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Abstract
In this paper we introduce improved rules for Catmull-Clark and
Loop subdivision that overcome several problems with the origi-
nal schemes, namely, lack of smoothness at extraordinary bound-
ary vertices and folds near concave corners. In addition, our ap-
proach to rule modification allows the generation of surfaces with
prescribed normals, both on the boundary and in the interior, which
considerably improves control of the shape of surfaces.

CR Categories and Subject Descriptors:I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling – Curve, surface, solid, and object representa-
tions; Boundary representations.

Additional Keywords: Subdivision surfaces, boundary control.

1 Introduction
Subdivision surfaces are rapidly gaining popularity in computer
graphics. A number of commercial systems use subdivision as a
surface representation: Alias|Wavefront’s Maya, Pixar’s Render-
man, Nichimen’s Mirai, and Micropace’ Lightwave 3D, to name
just a few. The greatest advantage of subdivision algorithms is
that they efficiently generate smooth surfaces from arbitrary initial
meshes. Subdivision algorithms are also attractive because they are
conceptually simple and can be easily modified to create surface
features without making major changes to the algorithm.

At the same time, one of the drawbacks of subdivision is a lack
of precise definition of the schemes with guaranteed behavior for
a sufficiently general type of control meshes. Anyone who tries to
implement a subdivision scheme can observe that more often than
not it is unclear how rules should be specified in certain cases (most
commonly on boundaries and creases). Ad hoc solutions have to
be used, which often have unexpected undesirable behavior. The
lack of precise and complete definition makes it more difficult to
exchange data between applications, reuse control meshes, and de-
sign new algorithms based on subdivision.

The difficulty in defining a reasonably complete set of subdivi-
sion rules is related to the fact that subdivision algorithms allow a
large variety of data as input: an arbitrary polygonal or triangular
mesh, possibly with boundary, marked edges, and vertices. Subdi-
vision rules for the interior of a control mesh are well understood,
while the boundary rules have received less attention. Boundary
rules are quite important for a variety of reasons. The boundary of
the surface, together with the contour lines, forms the visual outline.
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Often, only an approximate definition is required for the interior of
the surface, whereas the boundary conditions may be significantly
more restrictive. For example, it is often necessary to join several
surfaces along their boundaries. Boundary subdivision rules lead
to rules for sharp creases [8] and soft creases [3]. In addition to
specifying the boundary or crease curves, it is often desirable to be
able to specify tangent planes on the boundary; existing subdivision
schemes do not allow to control tangent plane behavior.

The goal of this paper is to present two complete sets of subdivi-
sion rules for generating piecewise-smooth,C1-continuous, almost
everywhereC2 subdivision surfaces, with tangent plane control.
Our rules extend the well-known subdivision schemes of Catmull-
Clark [2] and Loop [10]. The properties of our schemes were rigor-
ously verified. We use a uniform approach to derive a set of rules,
including new rules for concave corners, improved smooth bound-
ary rules, new rules for tangent plane modification, andC2 rules.
While our approach is based on a number of known ideas, its advan-
tage is that all desired features are handled in a unified framework.

Our approach to building a complete set of rules can be applied
to any stationary subdivision scheme. In this paper, we focus on
the Loop and Catmull-Clark subdivision schemes as schemes hav-
ing the greatest practical importance. The code implementing our
algorithms is available on the Web1.

2 Previous Work
A number of subdivision schemes have been proposed since Cat-
mull and Clark introduced subdivision surfaces in 1978 [2]. A de-
tailed survey of subdivision can be found in [1].

Theoretical analysis of subdivision rules was performed in [18,
15, 6, 19, 24, 23]. Most of this work has focused on closed sur-
faces; while the general theory does not impose symmetry restric-
tions on the subdivision rules, almost all theoretical analysis of spe-
cific schemes relies on the rotational symmetry of the subdivision
rules and applies only to the interior rules.

Subdivision rules for Doo-Sabin dual surfaces for the boundary
were discussed by Doo [4] and Nasri [12, 13, 11], but only partial
theoretical analysis was performed. Our work builds on the work
of Hoppe et al. [8] and partially on the ideas of Nasri [14].

To the best of our knowledge, the boundary subdivision rules
proposed in work [8] are the only ones that result in provablyC1-
continuous surfaces (the analysis can be found in Schweitzer [19]).
However, these rules suffer from two problems:
• The shape of the boundary of the generated surface depends on
the control points in the interior;
• Only one rule for corners is defined, which works well for convex
corners but does not work well for concave corners.
Standard Catmull-Clark rules, when applied to the boundary, suffer
from the same problems.

Sederberg et al. [20] proposed a generalization of Catmull-Clark
and Doo-Sabin subdivision rules that contains NURBS as a subset.
For some applications it is important to include NURBS patches,
however, the complexity of the algorithms is increased and the be-
havior of the surface near the extraordinary points becomes difficult

1http://www.mrl.nyu.edu/biermann/sub
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Figure 1: The charts for a surface with piecewise smooth boundary.

to analyze and predict. The smooth crease effects that are obtained
by manipulating NURBS weights for subdivision surfaces can be
achieved using an elegant technique proposed by DeRose et al. [3].

Our approach toC2 subdivision is similar to the approach of
[16].

Levin recently introduced a combined subdivision scheme which
interpolates a network of curves [9]. There are two main distinc-
tions between the present work and [9]. First, we are solving a dif-
ferent problem: rather than assuming that we are given a network
of smooth curves that has to be interpolated, we assume only a dis-
crete mesh with tags, which controls the behavior of our surface,
but no interpolation is required. Second, Levin’s combined subdi-
vision schemes are an interesting new research direction; not much
is known and understood about their behavior, especially on arbi-
trary meshes. In contrast, we focus on completing the subdivision
toolbox with provably reliable tools.

Halstead et al. [7] describe a method of interpolating posi-
tions and normal direction on subdivision surfaces. However, this
method involves the solution of a global system of equations, unlike
our local subdivision rules.

3 Piecewise smooth surfaces
Piecewise smooth surfaces.Our goal is to design subdivision
schemes for the class ofpiecewise smooth surfaces. This class in-
cludes common modeling primitives such as quadrilateral free-form
patches with creases and corners. However, we exclude certain sin-
gularities (e.g., cone-like singularities and corners).

Here we give a somewhat informal description of piecewise-
smooth surfaces, mathematical details will be presented elsewhere
[25]. For simplicity, we consider only surfaces without self-
intersection.

Recall that for a closedC1-continuous surface inR3, each point
has a neighborhood that can be smoothly deformed (that is, there
is aC1 map of maximal rank) into an open planar diskD. A sur-
face with asmooth boundarycan be described in a similar way,
but neighborhoods of boundary points can be smoothly deformed
into a half-diskH, with closed boundary (Figure 1). In order to
allow piecewisesmooth boundaries, we introduce two additional
types of local charts: concave and convex corner charts,Q3 and
Q1. We conclude that aC1-continuous surface with piecewise
smooth boundary looks locally like one of the domainsD, H, Q1,
or Q3. Piecewise-smooth surfacesare constructed out of surfaces
with piecewise smooth boundaries joined together. If two surface
patches have a common boundary, but different normal directions
along the boundary, the resulting surface has a sharp crease.

We allow two adjacent smooth segments of a boundary to be
joined, producing a crease ending in adart (cf. [8]). For dart ver-
tices an additional chartQ0 is required; the surface near a dart can
be deformed into this chart smoothly everywhere except at an open
edge starting at the center of the disk.

It is important to observe that convex and concave corners, while
being equivalent topologically, are not differentially equivalent.
That is, there is noC1 nondegeneratemap fromQ1 to Q3. There-
fore, a single subdivision rule can not produce both types of cor-
ners [26]. In general, any complete set of subdivision rules should
contain separate rules for all chart types. Most, if not all, known
schemes miss some of the necessary rules.

4 Problems with common rules
In this section, we demonstrate some problems of existing subdivi-
sion rules. We will see that not all piecewise-smooth surfaces can
be adequately represented in these schemes.

Concave corners.Concave corners often arise in modeling tasks
(e.g., surfaces with holes). In an attempt to model such a corner
with subdivision surfaces, one might arrange the control mesh in
a concave configuration and expect the surface to approximate the
configuration. However, the corner rules of popular subdivision
schemes (e.g., [8]) can only generate convex corners. If the control
mesh is in a concave configuration, the rules force the surface to ap-
proach the corner from the outer, convex, side, causing the surface
to develop a fold (Figure 2).

Figure 2: Upper row: behavior of a subdivision surface when rules
of Hoppe et al. [8] are applied near a corner of the control mesh.
As the corner of the control mesh is moved, the surface develops
a fold. Lower row: our concave corner rules applied to the same
mesh. The concave rules produce a small fold if applied to a con-
vex control mesh configuration (not visible in the picture). For a
concave configuration, our rule produces surfaces without folds.

Boundary rules. Hoppe et al. [8] observed that standard subdivi-
sion rules fail to produce smooth surfaces at extraordinary bound-
ary vertices. They propose to change the subdivision scheme for the
boundary curve in order to generate smooth surfaces. However, the
boundary curve now depends on the interior of the control mesh.
More specifically, the number of the interior vertices adjacent to
each boundary vertex. This side effect is undesirable if one wants
to join surfaces along their boundary curves: Two separate meshes
might initially have the same boundary, but after subdivision a gap
between the meshes can appear (Figure 6).

Moreover, even though the rules of [8] are formally smooth, they
might produce undesirable sharp normal transitions if the control
mesh is twisted (Figure 7).

5 Subdivision and eigenanalysis
In this section, we briefly state several facts of the theory of subdi-
vision [1], which are helpful to understand the problems described
above and our solutions.

Subdivision algorithms recursively refine a control mesh, recom-
puting vertex positions and inserting new vertices on edges (and
possibly faces).

Our method of constructing subdivision rules is based on manip-
ulating the eigenstructure ofsubdivision matricesassociated with
most common subdivision rules. This idea can be traced back to
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[5]. Consider a vertexv, and letp be the vector of control points in
a neighborhood of the vertex (Figure 3).

LetS be the matrix of subdivision coefficients relating the vector
of control pointspm on subdivision levelm to the vector of con-
trol pointspm+1 on a similar neighborhood on the next subdivision
level. Suppose the size of the matrix isN . Many properties of the
subdivision scheme can be deduced from the eigenstructure ofS.
Let us decompose the vector of control pointsp with respect to the
eigenbasis{xi}, i = 0..N−1, of S, p = a0x

0+a1x
1+a2x

2+. . .
(it exists in the cases of importance to us).

Note that we decompose a vector of 3D points: the coefficients
ai are 3D vectors, which are componentwise multiplied with eigen-
vectorsxi.

We assume that the eigenvectorsxi are arranged in the order
of non-increasing eigenvalues. For a convergent scheme, the first
eigenvalueλ0 is 1, and the eigenvectorx0 has all components equal
to one; this is also required for invariance with respect to rigid and,
more generally, arbitrary affine transformations.

Subdividing the surfacem times means that the subdivision ma-
trix is appliedm times to the control point vectorp.

Smp = λm
0 a0x

0+λm
1 a1x

1+λm
2 a2x

2+· · · (Iterated Subdivision)

If we further assume thatλ1 andλ2 are real and equal, andλ1 =
λ2 = λ > |λ3|, we see from this formula that the vector of control
pointspm can be approximated bya0x

0 + λm(a1x
1 + a2x

2); the
rest of the terms decay to zero faster. Ifa1 ×a2 is not zero, then all
of the control pointspm

i are close to the plane passing througha0

and spanned by vectorsa1 anda2. Asm → ∞, the positions of all
points converge toa0.

This means that the limit position of the center vertex isa0; the
tangent directions at this position area1 anda2. We compute these
values using the left eigenvectors ofS (i.e., vectorsli, satisfying
(li, xi) = 1 and(li, xj) = 0 if i 6= j): ai = (li, p).

These observations form the basis of our method: to ensure con-
vergence to the tangent plane, we decrease the magnitudes of all
eigenvalues except for those that correspond to the vectorsa1, a2

spanning the desired tangent plane. We also modify the vectorsa1

anda2 to change the direction of the normal. It should be noted
that obtaining the correct spectrum of the subdivision matrix is not
sufficient for smoothness analysis of subdivision; once our rules are
formulated, we still have to prove that the resulting surfaces areC1,
using the characteristic map analysis [25].
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Figure 3: Neighborhoods of a vertex on different subdivision levels.
The subdivision matrix relates the vector of control pointspm to
the control points on the next levelpm+1. For a neighborhood of
k trianglespm = {pm
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0 . . . pm

k−1}, for k quadrilateralspm =
{pm

c , pm
0 . . . pm

k−1, q
m
0 . . . qm

k−1}

6 Algorithm

6.1 Tagged meshes

Before describing our set of subdivision rules, we start with the de-
scription of the tagged meshes which our algorithms accept as in-
put. We use these meshes to represent piecewise-smooth surfaces:
edges and vertices of the mesh can be tagged to generate the singu-
larities described in Section 3.

The complete list of tags is as follows. Edges can be tagged as
crease edges. A vertex with incident crease edges receives one of
the following tags:
• crease vertex:joins exactly two incident crease edges smoothly.
• corner vertex:connects two or more creases in a corner (convex
or concave).
• dart vertex:causes the crease to blend smoothly into the surface.

We require that all edges on the boundary of the mesh are tagged
as crease edges. Boundary vertices are tagged as corner or crease
vertices.

Crease edges divide the mesh into separate patches, several of
which can meet in a corner vertex. At a corner vertex, the creases
meeting at that vertex separate the ring of triangles around the ver-
tex into sectors. We label each sector of the mesh asconvex sector
or concave sectorindicating how the surface should approach the
corner.

The only restriction that we place on sector tags is that we require
concave sectors to consist of at least two faces. An example of a
tagged mesh is given in Figure 4.

e1

e2

Figure 4: Crease edges meeting in a corner with two convex (light
grey) and one concave (dark grey) sectors. Our subdivision scheme
modifies the rules for edges incident to crease vertices (e.g.,e1) and
corners (e.g.e2).

In our implementation, the user applies the tags interactively, and
the user interface prohibits an inconsistently tagged mesh (for ex-
ample, there cannot be a corner vertex with some sector untagged).
Also, the user can specify normal directions andflatness parame-
ters for untagged vertices, crease vertices, and for each sector at a
corner vertex. The flatness parameter determines how quickly the
surface approaches the tangent plane in the neighborhood of a con-
trol point. This parameter is essential to our concave corner rules.
Additionally, it improves the user control over the surface, for ex-
ample, one can flatten a twist in the mesh (as shown in Figure 7).
It is important to note however, that while manipulating these pa-
rameters is possible, it is not necessary: we provide default values
reasonable for most situations (Section 6.2).

6.2 Subdivision rules

We describe our sets of rules for the triangular and quadrilateral
schemes in parallel, as they are structurally very similar.

Our algorithm consists out of two stages, which, if desired, can
be merged, but are conceptually easier to understand separately.

The first stage is a single iteration over the mesh during which we
refine the position of existing vertices (vertex points) and insert new
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vertices on edges (edge points). For the quadrilateral scheme, we
also need to insert vertices in the centers of faces (face points). The
first stage is similar to one subdivision step of standard algorithms,
but the weights that we use are somewhat different. In the following
we refer to the rules of Loop and Catmull-Clark as standard rules.
Vertex points. We apply the standard vertex rules to reposition un-
tagged vertices and dart vertices. The new control point at a vertex
is the weighted average of the control points in its neighborhood.

If a vertex hask adjacent polygons, then its new position is a
combination of the old position with weight5/8 and of the sum all
surrounding control points with weight3/8k, for k 6= 3. In case
k = 3 we use a special set of coefficients with the weight of the
central vertex equal to 7/16 [22]. For the quadrilateral scheme, the
center vertex has weight1 − β1 − β2, while all adjacent vertices
have weightβ1/k; the remaining vertices in the ring receive weight
β2/k with β1 = 3/(2k) andβ2 = 1/(4k).

A crease vertex is refined as the average of its old position with
weight 3/4 and the two adjacent crease vertices with weight1/8
each. Corner vertices are interpolated.
Face points.For the quadrilateral scheme we insert a vertex at the
centroid of each face; only one rule is necessary.
Edge points. This is the most complicated case. We choose the
rule for an edge point depending on the tag of the edge and the tags
of adjacent vertices and sectors. In the absence of tags, we apply
the standard edge rules. The averaging masks are given in Figure 5.
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Figure 5: Edge rules for triangular and quadrilateral schemes.
These rules apply to untagged edges. When both endpoints are
untagged, we use standard rules. In case of a tagged endpoint we
modify the rule such that the tagged endpoint (marked with a circle)
receives coefficient3/4 − γ.

We insert a new vertex on a crease edge as the average of the two
adjacent vertices.

The remaining case of an untagged edgee adjacent to a tagged
vertexv is illustrated in Figure 4. We modify the standard edge
rule in the following way: we parameterize the rule byθk, which
depends on the adjacent vertex tag and sector tag. Let the vertices
be labeled as in Figure 3, and let the position of the tagged endpoint
bepm

c , the other endpoint ispm
i . We insert a vertex on the edge at

positionpm+1
i . The edge rule for the triangular scheme is

pm+1
i = (3/4 − γ) pm

c + γpm
i + 1/8 (pm

i−1 + pm
i+1) .

We use a similar rule for the quadrilateral case:

pm+1
i = (3/4 − γ) pm

c +γpm
i +1/16 (pm

i−1 + pm
i+1 + qm

i−1 + qm
i ) .

The subdivision masks are illustrated in Figure 5. In each caseγ is
given in terms of parameterθk:

γ (θk) = 1/2 − 1/4 cos θk (triangular scheme)

γ (θk) = 3/8 − 1/4 cos θk (quadrilateral scheme).

For a dart vertexv, we useθk = 2π/k, wherek is the total number
of polygons adjacent tov. If v is a crease vertex, we useθk = π/k,
wherek is the number of polygons adjacent tov in the sector ofe.

At a corner vertexv we differentiate whethere is in a convex or
concave sector. For a convex corner we useθk = α/k, whereα
is the angle between the two crease edges spanning the sector (k as
above), for concave cornersθk = (2π − α)/k.

6.3 Flatness and normal modification

The second stage of the algorithm is always applied at concave cor-
ner vertices and vertices with prescribed normals. It can be also
applied at other boundary and interior vertices when it is desirable
to increase flatness near a vertex or achieveC2-continuity.

There are two slightly different types of position modifications
performed at this stage: normal and flatness modification. When-
ever we compute a vertex position in the neighborhood of a vertex
subject to normal or flatness modification we compute the position
using the rules above and modify it in a second step. The required
eigenvectors for these modifications are listed in the appendix A.
Flatness modification. We observe that we can control how
quickly the control points in a neighborhood converge towards the
tangent plane. The equation for iterated subdivision suggests to ac-
celerate the convergence by reducing eigenvaluesλi, i = 3 . . . N−
1. We introduce aflatness parameters and modify the subdivision
rule to scale all eigenvalues exceptλ0 andλ = λ1 = λ2 by factor
1 − s. The vector of control pointsp after subdivision in a neigh-
borhood of a point is modified as follows:

pnew = (1 − s) p + s
(
a0x

0 + a1x
1 + a2x

2
)

,

whereai = (li, p), and0 ≤ s ≤ 1. Geometrically, the modified
rule blends between control point positions before flatness modifi-
cation and certain points in the tangent plane, which are typically
close to the projection of the original control point. The limit posi-
tion a0 of the center vertex remains unchanged.

The flatness modification is always applied at concave corner
vertices; the default values for the parameters is s = 1 − 1/(2 +
cos θk −cos kθk), which ensures that the surface isC1 in this case.
In other cases,s can be taken to be 0 by default.
C2-modification. The flatness modification can be also used to
make the subdivision schemeC2, similar to the flat spot modifica-
tions [16]. It is known from the theory of subdivision that under
certain conditions a scheme which isC2 away from extraordinary
vertices, generates surfaces which areC2 at extraordinary vertices
if all eigenvalues excluding1 andλ are less than the squared sub-
dominant eigenvalue. This can be easily achieved using flatness
modification:s is taken to be less than|λ|2/ maxi>3 |λi|. In gen-
eral, values ofs close to this quantity produce surfaces of better
shape, but with greater curvature oscillations. It is worth noting
that this approach has a fundamental problem: the resulting surface
has zero curvature at the extraordinary vertex; the results of [17]
indicate that for schemes with small support this is inevitable.
Normal modification. We introduce a similar modification, which
allows one to interpolate given tangent and normal position at a
vertexv. As above, we modify the control point positions inv’s
neighborhood after each subdivision step. In this case, the param-
etert blends between the unmodified positions and positions in the
prescribed tangent plane, while the limit positiona0 of v remains
unchanged.

For a prescribed tangent vector paira′
1 anda′

2, we modify

pnew = p + t
((

a′
1 − a1

)
x1 +

(
a′

2 − a2

)
x2
)
;

whereai = (li, p) and0 ≤ t ≤ 1. In case of a prescribed normal
directionn we compute the tangent vectors asa′

i = ai − (ai, n)n.
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We observe that the subdivision rules are no longer applied to
each coordinate of the control points separately; rather, the whole
3D vector is required. We can think of this as a generalized form of
subdivision, where the coefficients are matrices rather than scalars.
Thus, a control point positionpm+1

i in a neighborhood with pre-
scribed normaln on levelm + 1 can be explicitly expressed as

pm+1
i =

∑
j

pm
j

(
sij Id − t

(∑
k

x1
i l

1
kskj + x2

i l
2
kskj

)
nT n

)

wheresij are entries of the original subdivision matrixS andId the
3 × 3 identity matrix. It should be noted that our analysis in [25]
applies only to the caset = 1, which we use as a default value; the
analysis of the general case is still an open question.

7 Discussion
We have presented a number of simple extensions to the standard
Catmull-Clark and Loop subdivision schemes that resolve some
problems with existing rules.

Our rules are designed to coincide with cubic endpoint interpo-
lating B-splines rules along a crease. As a consequence, the gener-
ated crease curves depend only on the crease control points. There-
fore, it is possible to modify the interior of a surface patch without
any effect on the bounding crease curves; moreover, one can join
piecewise-smooth surfaces without gaps and combine them with
other surface representations supporting B-spline boundaries.

A completeC1-continuity analysis of our subdivision rules is
outside of the scope of this paper, and will be given elsewhere [25].
Here we describe only the intuition behind our construction.

We can understand the behavior of the surface in a neighbor-
hood of a corner or crease vertex from the eigenstructure of the
corresponding subdivision matrix.

If we apply the standard rules in the neighborhood of a crease
vertex, the eigenvalue1/2 corresponding to the tangent vector of
the crease is not subdominant. As a result, the surface contracts at a
different rate from the crease, leading to a degenerate configuration
without tangent plane (Figure 2). The situation for corner vertices
is similar as both tangent vectors are determined from crease curve
segments with eigenvalue1/2.

Our subdivision rules ensure that1/2 is the subdominant eigen-
value in both cases. It it not difficult to see that1/2 is an eigenvalue:
Consider a planar fan ofk congruent polygons, where each poly-
gon contributes an angleθk to the total angleθ = kθk. If we treat
this configuration as a crease or corner neighborhood and apply our
modified subdivision rules, then the center vertex does not change
its position, and for each adjacent edge we insert a vertex at exactly
the midpoint. Thus, the configuration is scaled down by a factor of
1/2, i.e.,1/2 is an eigenvalue.

It turns out thatλ = 1/2 is indeed subdominant for crease ver-
tices and convex corners. For concave corners we ensure subdom-
inance by reducing all other eigenvalues (exceptλ0 = 1) using
the flatness modification with parameters satisfying(1 − s)(2 +
cos θk − cos kθk) < 2. Figure 11 demonstrates how the flatness
modification pulls the neighborhood of a convex corner into its tan-
gent plane.

Our implementation of the rules is available on the Web. We have
also developed explicit evaluation rules for our schemes, extending
[21].

8 Results and Conclusions
Surfaces with creases and corners of various types are illustrated in
Figures 12 and 13(b). All the surfaces in Figure 12 are generated
from the same control mesh by applying different tags. Note how
convex and concave sectors meet along the crease of the torus.

Figures 8 and 10 demonstrate normal interpolation for boundary,
corner and interior vertices; directions of normals are adjusted to
obtain desired shapes without modifying the control mesh. Other
applications are possible: we have applied normal modification to
create certain surface characteristics: randomly perturbing the top-
level normals produces a wavy doughnut from a torus-like control
mesh; perturbing normals on the first subdivision levels creates a
noisy doughnut (Figure 13(c) and (d)).
Conclusions and future work. We have presented a simple modi-
fication of the two most popular subdivision schemes that improves
the behavior of the generated surfaces on boundary and creases and
provides additional controls for surface modeling.

Even though the class of surfaces considered in this paper is
quite general, we have excluded many types of surface singulari-
ties. Future work might explore which other singularities are useful
for modeling purpose and how to construct subdivision rules to cre-
ate such features.

9 Acknowledgments
We are greatly indebted to Peter Schröder for his support and sug-
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(a) (b) (c)

Figure 6: Subdivision on meshes with boundaries: Beethoven’s face and hair are modeled as separate meshes with identical boundaries. (a)
and (b): the rules of [8] result in a gap between the surfaces due to extraordinary vertices. (b) A close-up on the gaps at the ear. (c) With our
rules no gap is created.

(a) (b) (c) (d)

Figure 7: (a) Control mesh with a twist on the boundary. (b) Normal varies rapidly near the point although the surface is formally smooth:
there is a single bright spot on the front-facing boundary. (c), (d) Our algorithm reduces the variation: the highlights become larger.

(a) (b) (c) (d)

Figure 8: Normal interpolation for quadrilateral subdivision. Prescribed directions: (a) tilted downwards, (b) horizontal, (c) no modification,
(d) vertical.

(a) (b) (c) (d)

Figure 9: Features: (a) concave corner, (b) convex corner, (c) smooth crease, (d) corner with two convex sectors.
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(a) (b) (c) (d)

Figure 10: Normal interpolation. (a) Surface with convex corners. (b) Prescribed directions: at each corner we tilt the normal for one surface
sector slightly inwards. (c) Smooth surface. (d) Same control mesh but all normals vertical.

(a) (b) (c) (d) (e)

Figure 11: Concave corner rules. (a) A corner without flatness modification. (b) Flatness modification lifts the surface into its tangent plane.
(c-e) The corner shape for different values ofθk.

(a) (b) (c) (d)

Figure 12: Surface manipulation with corners. (a) Smooth boundary curves. (b) Concave corners on top, convex corners on bottom. (c)
Corners with convex and concave sectors. (d) Creases and corners as for (c) but with prescribed normal direction on concave sectors.

(a) (b) (c) (d)

Figure 13: Manipulating a torus. (a) The original surface. (b) A surface with creases and convex/concave corners. (c) Wavy torus: we deform
the torus by randomly perturbing normals of the control mesh. (d) Noisy torus: we perturb the normals on the first four subdivision levels.
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A Coefficients for left and right subdominant
eigenvectors

Here we list the left and right eigenvectors necessary for the subdivision rules described
above. Recall that the eigenvector coefficients are applied to a control points of a
polygon ring/fan. A subscriptc denotes the coefficient corresponding to the center
vertex. For the quadrilateral scheme, we mark edgepoint coefficients with subscriptp

and facepoint coefficients withq.

We define thedegreeof a vertex as the number of polygons asjacent to this vertex;
note that this definition is different from the standard one (the number of incident
edges) for boundary vertices. Thecrease degreeis the number of polygons adjacent to
a crease or corner vertex with respect to a specific sector.

Also, recall that dominant right eigenvectorx0 is the vector consisting of ones.

Loop scheme.

• Interior vertex of degreek. In all casesi is in the range0 . . . k−1, andθk = 2π/k.
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• Smooth crease vertex of crease degreek. Let θk = π/k; then
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• Convex/concave corner vertex of crease degreek with parameterθk. Let θ = kθk.
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Catmull-Clark scheme.

• Interior vertex of degreek. Let θk = 2π/k andi from 0 tok − 1.
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• Smooth crease vertex of crease degreek. Let θk = π/k.
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• Convex/concave corner vertex of crease degreek with parameterθk. Let θ =

kθk. Left eigenvectors are the same as for Loop with zeroes everywhere except
lc, lp0 andlpk.
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