. 

4) w/o DiM: A brown dog catching a white frisbee. 

Fig. 4. Examples of the generated captions. The left plot and right plot show the correct examples and the error analysis of our
approach, respectively. The ViCo and DiM represent the Visual Concepts and Disentangled Multimodal-Attention, respectively. The
color Green denotes desirable results, while Red denotes unfavorable results.

the side of a river, and the word mouse can either refer to a mammal or an electronic device. Similarly, the model can
provide a clearer semantic information for image regions, e.g., the red region is aligned to the words wearing, blue and
tie. Thus, the original image representations are refined to semantic-grounded image representations [52]. Note that
there is no suitable semantic word in the sentence to align with the red region, thus DiMBERT does not assign too
much attention weights for any sentence word, which also indicates the effectiveness of our model when it comes to
insufficient sentence words.

The refined semantic-grounded image representations and visual-referred sentence representations are beneficial for
understanding both image and sentence, providing a solid bias for vision-and-language tasks.

5.5 Examples and Bad Case Analysis

In the left plot of Figure 4, we list some intuitive examples on MSCOCO image captioning task to find the the actual
improvement. Compared the 1st and 2nd lines, we find that the pre-training procedure helps the base model to generate
more complete and accurate captions. Compared the 2nd, 3rd and 4th lines, we find that the visual concepts are bringing
more details in colors and attributes, such as brown, white, pink and wooden than the “w/o ViCo” model, and the
Disentangled Multimodal-Attention is bringing more comprehensive in objects, such as field, mouth, wall and chairs

than the “w/o DiM” model, which corroborate the effectiveness of our approach.
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We also analyze some bad cases to provide insights on how the DiMBERT may be improved. We find that there are
mainly two types of errors, i.e., visual similarity and noise. In the right plot of Figure 4, we give some examples. In the
first example, our model dis-identify the woman as a man due to their visual similarity. However, humans can find that
the person in the image wearing a bra. In the second example, the DiMBERT mistakes the incorrect visual concept, i.e.,
clock, for an appropriate one when it generates caption. A more powerful ViCo extractor may be helpful in solving the
problem, but it is unlikely to be completely avoided.

6 CONCLUSIONS

We present a visual concepts and proposed Disentangled Multimodal-Attention based pre-training model, i.e., DiMBERT,
which is pre-trained on a large amount of image-sentence pairs to learn vision-language grounded representations.
The pre-trained DiMBERT can be fine-tuned on various of vision-and-language tasks, including generation tasks
and classification tasks. Extensive experiments and systematic analysis validate our motivations and corroborate the
effectiveness and the universality of our Disentangled Multimodal-Attention and DiMBERT, where the latter sets new
state-of-the-arts on three downstream tasks (over four datasets).
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