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Recent Developments in Privacy-preserving Mining

of Clinical Data
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With the dramatic improvements in both the capability to collect personal data and the capability to ana-
lyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights
are valuable for clinical applications but also open up possibilities for identification and abuse of personal
information. In this article, we survey recent research on classical methods of privacy-preserving data min-
ing. Looking at dominant techniques and recent innovations to them, we examine the applicability of these
methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future
research in this area.
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1 INTRODUCTION

The acquisition and analysis of data form the backbone of the Industrial Revolution 4.0 and fuels
much of current clinical research. At the same time, the Health Insurance Portability and Ac-

countability Act (HIPAA) is a “privacy rule” that demands that individuals’ health information
be protected. Data mining offers essential insights in medical, industrial, and governmental fields,
thus prevention of the abuse of mined data is a critical yet often difficult task [36, 122]. Maintain-
ing anonymity has typically consisted of merely removing key attributes such as a person’s name,
address, social security number, and other unique identifiers. However, the recent proliferation
of high-dimensional data sets introduces the possibility of piecing together a person’s complete
profile from seemingly disparate and anonymized pieces of information [83, 157]. This danger is
heightened when collected information is linked to ubiquitous, location-tracking mobile devices
[36, 44, 90, 171].

This increased awareness of digital exposure has sparked a similar rise in research to main-
tain the privacy of sensitive information in the face of data mining. New privacy-preserving

data-mining (PPDM) methods are being continuously proposed to combat the corresponding
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Fig. 1. This rate of growth has been steadily increasing.

expansion of data exploitation methods. Figure 1 illustrates how the number of PPDM articles has
grown over the past decade, with no indication of slowing down. This coincides with a rise in
clinical vulnerability to data compromise, as in recent years there has been a marked increase in
the use of online, open access data sharing services [110].

A factor in this surge of interest might be attributed to the desire for commercial entities to
protect themselves from the loss of their customers’ data. According to the General Data Protection
Regulation set in effect in the European Union, organizations are responsible for the misuse of
information that is processed on their systems [90]. Thus, it is not just the individual person that
is interested in the security of their data [6, 140, 148, 176], but many commercial enterprises who
process these data are motivated to ensure that they are not subject to unintended disclosure
through neglect or otherwise.

Another factor in the growing desire for patient privacy preservation stems from the United
States government’s HIPAA act, which regulates how a health care center may use its client’s
data. Medical electronic data use increases led to a surge in accidental disclosures, costing medical
centers time and resources [72, 161]. However, it is frequently desirable for clinical data to be
shared with other organizations, including other medical institutions, public health organizations,
law enforcement, and even military inquirers [39, 119, 160]. Therefore, it is in the best interest of
medical centers to ensure that the data they provide to external sources cannot be traced back to
their clients.

In this article, we survey the development of PPDM approaches and their current clinical usage.
Because of the increasing importance and influence of privacy-preservation on the data-mining
field, this has become a popular area of research. Aggarwal and Yu [4] provide an early survey
of the topic. In recent years, authors focus on specific aspects of PPDM, while others provide a
longitudinal look at the field [176]. When examining the field as a whole, some authors focus on
particular methods such as random noise addition, mapping, or learned models [118, 185, 187].
Others, such as Wagner and Eckhoff [185], review a range of alternative privacy metrics. Still,
others concentrate on a domain of application, such as transactional medical data or big data
analytics [141, 146, 180].

The goal of this article is to provide a comprehensive look at PPDM methods and their value for
clinical application. Easily accessible data creates more opportunities for the exposure of personal
information [3]. We, therefore, focus on clinical applications of privacy-preserving data mining.
The rest of this article is organized as follows: We first define PPDM terms in Section 2, then re-
view and compare classes of PPDM methods and metrics in Section 4. Section 5 discusses adversar-
ial strategies to combat PPDM methods. Because location information is valuable for monitoring
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and assessing health, Section 6 presents the unique challenges preserving the privacy of location
information. Finally, we close with a summary of the surveyed topics in Section 7 and examine
directions for future clinically relevant PPDM research in Section 8.

2 DEFINITIONS

Designing privacy-preserving data-mining techniques poses a challenge for researchers and prac-
titioners because of the multiple, sometimes conflicting, goals associated with this endeavor. While
PPDM methods should obscure the identity of human subjects and other sensitive information to
the greatest degree possible, the integrity of the shared data and resulting models also needs to be
ensured. Similarly, researchers need to balance the thoroughness of any PPDM technique with the
additional computational expense. Considering these varied and conflicting goals, several metrics
are used to evaluate PPDM algorithms. Here, we introduce and discuss the relative merits of these
common performance measures.

Clinical data: This survey focuses on PPDM techniques that process clinical data. Based on a
definition by Iavindrasan et al. [67], we restrict clinical data to be those that relate to the behavior
or medical condition of a person. Thus, we discuss mitigation strategies that address attacks on
the gathering (i.e., clinical pathways, discussed in Section 4.6.3) or application of such data.

Quasi-identifier: A quasi-identifier is a piece of information that on its own may not identify
an individual in data, but a cohort of these quasi-identifiers may have enough strength together
to divulge an individual’s identity.

Sensitive attribute: A sensitive attribute is one that, if divulged, violates the privacy of the
referenced individual.

Data composition vulnerability: Data are not always inherently vulnerable to re-
identification; data that bear no relation to the individual they came from introduce no threat
to that individual’s privacy. Data containing quasi-identifiers, however, can be vulnerable to dis-
closure. A quasi-identifier is an attribute that, while on its own cannot positively identify an indi-
vidual, can be used in conjunction with other quasi-identifiers to identify that individual. Ensuring
that quasi-identifiers are suppressed or altered in such a way that they do not reveal a user’s iden-
tity is a primary goal of PPDM. In this way, the inherent data composition can be seen as part of the
vulnerability. Defining metrics to evaluate data composition vulnerability is largely an untapped
problem, particularly since the amount and specificity of quasi-identifiers vary widely between
datasets.

Performance/privacy trade-off: A critical decision PPDM researchers make is how to balance
the desire for privacy with the goal of maintaining usable data [54, 82], because these two goals are
inversely related. Increasing the privacy of a data point generally involves distorting the point in
some way, which damages its usefulness as a representative of real-world phenomena [62, 82, 120].
To increase utility of privacy-preserved data, many of the methods we survey exhibit varying
levels of privacy protection. Because PPDM methods reach peak performance at different privacy
settings, comparisons between the methods sometimes prove difficult.

K-Anonymity: K-Anonymity is a property that can be used to describe the security of a data
set. A data set with this property ensures that every point is indistinguishable from k other data
points [170]. Formally, ifX represents a data set andQ represents the set of all non-sensitive quasi-
identifiers in X , then X satisfies K-Anonymity if, for all combinations of Qi in X , there are at least
K examples of each Qi [170]. Equation (1) states this description mathematically:

∀Qi ∈ X ,
| |Qi | | ≥ K .

(1)
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Table 1. Example Clinical Data Illustrating

K-Anonymity Measure

Sex Age Country of origin

Male [20–40] United States
Male [20–40] United States
Male [40–60] Australia
Male [40–60] Australia
Male [40–60] Australia
Female [60–80] Montenegro
Female [60–80] Montenegro

This table displays a K-anonymity of 2, as each entry has
at least one identical record.

This property is very helpful in ensuring that data outliers are not immediately identifiable. Table 1
shows an example of a data set with K-Anonymity where k = 2, because each unique combination
of attributes is exhibited by at least two data points.

L-Diversity: The idea of K-Anonymity can be extended to L-Diversity, which requires that
each sensitive attribute in the data set also contains at least l examples with the same value for
that attribute [107, 123]. Through this process, L-Diversity improves K-Anonymity by ensuring
that not only are samples well represented, but there are enough varied examples to prevent easy
identification of data points. Formally, let D be a data set, Q the non-sensitive quasi-identifiers
in this data set, Qi the combinations of Q that exist in D, and Si the set of sensitive attributes
associated with each Qi . Equation (2) shows how L-Diversity can be defined in this context [107].
L-Diversity has been additionally extended for increased utility, resulting in such measures such
a c-diversity (a categorically minded extension of L-Diversity) [78] and t-closeness (ensuring that
the distribution of provided sensitive attributes is no more than t distance away from the true
sensitive attributes) [94]:

∀Qi ∈ X ,
∀Si ∈ Qi ,

| |Si | | ≥ l .

(2)

Table 1 is not L-Diverse for l = 2, because if one saw this data set and knew that their queried
person was female or that their age was 76, they would be able to determine that the corresponding
country of origin was Montenegro, even though there are more than one of these examples in the
data set.

Differential Privacy: Measures such as K-Anonymity and L-Diversity attempt to define the
privacy of an individual point within a data set. Similarly, differential privacy is used to measure
if the omission of a member’s data from a set would have a greater loss of privacy than ϵ when
an operation T is performed on the data set before and after removal [24, 40, 62, 80]. The amount
of disclosure risk afforded by ϵ varies based on the properties of the data [43, 99, 116, 186]. As a
result, it is difficult to set a standard ϵ that signifies confidence in a user’s privacy. However, among
similar data sets, differential privacy can be used to determine how sensitive a data set is to small
changes in its composition.

Disclosure: Disclosure is the discovery of one’s private information in a data set by an unau-
thorized actor. Disclosure has many causes, including accidental disclosure and disclosure due to
the re-identification of a person in an anonymized data set [33]. The amount of information that
must be leaked to signify a disclosure is often disputed, but in some cases, discovering a single
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feature about a person would constitute a disclosure [92]. The likelihood that a data set can have
elements disclosed is referred to as disclosure risk and is quantified in several ways. One measure
of this disclosure risk is the proportion of elements in a data set that are unique [164]. Similar in
concept to K-Anonymity, this metric could be used to compare different sets of data to see which
ones are the most susceptible to disclosure.

Utility: One criterion by which PPDM algorithms differentiate themselves is the extent to which
they impact the utility of the resultant data. Some PPDM methods can have a variable impact on
performance, allowing users to choose an acceptable balance of utility and privacy to fit their needs.
The utility of a specific PPDM technique is measured for a specific application. On the one hand,
PPDM methods may calculate utility loss in terms of the deviation of the new data from the old.
This deviation can be quantified using metrics such as Wasserstein’s distance or Kullback–Leibler
divergence. On the other hand, the impact can be measured as a loss in the predictive perfor-
mance of a model that is trained on the manipulated data rather than the original. A number of
measures have been introduced to quantify such predictive performance, such as accuracy, sensi-
tivity/specificity, f1 measure, and area under the ROC curve. We will refer to accuracy throughout
the article as a representative predictive metric. In a clinical setting, the clinical utility of data repre-
sents the amount that the data may be used to facilitate treatment [61, 205]. Manipulating the data
to retain privacy may decrease the effectiveness of treatment that emanates from the new data.

3 PPDM CASE STUDIES

Following the introduction of the HIPAA privacy rule and guidance from the European General
Data Protection Regulation [12], the common-practice method of anonymization was to remove
obviously identifiable information from collected data, including names, birth dates, and social
security numbers. However, recent investigations into the security of public data sets revealed that
in many instances, data thought to be anonymized contained flaws that led to the identification of
members within the data set [171, 173]. As the disclosure of these data can be disastrous for those
involved, researchers have not only investigated known events of privacy loss but have also taken
a closer at data sets that could be vulnerable to compromise.

One well-publicized case of a compromised data set with far-reaching consequences is the
Facebook-to-Cambridge Analytica data leak, resulting in unauthorized actors gaining access to
private information of over 83 million individuals [90]. Through inadequate access control, Face-
book was also found to be inadvertently providing third parties with the ability to view user’s birth
dates, widely considered a private attribute [37]. Similarly, the AccuWeather application transmit-
ted location data for its iOS users to a third party that used this data for targeted advertisements,
a severe invasion of user privacy [90].

While medical and government data are often viewed as most at-risk, other data sources are
also vulnerable to exposure. Power grid information such as resource usage or consumption rates is
considered private as it may lead to an adversary obtaining knowledge of the consumers’ lifestyles,
or even an absence from their house, resulting in burglary [29]. Automated safety messages sent
out by automobiles are also a privacy concern, as they can reveal location data of the occupants
to unintended recipients [47].

On a clinical note, in the state of Washington, researchers accessing medical data that had been
de-identified were able to find newspaper stories on injuries that led to the identification of 43%
of the patient medical records [171]. This de-identification was accomplished by crosschecking
newspaper print dates with hospital admission/injury reports.

In another instance of clinical data vulnerability, based on South Korean government-issued
identity numbers, researchers were able to manipulate publicly available check-sum and encoded
member data to positively identify every person in a 23,163-person list of weakly encoded
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Table 2. Sample Patient Data

Sex Age Blood Pressure

Male 21 57
Male 39 76
Female 45 67
Female 47 78
Mean 38.00 69.50
Std Dev 11.83 9.61

Table 3. Abstracted Data

Sex Age Blood Pressure Weight

Male [20–39] [50–79] 2
Female [40–59] [50–79] 2

Here sample data are aggregated into two different weighted groups.

prescription data [173]. This breach was possible because each prescription contained demo-
graphic information about the recipient, including date of birth, gender, and place of birth. While
the data was assumed to be secure, because numbers were substituted for letters in the identifiers,
this process was reversed using logical reasoning from known patterns in the data [173].

Privacy-preserving data mining can take many forms, and there is a correspondingly diverse
set of metrics to evaluate its success. In this article, we review recent methods that address privacy
preservation with an eye toward a clinical environment. We categorize historic approaches as
well as recent privacy-preserving data-mining techniques into four groups: abstraction methods,
random methods, mapping methods, machine learning methods, and synthetic methods.

4 METHODS

At the same time that growing evidence supports the necessity of privacy preservation, researchers
have introduced new strategies to ensure data privacy. For this article, we will focus on survey-
ing approaches for data anonymization and privacy preservation. We categorize these as random,
mapping, abstraction, learned-model, and synthetic generation methods. Here, we review these
popular methods, highlight recent innovations, and contrast their approaches to data and infer-
ence security, particularly for clinical applications. To illustrate the alternative ways these PPDM
methods modify the data, we utilize an example set of patient data provided in Table 2.

4.1 Abstraction Methods

Many privacy-preserving data-mining methods alter the form of a data point in some way, such
as adding noise to distort the value, mapping it to a new point in the space, or swapping some
attributes with another data point. However, there are other methods that create new points using
combinations of the original data points. Also known as substituting or abstracting the data, these
methods group data points into increasingly larger sets, until all identifiable data points have been
subsumed by an aggregation of the larger set [23, 52, 95, 132]. Abstraction methods often merge
points into a combined group until a pre-determined privacy threshold has been reached. A pre-
defined measure of privacy such as K-Anonymization may provide such a threshold. In the case of
a K-Anonymization threshold, points will be combined into larger groups until each original data
point in the set is not distinguishable from k − 1 other points (Section 2).

As an example, we modify Table 3 from Table 2 by abstracting attributes in several ways. Sex
cannot be abstracted without combining all feature values into one category, so that remains
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unchanged. However, age is discretized into ranges [0–19, 20–39, 40–59, 60–79, 80–), and blood
pressure is discretized into ranges [0–49, 50–79]. In both of these cases, the abstracted ranges
were derived from K-Anonymization with k = 1. As can be seen from this example, one of
the chief concerns in using the abstraction method is the loss of information that occurs when
over-abstracting the data. More so than some other methods, the accuracy/privacy trade-off is
prevalent for abstraction methods. Thus, abstracted data may result in generally poor modeling
performance if privacy demands are great. This can be shown by observing that as the groups
grow, the corresponding features correspond to the entire possible value ranges, removing the
possibility of distinguishing between population subgroups.

There are many ways to abstract data. Individual data points can be iteratively subsumed into
greater approximations until the desired privacy level is reached [170]. These privacy levels can
be based on K-Anonymity thresholds or more stringent privacy requirements such as variants
of L-Diversity. One L-Diversity variant was introduced by Gong et al. [53]. Using their proposed
(K ,L)-diversity method, data are abstracted until a desired privacy level is reached. As before, this
algorithm abstracts feature values ranges. Additionally, this method also handles overlaps between
multiple datasets. Specifically, one datum may appear in more than one dataset (with overlapping
features). When this occurs, abstraction is applied to both entries to ensure that the privacy metric
(e.g., K-Anonymization) is met for both entries in both datasets. This method, called 1:M gener-
alisation, offers an important capability, as standard PPDM methods suffer when duplicates exist
[175].

Another abstraction approach was proposed by Lin et al. [101]. These researchers cluster data for
similar patients to relay significant adverse medication reactions without divulging user identities.
Similarly, Abidi et al. cluster data and then define the sensitive attributes of each data point to
be the cluster mean [3]. As highlighted by these methods, data abstraction performs a similar
role as the random methods discussed in Section 4.2. Specifically, abstraction loosens precision
on individual data points just enough that privacy is maintained. As Savi et al. observe [155], the
degree of abstraction will have a direct impact on the resulting classification accuracy and thus
should be chosen carefully.

While many types of abstraction PPDM methods aggregate precise feature values into value
ranges, data can also be abstracted into a new, synthetic version that bear similarity to the original
data, but do not contain any actual entries that may be used to identify an individual person
[184, 197]. Typically, synthetic data are generated by combining observed values to create new data
points, or by utilizing statistical information about a data set such as the distribution of features to
create data points that exhibit the same statistical properties [21, 42, 89]. Synthetic data are often
then employed for purposes such as testing software or validating models. To ensure that user
privacy is being preserved throughout the data generation process, Vreeken et al. [184] define a
criteria to ensure that a sample from the original data set is unlikely to appear in the generated set
unless it is very common in the original data. This is an important criterion for generative methods,
because if the generator randomly combines data feature values, then there is a possibility that a
unique, real example could be included in the generated set. This is discussed further in Section 4.5.

4.1.1 Clinical Usage. Abstraction-based methods offer a useful approach for many clinical goals
due to their ability to easily handle both categorical and text data. These data types are commonly
found in clinical data and represent limitations for many other PPDM methods.

An abstraction method designed to cluster and sanitize candidates from data was introduced by
Wu et al. [196]. The authors demonstrate that generating sanitized data with minimum deviance
from the original data is an NP-hard problem. To approximate the optimal privacy abstraction
trade-off, the authors propose a greedy approach that, each iteration, marks individual data points
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for sanitation or subsumption based on their customized privacy metric. The greedy iterations
continue until the desired trade-off is reached between privacy and classification accuracy. As
testing of this model indicated a high level of privacy protection as well as minimal data loss, this
represents a useful method for securing clinical data. Abstraction was also adopted by Khan et al.
Like Lin et al. [101], these researchers hypothesized that a clustering and minimal-abstraction
approach could be successful in protecting HIPAA-compliant health data [79]. Khan et al. used dif-
ferential privacy risk (described further in Section 4.6.4) to cluster sensitive attributes into separate
“buckets.” The design disallows linkage attacks (Section 5.1) between members of different buck-
ets. These methodologies exemplify the power of abstraction methods that are capable of removing
data specificity until individual members of the data are no longer at risk while still maintaining
much of the original data information content.

4.2 Random Methods

Random PPDM methods exploit the original data distribution to randomly inject “noise” into each
data entry [149, 162]. This noise can be generated using a variety of statistical manipulations that
make it difficult for an adversary to discern the original data point [154].

To explain the general framework for injecting noise into data, let x represent an original data
point, c represent noise that is added to the data, and x̂ represent the resulting perturbed data point
that will be added to the data set. Here, x and x̂ each contain n features [5, 44, 149]. Equation (3)
formalizes the process of adding random noise to a sample. In this equation, xn represents a feature
of x , and x̂n represents the perturbed version of that feature. The value cn represents a unique
amount of noise that is added to the corresponding feature, influenced by the distribution of each
feature within the data:

∀xn ∈ x ,
yn = xn + cn .

(3)

Random PPMD methods often distinguish themselves by adopting unique approaches to gen-
erating values for c [44, 139, 162]. Traditionally, c is a random term with a mean set at 0, drawn
from a distribution that is dependent on the feature it is perturbing. In one of the seminal papers
on this method, Agrawal and Srikant experimented with both uniform and Gaussian distributions
[5]. Using a decision tree classifier, they evaluated the classification accuracy of the data modified
by noise drawn from these distributions [5, 75]. The change in classification accuracy was most
apparent when choosing to modify the data more dramatically with the goal of heightened privacy,
pointing to a need for random methods to be able to provide enough noise for a specific feature
to not reveal sensitive information, but still retain usability. Both Gaussian and uniform noise ad-
dition were adept at preserving the classification, with accuracy staying between 5% and 15% of
the original classification margin [5]. This accuracy was consistent throughout several different
privacy levels, which dictated the breadth of the distribution that was used to generate the noise
[5, 75].

We illustrate the process of perturbing data in Table 4. For this example, c is drawn from a normal
distribution, and the sex of the person is not considered a private attribute. It can be seen from
this table that the perturbation process does affect both the mean and the standard distribution of
both blood pressure and age, thus the perturbation caused these to shift considerably. In a data set
containing a larger sample, it is likely the mean and standard deviation would exhibit less variance
once perturbed.

While random noise addition works well at obfuscating data, adding a noise value to each feature
independently of the others can damage relationships between features that contain dependencies
[70]. Age and blood pressure are considered to be independent in this example, so the noise factor

ACM Transactions on Data Science, Vol. 2, No. 4, Article 28. Publication date: November 2021.



Recent Developments in Privacy-Preserving Mining of Clinical Data 28:9

Table 4. Perturbed Data Where the Noise Value c Is Drawn from a Gaussian Distribution and Is

Used to Modify Values from Table 2

Sex Age Blood Pressure Perturbed Age Perturbed Pressure

Male 21 57 15.52 65.99
Male 39 76 49.85 73.37
Female 45 67 41.60 47.89
Female 47 78 39.07 72.78
Mean 38.00 69.50 36.50 65.01
Std Dev 11.83 9.61 14.73 11.89

c was calculated independently for each feature. To perturb data sets with dependent variables,
a method was introduced in which matrices perform the noise addition, shown by Equation (4),
where X represents a set of data points, X̂ represents the new perturbed set of points, E is a co-
variance matrix representing relationships between the features of X , and α is a random variable
used to permute E [125, 149]:

X̂ = X + E,

Ei, j = α ∗ Ei, j .
(4)

As seen in Equation (4), this new variation of random noise addition relies on a matrix drawn
from a random distribution with the same co-variance as the original data. This equation creates
new data that possess the same relationship between features as is exhibited in the original data
[125, 149].

While the previously discussed approaches employ standard distributions such as Laplace and
Gaussian, some authors explored methods that create noise based on characteristics of each indi-
vidual dataset. As an example, Eyupoglu et al. [44] introduce a data perturbation algorithm that is
based on chaos theory. In this method, data points are selected as shown in Equation (5), based on
the number of unique features. These points are then modified by the logistic mapping function,
which is a chaotic function:

xn+1 = λ ∗ xn ∗ (1 − xn ),

λ ∈ (3.99, 4).
(5)

A chaotic function is one where small changes to the input values have a large effect on the
behavior of the series [44]. In Equation (5), the initial value of x is specified a priori [44]. Here,
values close to 4.0 are used for λ as they generate the maximum variance and unpredictability for
the mapped values. This chaotic function makes it nearly impossible for an adversary to determine
the initial conditions and therefore determine the specifics of the noise that was added to the data.

Though random noise strategies can be effective tools at tailoring the amount of data privacy,
they are applicable primarily to continuous-valued data. Often, clinical usage may necessitate the
use of data that are described by categorical attributes as well [9]. Adding noise is difficult for such
data, and many attempts to do so operate on associations between different categorical terms,
rather than gaining an understanding of what the terms signify [149]. To combat this tendency,
Rodriguez-Garcia et al. [149] integrate ontological relationships to advance the data obfuscation
principle of noise addition. In the text mining applications that they consider, they examine the
meaning of an expressed sentiment and find replacement terms that are taxonomically similar to
the word or object. For example, the word “Headache,” or an instance of a specific type of headache,
might be replaced with Concussion, Fracture, or Migraine to generalize the phrase but still convey
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Fig. 2. A natural language taxonomy allows words to be replaced with similar nominal term values. Using

this graph, words at one level of the taxonomy can be grouped with terms at a higher level.

a meaning that is similar to the original word. Figure 2 illustrates one example taxonomy to abstract
words contained within a clinical document.

4.2.1 Clinical Usage. While on the surface it may appear as a less-sophisticated privacy-
preserving method, random noise addition remains useful for clinical PPDM, both as a standalone
method and as an augmentation to other strategies. For example, the Priward algorithm [152],
introduced by Rüth et al., added noise by allowing two parties to calculate likelihoods from hid-
den Markov models without disclosing either the model or the observation sequences to the other
party. By using cryptographic techniques and secure operators, each party can input their portion
of the data and obtain a result without discovering or being able to deduce contributions from
other parties. This algorithm offers a unique benefit, because a relatively simple addition of ran-
dom noise provides enough abstraction to contribute to an otherwise-unrelated algorithm’s ability
to provide privacy protection.

Another recent example of random noise addition was offered by Ni et al. [127]. In their MCDB-
SCAN clustering algorithm, the goal is to ensure that differential privacy is not violated for data
points within each cluster. To achieve this goal, they inject Laplacian noise to individual data
points, adding uncertainty to the individual points within the cluster. By adding variance to the
data points within the clusters, differential privacy is ensured for each added data point while
the resulting clusters will preserve privacy as well. This approach actually combines elements of
noise injection, data abstraction (Section 4.1), and differential privacy (Section 4.6.4) guarantees,
approaching the problem of privacy preservation from several angles. Finally, Aaronson and Roth-
burn showed how a differential privacy-satisfying level of added noise can be abstracted to the
gentle measurement of quantum states [1]. This investigation was performed by observing the
relationship between varying the amount of data privacy change due to inclusion or omission and
finding quantum states that cause as little disruption to individual states as possible. The inves-
tigators noted how well differential privacy concepts can be extended to other disciplines where
information about individual members of a set should be considered in the context of the group.
From these recent endeavors, the utility of random noise injection can be seen. Not only does this
strategy privatize data with minimal impact on the number of samples or the form of the samples,
but it pairs well with differential privacy guarantees. This is because random injection supports
an easy-to-calculate differential privacy score from the noise parameters.

4.3 Mapping Methods

Many times while mining data, the relationships between different data elements offer critical in-
sights. As a result, privacy preservation needs to retain the relationships to the extent they exist
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Fig. 3. An example of data rotated 180° around the origin.

in the original data [145]. For example, if a patient has a medical condition that always requires
attention when their blood pressure is double their heart rate, then an algorithm that attempts to
predict either of these values will need this relationship to be retained when the data are privatized
to maintain the same predictive accuracy. To meet this need, PPDM methods have been developed
that transform the data into a new form, while still preserving if not replicating the internal rela-
tionships. This may be accomplished by mapping the data into a new space where the individual’s
traits are unrecognizable. Alternatively, the PPDM algorithm can perform internal rotations. These
rotations are typically performed by selecting two or three random features in a data set and ro-
tating them around a given axis. The resulting data bear minimal similarity to their original form.
If done properly, however, then they retain the distribution and relational dependencies from the
original data set. While the rotations can damage the predictive ability of some classifiers, other
methods, such as SVM and k-nearest neighbor classifiers, are often rotation-invariant. As a result,
the classification error of these methods is not affected by such rotations [26]. Figure 3 shows an
example of how a two-dimensional data set may be rotated. In this diagram, two features are ro-
tated 180°around the origin, changing the data substantially while still preserving the distances
between the individual points.

Sometimes, mapping or rotation may occur within previously defined clusters, generated using
methods from Section 4.1 [23, 60, 75, 121, 133, 145]. In these cases, rotation PPDM methods are
constrained to occur within clusters, thus ensuring that the rotation keeps similar points together
while differentiating distinct clusters [23]. This process ensures that swapping only occurs between
similar values, to preserve as much structure in the data as possible.

In an influential paper on rotational methods, Olivera and Zaiane proposed several different
mapping methods [130]. In one such method, TDP, each feature in the data is offset by the same
amount, perturbing the data, but possibly having an adverse effect on the proportions between
data points, and therefore utility [130]. They then proposed another method where two features
at a time are selected and rotated simultaneously within an R2 space, repeating the process until
every feature has been rotated at least once [130]. This method, called RDP, was found effective at
preserving both privacy and classification accuracy [76].

Once points are clustered, mapping methods can be applied. One unique design by Upadhyay
et al. [182] extended the RDP method by selecting three features at a time to rotate in an R3

space, repeating this process until all features had been rotated at least once. This method further
improved data privacy while still supporting machine learning-based classification. The method
yielded predictive performance within 1% of the original data using K nearest neighbors, J48
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Fig. 4. The donut method rotates a selected point to the gray area, forcing a minimum distance from the

original feature value.

decision trees, and naive Bayes classification methods, outperforming two-dimensional rotations
such as RDP [182].

Another style of mapping, known as the “donut method,” maps each data point a distance be-
tween a minimum and maximum value, creating a torus, or donut shape when applied to increas-
ingly high dimensions [60]. This algorithm is called the donut method, because the inclusion of a
minimum distance means that the possible area for the new point is bounded between two con-
centric circles, as opposed to other methods with no minimum threshold, which creates a “circle.”
This method was developed for the anonymization of patient location data by moving the location
in a random direction within a specified range. Figure 4 shows how the authors improved their
method over a standard rotation. When mapping location coordinates, a maximum translation dis-
tance may be specified. In the standard approach, the translation value, r , may vary anywhere from
the original point (the central point in Figure 4) to the maximum value. However, using the donut
method, a minimum distance is also enforced, forcing r to be selected from values in the gray area
between the minimum and maximum. This method is adept at preserving privacy in cases where
individual data points are easily distinguishable, possibly due to the minimum distance threshold
ensuring that each data point is sufficiently rotated [60]. The donut method outperformed stan-
dard aggregation measures in both sensitivity and specificity while preserving the privacy of users’
locations.

As with random methods, researchers have investigated privacy-preserving mapping methods
for nominal data sets. As an example, Rodriquez-Garcia et al. [150] extended their work on nom-
inal data to taxonomically classify ailments and use these classifications to employ swapping. By
identifying words and phrases that are close in meaning, terms can be transformed with categor-
ical synonyms, resulting in privacy preservation of data that can still be useful for research, as it
contains information about a very similar class of problems.

Another style of mapping involves observing the relationship between different data points. In
one instance, distributed medical data was able to be mined for information between different
parties by observing the relationship and distances between different clusters of data [156]. This
PPDM topic is particularly relevant for clinicians, as it would support learning from data without
introducing the risk of compromising actual data [34]. Learning from distributed data with map-
ping methodologies was also investigated by Teo et al., where secure operators were introduced
that allowed each party to use information from the others without knowing the actual informa-
tion contained within [178].
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4.3.1 Clinical Usage. With the ability to allow high utility as well as easily shareable permuta-
tions, mapping methods are a flexible, albeit computationally expensive option for mining clinical
data. A primary challenge with these methods is that they are difficult to apply to streaming data,
as they generally process the entire set of data at once.

Recent research involving mapping methods includes the work done by Chamikara et al. [23],
who use a covariance matrix generated by points within a cluster to perform intra-cluster rotation.
Once the rotation is complete, the clusters are merged and the data points are randomly ordered,
yielding the new data. This method was tested on several data sets using the k-nearest-neighbors
classifier and exhibited generally superior accuracy when compared to basic rotation and abstrac-
tion methods. The results indicate that rotation of data-defined clusters can be used to generate
new, private, data samples that provide predictive accuracy comparable to the original data. Addi-
tionally, this method was shown to preserve the proportional relationships between the original
and mapped data, further improving the overall data utility.

Mapping methodologies apply to multiple types of clinical data. In a new work by Aloufi et al.,
transforms of collected data, including waveforms of voice recordings, were used to privatize the
recordings. Mapping these clinical data to an unrecognizable dimension ensures privacy of the
unique information [8]. This example illustrates a potential advantage of mapping methods. Both
the addition of random noise and abstraction of waveform data may run the risk of tending this
data toward the mean, greatly degrading its quality and usability. For example, perturbing wave-
form data may degrade the corresponding voice recording to gibberish. However, by mapping the
data to an unrecognizable dimension, the component of the audio that is considered sensitive, the
emotion, remained private while the speaker and the speech were still recognizable.

Finally, mapping methods were combined with machine learning and cryptography in work by
Ping et al. [137]. This work introduces a model that facilitates private support vector clustering
between clients and a server, with data undergoing a mapping transform to maintain privacy. This
work illustrates how mapping methods may complement many different styles of data protection,
such as encryption. They provide an easy-to-enact way of obscuring real distances and relation-
ships between sensitive data, while still allowing the underlying correlations to be maintained.

4.4 Learned Models

To this point, our discussion has centered on PPDM techniques that are designed to safeguard the
whole or part of a dataset. In some cases, data privacy can be maintained by sharing a learned
model of the data (or inferences derived from the data) rather than sharing the data themselves
[55, 57, 88, 105]. There are many methods that, when used correctly, generate models that do not
reveal individual-specific information. As an example, Mao et al. [115] demonstrated how facial
recognition-based deep learners could preserve individuals’ privacy. This result benefits medical
applications that deal with the imaging of specific disease patterns, as they could use deep learning
to detect these diseases without compromising privacy. Such models have been learned via random
forests, perceptrons, and deep learning methods [13, 20, 25, 68, 98, 115, 134, 167, 194, 206, 207].
These learned models differentiate themselves from other learning methods that leave members
of the data vulnerable to re-identification. Models that run the risk of re-identification include
support vector machines and naive Bayes models trained on small data sets [49, 100]. It is possible,
however, to utilize some of these normally insecure methods in such a way that they still ensure a
level of privacy. As an example, Lin and Chen [100] modified the typical support vector machine
classifier in such a way that the support vectors were not made up of individual data points, and
therefore the classifier produced a result that was privacy-preserving. This was done by modifying
the support vectors to include ones that provided the same decision boundary but were not drawn
from the original data, similar to a mapping method mentioned in Section 4.3.
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4.4.1 Clinical Usage. Some research has introduced PPDM solutions for specific clinical use
cases. Recently, Alabdulkarim et al. employed a random forest to protect privacy by presenting
the most likely maladies an individual might possess without giving specific details on the pa-
tient, helping physicians perform differential diagnoses [7]. Another recent method supporting
the private usage of clinical data was a federated deep learning model for the segmentation of
brain tumors by Li et al. [97]. In this context, “federated” refers to the fact that there are multi-
ple collaborating deep networks, allowing researchers to use information from the trained model
without requiring access to the original training samples. The deep networks shared information
only after the gradients of each network had been modified by Laplacian noise, guaranteeing a
degree of differential privacy.

One downside to using these privacy-preserved machine learning models is that they provide
insight into only the target concept. While the learned model may address the original analysis
question, methods that retain as much of the original data as possible offer insights for a broader
range of clinical analyses. Therefore, it may often be better to use PPDM methods that provide as
much raw data as possible, allowing the end-user to design their own machine learning method
for answering additional questions about the data.

4.5 Synthetic Data

In general, the previously discussed PPDM archetypes modify existing data to make the individ-
uals safe from re-identification. Synthetic PPDM approaches instead attempt to provide privacy
through the generation of synthetic data and have shown to be a useful tool in the acquisition of
knowledge in a clinical setting [91, 200]. Additionally, the proliferation of big data for clinical use
has resulted in concerns over the applicability of the data, and whether it can wholly encompass
the population being measured [17, 59]. Synthetic data can help to alleviate this issue by ensuring
that the output data is of a realistic form characteristic of the entire populace.

As mentioned in Section 4.1, synthetic data generation offers an effective method for providing
privacy while maintaining model utility [69]. Just as abstraction methods attempt to group part or
whole of the data to protect vulnerable elements, synthetic data generation augments part or whole
of the data with additional artificial samples that do not need privacy. The resulting infusion lends
privacy to the original members of the data. Developing new methods of synthetic data generation
that are more adept at recognizing patterns in original data could yield superior artificial data
aimed at privacy-preserving. These generative techniques are designed to use many measures
of the data such as distribution, clustering cosine similarity, outlier analysis. In this way, data
generation could mirror the original information as closely as possible, providing more data to
researchers. Along with the privacy protection provided by synthetic data generation, this strategy
can bring “new life” to historic data that has been shown to be less representative of how the
current populace [151]. Representative synthetic data generation could greatly increase the quality
and quantity of available data in terms of both privacy to users and utility to clinicians.

Deep learning is revolutionizing many aspects of machine learning and has begun to affect
PPDM processes as well [131]. Along with other deep learning systems, generative adversarial

networks (GANs) can be used to maximize privacy preservation while ensuring the accuracy
remains as high as possible, balancing these two “adversarial” goals [103, 181, 190].

4.5.1 Clinical Usage. In recent work, Abay et al. [2, 13], used a deep learner to generate
synthetic data, yielding promising results for both accuracy and privacy. While GANs can
generate high-quality synthetic data, the results are not always both sufficiently private and
accurate. Yale et al. [200] attempted to address this through the introduction of medGAN, a GAN

ACM Transactions on Data Science, Vol. 2, No. 4, Article 28. Publication date: November 2021.



Recent Developments in Privacy-Preserving Mining of Clinical Data 28:15

optimized for clinical synthetic data generation. Dash et al. also successfully applied medGAN to
generate private time series data [35]. Demonstrating application to time series data is important
for process mining, the analysis of how an entire patient event log can help determine the efficacy
of the treatments [124, 135].

4.6 Ancillary Approaches

In addition to methods that protect privacy through data manipulation, other methods may be
used to augment privacy by limiting the accessibility of the data, changing the form of the data, or
assess the privacy of the data. While these often support the previously discussed methods, they
can still be employed on their own.

4.6.1 Cryptography. An important contribution of recent ancillary methods is cryptographic
techniques. These are used to secure data and grant access only to authorized users [96, 138, 153,
159], making it extremely difficult for an adversary to gain access to the data. As discussed in
Section 5.3.2, cryptographic methods are often less efficient than PPDM methods for clinical data
sharing and distribution. This is largely due to the difficulty of ensuring that only authorized
recipients have access to the data. A further contribution is the computational expense of the
cryptographic methods themselves [73].

4.6.2 Sanitation. A harsher approach to PPDM is to sanitize attributes from the data [112, 129].
Sanitation refers to removing all items viewed as “sensitive” from the data, rendering the resulting
data devoid of any similarities to the original sensitive attributes [48]. This data can still offer some
utility, but much value may be lost in this sanitation process. This is a different method than dis-
cussed in Section 4.1. Instead of grouping the data into non-uniquely identifiable sections, sensitive
data is strictly removed, additionally carrying the risk that some sensitive data may remain.

Focused on removing access to the data rather than making them confidential, sanitation meth-
ods are sometimes included in the literature as PPDM methods. However, in isolation, cryptogra-
phy and sanitation are often unsuited for clinical data, as they severely limit the cohort that may
be able to use the data or diminish the utility of data.

4.6.3 Clinical Data Variations. While much of this article focuses on the relationship between
PPDM methods and clinical data related to patient health, health data may take many different
forms, including images (in the form of x-rays or other diagnostic visual aids) and processes (in
the form of a clinical pathway, also known as a care map). Privacy preservation of images used
in a clinical setting often takes the form of cryptographic methods, designed to ensure that only
trusted individuals gain access as well as establishing control of the image [66, 77, 202]. Despite this,
there exist some contemporary clinical image PPDM methods designed to facilitate this sharing
of sensitive images. Li et al. demonstrated that through the addition of noise to a deep learner’s
weights, information learned from medical images may be shared with outside observers with a
differential privacy guarantee on the data [97]. In a similar vein, Kim et al. constructed an encoder
to obfuscate medical images presented to it, while still preserving enough utility in the images to
be useful in “task-specific” analysis [81].

Kinsman et al. [87] define a clinical pathway as a recorded log or series of medical interventions
that are performed for a patient [128]. This record makes clinical pathways available for process
mining, facilitating the improvement of treatment protocols. These plans of care may be vulnerable,
however, to exposing the patient’s treatment regimen or even their condition to outside observers
[114, 142]. To mitigate such attacks, privacy-preserving methods will suppress or generalize logs
to include only abstract information [136], or sanitize logs to meet K-anonymity and T-closeness
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requirements [45]. Recently, a clinical pathway PPDM method was proposed by Mannhardt et al.
[113]. This method added noise to log queries from non-trusted entities. We note that while specific
clinical tasks, such as supporting clinical pathways, spark the creation of new algorithms, the
underlying PPDM methods remain consistent with those introduced in the rest of this survey.

4.6.4 Differential Privacy. As discussed in Section 2, differential privacy is often used as a guar-
antee of the desired privacy level for a given purpose [168, 203, 209]. We elaborate on differential
privacy as an ancillary method due to its increasing usage in PPDM work as well as its great ability
to augment and validate other PPDM methods. This can be seen in several examples. Cheu et al.
[28] proposed a shuffling methodology evaluated by differential privacy to verify the sensitivity
of messages sent between two parties. Differential privacy was also used to clarify the level of dif-
ferent protections given to defenses against attacks on machine learning models [64, 93]. Finally,
Xu et al. used differentially private guarantees to address multi-party learning and ensure that all
members in this collaborative environment retained a suitable amount of privacy [198].

Recently, differential privacy was enhanced by a method called “integral privacy,” which is a
strengthening of differential privacy to include not just a member of data, but subsets of the data.
This refinement is useful to many clinical and pharmaceutical endeavors as they often look at data
sub-components [65]. Using this measure, the privacy of “niche” data subsets can be evaluated
in addition to the privacy of the entire dataset [65]. Differential privacy has also been adapted
to suit the type of privacy it is guaranteeing. Additionally, differential privacy can take the form
of central differential privacy or local differential privacy [10, 46, 56, 117, 199]. Central differential
privacy ensures the privacy of data once they have all been collected, whereas, in local differential
privacy, each submitting contributor ensures the privacy of their data before they are included
[10, 117].

In addition to strengthening differential privacy requirements when needed, differential privacy
requirements can also be relaxed to address situations when such stringent privacy specifications
are not needed [24]. This can be seen in the work by Asi et al., where differential privacy may be re-
laxed to allow users of differing involvement to be segmented by their differing privacy needs. For
example, if a hospital employee was treated at that same hospital, the person may not be harmed
by being listed as having visited that hospital, while another person that only visited this hospital
once for a specific health concern may be harmed [11, 35]. The concept of differential privacy relax-
ation was further extended by Kim et al. [84] in their presentation of MPPDS, a privacy-preserving
sharing system. This system used personalized differential privacy to facilitate different levels of
privacy depending on trust between users.

5 RE-IDENTIFICATION

When designing and comparing PPDM methods, it is wise to also consider possible attack avenues.
Awareness of attack techniques can motivate a choice of PPDM method and a desired privacy level
[193].

5.1 Attack Vectors

As reported by case studies in Section 3, many parties attempt to identify private features from
supposedly secure data sets. These parties may be malicious, or they may simply be curious re-
searchers or journalists. No matter the intent, it is still up to the data collectors to ensure that the
sensitive features are not exposed [14]. Studies on re-identification attempts have shown that the
success rate for these re-identification attacks is typically between 26% and 34% [14]. While these
findings do not take into account the low degree of confidence in the results, they still demonstrate
how often an attack can yield at least some information about supposedly secure data.
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A popular re-identification method links two different sets of data [14, 16, 109, 169, 191, 208].
Many linkage strategies are based on the work of Sunteb and Fellegi [169], who compare two data
sets by examining the probability that a point from each of the sets reference the same point. This
method has been used by several re-identification strategies [173] and has been extended to big
data [191]. In another case study analysts successfully linked newspaper-recorded deaths to stored
family structures, allowing the analysts to discover detailed genealogical information for over half
of the individuals [109]. Links can be discovered in numerous public sources, revealing private
information [12, 41, 109, 163, 172]. Linkages aid in identifying individuals from sparse information
even when supposedly private information has been removed. For example, 86% of the United
States population is identifiable using only their birth date, sex, and 5 digit zip code [14, 109].

In clinical data, Reisaro et al. [144] found that adversaries could link different parts of genomic
data together to identify participants. While a common attack strategy, linking is also practiced
within clinical research as a way of discovering additional information in data, using association
rule mining [30, 86, 189]. Recently, work has been done to secure data against these forms of
linking attacks. Telikani et al. [177] used evolutionary computation to keep the data impenetra-
ble. This evolutionary process employed swarm-based optimization to make the data increasingly
impervious to association rule mining invasions.

5.2 Potential Vulnerabilities

Of the methods surveyed in Section 4, potentially most vulnerable to linkage-based attack is ab-
straction aggregation. As mentioned, linking attacks attempt to identify common elements from
multiple different data, using similarities between shared elements to attempt to discover rela-
tions between these different elements. Aggregation creates opportunities for data to be linked
with other data sets, even when aggregated [192]. Applying linking methods, attackers can deter-
mine with a variable degree of certainty to which records a person belongs. Aggregation is also
vulnerable to data outliers as well as attackers’ knowledge of real constraints on data types such
as realistic age ranges [14, 193].

Mapping and random methods are somewhat more secure than abstraction, but both do have
inherent vulnerabilities. Mapping methods may reveal a weak point around the axis of movement,
as points there experience the least rotation. Because these points move less compared to others, an
attacker may use the smaller movements to determine the overall mapping of some or all of the set
[27]. Similarly, simple swapping methods exchange feature values within small clusters, allowing
an adversary to determine what the possible original values might be for the points within that
neighborhood [27, 193].

Random methods are further vulnerable to discovering the degree of added noise, allowing at-
tackers to determine the range of possible initial values [27, 74, 193]. If an attacker can discover
the distribution of added random noise, then they can infer a likely range of initial values [75, 154].
This sort of discovery is also possible if the adversary can find a sample of unperturbed examples
and their corresponding perturbed permutation. An adversary may also use spectral graph or pri-
mary components analysis filtering to determine with a high degree of accuracy the original data
[75]. This represents a difficult challenge for data perturbation methods as increasing the amount
of perturbation can weaken the utility of the data set [154, 155, 162].

5.3 Mitigation Strategies

To address the vulnerabilities outlined in Section 5.2, methods of mitigating attacks have been
developed. In this article, we survey two methods for combating privacy attacks: a blending of
multiple PPDM approaches and a merging of PPDM practices with those in the cryptography field.
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Fig. 5. Applying random noise to the mapping function creates uncertainty as to the origin of the point.

5.3.1 Combining Methods. An effective way to combat attack vulnerabilities is to combine dif-
ferent PPDM methods, as this can leverage multiple security designs, potentially thwarting the
attempts of an attacker to learn the original data [27, 127, 193]. As seen throughout Section 4,
many current clinical methods combine different styles of PPDM. The combinations range from
differential privacy and clustering to abstraction and learned models. Some methods combine very
well, for example, mapping and noise addition complement each other, because together they in-
capacitate re-identification techniques that are targeted for only one method: A popular approach
to re-identify mapped data is to utilize known unperturbed examples and their subsequent trans-
formations to discover how the data are mapped. Similarly, for random methods, the goal is to
discover the distribution of added noise to intuit the likely original data. Combining mapping and
random methods render these strategies ineffective, because the addition of random noise means
that possessing previous samples does not give away the mapping. The original point could have
been mapped to a variety of regions, with the noise influencing the final location. Mapping the data
to new positions before adding noise also thwarts attempts to discover the distribution, because
even if the distribution of the mapped data is discovered, this does not necessarily describe the
original, unmapped data. Figure 5 shows how the addition of noise to a mapping method makes
the original location ambiguous, due to the unknown noise value. Additionally, the combination
of differential privacy and random noise injection provides a privacy guarantee, allowing clini-
cal users to determine the degree of safety that they wish to impart on mined data. Combining
these PPDM methods and measures can improve the effectiveness of privacy preservation over
traditional or novel approaches used in isolation.

5.3.2 Multi-party Computation. As the PPDM field matures, researchers incorporate more di-
verse computer science ideas to enhance both the privacy and utility of the privacy-preserved data.
As discussed in Section 4.5, the introduction of neural networks such as GANs exemplifies how
using external techniques can yield promising results for the private generation of synthetic data.

Multi-party Computation is a modern security technique that allows multiple groups to per-
form an analysis on data without fear of that data leaking [106]. This area of cryptography is
quite similar to the goal of many PPDM methods, attempting to facilitate wide access to sensi-
tive information. A subset of multi-party communication is known as homomorphic techniques
[15, 85, 174, 176]. Homomorphism stems from encryption and is used to denote a process whereby
results can be gathered on encrypted data that mirror the results that would have been gathered on
non-encrypted data [201]. Applying homomorphic and other cryptographic concepts to PPDM is a
novel way to increase security without having to deal with difficulties using encrypted data, such
as ensuring trust between parties, efficiently sharing keys, and facing expensive decryption costs
[32, 71]. The parallels between homomorphic encryption and PPDM are clear; homomorphism
may be seen as an extreme application of a mapping method. Both methods provide users with
new data that are representative of the original, protect the privacy of the individuals, and may be
widely disseminated without concerns about end-user “trust.” Recently, PPDM researchers have
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explored new strategies that exhibit this feature to provide strong security and privacy. Song et al.
[165] used homomorphism to develop a privacy algorithm based on cryptographic models. They
combined homomorphic encryption with learned models, merging these disciplines with PPDM.

These homomorphic PPDM strategies reflect a trend for these methods to not only be robust
against adversarial attacks but, in a similar vein as cryptographic methods, to integrate these meth-
ods into their design and operation [183]. As homomorphic methods may bridge the gap between
PPDM and cryptography, they may become increasingly popular, particularly for widely shared
data.

6 PPDM FOR LOCATION INFORMATION

With the rapidly increasing ubiquity of mobile devices, as well as clinical applications for IOT de-
vices location has become an increasingly common data feature whose privacy must be maintained.
Many smartphone applications rely upon enabling location services. Doing this opens the door for
the network provider and device provider as well as the app designer to collect (and disseminate) lo-
cation information. An attacker also uses these locations to learn intimate details about a person’s
life [31, 50, 51, 126]. Location data are also providing increasingly critical insights for clinicians.
Knowledge of a user’s location offers context when examining the influences and symptoms of an
individual’s health. Such contexts include knowledge of frequented locations, activity level, inter-
ruptions in daily routines, alerts of possible wandering behavior, social interactions, and symptoms
of specific diseases [19, 22, 38, 108, 111, 143, 166]. Therefore, privacy protection of location data
is an important component of ensuring private, applicable clinical data. While location-based pri-
vacy preservation is similar to traditional PPDM methods, unique challenges arise due to both the
comparatively few features and the known value constraints. These challenges mean that while
many ideas and practices can be transferred to location-based problems, they must often be altered
to adequately protect privacy while conveying useful information.

Location data can be difficult to keep private, because some mobile operating systems store this
information when location services are enabled. However, too severe of a privacy threshold greatly
degrades the usability of the location data [51, 179]. Due to these unique constraints on privacy-
preserving location mining, standard PPDM methods must adapt both their PPDM goals and their
strategies.

User location data often appear as a series of (latitude, longitude, altitude) coordinates indicat-
ing the movement of a user over a time period [63]. Therefore, methods that attempt to preserve
the privacy of user locations typically modify the reported location values, location time stamps,
or both [50, 51, 179, 204]. Location-based privacy should be addressed separately because of the
unique nature of these data. Location trajectories are time series, containing spatio-temporal rela-
tionships between individual readings. As a result, making changes to individual data points can
easily distort the underlying, valuable information.

Many of the methods can be considered analogous to common PPDM methods discussed in
Section 4. Moving the locations by incremental amounts is very similar to random methods [51,
188]. Also, clustering/partitioning location is very similar to mapping and abstraction methods.
One general methodology groups location points and abstracts them to a broader neighborhood
within which multiple clusters can fit [50, 126, 179, 188]. To further ensure privacy, noise can be
added to these broad locations, subsequently increasing the difficulty of determining the cluster
locations [188], similarly to the combined strategies discussed in Section 5. Finally, some versions
of mobile privacy introduce the concept of “trusted nodes,” to which the mobile element will only
connect, decreasing the risk of a malicious entity gaining unauthorized information [195]. Location
privacy remains an open challenge that requires additional research to retain both the value of
location data and the privacy of the individuals being tracked. The increased frequency of patient
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location data being collected from a variety of sensors presents a unique challenge to the PPDM
conscious researcher and is an increasingly relevant vulnerability that often must be addressed
to safeguard the security of data members. Due to the potential inclusion of location data into
a clinical record, safeguards to ensure the security of this data are necessary. As such, while the
methods and motivations of privatizing location data may not primarily be focused on clinical
usage, the inclusion of location into clinical data necessitates the investigation of this PPDM area.

7 DISCUSSION

Throughout this article, we survey recent methods for privacy-preserving data mining, assess
the vulnerability of the methods to re-identification, and discuss how to adapt such methods to
location-based clinical data. As discussed in Section 5, accessing sensitive data remains a clear and
present threat. Because safeguarding patient personal information is a high priority, this threat mo-
tivates us to find ways to ensure data privacy, while maintaining data utility. Here, we shed light
on the strengths and weaknesses of PPDM techniques as well as highlight directions that warrant
continued research. Table 5 summarizes many of the surveyed approaches. From this table, we can
view differences between strategies.

As Table 5 indicates, Abstraction methods typically lose data fidelity when privacy is increased,
making them appropriate only when details of the original data are not required. They may be an
effective approach for preserving the privacy of data that possesses small margins between classes.
An example of this could be detecting the volume of hard-to-locate tumors [18].

Random methods can be very effective in that they change the individual data points slightly
while still keeping the information as similar to the original as possible. This approach can be
difficult to enact correctly, however, as additions of too little noise can result in an adversary
being able to “see past” the noise and discover the original data. At the same time, trying to
fix this problem by aggressively adding noise may jeopardize the integrity of the original data.
Random methods are also weak at providing privacy to non-continuous data; the minimum
amount of noise to be added in such cases is an integer value. Despite these flaws, noise addition
is still popular with applications using differential privacy [58, 62, 102]. The addition of noise
adds a quantifiable amount of uncertainty, clearly defining a trade-off between privacy and utility.
Because random methods offer flexibility in the amount of data manipulation that is performed,
they allow practitioners to increase privacy for vulnerable populations while opting to retain data
purity for less sensitive cases [156].

Mapping methods are adept at preserving the relationships between different groups of data.
This is a useful trait when the goal of the project is classification. Another use of mapping is feature
swapping, which creates semi-new data points out of the ones in the original data. Mappings are
useful when the original data distribution needs to be preserved. One example in a medical setting
is identifying outliers, as will occur when searching for medication errors [158].

Rather than operate on some data to privatize them as the previous three methods do, machine
learning methods refine the knowledge into a model (e.g., decision tree, deep network). While this
may decrease the overall utility of the information, secure learned models can provide precisely
the needed information while not including details that may leave individuals vulnerable to
exposure [57].

The generation of synthetic data represents another shift in approach to the privatization
of data. Through a learned approximation of the original data—by means of statistics or deep
learning—a generator creates data that ostensibly could have come from the original distribution,
and exemplifies all the characteristics of the original data. This approach is difficult to successfully
perform with data possessing extreme outliers or abnormal distributions, as accounting for these
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Table 5. Comparison between Different Presented PPDM Methods

Method Algorithm Performance Vulnerability Data Type Runtime

Abstraction Condensation [206] ΔAcc: within
5%

sparse; redundant
features

categorical;
continuous

N ∗F
K

HM:PFSOM [3] IL: ∼0.35 unclustered data categorical;
continuous

F ∗ N 2

1:M-Generalization
[53]

IL: ∼0.15 sparse categorical;
continuous

N log(N )

MS(k,θ )-anonymity
[101]

IL: ∼0.1 sparse categorical
reports

N 2

Random
Noise

GADP [125] Dist: no change
from original

topological
irregularities

continuous N

Chaos Method [44] ΔAcc: within
1%

loss of
correlation

categorical;
continuous

N

Mapping

Donut Method [60] CS: within 10% topological
irregularities

location N

Translation Data
Perturbation [130]

ΔError: within
7%

highly correlated
data

categorical;
continuous

N ∗ F

Geometric Data
Perturbation [182]

ΔAcc: within
5%

mapping method
compromise

categorical;
continuous

N ∗ F

P2RoCAl [23] ΔAcc: within
2%

large compute
time

categorical;
continuous

N 3

Generation Privacy Data
Generator [184]

Diss: ∼0.06 representative
input

categorical;
continuous

N ∗ F

ΔAcc = difference in accuracy after privacy preservation, IL = information loss after privacy preservation, Dist = change
in distribution of data after privacy preservation, Diss = dissimilarity measure between data before and after privacy
preservation, CS = cluster similarity before and after privacy preservation, N = number of data points, F = number of
features, K = number of clusters.

may leave those individuals prone to exposure, but ignoring them may severely degrade the
quality of the data. Conversely, when a model can successfully approximate the distribution of
the original data, the generation of synthetic data is a powerful way to effectively sidestep the
issue of privacy. When faced with an extreme desire for privacy, such as when dealing with a
novel or uncommon affliction, synthetic data generation provides an avenue to share data that
are similar to the original but reference no real participants [147].

Clinical research and practice impose their own constraints on the choice of optimal PPDM
methods. Clinical pathways, medical imaging, and location information all offer a unique chal-
lenge for the researcher. Much like more standard clinical data, effectively safeguarding these data
types requires consideration of both the form of the data and the desired use of that data. When
attempting to safeguard sensitive data, the intended use for the data plays as large of a role in
the choice of method as the data. To better illustrate some potential uses for each of the discussed
methods, Table 6 ranks each of the discussed categories across several use cases.

Finally, the computational cost of PPDM methods may impact their value. As seen in Table 5,
random noise addition and mapping methods are not computationally costly, while abstraction
and generation both require additional, potentially costly, steps. Abstraction methods must often
use a metric such as K-anonymity to decide which entries to modify. Data generation methods,
especially those using deep learning, must be trained on the data before providing useful results.
As a result, such methods may impose significant computational constraints.
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Table 6. Sample Clinical Tasks and Ranked Suitability of Alternative PPDM Methods to the Task

(1 = Most Suitable . . . 5 = Least Suitable)

PPDM Method Hypothesis test Clustering Base stats Classification Detect anomaly
Abstraction 3 4 4 5 4
Random 1 3 1 4 2
Mapping 2 2 3 1 1
Learned 5 1 5 2 5
Generation 4 5 2 3 3

8 SUGGESTED DIRECTIONS FOR FUTURE PPDM RESEARCH

While we highlight novel and robust methodologies in this survey, there are several avenues of
research that are needed to extend and strengthen PPDM. As seen in Section 7, there is no general
consensus on best practices to use for evaluating the efficacy of PPDM methods. While differential
privacy has become an increasingly common method of validating the privacy of privatized data,
developing a measure that combines the privacy given to data along with the preserved utility
would be a good method of providing insight into the overall utility of the proposed method. In
particular, developing an evaluation criterion that works across multiple domains, types of data,
and classes of PPDM models would be of great benefit to the community as a whole. Similarly,
standardizing the data and testing methods used for newly proposed PPDM methods would fa-
cilitate comparisons between these different methods as well as the selection of an appropriate
approach to a particular data set. These measures could use many different aspects of the input
data, such as composition (described in Section 2). An example of a criterion that could perform
well is representing the overall utility of a PPDM method as the area under a curve, where the X-
axis represents varying degrees of privacy and the Y-axis represents the utility of the data. Methods
that exhibit a large area under the curve would be ones that retain high levels of utility as PPDM
parameters vary. Another possibly more focused avenue for PPDM metrics is a general-purpose
privacy metric for synthetic data. As it currently stands, it is often quite difficult to quantify the
privacy provided through the use of synthetic data. If synthetic data is generated correctly, then
there exist no correct ties to the original data, making it difficult to establish a link between a sub-
set synthetic data and any possible originating record in the original data. However, as synthetic
data is not always generated completely free of relation to the original data, proposing a metric
aimed at grading synthetic data quality would be extremely useful.

Along with standardizing the evaluation criteria of proposed PPDM models, an effective further
direction for this field is the integration of a re-identification agent within a PPDM framework.
As seen in Sections 4.4 and 4.5, deep learning models, especially GANs, have shown to be an
effective way of augmenting or generating data that protects the privacy of the members contained
within. Creating a GAN that not only evaluates the synthetic data for realism but also attempts
to re-identify the generated data, could result in a mechanism that produces synthetic data that is
representative of the original, but is also robust against adversarial attacks on the data.

A rewarding avenue for PPDM research may also be the introduction of a class of methods that
attempt to provide private data through a transformation of related data. Transfer learning and
domain adaptation are popular research areas and may be repurposed to facilitate taking secure
information and translating it into an insecure domain. This proposed style of transfer PPDM
methods would exhibit the privacy characteristics of synthetic data, but the relevance to real data
of mapping methods. Finally, PPDM practices may be used in the field of adversarial learning [104].
Adversarial learning is characterized by the interplay between a learning model and an agent who
attempts to poison the performance of that model. Modification of the model’s training data using
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PPDM methods may increase the robustness of the learned models involved, due to the decreased
similarity between data used for the model and data used by an adversary.
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