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Security in different applications is closely related to the goodness of the sequences generated for such purposes. Not only in 
Cryptography but also in other areas, it is necessary to obtain long sequences of random numbers or that, at least, behave as such. To 
decide whether the generator used produces sequences that are random, unpredictable and independent, statistical checks are needed. 
Different batteries of hypothesis tests have been proposed for this purpose. 

In this work, a survey of the main test batteries is presented, indicating their pros and cons, giving some guidelines for their use 
and presenting some practical examples. 

CCS Concepts: • General and reference → Surveys and overviews; • Mathematics of computing → Probabilistic reasoning 

algorithms; • Security and privacy → Cryptography. 

Additional Key Words and Phrases: Cryp-X, Diehard, Dieharder, hypothesis testing, Knuth, NIST, pseudo-random number, PRNG, 

quasi-random numbers, SPRNG, TestU01, TRNG, true random number. 

 
1 INTRODUCTION 

In recent years, due to an increase in electronic transactions and the dissemination of sensitive information via networks, 
ensuring the security of the involved information has become quintessential. Therefore, there has been an increase 
in cryptographic studies with an aim to obtain better encryption systems that, as well, require unpredictable values 
(random numbers) which are essential to the efficacy and success of any cryptographic tool. To precisely guarantee 
this security in data processing and the confidentiality of the information being transmitted, the numbers used in the 
generation of the different keys involved must exhibit certain properties: they must pass certain statistical tests that 
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ensure (with a certain level of confidence) the randomness and uniformity of the sequences used, thus rendering the 
sequences irreproducible. Furthermore, any given series of generated values cannot be obtained by any function or 
mathematical model. The verification of the statistical tests is thus crucial to the development of efficacious sequences 
and to avoid predictable mathematical models that may potentially breach security systems. 

Random numbers are the fundamental premise of simulation. It would be desirable to obtain pure random numbers 
that verify the conditions of independence and uniformity and which are not reproducible. In other words, pure 
random numbers allow the accomplishment of safe operations is the target. Commonly, generators are used to provide 
sequences that seem to be independent realizations of a Uniform random variable in the interval (0,1) (U (0, 1)), and we 
say “apparently” because, in general, they tend to use mathematical algorithms that generate sequences that, although 
generated with a particular algorithm, verify the desired conditions abovementioned, namely, pseudo-random sequences. 
According to this, we can define two main classes of random numbers (this is a very common classification in literature. 
See section 2.2. of [50] or section 2.3. of [59]): “true” random numbers and pseudo-random numbers. There is one 
additional type, also defined in literature, known as quasi-random numbers. 

Definition 1.1 (True Random N umbers). True random numbers are based on physical sources (entropy sources) which 
are sources of intrinsic natural randomness along with some processing function (see [52]). Therefore, they do not need 
an initial sequence (also known as “seed”) and are not expected to show periodic patterns or correlations between the 
obtained data. 

Other advantages of true random numbers are the high level of security they provide in some applications (such as 
key generation) and that since there is no underlying algorithm that generates them, we should not worry about them 
being reproduced. On the contrary, some disadvantages are that their generation is time-consuming and computationally 
inefficient (hence, the speed of generators of this type of numbers cannot match the demand of bitrate that is often 
required), their installation and performance are troublesome and its generation is difficult. An interesting description 
of this type can be seen in [52]. 

Definition 1.2 (Pseudo-random N umbers). Pseudo-random numbers constitute a series of values which, although 
are deterministically generated (as they are constructed through generation algorithms and an initial seed), have the 
appearance of being values that come from independent realizations of a uniform random variable [49]. 

The way pseudo-random numbers are generated makes them reproducible. 

Definition 1.3 (Quasi-random N umbers). Quasi-random numbers are obtained through specific algorithms and the 
obtained sequences are distributed in a uniform way in the square or in the cube unit. For a (finite) quasi-random 
sequence the objective is that it fills a unit hypercube as uniformly as possible [23]. 

As the dimension increases, the main disadvantage of quasi-random numbers is that there are not specific hypothesis 
tests to evaluate the goodness of the obtained sequences [39]. 

In Cryptography, the most common generators used are random number generators (RNGs) and pseudo-random 
number generators (PRNGs), both of which produce bit sequences (0-1). For the purposes of Cryptography, these 
obtained numbers must be unpredictable. This concept is intimately related to the absence of correlations between 
the obtained numbers and their independence. The problem of randomness testing is becoming increasingly crucial, 
particularly because of the need of effective security of communications [51] due to today’s widespread use of public 
communications, e-commerce (key management, electronic signatures), etc. 



Recommendations on Statistical Randomness Test Batteries for Cryptographic Purposes 3 
 

In the case of RNGs, a non-deterministic seed (entropy source) and a generating function are necessary to produce 
randomness. The source of the entropy generally comes from some physical phenomenon like the noise of an electrical 
circuit, hardware sources, etc. For more details you can see [64] or [52]. 

This type of generator can potentially become problematic if the source of entropy is predictable. In order for this 
not to affect the sequence obtained in terms of its fundamental condition of unpredictability, it would be required to 
combine outputs obtained with different sources. However, this solution is not optimal since the obtained sequences can 
be statistically inadequate. They could not pass the randomness or uniformity tests. Contrastingly, from a computational 
point of view, the generation of large sequences is ultimately time-consuming. This means that there exists a tendency 
to use PRNGs for their immanently better production of statistical and computational results. 

As previously commented, in the case of the PRNGs, if the seed is known, given that the structure of the generator is 
fixed, the complete sequence could be determined, which is why special care must be taken to keep the seed secret. The 
seed can be generated by using a RNG. 

There is a variety of studies on the generation of random numbers in the Computer Science area, Information Theory 
and Cryptography. Some interesting references are [18] or [33] in whose works aspects related to the generation of 
random numbers and information theory appear. In [27] a theoretical framework is established for the generation of 
random sequences from the perspective of information theory. 

In [60], the authors perform a detailed study on the generation of Gaussian random numbers. In [28], the authors 
address the uniform random number generation without information leakage and address the secure uniform random 
number generation with partial information leakage. 

In [46], a new methodology to generate pseudo-random numbers is presented by using generative adversarial 
networks. To this effect, the authors validate their result by using NIST tests suite. Previously, in 1994, a method for 
generating pseudo-random numbers was presented (digital inversive method) [17]. 

On the other hand, works in which the properties of generators are studied in detail can also be found. For instance, in 
[21] properties of nonlinear filter of m-sequences (an important type of pseudo-random sequence generator) are studied. 
In [26], the authors study the power generator of pseudo-random numbers in the particular case of Blum-Blum-Shub 
generator. In [22], the authors obtain a class of keystream generators with a large linear complexity. 

There are also several works in which weaknesses of existing generators are revealed as in [3], where the author 
shows that the Marsaglia and Zaman’s generator produces the successive digits of a rational b-adic number and, in 
this work, an efficient prediction algorithm for the sequences generated by this generator is obtained. In addition, 
there are other works which suggest improvements in the sequences obtained such as in [35], where a post-processing 
function to reduce or eliminate statistical weaknesses of physical random number generators is used; or in [1], where a 
compression method (using pseudo-chaotic systems) is applied to True Random Bit Generators. 

As showcased in previous lines, the necessity of “good sequences” is a fact and a point of great interest. As a result, it 
is necessary to verify if the sequences meet the desired requirements. From the statistical point of view, certain tests 
must be passed to ensure that the sequences obtained meet the desired conditions. 

This article surveys the principal statistic batteries existing in the literature, analyzes them and gives some recom- 
mendations about their use. The rest of the paper is organized as follows: in Section II the principal concepts about 
hypothesis testing are given, in Section III, the principal batteries are explained and some examples are given, in Section 
IV other hypothesis tests that are not included in the batteries described in the previous section are described. In section 
V some recommendations about the use of the batteries are given. Finally, in Section V the conclusions are given. 
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2 HYPOTHESIS TESTING 

In order to verify if the sequence obtained with a generator can be considered as a “true random sequence”, different 
hypothesis tests can be applied, given a specific level of significance to decide on this question. Randomness is a 
statistical property, that is, the sequence will be characterized in probabilistic terms and its properties will be compared 
with those expected in the case of truly random sequences. 

In the following, the concept of hypothesis testing will be defined from a statistical perspective. 
The probability function of a random variable (r.v.) X , fX (x,θ ) depends on a parameter θ that takes values in a 

parametric space Θ, in such a way that for each value θ ∈ Θ, the function fX (x,θ ) is different. A statistical hypothesis 

about the parameter is a guess about the specific values it may take. 
The establishment of a hypothesis on the parameter implies dividing the space Θ into two separate parts, Θ0 (formed 

by the set of values θ that satisfy the hypothesis) and Θ1 (formed by the set of values θ that do not satisfy the hypothesis) 

so that Θ = Θ0 ∪ Θ1. 

The hypothesis to be contrasted is called Null Hypothesis H0 and the other, Alternative Hypothesis H1. The problem 
that arises in a hypothesis contrast is to determine which of the two hypotheses can be accepted. 

A hypothesis contrast is a rule of decision by which one hypothesis or another is chosen in light of the information 
obtained through a sample taken from the population under study. 

The solution given to the problem of contrasting the two hypotheses implies the possibility of succeeding or failing 
in the choice because of not knowing with certainty which is the true one. The situation is reflected in Table 1 (for 
more details see [8]): 

 
TRUE SITUATION CONCLUSION 

Not reject H0 Reject H0 (Accept H1) 
H0 is true No error Type I error 
H1 is true Type II error No error 

Table 1. Types of errors in hypothesis testing. 
 
 
 

• If H0 is true and it is not rejected, the decision is correct. 
• If H0 is true and it is rejected, the decision is incorrect and this error is called Type I Error. 

• If H1 is true and it is not rejected, the decision is correct. 

• If H1 is true and it is rejected, the decision is incorrect and this error is called Type II Error. 

The above situations are unknown and uncontrolled to some extent. However, a certain degree of control can be 
established over them by knowing the probabilities of committing the above errors. The probability of Error Type I is 
defined as α and it is also known as the level of significance of the contrast, generally established in values of 0.01, 0.05 

or 0.10. The probability of Error Type II is defined as β . In practice, it is usually used 1 − β or contrast power. The level 

of significance and contrast power are not independent. 
In practice, the concept of p − value is often used. The p − value is defined as the probability of obtaining results of 

the test, at least, as extreme as the results actually observed. If the condition of p − value < α is satisfied, then H 0 will 

eventually be rejected. 
It is interesting to note that we do not always work with an underlying distribution fX (x,θ ) of the population 

but this does not mean that we cannot carry out a hypothesis analysis, that is, non-parametric techniques have been 
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developed. In other words, no hypotheses appear about a certain parameter θ of a population, but the process is based on 
a statistician who will not refer to the parameter. It is common to use certain sample information such as the frequency 
with which the data appear in the sample, its position, etc. In this type we can highlight goodness-of-fit contrasts or 
randomness contrasts. 

For cryptographic purposes, hypothesis contrasting should be used to determine whether the sequence of numbers 
obtained by a generator satisfy the uniformity hypothesis (in the sequence of random or pseudo-random bits obtained, 
the expected number of zeros and ones is the same, i.e., if n is the length of the sequence, the expected number of zeros 
(ones) is n/2), scalability (if a sequence is random, any substring obtained from the first must also be random) and 
consistency (the behavior of the generator must be studied for different seeds, and the result of the sequence obtained 
in terms of its randomness must not depend on the chosen seed). 

The most common tests used to decide on the uniformity of the sample are the tests χ 2 and Kolmogorov-Smirnov 
(K-S). 

The steps of the χ 2 test are [49]: 

(1) Organize the n pseudo random numbers in k disjoint classes Ii , 1 ≤ i ≤ k. Count the quantity of ui ∈ Ii , denote 
this number by fi . So f1 + . . . + fk = n is the size of the sample. Under H0, P (Ii ) = pi where p1 + . . . + pk = 1, 
because the sample is composed by independent items, fi ∼ B (n,pi ), where B (n,pi ) represents a Binomial 
distribution with parameters n and pi . 

2 (2) Consider the variable V = Lk (fi −npi ) . The asymptotic distribution of V is chi-square with k − 1 degrees of 

freedom ( 2 
k −1 ) when 

i=1 
n → ∞. 

npi 

(3) Select α ∈ (0, 1). Get χ 2 from the quantiles table o the χ 2 distribution. 
(4) If 2 

k −1,α 
2
 

V > χk −1,α reject H0. If V ≤ χk −1,α there is no evidence for rejecting H0 at level α . 

K-S test consist of the following steps [49]: 

(1) Arrange the pseudo-random numbers ui from order from low to high. Let yi be the resulting sequence. 
(2) Build the empirical distribution function Fn (yi ) = i/n, i = 1, ...,n. 
(3) Compute de KS statistic: Dn = max1 ≤i ≤n Fn (yi ) − yi , 0 ≤ yi ≤ 1. 

(4) Select α ∈ (0, 1) that represents the probability of rejecting H0. Get Dn,α from the table of KS quantiles. 

(5) If Dn ≤ Dn,α there is no evidence for rejecting H0 at level α . If Dn > Dn,α reject H0. 

The principal differences between them are: 

• K-S is easier to apply than χ 2. 
• K-S is not affected by the regroupings. 

• K-S is used for small samples. 
• The power of K-S test is higher than χ 2 test. 

• Test χ 2 can be adapted in an easy way for the case of unknown population parameters. 

• Test χ 2 can be used in case of discrete and continuous distributions. 

These tests are widely used in various batteries that will be exposed in the next section. Its use is direct and indirect, 
i.e., in some of them, they appear as elements of the battery and, in other cases, the distributions and tests are used as 
tools for other tests of the batteries. To contrast the hypothesis of randomness there are also several approaches. One of 
which is the runs test, the best known, which will be explained later. 

χ 
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3 BATTERIES OF TESTS USED FOR HYPOTHESIS TESTING IN CRYPTOGRAPHY 

The sequences of bits obtained by the generators are expected to pass the hypothesis tests (i.e. there is no evidence 
to reject the null hypothesis for the selected α level) of interest to contrast the desired cryptographical properties 
previously commented on. 

In literature, there are several batteries that have been traditionally used in cryptography. Many authors have studied 
some particular examples or have given a general overview about them, for example, in [34], some of the most popular 
tests are described. In [51], the author explains some statistical tests depending on their focus, which is the aspect they 
analyze. In section 6 of [58], or in section 2 of [10] the most known batteries are mentioned. 

In the following subsections, our objective is to explain in general terms the tests that compose the different batteries 
and to indicate the pros and cons of each one. 

 
3.1 Knuth’s battery 

The first test battery used in Cryptography was introduced by Knuth [34]. Its use is currently set apart and other 
options (other batteries) are preferred, for example, for its computational implementation, its facility in their uses, etc. 
It includes 12 statistical tests that are described briefly in the following lines. 

• Frequency test: it evaluates whether the elements of a sequence are uniformly distributed. K-S test is used for 
this purpose. 

• Serial test: it is tested if each of the elements of the sequence happens with the same frequency and additionally 
if the pairs of possible results obtained from the sequence are independent and uniformly distributed. The test 
can be generalized for lists of three elements, four elements, etc. 

• Gap test: for each element in the sequence the amount of elements different from that element is counted before 
it happens again, the process is repeated for all its occurrences, and performs a χ 2 test on the lengths of the gaps. 

•  Poker test: this test considers n groups of 5 consecutive integers and classifies them according to the following 
seven patterns: the five integers that appear are all different (abcde), an integer is repeated twice and three 
different ones appear once each (aabcd), an integer is repeated twice, a different one is repeated twice and a third 
different integer appears only once (aabbc), an integer is repeated three times and two different ones appear 
once each (aaabc), an integer is repeated three times and a different one is repeated twice (aaabb), the same 
integer is repeated four times and a different one appears once (aaaab), the same integer is repeated five times 
(aaaaa). Under the hypothesis of randomness and adjustment to a U (0, 1), the probabilities of these modalities 
can be computed. Classes aaaaa and aaaab are often grouped together when applying the χ 2 test. 

• Coupon collector’s test: this test examines the amount of data needed to obtain at least one of each of the possible 
values. The lengths obtained are examined with the χ 2 test. 

•  Permutation test: this test considers blocks of k elements given a sequence of size n. Each of the blocks can have 
any of the k! possible arrangements of these k values. If the sequence were random, each possible arrangements 
would occur with equal probability: 1/k!. The test consists of observing many blocks and compare the observed 
frequencies of each possible order with the expected ones by applying a χ 2 test. 

• Runs test: the test is based on the length of the ascending or descending runs, understood as ascending run when 
each item in the series is greater than the previous one, and a descending run when each item in the series is 

less than the previous one. The number R of runs (+ if ui < ui+1, − if ui > ui+1) is calculated, the asymptotic 

distribution of R is N (µ = 1 (2n − 1),σ =
  

 1 (16n − 29)), where N (µ,σ ) represents the normal distribution with 
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mean µ and variance σ 2, consider Z = R−µ whose asymptotic distribution is N (0, 1), then a α level is selected, 
the related quantile σ such that 2 is taken and the randomness is accepted if and only if 

|Z | < zα /2. 

zα /2 P Z ≥ zα /2 = α / 

• Maximum of t test: the sequence is divided into subsequences of equal length, the maximum value of each 
subsequence is selected and a K-S test is applied to the selected values. 

• Collision test: this test is used in cases where the amount of data is significantly less than the number of categories 
to which they may belong, so that the probability that two or more data belong to the same category is low. 
Collision is defined as the case in which two data belong to the same category. 

• Birthday Spacings test: m data from the sequence being tested are selected, which can be between 1 and n, they 
are treated as if they were m birthday in a year of n days, then the m days are ordered and the gaps between each 
pair are calculated and these gaps are grouped by size. The particular description will be given in the description 
of Diehard tests battery. 

• Serial Correlation test: the serial correlation statistic is computed. This statistic measures how much one element 
of the sequence depends on the previous one. If the sequence were random, the serial correlation values would 
have values very close to zero. 

• Subsequences test: this test is applied in cases where more than one random number is required at a time. 

Originally Knuth’s battery was developed for simulation applications the same as the next battery we will explain, 
Marsaglia’s battery. 

 
3.2 Diehard tests battery 

In 1995, George Marsaglia [40] published a CD-ROM of random numbers along with a set of tests to determine if a 
sequence of numbers could be considered as a random sequence. He called this battery “Diehard tests”. If a PRNG passes 
the tests on this battery, then it can be used in many quality scientific studies. In this battery, 16 tests are included 
which are briefly described below (for more details you can see the official site [40] or section 3 of [24] in which a 
summary of the tests is given). 

•  Birthday spacing test: in this test m birthdays of a year of n days are selected, then a list of the time between 
two events (two consecutive birthdays) is made. Let j be the number of values that appear more than once in 
that list, then the asymptotic distribution of j is Poisson of parameter λ = m3/(4n), P m3/(4n) (in practice that 
approximation is valid when n ≥ 224 and m = 29). This test recommends n > 218 and in practice takes n = 224 

and m = 29 so the distribution to work with in this case is P (λ = 2). Samples of size 500 are taken, and a χ 2 test 
of goodness of fit is done which provides a p − value. The first test uses the 1-24 bits (counting from the left) 
of integers in the file. Then the file closes and reopens. The second one uses the bits 2-25, the third uses 3-26 
bits and so on up till bits 9-32. Each set of bits provides a p − value, and the nine p − values forms a sample to 
which a K-S test is applied. This is one of the most difficult test to pass and if a sequence passes this test, it is 
very common that that sequence passes most of the rest tests of this battery. 

• Overlapping 5-permutation test (OPERM5): a sequence of one million 32-bit random integers is being studied. A 
set of 5 consecutive integers is selected and the 120 possible permutations between the 5 selected numbers must 
appear with equal probability along the rest of the analyzed series. 

• Binary rank tests (for 31x31, 32x32 and 6x8 matrices): the aim of these tests is to check whether the rank of the 
obtained data matrices is consistent with the expected rank for matrices whose entries are random. 
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• Bitstream test: the data set is considered to be a bit stream a = {ai } and a two-letter alphabet (0 − 1) is considered, 

so the a flow can be seen as a succession of words of 20 overlapping letters (the first word would be a1a2 . . . a20, 
the second would be a2a3 . . . a21 and so on). This test counts the number of words of 20 letters (20 bits) that 
are missing in a string of 221 words of 20 overlapping letters and compares it with the expected number if the 
sequence were random. There are 220 possible words of 20 letters. If the sequence were random with 221 + 19 bits, 
the number of missing words f would be distributed according to a random variable N (µ = 141.909,σ = 428), 
then, the number obtained in the sequence under study is compared with the quantile of the standard Normal 

distribution Z = f −µ . The test must be repeated 20 times. 
•  Tests overlapping-pairs-sparse-occupancy (OPSO), overlapping-quadruples-sparse-occupancy (OQSO) and DNA: 

the OPSO test considers words of 2 letters chosen from an alphabet of 1024 letters. Each letter is determined by 
a dozen bits of a 32-bit integer in the sequence under analysis. The test generates 221 (overlapping) words of 
2 letters (from 221 + 1 “keystrokes”) and counts the number of words of 2 letters that does not appear in the 
sequence under analysis. If the sequence were random, this amount should be distributed according to a random 
variable N (µ = 141909,σ = 290), therefore, this test compares the number obtained in the concrete sample with 
what theoretically should be obtained through the normal random variable. This test takes 32 bits at a time from 
the test file and uses a designated set of ten consecutive bits. Then it restarts the file for the next 10 designated 
bits, and so on. The OQSO test is similar to the previous one but considering 4-letter words of a 32-letter alphabet 
where each letter is determined by a designated string of 5 consecutive bits of the test file, whose elements are 
assumed as random 32-bit integers. The DNA test considers a 4-letter alphabet (C,G,A,T ), determined by two 
designated bits in the sequence of random integers that is being tested. We then consider 10-letter words and 
test whether the number of missing words is compatible with the theoretical value that should be there, which is 
distributed according to a N (µ = 141909,σ = 339). 

• The count-the-1’s test on a stream of bytes: this test considers the file of numbers as a sequence of bytes (4 per 

32-bit integer). Each byte can contain an amount of ones that varies in {0, . . . , 8} with probabilities 1/256, 8/256, 

28/256, 56/256, 70/256, 56/256, 28/256, 8/256 and 1/256 respectively. The byte set provides an overlapping word 

of 5 letters, each letter can take values in the set {A, B,C, D, E}. The letters are determined by the number of 

ones in that byte (so, the letter to be taken depends on the number of ones in the sequence): numbers 0, 1, 2 
correspond to A, 3 to B, 4 to C, 5 to D and finally, 6, 7, 8 to E. The number of overlapping words of 5 letters is 
55. From a string of 256000 words of 5 letters (overlapped), counts are made in the frequencies of each word. 
The quadratic form in the weak inverse of the covariance matrix of the cell counts provides a χ 2 test. The test 

returns two p − values for both 5 and 4-letter cell counts. 

• The count-the-1’s test for specific bytes: this test studies the randomness of the sequence of 5-letter random 
words that are overlapping. It is similar to the previous one, in this case, the test is applied 25 times, first using 

the first byte, then the second byte and so on, and the corresponding p − values of χ 2 test are found. 

• The parking lot test: in this test a car is parked (it is a circle with radius 1) in a square of size 100x100. Then a 
second car is parked, then the third and so on. If a crash occurs the process for that particular car is replicated from 
the beginning choosing different random places for parking. Let n be the number of attempts and m the number 
of successfully parked, in practice it is chosen n = 12000, simulation shows that m distributes (asymptotically) as 

a N (µ = 3523,σ = 21.9). At the end a K-S test for 10 obtained p − values is performed to check if they come 

from a U (0, 1) distribution. 
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then 1 − exp −d2/0.995 should be distributed according to a U (0, 1) random variable and a K-S test is applied 

• Minimum distance test: a square is taken again but in this case of side 10000 and 8000 points are chosen randomly 
in it. Let d be the minimum distance between the n(n−1) pairs of points. If the points were evenly distributed, d2 

would be distr{ibuted acco}rding to an exponential random variable with parameter λ = 1/0.995 (exp {λ = 1/0.995}), 

 
to the resulting 100 values in order to check the uniformity for random points in the square. 

• 3D spheres test: the aim of the test is to evaluate the randomness of triplets of sequential random numbers of 
uniform distribution. They are 4000 random points chosen on a 1000 side cube. At each point, we center a sphere 
sufficiently large to reach the next nearest point. The volume of the smallest sphere is distributed approximately 

according to an exp {λ = 3/120π } random variable, so the radius of the cube is distributed according to an 

exp {λ = 1/30} random variable, the average µ = 30 is obtained through extensive simulation{. This te}st generates 

4000 spheres 20 times. Each min radius cubed results in a uniform variable through 1 − exp −r 3/30 , then a K-S 

test is applied to the 20 p − values. 

• The squeeze test: starting with k = 231, multiply by floating point values on [0, 1) until k = 1. Let t be the number 
of iterations that is necessary to reduce k to 1. We repeat this test 100000 times, and we count the number of 

times in which t < 7 and t ≥ 47 and compare them to an expected exponential to get the p − value. 

• The overlapping sums test: the sequence of integers is floated to get a sequence Ui of values from a U (0, 1) 
distribution. Then the sums S (j ) = 100+j −1 Uj are defined. The S (j ) have an approximate Normal distribution, 
they are typified to obtain a set of independent values from a distribution of N (0, 1) which are transformed into 
uniform variables for a K-S test. The p − values from ten K-S tests are given still another K-S test. 

• The runs test: the number of runs (increasing and decreasing) is counted in the sequence of values to be tested. 
Runs are counted for sequences of length 10000. The procedure is similar to the description previously explained, 
it is done 10 times, and then it is repeated. 

• The craps test: it is considered a game consisting of 200000 dice games, the number of wins n and the number of 
 

throws needed to finish each game l are counted. n ∼(asymptotically) N (µ = 200000p,σ =  200000p (1 − p)), 
with p = 244/495. l ∈ [1, ∞), but counts for all players greater than 21 are grouped with 21. A χ 2 test is made on 
the number of-throws. Each 32-bit integer taken from the file to be evaluated provides the value for the throw of 
a die by normalizing it to an interval [0,1) and then multiplying it by 6 and adding 1 to the integer part of the 
result. 

There are some disadvantages in this battery. The main one of them is that the parameters that appear in the tests 
are set by the software and cannot be modified like the allowed sample size. It is required that the sequences to be 
tested are in a binary file in the form of 32-bit integers (exactly). In addition, there are also difficulties regarding the 
technical handling of the same, as for example in the data input [36]. 

 
3.3 Dieharder battery 

In order to solve the disadvantages of the previous battery, Brown et. al. [6] introduced the Dieharder battery which 
consists of 26 tests, including Diehard battery tests, K-S test, runs test and the following are incorporated: 

•  Greatest Common Divisor Marsaglia-Tsang: this test is based on the calculus of the Greatest Common Divisor 
(GCD) of two numbers. Two random 32-bit positive integers u and v (u,v ∈ [1, 2s ]) are chosen and Euclid’s 
algorithm is applied to them. As a result, three elements are obtained: (1) the number of iterations k that have 
been done to find GCD, (2) a variable length sequence of partial quotients and (3) the GCD of u and v. If k and 
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π 2 j 2 

GCD are considered as random variables, these are independent and identically distributed. For s big, the mass 
function of GCD is approximately P [GCD (u,v) = j] =  6  and the distribution of k is approximately Binomial 
with parameters n = 50 and p = 0.376 (for a complete description of this test see [41]). A standard goodness-of-fit 
test for χ 2 distributions is applied to both GCD and k. Deviations from randomness suggest nonconformity 
between empirical and theoretical distributions of k and GCD. 

• Generalized minimum distance: Diehard Minimum distance test generalized to higher dimensions, see [19]. 

•  Lagged sum test: this test calculates the mean of the sequence with n lags and compares it with the theoretical 
value. 

• Permutations test: this test is similar to the Non-Overlapping Serial Test but with a different mapping of the 
input uniforms to the sample statistics. This test counts order permutations of random numbers, taken n at a 
time. There are n! permutations equally probable and the samples are independent. In this way a simple χ 2 test 

on the count vector with n! − 1 degrees of freedom can be applied. 

• Monobit: this test studies the number of zeros and ones in the sequence under study. If the sequence is random, 
the amount is expected to be approximately the same. The study can be done in terms of proportions, the 
proportion of zeros and ones is expected to be approximately the same. This test is also known as a frequency 
test. 

• Generalized Serial test: this test attempts to verify whether the sequences of successive numbers are equally 
distributed independently or not. This is a generalization of the serial test, see [25], [32] or [34]. 

•  Bit distribution test: this test performs the accumulation of the frequencies of all tuples of bits of size n (selected 
without overlap) in a list of random integers and compares the empirical distribution of the sample with the 
theoretical (binomial) distribution by using a χ 2 test. 

 
These tests are open source and can be used in R interface in Linux or Unix operating systems [6]. 
Further studies have been carried out to speed up the execution of the tests of this battery, see for example [62], 

where a solution is proposed to accelerate the statistical tests based on reconfigurable hardware, taking advantage of 
the parallelization of tasks and high frequencies. 

In order to apply this battery we should go to the dieharder website: 
https : //webhome .phy.duke .edu/ rдb/General/dieharder .php [6]. 
In this webpage the Dieharder battery can be downloaded. There are different versions and one can find the 

information about its installation and use. The files have extension .rpm and .tgz. Originally the files are prepared to be 
used under Linux or Unix, but there is the possibility to work under Windows operating system through the R interface. 

Next we will show some examples of the application of this battery by using R interface. For this purpose we need to 
work with the library RDieharder [16]. The available tests can be seen in Figure 1. Moreover, there are different and 

known generators that can be used in R, see Figure 2. 
In Example 1, see Figure 3, we use 100 samples of numbers generated by the generator mt19937 (Mersenne Twister 

19937 generator) and seed 12345. We apply the test number 15. The p − value that is calculated is p = 0.8347, which is 

higher than 0.01, so the sequence clearly passes the test. 
In Example 2, see Figure 4, we use 100000 samples of numbers generated by the generator randu (particular linear 

congruential generator with parameters m = 231, a = 65539 and b = 0) and seed 12345. We apply the test number 15. In 

this case p − value < 2.2e−16, so the sequence clearly does not pass the test. 
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Fig. 1. Tests in Dieharder battery available in RDieharder. 
 
 
 

3.4 NIST battery 

The US National Institute of Standards and Technology (NIST) in 2001 [52] developed a test suite called NIST battery, 
consisting of 15 randomness tests. The NIST battery is widely used mainly for quality certifications. As with the 
Dieharder battery, test parameters are fixed and this reduces its flexibility. NIST battery was developed to detect non 
randomness for cryptographic applications. Next, we will explain briefly the tests included in this battery, but for a 
complete guide it is recommended reading the official documentation [52] (also, there is a lot of bibliography in which 
some of these tests are explained, for example in [57]): 

dieharderTests() 
names 

diehard_birthdays 
diehard_operm5 

diehard_rank_32x32 
diehard_rank_6x8 
diehard_bitstream 

diehard_opso 
diehard_oqso 
diehard_dna 

diehard_count_1s_stream 
diehard_count_1s_byte 

diehard_parking_lot 
diehard_2dsphere 
diehard_3dsphere 
diehard_squeeze 

diehard_sums 
 

diehard_craps 
marsaglia_tsang_gcd 

sts_monobit 
 

sts_serial 
rgb_bitdist 

rgb_minimum_distance 
rgb_permutations 

rgb_lagged_sum 
rgb_kstest_test 
dab_bytedistrib 

dab_dct 
dab_filltree 

dab_filltree2 
dab_monobit2 

dab_birthdays1 
dab_opso2 

id 
0 
 
 
 
 
 
 
 
 
 

10 
11 
12 
13 
14 
15 
16 
17 
100 
101 
102 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
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dhtest = dieharder(rng="mt19937", test=15, psamples=100, seed=12345) 
print(dhtest) 

 
Diehard Runs Test 

 
data: Created by RNG ‘mt19937’ with seed=12345, sample of size 100 
p-value = 0.8347 

 
> dieharderGenerators()  

names id  names id  names id 
1 borosh13 0 28 random256-glibc2 27 54 taus2 53 
2 cmrg 1 29 random256-libc5 28 55 taus113 54 
3 coveyou 2 30 random32-bsd 29 56 transputer 55 
4 fishman18 3 31 random32-glibc2 30 57 tt800 56 
5 fishman20 4 32 random32-libc5 31 58 uni 57 
6 fishman2x 5 33 random64-bsd 32 59 uni32 58 
7 gfsr4 6 34 random64-glibc2 33 60 vax 59 
8 knuthran 7 35 random64-libc5 34 61 waterman14 60 
9 knuthran2 8 36 random8-bsd 35 62 zuf 61 
10 knuthran2002 9 37 random8-glibc2 36 63 stdin_input_raw 200 
11 lecuyer21 10 38 random8-libc5 37 64 file_input_raw 201 
12 minstd 11 39 random-bsd 38 65 file_input 202 
13 mrg 12 40 random-glibc2 39 66 ca 203 
14 mt19937 13 41 random-libc5 40 67 uvag 204 
15 mt19937_1999 14 42 randu 41 68 AES_OFB 205 
16 mt19937_1998 15 43 ranf 42 69 Threefish_OFB 206 
17 r250 16 44 ranlux 43 70 XOR (supergenerator) 207 
18 ran0 17 45 ranlux389 44 71 kiss 208 
19 ran1 18 46 ranlxd1 45 72 superkiss 209 
20 ran2 19 47 ranlxd2 46 73 R_wichmann_hill 400 
21 ran3 20 48 ranlxs0 47 74 R_marsaglia_multic. 401 
22 rand 21 49 ranlxs1 48 75 R_super_duper 402 
23 rand48 22 50 ranlxs2 49 76 R_mersenne_twister 403 
24 random128-bsd 23 51 ranmar 50 77 R_knuth_taocp 404 
25  random128-glibc2 24 52 slatec 51 78 R_knuth_taocp2 405 
26 random128-libc5 25 53 taus 52 79 empty 600 
27 random256-bsd 26       

 
 

Fig. 2. Generators available in RDieharder. 

 

 

Fig. 3. Example 1. 
 

• The Frequency (Monobit) test: the aim of this test is to study the proportion of the number of zeros and ones in 
the sequence. If this were random, the ratio would be approximately the same, i.e. 1/2. The other tests on the 
battery should be checked once this test has been passed. 
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Fig. 4. Example 2. 
 
 

• Frequency test within a block: the aim of this test is to study the proportion of ones in a block of size N . If the 
sequence were random, this ratio would be expected to be N /2. 

•  The Runs test: the aim of this test is to study the runs of the sequence under study. A run of length k consists of 
k equal bits so that the pre-string bit and the k + 1 are different. If the sequence were random, the runs of zeros 
and ones would be distributed uniformly. 

• Tests for the Longest-Run-of-Ones in a block: this test studies the strings of ones in a block of size M. It studies 
whether the length of the largest streak present in the sequence is consistent with what should be expected for a 
random sequence. 

• The Binary Matrix Rank test: this test studies the ranks of the (disjoints) submatrices formed from the sequence 
data. If the data were random, it is expected that there would be no dependence between the sub-strings of the 
original sequence. This test is included in the Diehard battery. 

• The Discrete Fourier Transform (Spectral) test: this test studies the peak heights in the Discrete Fourier Transform 
of the sequence to detect possible periodic patterns in the sequence that would imply that the sequence under 
study would not be random. The objective is to detect when the number of peaks exceeding the 95% threshold is 
statistically different from 5%. An interesting paper about this test can be seen in [31]. 

• The Non-overlapping Template Matching test: this test studies the number of occurrences of pre-specified target 
strings to see if a significant number of a non-periodic pattern occurs. In this test, a window of m-bits is used to 
study a specific pattern of size m. If this pattern is not found, the window is moved one position, on the contrary, 
if a pattern is found, the window is reset to the bit after the found pattern, and the search starts again. 

• The Overlapping Template Matching test: this test studies the number of occurrences of pre-specified target 
strings. As in the previous test, it uses a window of m-bits to search for a specific m-bit pattern. If the pattern is 
not found, the window moves one bit position. Contrastingly, if a pattern is found the window moves only one 
bit before starting again. 

• Maurer’s “Universal Statistical” test: this test studies the number of bits between matching patterns. The aim of 
this test is to detect if one sequence can be compressed substantially without losing information. A significantly 
compressible sequence is considered non-random. This test was introduced by Maurer in 1992 [45] and is called 
universal because “it can detect any significant deviation of a device’s output statistics from the statistics of a truly 
random bit source when the device can be modeled as an ergodic stationary source with finite memory but arbitrary 
(unknown) state transition probabilities” [45]. 

• The Linear Complexity test: this test studies a linear feedback shift register (LFSR). If a sequence were random it 
would have long LFSRs; on the contrary if the LFSR is too short, the sequence is non-random. 

dhtest = dieharder(rng=41, test=15, psamples=100000, seed=123456) 
print(dhtest) 

 
Diehard Runs Test 

 
data: Created by RNG ‘randu’ with seed=123456, sample of size 100000 
p-value <2.2e-16 
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•  The Serial test: this test studies the frequency of all possible m-bit patterns overlapped throughout the sequence. 
The aim of the test is to determine if the number of occurrences of the 2m m-bit overlapping patterns is 
approximately the same as would be expected for a random sequence (in that case each m-bit pattern has the 
same probability of appearing). In the case m = 1 the frequency test is obtained. 

• The Approximate Entropy test: this test studies the frequency of all possible n-bit patterns superimposed along 
the whole sequence and compares the frequencies of two consecutive blocks (n and n + 1) with those that should 
appear in the case of a random sequence. 

• The Cumulative Sums (Cusums) test: the random walk through the cumulative (adjusted) sum of -1 and +1 of the 
sequence digits, is defined. If the sequence were random, the “excursions” of the random walk should be close to 
0. 

• The Random Excursions test: this test studies the number of cycles that have exactly k visits in a cumulative sum 
random walk defined as in the previous test. A cycle of a random walk consists of a sequence of steps of length 
one, taken at random that begin and return to the origin. The objective of the test is to determine if the number 
of visits to a certain state within a cycle deviates from what would be expected in the case of a random sequence. 

• The Random Excursions Variant test: this test studies the total number of times a particular state is visited in a 
cumulative sum random walk. The aim of this test is to detect deviations from the expected number of visits to 
various states in the random walk. 

 
The particular parameters that appear in the different tests of the NIST battery can be seen in table 2. 
This battery has been studied in detail in [56]. In particular, its authors established the minimum lengths that the 

bit sequences must have in order to be used by the battery and criticized the computational times required for the 
verification of each of the tests. 

The battery has been studied from different perspectives. For example, in [48], the authors calculate the exact 

non-asymptotic distribution of the p − values generated by some tests included in the battery, and propose some 

approximations. Following the same line, [55] works for the case of test items based on the binomial distribution and 
discover some inconsistencies in the second level tests of the tests. They therefore propose a methodology based on the 

Q − value as the metric of these second level tests to replace the original p − value without any further modification, 

and the first level tests remain unchanged. Additionally, they give the correction test for the proposed second level tests 

based on the Q − value. 

In order to apply this battery we should go to the NIST website: 

https : //csrc .nist .дov/Projects/Random − Bit − Generation/Documentation − and − Sof tware [9]. 

In this webpage all the information about the download and installation of this battery can be found. The source 
code of the files was written in ANSI C but it is possible to work under Windows operating system using an auxiliary 
program such as MinGW. 

We will show some examples of the use of this battery. In Example 3, see Figure 5, we apply all tests of the battery of 
a sequence generated by generator 1 (linear congruential generator with parameters used by Fishman and Moore [20]) 
and 100 bitstreams. 

The final result is given in a separate document .txt. In Figure 6 we show a fragment of this report. The results 
are represented via a table. The number of rows corresponds to the number of statistical tests applied. The number 

of columns, q = 13, are distributed as follows: columns 1-10 correspond to the frequency of p − values, column 11 is 
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 SELECTION 
 
[0] Input File [1] Linear Congruential 
[2] Quadratic Congruential I  [3] Quadratic Congruential II 
[4] Cubic Congruential [5] XOR 
[6] Modular Exponentiation [7] Blum-Blum-Shub 
[8] Micali-Schnorr [9] G Using SHA-1 

Enter Choice: 1 

[01] Frequency 
[03] Cumulative Sums 

  
 

[02] Block Frequency 
[04] Runs 

[05] Longest Runs of Ones [06] Rank 
[07] Discrete Fourier Transform [08] Nonperiodic Template Matchings 
[09] Overlapping Template Matchings  [10] Universal Statistical 
[11] Approximate Entropy [12] Random Excursions 
[13] Random Excursions Variant [14] Serial 
[15] Linear Complexity 
 

INSTRUCTIONS 
 

Enter 0 if you DO NOT want to apply all of the 
statistical tests to each sequence and 1 if you DO. 

Enter Choice: 1 
Parameter Adjustements 

Select Test (0 to continue): 0 
How many bitstreams? 100 

Statistical Testing In Progress............ 
 

Statistical Testing Complete!!!!!!!!!!!! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[1] Block Frequency Test - block length(M): 128 
[2] NonOverlapping Template Test - block length(m): 9 
[3] Overlapping Template Test - block length(m): 9 
[4] Approximate Entropy Test - block length(m): 10 
[5] Serial Test - block length(m): 16 
[6] Linear Complexity Test - block length(M): 500 

 
 
 
 
 
 
 
 

Fig. 5. Example 3. 
 
 
 
 
 

the p − value that arises via the application of a chi-square test, column 12 is the proportion of binary sequences that 

passed, and in column 13 the corresponding statistical test is shown. In this case, the sequence passes the tests. 
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————————————————————————————————————————————————————————–   
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES 

————————————————————————————————————————————————————————– 
generator is <Linear-Congruential> 

————————————————————————————————————————————————————————– 
C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  P-VALUE  PROPORTION  STATISTICAL TEST 
6 15 8 9 11 7 10 11 13 10 0.678686 99/100 Frequency 
11 7 11 6 10 13 15 13 6 8 0.437274 99/100 BlockFrequency 
6 12 17 10 3 11 10 15 9 7 0.080519 99/100 CumulativeSums 
7 13 11 10 9 10 11 13 11 5 0.779188 99/100 CumulativeSums 
12 10 11 8 9 8 14 11 9 8 0.935716 97/100 Runs 
8 8 10 18 7 9 13 10 11 6 0.289667 100/100 LongestRun 
12 9 9 8 8 7 18 10 10 9 0.455937 99/100 Rank 
5 11 12 11 13 5 15 13 8 7 0.262249 100/100 FFT 
13 13 10 9 12 7 11 9 8 8 0.897763 99/100 NonOverlappingTemplate 
10 13 7 9 10 12 10 13 6 10 0.851383 100/100 NonOverlappingTemplate 
6 15 11 6 10 8 8 13 14 9 0.419021 100/100 NonOverlappingTemplate 

. . . . . . . . . . . . . 
6 7 4 3 5 6 7 7 5 6 0.911413 56/56 RandomExcursionsVariant 
7 3 5 5 6 7 3 6 10 4 0.455937 56/56 RandomExcursionsVariant 
7 8 11 17 12 9 14 6 9 7 0.275709 100/100 Serial 
13 8 7 9 17 8 14 8 9 7 0.304126 99/100 Serial 
9 12 6 10 15 13 7 11 9 8 0.637119 99/100 LinearComplexity 

The minimum pass rate for each statistical test with the exception of the 
random excursion (variant) test is approximately = 96 for a 
sample size = 100 binary sequences. 

 
The minimum pass rate for the random excursion (variant) test 
is approximately = 53 for a sample size = 56 binary sequences. 

 
For further guidelines construct a probability table using the MAPLE program 
provided in the addendum section of the documentation. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Fig. 6. Example 3. Fragment of the final analysis report for the sequence generated by the LCG. 

 
 

Other example in which the sequence passes the test is Example 4, see Figure 7. In this case we apply the NIST 
battery to an external file uploaded by the user. We use a sequence of numbers generated by dev/urandom and 100 
bitstreams. In order to do this we need to choose option 0 in the initial menu of the program. 

A fragment of the final analysis report of Example 4 can be seen in Figure 8. 
Now we will use another sequence generated by a biased generator. We generate a sequence by using urandom in 

Python, and then we delete some occurrences of a certain number, so by its construction, this sequence is not random. 
We will apply NIST battery and we will see the results in Example 5, see Figure 9. 

A fragment of the final analysis report can be seen in Figure 10. Results which NIST interprets as non-randomness of 
the data are marked by an asterisk. 
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C: \Users\AL\Documents\ sts-2_1_2 \ sts-2.1.2 > assess.exe 1000000 

 SELECTION 
 

[0] Input File [1] Linear Congruential 
[2] Quadratic Congruential I  [3] Quadratic Congruential II 
[4] Cubic Congruential [5] XOR 
[6] Modular Exponentiation [7] Blum-Blum-Shub 
[8] Micali-Schnorr [9] G Using SHA-1 

Enter Choice: 0 

User Prescribed Input File: C: \Users\AL\n0 

 TESTS 
 

[01] Frequency [02] Block Frequency 
[03] Cumulative Sums [04] Runs 
[05] Longest Runs of Ones [06] Rank 
[07] Discrete Fourier Transform [08] Nonperiodic Template Matchings 
[09] Overlapping Template Matchings  [10] Universal Statistical 
[11] Approximate Entropy [12] Random Excursions 
[13] Random Excursions Variant [14] Serial 
[15] Linear Complexity 

 
INSTRUCTIONS 

 
Enter 0 if you DO NOT want to apply all of the 
statistical tests to each sequence and 1 if you DO. 

Enter Choice: 1 
 Parameter Adjustements 

Select Test (0 to continue): 0 
How many bitstreams? 100 
 
Input File Format: 

[0] ASCII-A sequence of ASCII 0’s and 1’s 
[1] Binary-Each byte in data file contains 8 bits of data 

 
Select input mode: 1 

Statistical Testing In Progress............ 

Statistical Testing Complete!!!!!!!!!!!! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[1] Block Frequency Test - block length(M): 128 
[2] NonOverlapping Template Test - block length(m): 9 
[3] Overlapping Template Test - block length(m): 9 
[4] Approximate Entropy Test - block length(m): 10 
[5] Serial Test - block length(m): 16 
[6] Linear Complexity Test - block length(M): 500 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Example 4. 
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————————————————————————————————————————————————————————–   
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES 

————————————————————————————————————————————————————————– 
generator is <Linear-Congruential> 

————————————————————————————————————————————————————————– 
C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  P-VALUE  PROPORTION  STATISTICAL TEST 
9 11 13 11 5 12 7 12 15 5 0.319084 97/100 Frequency 
9 13 6 8 11 8 14 6 14 11 0.494392 98/100 BlockFrequency 
11 11 9 14 13 8 13 3 6 12 0.275709 97/100 CumulativeSums 
10 12 12 10 6 10 9 9 13 9 0.935716 98/100 CumulativeSums 
6 8 16 7 11 13 6 9 12 12 0.350485 100/100 Runs 
8 4 12 10 11 9 12 14 10 10 0.678686 99/100 LongestRun 
12 12 12 9 10 11 12 9 5 8 0.851383 98/100 Rank 
9 12 12 11 11 7 11 9 13 5 0.779188 99/100 FFT 
13 11 10 12 14 9 9 6 10 6 0.699313 98/100 NonOverlappingTemplate 
11 10 5 11 10 8 10 11 16 8 0.616305 99/100 NonOverlappingTemplate 
10 11 3 15 9 9 9 8 13 13 0.350485 98/100 NonOverlappingTemplate 

. . . . . . . . . . . . . 
8 6 3 4 5 3 5 3 8 9 0.383827 53/54 RandomExcursionsVariant 
7 7 1 2 9 2 8 5 6 7 0.108791 53/54 RandomExcursionsVariant 
7 3 5 4 3 6 3 5 11 7 0.236810 52/54 RandomExcursionsVariant 
5 5 6 3 1 9 4 7 8 6 0.319084 52/54 RandomExcursionsVariant 
4 7 2 7 4 5 5 6 8 6 0.739918 52/54 RandomExcursionsVariant 
10 9 15 8 7 6 15 12 8 10 0.455937 100/100 Serial 
9 8 8 4 13 20 8 9 11 10 0.066882 99/100 Serial 
13 10 9 4 11 10 12 9 9 13 0.719747 100/100 LinearComplexity 

The minimum pass rate for each statistical test with the exception of the 
random excursion (variant) test is approximately = 96 for a 
sample size = 100 binary sequences. 

 
The minimum pass rate for the random excursion (variant) test 
is approximately = 51 for a sample size = 54 binary sequences. 

 
For further guidelines construct a probability table using the MAPLE program 
provided in the addendum section of the documentation. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Fig. 8. Example 4. Fragment of the final analysis report for the sequence n0 generated by dev/urandom. 

 
 
 
 

3.5 TestU01 battery 
L’Ecuyer and Simard [36] proposed a battery called TestU01 implemented in C that is easier to apply from a computational 
point of view and that includes many of the main tests in the literature. It is a very extensive battery that includes many 
of the Diehard and NIST tests and other tests that discover problems in some generators that pass Diehard and NIST 
batteries successfully. It is a more flexible battery than the previous ones, the implementations are more efficient, and it 
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C: \Users\AL\Documents\ sts-2_1_2 \ sts-2.1.2 > 8000000 

 SELECTION 
 

[0] Input File [1] Linear Congruential 
[2] Quadratic Congruential I  [3] Quadratic Congruential II 
[4] Cubic Congruential [5] XOR 
[6] Modular Exponentiation [7] Blum-Blum-Shub 
[8] Micali-Schnorr [9] G Using SHA-1 

Enter Choice: 0 

User Prescribed Input File: C: \Users\AL\epsilon0_0.bin 

 TESTS 
 

[01] Frequency [02] Block Frequency 
[03] Cumulative Sums [04] Runs 
[05] Longest Runs of Ones [06] Rank 
[07] Discrete Fourier Transform [08] Nonperiodic Template Matchings 
[09] Overlapping Template Matchings  [10] Universal Statistical 
[11] Approximate Entropy [12] Random Excursions 
[13] Random Excursions Variant [14] Serial 
[15] Linear Complexity 

 
INSTRUCTIONS 

 
Enter 0 if you DO NOT want to apply all of the 
statistical tests to each sequence and 1 if you DO. 

Enter Choice: 1 
 Parameter Adjustements 

Select Test (0 to continue): 0 
How many bitstreams? 100 
 
Input File Format: 

[0] ASCII-A sequence of ASCII 0’s and 1’s 
[1] Binary-Each byte in data file contains 8 bits of data 

 
Select input mode: 1 

Statistical Testing In Progress............ 

Statistical Testing Complete!!!!!!!!!!!! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[1] Block Frequency Test - block length(M): 128 
[2] NonOverlapping Template Test - block length(m): 9 
[3] Overlapping Template Test - block length(m): 9 
[4] Approximate Entropy Test - block length(m): 10 
[5] Serial Test - block length(m): 16 
[6] Linear Complexity Test - block length(M): 500 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Example 5. 
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————————————————————————————————————————————————————————–   
RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES 

————————————————————————————————————————————————————————– 
generator is <Linear-Congruential> 

————————————————————————————————————————————————————————– 
C1  C2  C3  C4  C5  C6  C7  C8  C9  C10 P-VALUE PROPORTION  STATISTICAL TEST 

 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . 
 

The minimum pass rate for each statistical test with the exception of the 
random excursion (variant) test is approximately = 96 for a 
sample size = 100 binary sequences. 

 
The minimum pass rate for the random excursion (variant) test 
is approximately = 7 for a sample size = 8 binary sequences. 

 
For further guidelines construct a probability table using the MAPLE program 
provided in the addendum section of the documentation. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 
Fig. 10. Example 5. Fragment of the final analysis report for the biased sequence. 

 
 

can support larger sample sizes and a wider range of test parameters. Tests are available for bit strings and for real 
number sequences in the interval (0, 1). 

It consists of six test batteries, three of which are oriented to sequences of values within the interval (0, 1) and are 
used to test the structure and output of the PRNGs (Small Crush, Crush, Big Crush) and the other three oriented for 
analyzing bit sequences (Rabbit, Alphabit and BlockAlphabit-the latter applies the Alphabit test battery repeatedly to a 
generator or a binary file after rearranging the bits by blocks of different sizes (2, 4, 8, 16, 32 bits)-). According to Gentle 
[23], the time needed to test a single generator with Big Crush can be more than ten hours on a high-end PC. However, 
with Small Crush it is two orders of magnitude faster, so it is advisable to start testing with Small Crush and to stop if 
the generator does not pass the tests. Otherwise, it would continue with Crush. If the generator does not pass the tests 
it will stop, otherwise, it will continue with Big Crush. On a 64-bit AMD Athlon processor running at 2.4 GHz, Rabbit 
takes about 2 seconds to test a 220-bit stream in a file and about 9 minutes for a 230-bit stream. Alphabit takes less than 
1 second for 220-bit and about 1 minute for 230-bit [36]. The tests included in each suite in TestU01 battery can be seen 
in Table 4. 

This battery can be downloaded in: 

1 92 1 0 0 0 2 1 1 2 0.000000 * 99/100 Frequency 
0 2 2 0 91 0 2 0 2 1 0.000000 * 100/100 BlockFrequency 
1 91 2 1 1 0 3 0 0 1 0.000000 * 99/100 CumulativeSums 
1 91 1 1 2 0 0 1 3 0 0.000000 * 99/100 CumulativeSums 
1 0 92 0 1 2 1 1 0 2 0.000000 * 99/100 Runs 
91 2 2 1 1 0 2 0 1 0 0.000000 * 100/100 LongestRun 
0 0 1 91 0 1 1 4 0 2 0.000000 * 100/100 Rank 
0 1 92 1 2 1 1 1 1 0 0.000000 * 100/100 FFT 
1 2 91 0 1 0 2 0 2 1 0.000000 * 99/100 NonOverlappingTemplate 
1 2 90 1 2 2 1 1 0 0 0.000000 * 100/100 NonOverlappingTemplate 
. . . . . . . . . . . . . 
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http://simul.iro.umontreal.ca/testu01/tu01.html [37]. 
In this webpage we can find the source files, the installation and user’s guide. This battery is implemented in the ANSI 

C language but as in the previous subsection, it can be used in Windows. In case you want to work under Windows 
operating system you have to be careful to export the libraries correctly and this depends on your operating system 
version. 

Now we will show some examples of the use of this battery. First of all we show Example 6. In this case we use an 
internal example of the package TestU01, birth1.c. In this example we use a LCG with parameters m = 2147483647, 
a = 397204094, b = 0 and seed s = 12345, the result we obtain of the analysis can be seen in Figure 11. It is important to 

see how the situation changes if the number of births does if. If n = 1000, the p − value is 0.04 > α and when n = 10000, 

p − value < α . 
Now we modify the file birth1.c and we include the library bbattery.h in order to apply Small Crush. This is our 

Example 7. The results can be seen in Figure 12. 
In Example 8 we apply Small Crush to a new file. In this case we use a new generator by combining two LCGs (using 

the function uni f 01_CreateCombAdd2), the first one with parameters m = 231 − 1, a = 630360016, b = 0 and seed 

s = 12345 (used in some FORTRAN) and the other with parameters m = 2147483563, a = 16807, b = 0, and s = 12345 
(used for example in APL, IMSL and SIMPL/I). The results are shown in Figure 13, the program prints a convenient 

summary: the names of all tests that produce a p − value outside the [0.1, 0.99] interval. 

 
3.6 ENT battery 

There are other less used batteries such as ENT battery, proposed by Walker [65], which is used by the random.org 
website. ENT claims to test for simulation and cryptographic purposes. ENT battery has two modes of working binary 
and byte, depending on the mode, different statistics will be calculated and displayed. This battery includes the following 
tests (Observation: from the statistical point of view, there is one test, χ 2 and the others are measures indicators): 

• Entropy: this test calculates the entropy of the sequence under study. If the sequence were random, it should be 
rich in entropy. The maximum theoretical entropy of a long sequence is 8 bits per byte, in byte mode, and one bit 
per bit in binary mode. 

• Chi-square Test: this test computes the frequency of the symbols and compares it with the frequency expected in 
a uniform distribution this is done by a χ 2 statistic. 

• Arithmetic Mean: the arithmetic mean of the sequence values is calculated. If the sequence were random, the 
expected value would be in 0.5 in binary mode and 127.5 in byte mode. 

• Monte Carlo Value for π : in this test, the sequence of numbers is interpreted as coordinates in a square and 
the number of points that fall within the circle inscribed in that square is counted. That number is taken as an 
estimation of π . If the sequence were not random, the approximation to the true value would not be good. 

• Serial Correlation Coefficient: the correlation between two consecutive symbols (bits or bytes) is calculated. This 
correlation is expected to be low in random sequences. 

 
This battery can be downloaded in: 
https://www.fourmilab.ch/random/ [65]. 
Installation instructions (to be done on Unix and Windows) can be found and the guidelines for its use and interpre- 

tation. 
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Fig. 11. Example 6. Results of the analysis of birth1.c file. 

$ birth1.exe 
 

 

ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345 
 

smarsa_BirthdaySpacings test: 
 

N = 1, n = 1000, r = 0, d = 10000, t = 2, p = 1 

Number of cells = d ∧t = 100000000 
Lambda = Poisson mean = 2.5000 

 
Total expected number = N*Lambda: 2.50 

Total observed number: 6 

p-value of test: 0.04 
 

CPU time used : 00:00:00.00 
 

Generator state: 
s = 1858647048 

 
 

 

ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345 
 

smarsa_BirthdaySpacings test: 
 

N = 1, n = 10000, r = 0, d = 1000000, t = 2, p = 1 

Number of cells = d ∧t =1000000000000 
Lambda = Poisson mean =0.2500 

 
Total expected number = N*Lambda: 0.25 

Total observed number: 44 

p-value of test: 9.5e-82 ***** 
 

CPU time used : 00:00:00.00 
 

Generator state: 
s = 731506484 



Recommendations on Statistical Randomness Test Batteries for Cryptographic Purposes 23 
 

========= Summary results of SmallCrush ========= 
 

Version: TestU01 1.2.3 
Generator: My Combination of LCGs, unif01_CreateComAdd2 
Number of statistics: 15 
Total CPU time: 00:00:30.39 
The following tests gave p-values outside [0.001,0.9990]: 
(eps means a value <1.0e-300): 
(eps1 means a value <1.0e-015): 

Test p-value 
1 BirthdaySpacings 1.6e-118 

All other test were passed 

 

 
 

Fig. 12. Example 7. Results of the analysis of the modified birth1.c file. 
 
 

 

Fig. 13. Example 8. Results of the analysis of the combining generator. 
 
 

Now we show Example 9. This is an application of the ENT battery to an internal file available in its designed 
software, the sequence ent.c. This file has many non-random patterns (for example, the character space will be extremely 
overrepresented, and reserved words like int will be repeated many times). The results are shown in Figure 14. 

Now we apply the ENT battery for a sequence of 1000000 numbers generated by using a LCG with parameters 
m = 248, a = 25214903917 and b = 11 with seed 123456789, Example 10. The results of the application of ENT battery 
can be seen in Figure 15 and as it can be seen the sequence is not good from the perspective of randomness. 

In Example 11 we use the sequence n0 previously used in Example 4 and we apply ENT battery. The results can be 
seen in Figure 16. As it can be seen these results are compatible with the randomness of the sequence. 

Despite the speed and simplicity of the ENT battery, it has certain weaknesses. For instance, it presents some 
problems of dependence between tests (for example Entropy vs Chi-square Test among others) and problems related 
to poorly designed generators with the presence of serial correlation in which the battery does not detect that the 
numbers obtained are “bad” (degenerated by design). Let’s show this in Example 12. In this case we use the generator 

========= Summary results of SmallCrush ========= 
 

Version: TestU01 1.2.3 
Generator: ulcg_CreateLCG 
Number of statistics: 15 
Total CPU time: 00:00:25.23 
The following tests gave p-values outside [0.001,0.9990]: 
(eps means a value <1.0e-300): 
(eps1 means a value <1.0e-015): 

Test p-value 
BirthdaySpacings eps 
Collision 1-eps1 

All other test were passed 
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Entropy = 3.653481 bits per byte. 
Optimum compression would reduce the size of this 16000002 byte file by 54 percent. 
Chi square distribution for 16000002 samples is 356045004.10, and randomly would exceed this value less than 
0.01 percent of the times. 
Arithmetic mean value of data bytes is 50.3503 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.135956 (totally uncorrelated = 0.0). 

Entropy = 7.999987 bits per byte. 
Optimum compression would reduce the size of this 15000000 byte file by 0 percent. 
Chi square distribution for 15000000 samples is 263.59, and randomly would exceed this value less than 34.26 
percent of the times. 
Arithmetic mean value of data bytes is 127.5251 (127.5 = random). 
Monte Carlo value for Pi is 3.140208000 (error 0.04 percent). 
Serial correlation coefficient is -0.000196 (totally uncorrelated = 0.0). 

Entropy = 7.999912 bits per byte. 
Optimum compression would reduce the size of this 2097152 byte file by 0 percent. 
Chi square distribution for 2097152 samples is 256.00, and randomly would exceed this value less than 47.06 

 
Arithmetic mean value of data bytes is 127.5005 (127.5 = random). 
Monte Carlo value for Pi is 3.140925540 (error 0.02 percent). 
Serial correlation coefficient is 0.000000 (totally uncorrelated = 0.0). 

 

 
 

Fig. 14. Example 9. ENT results for the sequence ent.c. 
 

 

Fig. 15. Example 10. ENT results for the sequence u generated by a LCG. 

 

 

Fig. 16. Example 11. ENT results for the sequence n0 generated by dev/urandom. 
 
 

defined in Algorithm 1 (which generates non-random sequences) we can pass with good results the ENT battery as we 
can see in Figure 17. 

 

 

Fig. 17. Example 12. ENT results for a biased sequence generated by Algorithm 1. 

Entropy = 4.846849 bits per byte. 
Optimum compression would reduce the size of this 7989 byte file by 39 percent. 
Chi square distribution for 7989 samples is 158914.00, and randomly would exceed this value less than 0.01 
percent of the times. 
Arithmetic mean value of data bytes is 73.3497 (127.5 = random). 
Monte Carlo value for Pi is 4.000000000 (error 27.32 percent). 
Serial correlation coefficient is 0.471176 (totally uncorrelated = 0.0). 



Recommendations on Statistical Randomness Test Batteries for Cryptographic Purposes 25 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1: Degenerated generator 

 
Now it is an issue of interest to show a comparison of the described batteries. In Table 5 we summarize some 

advantages and disadvantages of the previous test batteries. 
 

3.7 Other batteries of statistical tests 

Other batteries are for example the one proposed by Vattulainen et al. [63], Cryp-X [7] or SPRNG [44]. Vattulainen et al. in 
1995 proposed a battery based on the ISING model and random walks on lattices, including the Autocorrelation, Cluster, 
n-block and random walk tests. The Cryp-X battery was introduced by the Information Security Research Center at 
Queensland University of Technology for commercial purposes. This battery includes 6 tests: Binary derivative, Change 
point, Frequency, Linear complexity, Runs and Sequence complexity. Crypt-X supports stream ciphers, block ciphers 
and keystream generators. The Scalable Parallel Random Number Generators Library (SPRNG) battery implements 
a number of “parallel” versions of the tests proposed in the Knuth battery [34], as well as the “inherently parallel” 
sum-of-independent-distributions test. It also implements other tests, based on the ISING model and random walk tests 
[43]. The SPRNG battery is suitable for applications in parallel Monte Carlo simulation. This battery is widely used, 
some institutions that use it are (see http://www.sprng.org/ ): Aeronautical Systems Center Major Shared Resource Center, 
Department of Defense, Los Alamos National Lab, National Center for Computational Sciences, Computer Services for 
Academic Research (CSAR) of UK National High Performance Computing (HPC) Service, United Kingdom, Irish Centre 
for High-End Computing, Colorado School of Mines, University of California - San Diego, Ateneo de Manila University, 
Philippines among others. 

A comparative between tests included in the previous described batteries can be seen in Table 3. 
In addition to the previously mentioned tests, there are others which are not included in the explained batteries. For 

example, the SAC (Strict Avalanche Criterion) test proposed by Hernández et al. [29] the adaptive χ 2 test the Book Stack 
and Order tests propose by Ryabko et. al. ([54], [53]), randomness test based on random walk proposed by Doganaksoy 
et. al. [12] or based on Golomb’s postulates [14] and topological binary test proposed by [2]. An interesting paper that 
uses and describes some of these test is [11]. 

 
4 SOME RECOMMENDATIONS 

As described above, there are numerous test batteries to be applied, being the most recognized the Dieharder, the NIST 
and the TestU01. Many authors have studied different generators, properties, etc., by using these principal batteries, see 

 
for 0 ≤ i ≤ 255 do 

for 0 ≤ j ≤ 255 do 
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for example [38], [4] or [42], in which the authors use these batteries to verify the goodness of the (random) generated 
sequences (in [42], the authors also use ENT and Diehard batteries). Sometimes, there are only a few tests of a battery 
which are applied, for example, in [5] the authors apply the NIST tests: Frequency test, Cumulative Sums test and 
Runs test. In [30] the authors use TestU01 battery for testing randomness of the pseudo-random numbers generated by 
chaotic maps, and, in order to obtain more neutral test results, in [61] the authors use NIST battery in order to verify 
the goodness of the sequences they obtain by using a QRNG. 

In other cases there is some particular test or measure of these batteries in which authors are interested. For example, 
in [66] the authors review and discuss the entropy estimators including the NIST SP 800-90B estimators and neural 
network based estimators paying attention to their limitations on the time-varying data. In addition, they propose a 
scheme for the estimation of the entropy adopting change detection strategies to deal with this problem. 

Which tests are the good ones? Which is the best battery? Do we have to use the same tests for true random numbers 
and for pseudo-random numbers? These questions have no general answer. The essential point is to be able to find a 
criterion that will tell us which battery is better, when to use one instead of the other, if there are substantial differences 
between them, etc. Some of these questions have been dealt with in previous lines. We have described the tests that are 
included in each of them, and we have been able to verify that many of them are present in several of them, and we 
have indicated which test should be passed as a necessary (but not sufficient) condition of randomness (runs test) or in 
what order, for example, one should work with TestU01. Unfortunately, no defined criteria exist to be able to answer 
the other questions raised, such as which battery is better. From a practical perspective and given that to obtain quality 
certification of products it is necessary the qualification of the US National Institute of Standards and Technology, we 
consider the use of the battery they propose of great importance (although, as we will see later, it also has some aspects 
that need to be improved). On the other hand, the Dieharder battery in its latest version has incorporated numerous 
tests included in the NIST battery and intends in future updates to include the entire NIST battery in addition to any 
tests considered relevant for testing randomness. From our point of view, the objective is good, but it does not go into 
detail about whether all the tests are actually necessary, whether there may be redundancies between them, etc. In 
other words, it is not enough to build a compendium of all the tests that can be defined, but rather an analysis of them 
should be carried out in order to create a battery that contains the right and necessary number of tests that should be 
used. TestU01 also implements some tests included in other batteries such as Diehard or NIST batteries, and it can be 
considered a kind of platform on which almost all test could be implemented. Also, TestU01 battery is more flexible, the 
mode of implementation is more efficient, the battery can work with samples of big sizes and allows the user to work 
with more test parameters than other batteries. 

That is why we will focus on the NIST and TestU01 batteries, but with some observations to take into account. 
NIST provides guidance ([52], section 5) on how to interpret the results obtained after the application of the tests 

and states that in order for the data to be considered random, all tests on the battery must be passed. This condition is 
too rigid since, among other situations, truly random numbers have a high probability (80%) of failing at least one of 
the NIST battery tests. On the other hand, there are some statistical reasons that allow us to relax this restriction we 
will explain later. 

NIST battery process the input data and gives the results of the analysis in several documents. We will pay attention 
to the Final Analysis Report file. This is a document .txt in which it appears the following information ([52], section 
5.7.): 

• Ten columns whose entries correspond to the number of p-values that fall within intervals: [0, 0.1), [0.1, 0.2),...,[0.9, 1). 
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k 

p� N (µ,σ )   

• One column named P-value in which the result for uniformity testing p-values computed for a given test are 
presented. 

• One column named Proportion in which the proportion of sequences that pass a given test is presented. 

• One column named Test in which the applied test is noticed. 

 
The p-values computed by a single test should be distributed as a U (0, 1) random variable. NIST uses one sample 

test χ 2 to verify the uniformity of the p-values. Note that χ 2 test works well when the number of tested sequences is 
at least 55. The values in the P-value column represent the p-value of this uniformity test. A computed small p-value 
indicates a problem of the generator, but it is very difficult to identify exactly which problem it is. The NIST battery 
documentation recommends taking a level α = 0.0001 for this test. As it is known, the smaller the value of α , the higher 
the value of β (Type-II error). From a practical point of view, a small value of β is more important than a small value of 
α , that is, the probability of accepting a bad generator is wanted to be small (we need small values of β). Hence, from 
this perspective, we consider that NIST requirement should be relaxed and consider values α = 0.01 or α = 0.001. 

In column Proportion, the proportion of sequences that pass a test is represented. The probability that a random 

sample passes a test is equal to 1 − α , for multiple sequences this probability can be approximated by 1 − α . According to 

the NIST battery documentation ([52], section 4.2.1.), the proportion of passing sequences should fall into the interval: 

/(1 − α ) − 3 
J 

α (1 − α ) , (1 − α ) + 3 
J 

α (1 − α ) \  (1) 
k k ) 

being k the number of tested sequences. This interval is derived by using the Moivre-Laplace theorem which 
assesses that the statistic (the approximation of the proportion) has an asymptotic ˆ distribution, where 

σ̂  = p (1−p ) is the (estimated) standard deviation. In this case, if we set a confidence level 1 − α , a constant l such that 

P [−l ≤ Z ≤ l ] = 1 − α with Z ∼ N (0, 1), can be found in order to define the interval: 

/p�− l 
J 

p�(1 − p�) ,p�+ l 
J 

p�(1 − p�) \ 
 

(2) 
k k ) 

Hence, in the NIST proposal l = 3 and its associate α level is 0.0028 (Type-I error), and note that 0.0028 < 0.01 that is 
the interval that NIST gives does not reflect a confidence of 99%. If we want t work with a value α = 0.01 the correct 
selection of l should be 2.5758 and so the interval is: 

/(1 − α ) − 2.5758 
J 

α (1 − α ) , (1 − α ) + 2.5758 
J 

α (1 − α ) \  (3) 
k k ) 

The interpretation of the result is that in the 99% of the cases the proportion should fall into the confidence interval (3) 
and, so, the critic region of the hypothesis test would be the complementary of that interval with probability α = 0.01. 
In addition, we consider that it is important to pay attention to some problems in the use of the discrete Fourier 

transform test. Following this point, in [47] the authors study in detail this test and point out that the most crucial problem 
is that its reference distribution from the statistical test is not derived mathematically, which is estimated numerically and 
it is concluded that this test should not be used unless the reference distribution is derived mathematically. Additionally, 

the authors propose a test, whose reference distribution is mathematically derived. 
With these observations, we believe that the use of the NIST battery with this interpretation of the results would be 

more appropriate and statistically adjusted. 
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On the other hand, taking up the subject of possible dependence between tests, it is worth highlighting some studies 
whose main objective is precisely to detect them, for example in [15] or [13]. At present, this is a line of research that is 
being worked on. 

TestU01, on the other hand, provides a very powerful platform where the user can select generators, specific statistical 
tests, complete pre-defined batteries and tools to apply tests to particular generators. This is an attempt to cover the 
bibliography and methodologies that have been designed over time. As mentioned before, the problem of execution and 
obtaining results is present and that is why it is recommended following a specific order when executing it. 

The correspondence between tests in NIST battery and TestU01 battery can be seen in Table 6 where NIST battery 
tests and their corresponding functions on TestU01 battery are shown, in case there is no exact relation, similar functions 
are included, the latter is indicated with (*). 

 
5 CONCLUSIONS 

In this paper different hypothesis test batteries existing in the literature have been described in detail oriented to the 
verification of the desirable statistical properties for a data sequence either obtained with a RNG or a PRNG. 

The batteries are composed by different hypothesis tests that can be applied separately or together with the rest of 
the battery. On the other hand, among the existing batteries it can be checked how in many cases the same tests are 
applied. In others the number of tests to be used is extended or even some tests are changed for others generating new 
batteries. When applying a certain battery, the initial problems arise in selecting the level of significance of the tests 
that is essential for the rejection or not of the null hypothesis under study. Generally, this level is set at α = 0.01 or 
α = 0.05, and values lower than 0.01 make it very difficult to reject the null hypothesis and, therefore, the probability 
of deciding incorrectly on the randomness of the sequence increases. An interesting aspect would be to study how 
the response of the decision maker would vary, that is, how the rejection or not of the null hypothesis would vary 
depending on the variation of the α significance level and its statistical implications. 

On the other hand, as seen throughout this paper, in many of the batteries, the tests are designed under certain 
parameters that in some cases are preset, avoiding their modification by the analyst. This last one causes certain 
rigidity in its application and important statistical consequences as for example to increases in Type-I error. In this 
paper the different pros and cons of each of the existing batteries have been discussed. Moreover, we have given some 
recommendations abut the use of the batteries. 

Two main lines of research derived from our review can be extracted: the first is based on carrying out studies on 
the dependence or not of the different tests included in the batteries. The second and as a consequence of the above, is 
the design of efficient test batteries in which there is no overlap in the checks of the statistical properties. 
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NIST TESTS Recommended sample size n (number of bites) 
The Frequency (Monobit) test n ≥ 100 
Frequency test within a block n ≥ 100 

n ≥ MN 

M ≥ 20, M ≥ 0.01n 
N < 100 
Being M the block size and N = int (n/M ) 

The Runs test n ≥ 100 
Tests for the Longest-Run-of-Ones in a block If n = 128 then M = 8 

If n = 6272 then M = 128 
If n = 750000 then M = 104 
Being M the block size pre-set in the test to accommodate to values 8, 128 and 104 

The Binary Matrix Rank test n ≥ 38MQ 
Being M the number of rows of the matrix and Q the number of columns 
It is consider values M = Q = 32, so each sequence to be tested should consist of a minimum of 38912 bits 

The Discrete Fourier Transform (Spectral) test n ≥ 1000 
The Non-overlapping Template Matching test m = 2 . . . 10 preferably m = 9 or m = 10 

Being m the length in bits of each template 
M > 0.01n being M the length in bits of the substring to be tested 
N = int (n/M ) 
N ≤ 100 
Being N the number of independent blocks, initially fixed at N = 8 

The Overlapping Template Matching test n ≥ 106 
m = 9 or m = 10 being the length in bits of the template 

n ≥ N M , being M the length in bits of a substring of to be tested 

M = 1032 in the test code 
Being N the number of independent blocks of n 
N = 968 in the test code 

Maurer’s “Universal Statistical” test The sequence of length n is divided into two segments of L-bit blocks 
The first segment consists of Q initialization blocks and the second one consists of K test blocks 
n ≥ (Q + K )L with 6 ≤ L ≤ 16, Q = 10 ∗ 2L , K ≈ 1000 · 2L 

In particular the following recommendations are given: 

The Linear Complexity test n ≥ 106 
500 ≤ M ≤ 5000 

N ≥ 200 
Being M the length in bits of a block 
Being N the number of independent blocks of M bits, n = MN 

The Serial test m < int (log2 n) − 2 
Being m the length in bits of each block 

The Approximate Entropy test m < int (log2 n) − 5 
Being m the length of each block, in this case, the first block length used in the test. m+1 is the second block length used 

The Cumulative Sums (Cusums) test n ≥ 100 
The Random Excursions test n ≥ 106 

The Random Excursions Variant test n ≥ 106 

Table 2. NIST tests and parameters values. 

n L Q 
≥ 387840 6 640 
≥ 904960 7 1280 
≥ 2068480 8 2560 
≥ 4654080 9 5120 
≥ 10342400 10 10240 
≥ 22753280 11 20480 
≥ 49643520 12 40960 
≥ 107560960 13 81920 
≥ 231669760 14 163840 
≥ 496435200 15 327680 
≥ 1059061760 16 655360 
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❳❳❳❳Battery 

Test ❳❳ 
Knuth Diehard Dieharder NIST ENT Crypt-X SPRNG 

Frequency X  X X  X  

Serial X   X   X 
Gap X      X 

Poker X      X 
Coupon collector’s X      X 

Permutation X      X 
Runs X X X X  X X 

Maximum of t X      X 
Collision X      X 

Birthday Spacings X X X     

Serial Correlation X    X   

Subsequences X       

OPERM5  X X     

Binary rank  X X X    

Bitstream  X X     

OPSO, OQSO and DNA  X X     

The count-the-1’s on a stream of bytes  X X     

The count-the-1’s for specific bytes  X X     

The parking lot  X X     

Minimum distance  X X     

3D spheres  X X     

The squeeze  X X     

The overlapping sums  X X     

The craps  X X     

K-S   X     

Greatest Common Divisor Marsaglia-Tsang   X     

Generalized minimum distance   X     

Lagged sum   X     
Permutations   X     

Generalized Serial   X     

Bit distribution   X     

Frequency within a block    X    

Longest-Run-of-Ones in a block    X    

Spectral    X    

The Non-overlapping Template Matching    X    

The Overlapping Template Matching    X    

Maurer’s “Universal Statistical”    X    

The Linear Complexity    X  X  

The (Approximate) Entropy    X X   

Cusums    X    

The Random Excursions    X    

The Random Excursions Variant    X    

Chi-square     X   

Arithmetic Mean     X   
Monte Carlo Value for π     X   

Binary derivative      X  

Change point      X  

Sequence complexity      X  

Equidistribution       X 
Sum of Distributions       X 

Ising Model       X 
Random Walk (2D)       X 

Table 3. Tests included in Kunth, Diehard, Dieharder, NIST, ENT and SPRNG batteries. 
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❳❳❳❳Battery 

Test ❳❳ 
Small Crush (10 tests) Crush (96 tests) Big Crush (106 tests) Rabbit (38 tests) Alphabit (17 tests) BlockAlphabit (17 tests) 

Birthday Spacings X X X    

Collision X X X    

Coupon Collector X X X    

Gap X X X    

Hamming Independence X X X X X X 
Maximum of t X X X    

Random Walk One X X X X X X 
Rank of a Binary Random Matrix X X X X   

Simplified Poker X X X    

Weighted Distribution X X X    

Appearance Spacings  X X X   

Autocorrelation  X X X   

Close Pairs Bit Match  X  X   

Closest Pairs  X X    

Collision-Permutation  X X    

Fourier 1    X   

Fourier 3  X X X   

GCD  X X    

Hamming Correlation  X X X X X 
Hamming Weights  X X X   

Lempel Ziv  X X X   

Linear Complexity  X X X   

Longest Head Run  X X X   

Periods in Strings  X X X   

Permutation  X X    

Runs  X X X   

Runs of Bits  X X    

Sample Correlation  X X    

Sample Mean  X X    

Sample Product  X X    

Savir2  X X    

Serial  X X    

Sumcollector  X X    

Multinomial Bits    X X X 

Table 4. Batteries and test included in TestU01. 
 
 

Battery Advantages Disadvantages 
Knuth First designed battery 

Establishes the basis for the design of the others batteries 
Objectively bad generators can pass the tests (p − value ≥ α ) 

Not currently used 
Diehard More rigorous tests than those presented by Knuth 

It is more difficult that p − value > α 

It is more complete than the previous one 

Fixed parameters 
Limited sample size 

Data must be in a binary file in the form of 32-bit integers (exactly) 

Dieharder More complete battery than the previous ones 
Friendly interface 

Open source 
Can be used in R interface in Linux or Unix operating systems 

Fixed parameters 
Recommended for random numbers rather than bit sequences 

NIST More complete battery than the previous ones 
Widely used 

Designed for cryptographic apllications 

Fixed parameters 
Dependence between tests 

TESTU01 It includes most of the literature tests and implements the main RNGs 
Flexibility to choose subsets of tests 

Ability to work at a uniform number level as well as at a bit level 

Depending on the selected subset it can take a considerable amount of computing time 

ENT Consists of five simple statistics, which are performed extremely quickly Dependence between some of the obtained results 

Table 5. Advantages and disadvantages of Knuth’s, Diehard, Dieharder, NIST, Test U01 and ENT batteries. 
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NIST TESTS TESTING FUNCTION IN TESTU01 BATTERY 
The Frequency (Monobit) test sstring_HammingWeight2 with L = n 
Frequency test within a block sstring_HammingWeight2 
The Runs test sstring_Run 
Tests for the Longest-Run-of-Ones in a block sstring_LongestHeadRun 
The Binary Matrix Rank test smarsa_MatrixRank 
The Discrete Fourier Transform (Spectral) test sspectral_Fourier1 
The Non-overlapping Template Matching test smarsa_CATBits 
The Overlapping Template Matching test smultin_MultinomialBitsOver (*) 
Maurer’s “Universal Statistical” test svaria_AppearanceSpacings 
The Linear Complexity test scomp_LinearComp 
The Serial test smultin_MultinomialBitsOver with Delta = 1 
The Approximate Entropy test smultin_MultinomialBitsOver with Delta = 0; sentrop_EntropyDiscOver; sentrop_EntropyDiscOver2 
The Cumulative Sums (Cusums) test swalk_RandomWalk1 
The Random Excursions test swalk_RandomWalk1 (*) 
The Random Excursions Variant test swalk_RandomWalk1 (*) based on the times that the excursion returns to 0. 

Table 6. NIST vs TestU01 batteries. 


