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Figure 1: Catmull-Clark subdivision sequence completed as a collection of large Nurbs patches (top five patches are shown).

Abstract

Named after the title, the PCCM transformation is a simple, ex-
plicit algorithm that creates large, smoothly joining bicubic Nurbs
patches from a refined Catmull-Clark subdivision mesh. The result-
ing patches are maximally large in the sense that one patch corre-
sponds to one quadrilateral facet of the initial, coarsest quadrilateral
mesh before subdivision. The patches join parametricallyC2 and
agree with the Catmull-Clark limit surface except in the immediate
neighborhood of extraordinary mesh nodes; in such a neighborhood
they join at least with tangent continuity and interpolate the limit
of the extraordinary mesh node. The PCCM transformation inte-
grates naturally with array-based implementations of subdivision
surfaces.

CR Categories: I.3.5 [surface representation, splines]: I.3.6—
graphics data structures

Keywords: CAD, Curves & Surfaces, Geometric Modeling

1 Motivation

Catmull-Clark subdivision meshes [2] are an increasingly popular
surface representation that comes equipped with tools for adapting
shape locally and globally [3, 6]. The limit surfaces can be directly
evaluated [13] and an ample body of analysis assures tangent con-
tinuity [1, 11, 14]. It would be nice though if we could stop the
subdivision process at any point, apply a simple transformation and
get a compact, explicit surface representation in the form of a small
collection of maximally large, standard spline (Nurbs) patches that
join just as smoothly and largely agree with the Catmull-Clark limit
surface. The PCCM (Patching Catmull-Clark Meshes) algorithm is
such a transformation.
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The paper has three parts: a review of basics and literature, the
specification of the algorithm and the discussion of the properties
of its output:

� Each Nurbs patch covers a maximally large region of the mesh
corresponding to the coarsest level quadrilateral mesh facets.

� The patches joinC2 almost everywhere and are at least tan-
gent continuous near the extraordinary mesh nodes. Transi-
tions between patches are almost all parametric.

� The Nurbs patches are polynomial, of order 4 (degree 3) and
in interpolating form with 4-fold knots.

� The Nurbs patches differ from the limit surface of the
Catmull-Clark subdivision only near the extraordinary mesh
nodes. (The patches have generically finite curvature whereas
the generic curvature of the Catmull-Clark limit surface at ex-
traordinary mesh nodes is infinite.)

� Nurbs patches, Catmull-Clark subdivision and the PCCM al-
gorithm can use the same array-based data structures.

2 Nurbs, Catmull-Clark and Prior Work

A Nurbs patchQ(u; v) 2 R3 of order 4 (bicubic tensor-product
spline) is defined by two nondecreasing sequences of scalars (called
knots) of lengthk+4, one for theu and one for thev parameter and
k2 control pointsQuv 2 R

3. If we connect control points whose
indices differ by 1 in exactly one slot, we obtain acontrol net that
outlines the patch. A concrete interface for Nurbs patches is the
gluNurbsSurface specification in OpenGL [4]. By definition,
Nurbs do not change geometrically underknot insertion. (Repeated
insertion of the same knot just transforms to Bézier a.k.a.glMap
form.) Inserting numbers into the knot sequence subdivides the pa-
rameter domain into more pieces between knots. Correspondingly,
the control net must be refined or [sic] subdivided by specific rules.
For example, if we start with a uniform (evenly spaced) knot se-
quence consisting of even integers and insert new knots at odd in-
tegers we can classify the new control points as (a) facet points,F ,
corresponding to odd knots, (b) edge points,E, corresponding to
one odd and one even knot, and (c) vertex points,V , correspond-
ing to even knots. The weights for newF , E andV type points as
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averages of the old points are displayed as averaging masks:

4F  
1 1
1 1

16E  
1 1
6 6
1 1

64V  
1 6 1
6 36 6
1 6 1

(1)

For example, a newF point is the average of four surrounding old
points. A central contribution of [2] was the addition of a rule for
extraordinary mesh nodesV with n 6= 4 neighbors:

4n2V  A

6 6
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A = 4n2 � 7n: (2)

The idea of converting from the subdivision mesh back to a
spline representation for rendering dates back at least to DeRose,
Kass and Truong [3], before the availability of the full Pixar sub-
division pipeline. Compared to the large patches derived below,
these patches are smaller and more numerous and the conversion is
not well-defined in the neighborhood of extraordinary mesh nodes.
Nasri and Peters [9] use an approximation to the limit surface of
the Doo-Sabin subdivision to get a quickly convergent series of
approximations to the volume of the enclosed subdivision object.
The approximation surface, however, is only position continuous.
Prautzsch [12] gives an elegant solution to the difficult problem of
filling n-sided holes.G2 completion of a Catmull-Clark mesh re-
quires order 7 patches and at least nine times as many as the large
patches derived below. Grimm and Hughes [5] use subdivision as a
preprocessing step to generating smooth manifolds with which they
associate an interesting class of rationally blended spline surfaces.
Their approach would generate at least nine times as many rational
spline patches either over nonstandard domains or of high degree.

3 From Mesh to Surface

As Figure 1 illustrates, all mesh facets are four-sided either on input
or after at most one subdivision step. We refer to each facet of this
coarsest quad-mesh as the level 0 of aquad and think of`th step
of Catmull-Clark subdivision as subdividing the level`� 1 of each
quad into 4 times as many subfacets for a total of4` subfacets at
level `.

Indexing. Since the goal is to transform a repeatedly subdivided
mesh we can treat each corner of a quad in isolation as shown in
Figures 2 and 3. The quads surrounding the corner point are ar-
ranged in counterclockwise order indexed byi. The nodesPuv(i)
of theith quad lie on auv grid of mesh lines. The double subscripts
uv are the Greville abscissae, scaled by 3, of the output Nurbs sur-
face. P00(i) is the corner node for alli andPl0(i + 1) = P0l(i).
The same indexing is used for the output control pointsQuv(i). If
a quad does not have a neighbor due to a manifold boundary, we
use the same rule as the Catmull-Clark subdivision, say [8, 15], to
provide an additional outside layer of mesh nodes.

The PCCM(`) Algorithm: The input is a mesh of à times
subdivided quads with nodesPuv(i) 2 R

3. (If all vertices have
4 or an odd number of neighbors then` > 0 suffices other-
wise ` > 1 should hold.) Theoutput is one bicubic (order 4)
Nurbs surface (patch) for every quad. The patches are in stan-
dard interpolating form. That is, theu and thev knot sequence
start and end with a 4-fold knot (at0 and atk = 2` where` is
the subdivision level). Each sequence can have up to two dou-
ble knots (at1 and 2` � 1) and has single knots otherwise, e.g.
0; 0; 0; 0; 1; 1; 2; 3; 4; 5; 6; 7; 7; 8; 8; 8; 8. Systems that do not al-
low internal double knots but do allow uneven knot spacing with
minimal distance� can be accommodated by perturbing one inner
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Figure 2: Catmull-Clark mesh in the neighborhood of an extraor-
dinary mesh node of degree 5. Quads are labeled in counterclock-
wise order from 1 to n around the extraordinary mesh node so that
all indices i are interpreted (i + n � 1) mod n + 1. The dou-
ble subscripts 00,30 and 33 in quad 1 belong to the extraordinary
mesh node P00(1), its direct neighbor P30(1) and its diagonal facet
neighbor P33(1) . The double line delineates (one of the four cor-
ners of) a submesh used to define one quad level.
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Figure 3: After Knot Insertion the Nurbs patches abut sharing the
nodes Ql0(i+ 1) = Q0l(i). The enlargement shows the indices of
the control points relevant for Corner Smoothing.
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Figure 4: Knot insertion at u = 0; P�3 is a mesh node borrowed
from the neighboring quad.

double knot by �. PCCM surfaces of level ` preserve the blend ra-
tios (or smoothed creases) of the Catmull-Clark mesh [10, 3] up to
level `. The surface can additionally be pinched (flattened) at the
extraordinary mesh node by decreasing the multiplier a of An to
less than 1 (more than 1). The control points Quv(i) of the Nurbs
patches are derived from the input mesh points Puv(i) in two steps.

1. [Knot Insertion]
For each quad, we define a submesh of the Catmull-Clark
mesh that includes all subfacets of the quad and those shar-
ing at least one node with the quad: we borrow one layer of
nodes from all direct and diagonal neighbor quads to arrive at
the submesh delineated by the double line in Fig. 2.
We interpret the two perpendicular families of grid lines of
quad i (without P30(j) for j 62 fi � 1; i; i + 1; i + 2g) as
the control net of an order 4 Nurbs patch with uniform u and
v knot sequences �4;�3;�2;�1; 0; 1; 2; : : : . To bring this
Nurbs patch into standard interpolating form, we insert three
knots first at u = 0 and u = k then at v = 0 and v = k.
Figure 4 illustrates the (standard) knot insertion procedure at
u = 0 for a grid line indexed by u. The new points Qu are
obtained from the old points Pu via

Q0 = (P�3 + 4P0 + P3)=6; Q1 = (2P0 + P3)=3:

For every edge with at least one extraordinary mesh node we
insert a second knot, at 1 for u = 0 (at k � 1 for u = k):

Q2 = (P0 + 2P3)=3; Q4 = (2P3 + P6)=3:

All remaining Q3i;3j = P3i;3j , except for the corner point
Q00(1) = Q00(2) = : : : = Q00(n) which we place directly
on the Catmull-Clark limit surface [6]:

Q00(1) = : : : = Q00(n) =

P
nP00(i) + 4P30(i) + P33(i)

n(n+ 5)
:

2. [Corner Smoothing]
If we were to stop at this point, the Nurbs patches would only
meet with position continuity close to extraordinary mesh
nodes – although with C2 continuity everywhere else. To
obtain tangent continuity, we modify the control points near
each extraordinary mesh node. The enlargement of Figure 3
shows the relevant double subscripts. We define, for every n,
two n by n matrices An and Bn with rows i = 1; : : : ; n and
columns j = 1; : : : ; n and entries

An(i; j) =
2a

n
cos(

2�

n
(i� j)) a = 1(default) and

Bn(i; j) =

�
(�1)ni�j if n is odd,
(�1)j � 2ni�j(�1)

j�i=n if n is even,

ni�j = mod (n+ i� j; n):

For example, B6(3; 3) = �1. We collect the points Quv(i) 2
R
3 generated by Knot Insertion for i = 1; : : : ; n and uv 2

f00; 10; 20; 40g into �Quv 2 R
n�3. Only if n is even and

greater than 4, do we compute r =
Pn

i=1(�1)
i �Q40(i)=n

and if r 6= 0 we add, for each i, hi = �(�1)ir to
Q40(i) = Q04(i � 1), Q41(i) and Q14(i � 1) so thatPn

i=1(�1)
iQ40(i) = 0 and Q40(i) = (Q41(i) + Q14(i �

1))=2. Otherwise all coefficients remain unchanged except

Q10 = Q00 +An
�Q10;

Q20 = (Q40 + 6Q10 � 2Q00)=5;

Q11 = Bn

�
Q10 +

cos(2�=n)

6
(Q40 �Q20)

�
:

For i = 1; : : : ; n, we copy Qv0(i + 1) = Q0v(i) for v 2
f1; 2; 4g and add Q20(i)� �Q20(i) to Q21(i) and Q12(i� 1).

4 Smoothness and Approximation

We claim: the output Nurbs patches are internally parametrically
C2 and join the neighbors parametrically C2 except possibly at ex-
traordinary mesh nodes, across edges u 2 f0; 1g; v 2 [0; 1] re-
spectively v 2 f0; 1g; u 2 [0; 1] shown in bold in Figure 2. Across
these edges the surface is at least tangent continuous.

Before the Knot Insertion step, submeshes of adjacent patches
overlap in three layers of cubic spline control points with a single
knot associated with the center control point. Standard spline the-
ory then guarantees that the patches join parametrically C2 across
the boundary edges u 2 f0; kg; v 2 [1; k� 1] and v 2 f0; kg; u 2
[1; k�1]. Knot insertion does not change the Nurbs surface and the
smoothness of the transition. Therefore each patch is also internally
C2 before the Corner Smoothing step.

Corner Smoothing enforces tangent continuity for the remaining
parameter interval at the corner from 0 to 1: with ui; vi the param-
eters of patch i and vi = ui+1 = t 2 [0; 1] the parameter along
the boundary between patch qi and patch qi+1, and c = cos( 2�

n
),

Corner Smoothing enforces the polynomial equation

2c(1� t)2
@

@vi
qi(0; t) =

@

@ui

qi(0; t) +
@

@vi+1
qi+1(t; 0):

The equation is easily verified by inserting two more knots at 1
and equating the four resulting Bézier coefficients in the variables
Q. For example, at a corner point (t = 0) with n = 3 neighbors
c = �0:5 and �@qi=@t = @qi=@ui + @qi+1=@vi+1. This relation
is enforced by applying An. The double root of (1 � t)2 at t = 1
is equivalent to the collinearity of Ql1(i), Ql0(i) and Q1l(i � 1)
for l = 2 and l = 4. The one remaining equation, for the mixed
derivatives at t = 0, holds due to the choice of Bn and, if n even
and greater than 4, the perturbation by hi. The matrix Bn is derived
following [10] but has slightly different entries in the even case.

The continuity across the knot line ui = 1 and vi 2 [0; 1] is
that of an order 4 spline with a double knot and therefore is at least
C1. If r 6= 0 the joint movement of the nodes Q41(i), Q40(i)
and Q14(i � 1) preserves collinearity and thereby C1-ness of the
transition between adjacent Nurbs patches.

Unless r 6= 0, the Nurbs patches differ from the Catmull-Clark
limit surface only near the corners for (u; v) 2 (0; 1]2. The dif-
ference increases with oscillation of the Catmull-Clark mesh at the
extraordinary mesh node since application of An and Bn average
the data and the choice of Q20 removes inflections. Each step of
subdivision halves the extent of the region.
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5 Conclusion

The strengths of the PCCM algorithm are that it (a) converts
Catmull-Clark meshes to closed-form, smoothly-connected, stan-
dard Nurbs patches, (b) does so with simple, explicit formulas, (c)
integrates seamlessly with the array-based view of subdivision (see
the Appendix) and (d) remains local so that almost all patch transi-
tions across patch boundaries are parametrically C2.

Acknowledgement: I thank the referees, David Lutterkort, Mal-
colm Sabin, Andy Shiue and Georg Umlauf at SurfLab for their
constructive comments.
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Figure 5: Collection Æ and distribution � of points; (left) the
Catmull-Clark mipmap at levels ` = 0; 1; 2, (right) PCCM at level
` = 2.

6 Appendix: array-based data structures

Catmull-Clark subdivision and PCCM can be implemented using
only the connectivity information of the quads and a mipmap of
control point arrays as would be input to gluNurbsSurface [4].

� For each quad, store a mipmap of arrays. The array at level
` is of size k + 2 by k + 2 by 3, k = 2` + 1 and contains
the x; y; z node positions of subdivision ` . Entry [1][1], short
11 (and symmetrically 1k, k1 and kk), holds the position of
a corner node (cf. Figs. 2, 5,left). If the corner node is an
extraordinary mesh node then 00 is undefined. If n = 3 then
the entries in 01 and 10 agree. PCCM outputs into an array of
size k + 4 by k + 4 by 3. Entry 00 is the position of a corner
coefficient.

� For each extraordinary mesh node, a connectivity list stores
for each incident quad the global index and the corner of the
quad corresponding to the extraordinary mesh node.

Catmull-Clark subdivision with this data structure consists of two
parallelizable steps:

a. For each quad, create the mipmap level `+ 1 from level ` by
the regular subdivision rules (1).

b. For each extraordinary mesh node, use the connectivity list to
– collect at level `, P00 = P00(1) and P30(i), P33(i) for all i
(c.f. Figures 2, 5left: if P00 is entry 11 then P30(i) and P33(i)
are entry 21 and 22).
– Compute new locations for P30(i) and P33(i) at level `+ 1
from rules (1) and P00 from rule (2) (or use Sabin’s curvature
bounded rule [7], Appendix).
– Distribute the new locations to level `+1 (Entry 01 receives
P30(i+ 2) and entry 10 receives P30(i � 1))).

PCCM with this structure consists of two parallelizable steps:

a. For each quad, apply Knot Insertion.

b. For each extraordinary mesh node, use the connectivity list to
–collect Q00(1) and �Quv(i), uv 2 f10; 20; 40g.
–Compute Quv(i), uv 2 f10; 20; 11g, Q20 �

�Q20 and possi-
bly Q40 �

�Q40.
–Distribute Quv(i), uv 2 f10; 01; 20; 02; 11g and add to
f21; 12g and possibly f04; 40; 14; 41g.

All space for subdivision level ` can be allocated at the outset,
and the connectivity list remains unchanged throughout. The quad-
arrays can be input directly to gluNurbsSurface or displayed
as quad-meshes.
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