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ABSTRACT
Computed Tomography (CT) is a key 3D imaging technology that
fundamentally relies on the compute-intense back-projection op-
eration to generate 3D volumes. GPUs are typically used for back-
projection in production CT devices. However, with the rise of
power-constrained micro-CT devices, and also the emergence of
CPUs comparable in performance to GPUs, back-projection for
CPUs could become favorable. Unlike GPUs, extracting parallelism
for back-projection algorithms on CPUs is complex given that par-
allelism and locality are not explicitly defined and controlled by the
programmer, as is the case when using CUDA for instance. We pro-
pose a collection of novel back-projection algorithms that reduce
the arithmetic computation, robustly enable vectorization, enforce
a regular memory access pattern, and maximize the data locality.
We also implement the novel algorithms as efficient back-projection
kernels that are performance portable over a wide range of CPUs.
Performance evaluation using a variety of CPUs from different
vendors and generations demonstrates that our back-projection
implementation achieves on average 5.2× speedup over the multi-
threaded implementation of the most widely used, and optimized,
open library. With a state-of-the-art CPU, we reach performance
that rivals top-performing GPUs.
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1 INTRODUCTION
Computed Tomography (CT) is a key 3D imaging technology used
in several fields such as medical analysis, scientific inspection, and
non-intrusive testing. Back-projection is a fundamental kernel in
most of the image reconstruction algorithms such as FDK [12] and
iterative reconstruction algorithms [3, 4, 15] that employ the algo-
rithms of forward-projection and back-projection, e.g. MLEM [21,
48], EM [16], ART [45], and SART [1]. As a consequence, the back-
projection kernel is effectively empowering 100,000s of produc-
tion CT devices worldwide [30]. Due to its high computational
cost (O(𝑁 4) [28, 46]), back-projection is often the compute bot-
tleneck for reconstructing 3D images. That is specially the case
in iterative reconstruction algorithms at which back-projection is
called repeatedly [61]. To meet the critical demands for rapid im-
age reconstruction, in the past decades, a plethora of accelerators
were employed to improve the computational performance of back-
projection such as linear accelerators [53], ASICs [62], DSPs [27],
FPGAs [8, 25, 64], and distributed systems [6, 13, 19, 38, 57, 65].
Custom processors have been adopted by production CT devices in
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the earlier generations of CT devices. However, over the last decade,
GPUs have increasingly become the main processor used for im-
age reconstruction, due to their programmability and competitive
performance [4, 5, 10, 11, 31, 38, 41, 43, 63, 68, 69].

We argue that there are strong reasons for optimizing back-
projection kernels for CPUs, despite GPUs being the de facto proces-
sor for back-projection over the last decade. First, there is a notice-
able trend of portable and lightweightmicro-CT devices [2, 7, 52, 66].
This further makes CT vendors more sensitive to the cost, power,
and space requirements that come along with discrete accelerators.
For instance, a state-of-art lineup of industrial micro-CT devices
(listed in [34]) reports power consumption ranging between 225W
to 450W. However, low-end GPUs would consume up to 30% of
that power budget, and high-end GPUs (i.e. Nvidia’s P100 [35] and
V100 [36]) would consume almost 100% of the power budget of a
micro-CT device [36]. Second, high-performance CPUs with high
bandwidth memory can compete with GPUs in raw performance
and performance to power. For example, Fujitsu’s A64FX ARM pro-
cessor [67] is equipped with HMB2 memory [22] and SVE (Scalable
Vector Extension) [50], which pushes the performance to be compa-
rable to the top of line GPUs in a variety of workloads [44]. Third,
integrating accelerators into CT systems increases the system com-
plexity and leads to considerable costs, i.e., hardware and software
development. The use of performant CPUs would be preferable
since they are a basic component in most CT devices. To conclude,
it is crucial to revisit back-projection for CPU, in light of those
developments.

We propose novel optimizations at the algorithm-level, and not
at the target CPU hardware level. We argue that those carefully
designed and novel optimizations at the algorithm level are key
to performance portability on a variety of CPUs, having different
characteristics. This is in contrast to previous work on CPU back-
projection that engineers target-specific optimizations to a single
dedicated CPU target [20, 24, 26, 54, 55]. It is important to note that,
in the context of performance portability, CPUs have much more
divergence in characteristics to optimize for, in comparison with
GPUs. For instance, the vector width changes from generation to
generation (for even the same vendor), while in Nvidia GPUs, the
unit of execution (CUDA warp [9]) maintained the same size in all
generations.

We briefly list here the algorithm-level optimizations for back-
projection we propose for CPUs. First, effective data locality and
regular memory access patterns are critical to improving the effi-
ciency of back-projection kernels. To improve the data locality [49],
we introduce a generic scheme to reschedule the loop ordering, em-
ploy data blocking, and change the data layout rearrangement. This
is in contrast to other non-portable methods that rely on the gather
load intrinsic to deal with the irregular memory access [54]. Second,
assuring that the SIMD vector units of the CPUs are fully utilized is
crucial for performance. Designing back-projection algorithms that
are fully vectorizable by compilers, yet being performance portable
across CPUs from different vendors is necessary, yet challenging.
To assure a loop could vectorize automatically, it is necessary to
simplify the iteration space and data accesses such that it can be
auto-vectorized by the compiler. We hence gear our optimization
techniques to enable the compiler to consistently vectorize the

back-projection kernel, regardless of the vector width. Third, back-
projection requires high computational resources. It is crucial to
improve its performance at the algorithmic level by reducing the
arithmetic computation and memory access to the least possible.
To that end, we propose a novel double-buffer sub-line algorithm
for efficient interpolation at the sub-pixel precision. We also re-
duce the number of arithmetic operations, by exploiting geometric
symmetry, while maintaining contiguous memory access. In addi-
tion, we block the sub-line interpolation, to improve the locality
without any impediment to the compiler’s capability of automated
vectorization.

The contributions in this paper are:
• We propose a collection of novel algorithm-level optimizations
for back-projection on CPUs. Our optimizations reduce the
computational cost of the projection operations, improve data
locality, and consistently enable auto-vectorization.
• We provide a performance portable implementation: a single
OpenCL source for all CPUs supporting OpenCL and a single
OpenMP source for CPUs that do not support OpenCL (without
any trace of processor-specific intrinsics or optimizations).
• We demonstrate that our kernels achieve on average 5.2×
speedup over themostwidely used and optimizedmulti-threaded
library, on a variety of CPUs from different vendors and gen-
erations. Also, we achieve better performance on the Fujitsu
A64FX than commonly used open-source CUDA implemen-
tation of back-projection on Nvidia V100 Volta GPU (when
accounting for unavoidable data movement overhead between
host and device).

The rest of this paper is organized as follows: In Section 2, we
introduce the background. Section 3 illustrates the proposed al-
gorithms. Section 4 shows the evaluated result. In Section 5, we
elaborate on the related work. Finally, Section 6 concludes.

2 BACKGROUND
In this section, we introduce the details of image reconstruction
using the back-projection algorithm and describe the basics of
OpenCL for multicore CPUs.

2.1 CT Image reconstruction
This section illustrates the 3D image reconstruction algorithm for
Cone-Beam Computed Tomography (CBCT) as presented by Feld-
kamp et al. [12], including the CBCT geometry and back-projection
algorithm.

2.1.1 Geometry of CT system. Figure 1 shows the triangular
geometry of CBCT system [45]. The X-ray source is some form of
a microfocus X-ray tube. The Flat Panel Detector (FPD) is a digital
radiography imaging sensor, similar to that of digital photography.
The distances of the source to the rotation axis (the Z-axis) and FPD
are d and D, respectively. The width and height dimensions of the
FPD, in the unit of pixel, are nw and nh, respectively. Note that the
V-axis of FPD is parallel to Z-axis. The sizes of 3D volume data in a
unit of voxel are nx, ny, and nz. The default data layout of volume
data is row-major order. As a typical pinhole model [17], all geo-
metric information can be presented as a matrix of size 3×4 (called
projection matrix), which is used for back-projection computation,
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Figure 1: The triangular geometry of a CT system.

Listing 1: Pseudocode of the multi-threaded back-projection
implementation adopted by RTK and RabbitCT. The np is the
number of projections. The sizes of the 2D projections, 3D vol-
ume data, and projection matrices are nh×nw, nz×nx×ny, and
3×4, respectively.

1 void BackProjection ( f l o a t img [ np ] [ nh ] [nw] , f l o a t mat [ np
] [ 3 ] [ 4 ] , f l o a t volume [ nz ] [ ny ] [ nx ] )

2 {
3 for ( i n t s = 0 ; s < np ; s ++) {
4 parallel_for ( i n t k = 0 ; k < nz ; k++) {
5 for ( i n t j = 0 ; j < ny ; j ++) {
6 for ( i n t i = 0 ; i < nx ; i ++) {
7 f l o a t vec [ 4 ] = { i , j , k , 1 . f } ; / / c o o r d i n a t e
8 f l o a t z = dot4 ( mat [ s ] [ 2 ] , vec ) ; / / d o t
9 f l o a t f = 1 . f / z ;
10 f l o a t x = dot4 ( mat [ s ] [ 0 ] , vec ) ∗ f ; / / d o t
11 f l o a t y = dot4 ( mat [ s ] [ 1 ] , vec ) ∗ f ; / / d o t
12 f l o a t v a l = Bilinear_Interpolate ( img [ s ] , x , y ) ;
13 f l o a t w = f ∗ f ; / / compute we i gh t
14 volume [ k ] [ j ] [ i ] += v a l ∗w; / / upda t e
15 } } } } / / s , k , j , i
16 }

e.g. projecting a voxel to the plane of FPD as mat in Listing 1. For
simplification, we ignore the computation of obtaining the projec-
tion matrix via the geometry information. The detailed formulation
is available at [58]. Computing the projection, i.e., mapping a 3D
point (i, j, k) to the plane of FPD (the UV plane) is shown in Listing 1
(lines 7∼11).

2.1.2 Back-projection. The computational complexity of back-
projection is O(𝑁 4) [28, 46]. Listing 1 shows the pseudocode of
the reference multi-threaded back-projection algorithm as imple-
mented in the widely used RTK library1. Note that the pseudocode
also matches the multi-threaded implementation of the other most
widely used library, RabbitCT [42]. A parallel loop (line 4) is where
the work is divided among the threads to take advantage of the
multi-cores of the processor. The inputs to the back projection ker-
nel are: the 2D filtered projections img, the 3D output volume of
the filtering computation volume, and the dimensions expressed
as (np, nh, nw). Throughout this paper, np refers to the total num-
ber of projections, and nb refers to the number of projections in
a single batch. More specifically, the projections are equally split
into disjoint subsets of projections, where each subset includes a

1Reconstruction Toolkit (RTK): https://www.openrtk.org

Listing 2: The Bilinear_Interpolate is a bilinear interpolation
function. The dot4 is an inner product function and the mix
is a built-in common function (e.g. in OpenCL) that returns a
linear blend of two variables, whereType can be scalar or vector
data types.

1 f l o a t Bilinear_Interpolate ( f l o a t img [ nh ] [nw] , f l o a t x , f l o a t
y ) {

2 i n t nx = ( i n t ) x ; / / c o n v e r t t o i n t e g e r
3 i n t ny = ( i n t ) y ; / / c o n v e r t t o i n t e g e r
4 / / h o r i z o n t a l i n t e r p o l a t i o n u s i n g mix
5 f l o a t s0 = mix ( img [ ny ] [ nx ] , img [ ny ] [ nx +1 ] , x−nx ) ;
6 f l o a t s1 = mix ( img [ ny +1 ] [ nx ] , img [ ny +1 ] [ nx +1 ] , x−nx ) ;
7 / / v e r t i c a l i n t e r p o l a t i o n u s i n g mix
8 return mix ( s0 , s1 , y−ny ) ;
9 }
10 f l o a t dot4 ( f l o a t v0 [ 4 ] , f l o a t v1 [ 4 ] ) { / / i n n e r p r o d u c t
11 return v0 [ 0 ] ∗ v1 [ 0 ]+ v0 [ 1 ] ∗ v1 [ 1 ]+ v0 [ 2 ] ∗ v1 [ 2 ]+v0[3] ;
12 }
13 Type mix ( Type x , Type y , Type a ) { / / l i n e a r i n t e r p o l a t i o n
14 return x ∗ ( ( Type ) 1 . f −a ) + y ∗ a ;
15 }

number of projections nb that is used to update the volume data as
a batch.

The projection matrixmat is used to project the voxel to the FPD
plane. The projected coordinate is written as x and y in lines 10 and
11. The value of z (line 8) is used to derive the projection coordinate,
as well as a weighting factor to update the volume data in lines
13∼14. The dot4 operator (line 10), is a customized operator for the
inner product as in Listing 2 that is called three times in the most
inner loop. As listing 2 shows, a bilinear interpolation function,
namely Bilinear_Interpolate, is used to fetch the intensity value
of the 2D projections.

2.2 Parallel Computation by OpenCL
OpenCL provides a portable way to take advantage of the SIMD-
accelerated processors with a programming approach of single
instruction multiple threads. The OpenCL kernels can be compiled
dynamically at runtime for the target architecture. OpenCL ab-
stracts an open standard platform for parallel programming and
provides a uniform programming interface that is often used to
write portable and efficient code for a variety of processors, e.g.
CPUs, GPUs, and FPGAs. As an open standard defined by Khronos
Group [59], OpenCL uses a host/device programming model. Pro-
gramming by OpenCL involves writing host code, often in C/C++,
that runs on the host, and a kernel code developed in C, that runs
on the device or accelerator. The host codes are often compiled
by a general C/C++ compiler (e.g. gcc/g++), and the kernel codes
are built at runtime by a target-specific compiler. The computing
unit in OpenCL is a work-item. A work-group is a collection of
work-items abstracted as a multi-dimensional descriptor named
NDRange. Note that the work-items within the same work-group
can exchange data using the local memory.

2.3 Terminology
We define the image reconstruction problem and performance met-
rics in this section. The image reconstruction problem is defined
as 𝑛𝑤×𝑛ℎ×𝑛𝑝⇒𝑛𝑥×𝑛𝑦×𝑛𝑧 , where 𝑛𝑤×𝑛ℎ and 𝑛𝑝 are the size and
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number of input projections, respectively. The size of the output
volume is defined as 𝑛𝑥×𝑛𝑦×𝑛𝑧. The performance metric we use
is calculated as nx ∗ ny ∗ nz ∗ np ∗ t−1 ∗ 10−9, where t denotes the
run-time in a unit of second. The performance unit of the kernel
commonly used in image reconstruction algorithms isGUPS, which
stands for Giga Updates per Second.

3 PROPOSED BACK-PROJECTION
ALGORITHMS

In this section, we discuss a variety of algorithms for back-projection
that employ different optimization schemes corresponding to dif-
ferent CPU features, without loss of generality with regard to CPU
vendor and generation. The optimization schemes do not interfere
with each other and could be combined. We improve the data lo-
cality and memory access pattern by transposing projections and
volume data. To fully utilize the multi-cores and vector units, we
also take advantage of both OpenMP and OpenCL to speed up the
back-projection computation. Auto-vectorization can be performed
at compile time when using either OpenMP or OpenCL. Without
explicit vector instructions, and by carefully writing the code, the
OpenCL compiler [37] can automatically vectorize instructions
by packing multiple work-items together and running them in a
SIMD fashion. To improve the data locality and reduce the arith-
metic computation, we use a novel sub-line algorithm to cache the
interpolated data at sub-pixel precision. More specifically, we im-
prove the data locality of the bilinear interpolation while enabling
auto-vectorization.

3.1 Algorithmic Optimizations
This section describes the algorithmic changes we introduce to im-
prove the memory access pattern, reduce arithmetic computation,
and expose data-parallel operations. These optimizations apply to
both single-core and multicore. Those optimizations at the algorith-
mic level are key to performance portability.

As shown in Listing 1, the back-projection is driven by voxels,
which are updated by their mapped pixels at projections. The val-
ues of voxels are independently updated, i.e. an embarrassingly
parallel point-wise operation. Hence, the algorithmic optimizations
introduced should, in theory, scale with the capacity of computing
resources, i.e. number of cores. The following section elaborates on
the algorithmic optimizations.

3.1.1 Towards a Regular Memory Access Pattern. As List-
ing 1 shows, each voxel is updated by the intensity of projections,
according to the projected position at sub-pixel precision using the
bilinear interpolation scheme in Listing 2. Figure 2 can be used to vi-
sualize the mechanism of bilinear interpolation and also illustrates
the optimization of back-projection by transposing the projection
and volume data. As shown in the figure, the memory access for
the bilinear interpolation along the line 𝑎 is irregular (sloped access
to a 2D mesh). Furthermore, the slope of line 𝑎 changes with the
rotation angle of 𝛼 . However, the projections of blue voxels (parallel
to Z-axis) are in a line 𝑏, which is invariably parallel to V-axis and
Z-axis. Therefore, the memory access along line 𝑏 would be regular
and unit-strided, if we transpose the projections.

The proposed Algorithm 1 shows the optimization using trans-
posed projections and volume data. More specifically, we optimize

V
X

Y

Z

α

ab

Figure 2: The motivation for transposing projections and
volume data. The red and blue voxels are parallel to the
X-axis and Z-axis, such that their projection points on the
UV plane are lines 𝑎 and 𝑏, respectively. The slope of line
𝑎 changes according to the rotation angle 𝛼 . The line 𝑏 is in-
variably vertical (namely parallel to both V-axis and Z-axis).

Algorithm 1: Proposed back-projection. nb is the batch
number. The transposed projection and volume data are
presented as img and volume, respectively.
Input : img[nb][nw][nh], mat[nb][3][4], volume[nx][ny][nz],

vecIJ ⊲ the pairs of i and j are stored in vecIJ
Output :volume[nx][ny][nz]

1 #pragma omp parallel for ⊲ launch multiple threads
2 foreach {i, j} ∈ vecIJ do
3 vec← {i, j, 0, 1.f} ⊲ k is independent of X
4 for 𝑠 = 0 to 𝑛𝑏 − 1 do
5 F[s]←1.f/dot4(mat[s][2], vec) ⊲ an array of f
6 W[s]←F[s]*F[s] ⊲ an array of w
7 X[s]←dot4(mat[s][0], vec)*F[s] ⊲ an array of x
8 for 𝑠 = 0 to 𝑛𝑏 − 1 do
9 nx←(int)X[s] ⊲ type convension

10 #pragma omp simd
11 for m=0 to nh-1 do
12 sMem[s][m]←mix(img[s][nh][m], img[s][nh+1][m],

X[s]-nX) ⊲ see Figure 3

13 for 𝑘 = 0 to 𝑛𝑧
2 − 1 do

14 sum←0 ⊲ register for partial results
15 _sum←0 ⊲ register for partial results
16 vec[2]←k; ⊲ update index k
17 #pragma omp simd
18 for 𝑠 = 0 to 𝑛𝑏 − 1 do
19 pMem←sMem[s]
20 y←dot4(mat[s][1], vec)*F[s] ⊲ projection comp.
21 ny←((int)y ⊲ type conversion
22 sum+=mix(pMem[ny], pMem[ny+1], y-ny)*W[s]
23 y←nh - 1 - y ⊲ geometry symmetry
24 ny←(int)y ⊲ type conversion
25 _sum += mix(pMem[ny], pMem[ny+1], y-ny)*W[s]
26 volume[i][j][k] += sum ⊲ update volume data
27 volume[i][j][nz-1-k] += _sum ⊲ update volume data

the data access pattern by transposing the two-dimensional projec-
tions img (input argument). Note that the transposing operation
requires marginal time in comparison to the back-projection and
can be performed immediately after the pre-processing filtering
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pointer 
ptr1

pointer 
ptr0

pointer 
sMem

1 2 3 4 5 6 7 8 N

1 2 3 4 5 6 7 8 N

1 2 3 4 5 6 7 8 N
dx

(1.0 – dx)

………

………

………

(a) ptr0 and ptr1 are pointers to two neighbouring vertical rows. sMem is a small-
sized memory buffer for caching the sub-line values, where 0≤dx< 1.

…………
………………

pointer sMem

final bilinear 
interpolation values

N elements

(b) The bilinear interpolation in the horizontal direction. Each output value rely
on two neighboring values at the sub-line buffer.

Figure 3: Novel interpolation scheme using sub-line blending. (a) and (b) show vertical and horizontal interpolations.

1 #pragma omp simd
2 for (int i=0; i<N; i++)
3 {
4 //blend two lines of pixels
5 sMem[i] = mix(ptr0[i], ptr1[i], dx)
6 }

(a) Vectorize sub-line alg. by C (OpenMP).

1 for (int i=0; i<N/8; i ++){
2 float8 v0 = vload8(i, ptr0); //load float8
3 float8 v1 = vload8(i, ptr1); //load float8
4 float8 v2 = mix(v0, v1, dx); //blend float8
5 vstore8(v2, i, sMem); //store float8
6 }

(b) Vectorize sub-line alg. by OpenCL.

Figure 4: Implementations of proposed bilinear interpolation scheme.mix is a linear interpolation function in Listing 2.

step, and before the back-projection starts. We also reorganize the
loop that iterates the voxels along the Z-axis in the original volume
to get unit-strided access over the transposed volume data as the
input argument volume shows. More importantly, this transposi-
tion operation builds a foundation for further optimizations such
as exploiting symmetry and improving the bilinear interpolation
scheme to be vectorizable.

3.1.2 Reducing Arithmetic Computation. We reduce the vol-
ume of the arithmetic computation by: a) capitalizing on the loop
reordering introduced with transposition by moving the loop in-
variant compute portions outside the inner loop (i.e. hoisting), and
b) exploiting geometric symmetry. The data reuse is shown in lines
4∼7 of Algorithm 1. The intermediate variables (namely F, W, and
X ) are only computed once and their results are shared by the inner
loops for further computations, e.g. projection operation, weighting
projection intensity, and updating the volume data. Note that the
variables F, W, and X contain a small set of values of f, w, and x,
respectively (as shown in Listing 1). In this optimization, we exploit
the geometric characteristics of back-projection where the values
of z and x are constant values when i, j, and the projection matrix
(with projection angle \ ) are fixed values. That is since the value
of z is equal to 𝑑 − 𝑥𝑐𝑜𝑠\ −𝑦𝑐𝑖𝑛\ (as introduced in [23, 28]), where
x and y are coordinates of voxels that correspond to the indexes
of i and j. The values of x are also independent of i and j. That is
since the projections of voxels are parallel to the V-axis (or Z-axis
in Figure 1) at the FPD plane, as introduced in Section 2.1.1.

We also reduce the arithmetic computation by exploiting the geo-
metric symmetry proposed by Zhao et al. [68]. As Figure 1 shows,
for two voxels that are symmetric to the XY plane, their projec-
tions at FPD (namely UV plane) are symmetric to the horizontal
centerline of FPD. As line 13 of Algorithm 1 shows, we exploit this
symmetry by only performing half of the projection computations
for y; the symmetric positions of y can be derived using a single
instruction rather than using complex dot and multiply operations.

More specifically, the original number of dot operations is 3 ∗
𝑛𝑝 ∗𝑛𝑥 ∗𝑛𝑦 ∗𝑛𝑧, the optimized number of operations is reduced to
𝑛𝑝∗𝑛𝑥 ∗𝑛𝑦∗(1+𝑛𝑧/2). Hence, the ratio of reduced computations for
dot operations may be written as (5 − 2/𝑛𝑧)/6≈5/6 since 𝑛𝑧 ≫ 2
in real-world applications.

3.1.3 Improving locality & Reducing Memory Accesses. We
present the details of reducingmemory accesses for improving back-
projection performance in this section. As discussed by Treibig et
al. [54] and Hofmann et al. [20], back-projection is a bandwidth-
limited algorithm and the performance bottleneck is the voxel up-
dates (see line 14 of Listing 1). In addition to the coalesced access
to the memory of volume data proposed by Treibig et al. [54], we
improve the algorithm by further reducing the memory accesses to
volume data. In the following paragraphs we elaborate.

First, existing multi-threaded implementations (shown in List-
ing 1) do not split the projections into subsets. This is since the
interpolation schemes used in those implementations would reduce
the locality if accessing multiple images in the same batch. Con-
trarily, using batches of images to update the volume is preferable
since that would reduce the writes to memory. To use batched pro-
jections, one would require a new interpolation scheme to address
this issue (more on that in Section 3.1.5).

Second, we reduce memory access to the volume data by using
registers to accumulate the partial results (as shown in Algorithm 1).
In line 14∼27, we use two registers to accumulate the partial results
of voxels formultiple projections in batched processing, then update
the volume data by the values accumulated in the registers. Since
the cost of accessing registers is negligible with regard to memory
access, this batched processing for projections and accumulation
of partial results can significantly reduce the number of memory
accesses. The original number of elements accessed for the volume
data is 4 ∗𝑛𝑝 ∗𝑛𝑥 ∗𝑛𝑦 ∗𝑛𝑧, while after the optimization the number
of elements accessed drops to 4 ∗ 𝑛𝑝 ∗ 𝑛𝑥 ∗ 𝑛𝑦 ∗ 𝑛𝑧/𝑛𝑏. Therefore,
in comparison to the baseline implementation, the ratio of memory
accesses to the volume data becomes 1/𝑛𝑏. With a larger value of
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Listing 3: A performance-portable OpenCL kernel for back-
projection implementing our optimization techniques, e.g.
transposing projection and volume data, reordering loops,
reusing variables after hoisting, and exploiting geometric sym-
metry. Constant memory is used to store the projection matrix
(seemat), global memory for the projections (see img) and vol-
ume data (see volume), where ROWS≡3, imgDim=(np, nw, nh),
volDim=(nx, ny, nz), LM_SIZE=imgDim.x=nh.

1 __kernel void bp_optimized( __constant float4∗ mat, __global float∗ img,
2 int3 imgDim, __global float∗ volume, int3 volDim, __global int2∗ vecIJ)
3 {
4 int k = get_global_id(0); //global index x
5 __local int2 ij; //share index i and j
6 __local float F[nb], X[nb], W[nb], sMem[LM_SIZE];//local mem
7 if (k == 0) ij = vecIJ[get_global_id(1)]; //i and j← global index y
8 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory
9
10 float4 ijkw = (float4)(ij.x, ij.y, k, 1.f); //vector (i,j,k)
11 if (k < nb) {
12 float z = 1.f / dot((mat + ROWS ∗ k)[2], ijkw);//compute z
13 X[k] = dot((mat + ROWS ∗ k)[0], ijkw)∗z; //compute x
14 F[k] = z; //cache z
15 W[k] = z ∗ z; //compute weight
16 }
17 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory
18
19 float2 sum = (float2)(0.f, 0.f);
20 for (int s = 0; s < nb; s++, img += imgDim.xâĹŮimgDim.y;, mat += ROWS){
21 int nx = convert_int(X[s]);
22 float dx = X[s] − convert_float(nx);
23 __global float∗ ptr0 = img + nx ∗ imgDim.x; //see Fig. 3a
24 __global float∗ ptr1 = ptr0 + imgDim.x; //see Fig. 3a
25 for (int m = k; m < LM_SIZE; m += get_local_size(0))
26 sMem[m] = mix(ptr0[m], ptr1[m], dx); //see Fig. 4
27 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory
28
29 float y = dot(mat[1], ijkw)∗F[s];
30 float _y = width − 1 − y; //y and _y are symmetric at the vertical line of FPD
31 int2 ny = convert_int2((float2)(y, _y));//float→ int
32 float2 dy = (float2)(y, _y) − convert_float2(ny);
33 //linear interpolation and update sum as in Fig. 3b
34 sum += mix((float2)(sMem[ny.x], sMem[ny.y]), (float2)(sMem[ny.x+1],

sMem[ny.y+1]), dy)*W[s];
35 barrier(CLK_LOCAL_MEM_FENCE); //barrier for local memory
36 }
37 int offset = ij.y∗volDim.z∗volDim.x + ij.x ∗ volDim.z;
38 volume[offset + k] += sum.x; //update volume
39 volume[offset + volDim.z − 1 − k] += _sum.y; //update volume
40 }

nb, we can move the bandwidth bottleneck of the memory access
from volume data to projections. More specifically, the performance
of the proposed algorithmmay be bounded by the memory accesses
to the projections for the bilinear interpolations. In Section 4, we
demonstrate the performance gain of this optimization.

Finally, we also propose a novel bilinear interpolation with vec-
torization. This optimization can also reduce the memory accesses
to some extent as will be discussed in later sections.

3.1.4 Vectorizating Operations. In this section, we present the
details of how to enable full utilization of the vector units in the pro-
jection operation and interpolation computation in back-projection.
Regarding the projection computation (e.g. the computation of x, y,
and z in Listing 1), each inner product is performed on two vectors
of size 1× 4 at single precision. This inner product operation can be
perfectly performed by the vector unit, e.g. the built-in function dot

is employed for this computation in our OpenCL-based implemen-
tation (as will be elaborated later). Note that we benefit from the
well-aligned projection matrix of size 3×4 in back-projection algo-
rithms. This is in contrast to other back-projection algorithms, such
as in [28], at which the projection computation is not vectorizable
due to the irregular memory access and compute pattern.

Since we use transposed projections and volume data, the linear
interpolation operation can perform the memory accesses in a
regular pattern and its computation can also be well vectorized with
wide SIMD registers. In Algorithm 1, we can use vector registers
for the accumulation of the variables sum and _sum.

In addition, the computation of the second linear interpolation,
as in Figure 3b, can be vectorized. More specifically, the memory
accesses to update the volume data (lines 26 and 27 in Algorithm 1)
can be performed in a vectorized fashion. This vectorized operation
can improve the effective memory bandwidth for back-projection,
especially in CPUs with High Bandwidth Memory (HBM), e.g. Fu-
jitsu A64FX processor.

3.1.5 A Novel Bilinear Interpolation Scheme. This section
discusses our scheme for bilinear interpolation. In linear inter-
polation, we calculate the target element as a weighted sum from
two contributors. In this paper, we use the OpenCL built-in, vec-
torizable, mix linear blending function [32]. Bilinear interpolation
performs a two-dimensional interpolation on a rectilinear grid and
thus, it estimates an output element with four known contributors.
The conventional back-projection algorithm can not perform the
compute pattern in a regular access pattern: bilinear interpolation
must be processed on a per-point basis since the data points of the
projections are distributed on a sloped line. We capitalize on the
transposition of the projections and volume to introduce a bilinear
interpolation scheme that blends two lines of pixels in the verti-
cal direction, followed by interpolating in the horizontal direction,
where both have a regular access pattern and could be vectorized.

We elaborate on the effect of the proposed scheme on the vec-
torization of operations: both memory accesses and arithmetic
computations. In Figure 3a, the variables ptr0 and ptr1 represent
the addresses of two neighboring lines in a transposed projection.
We load the data from the memory in a coalesced pattern and thus,
the wide SIMD intrinsic can be employed as in the code example
in Figure 4b. Figure 4a shows an alternative vectorized OpenMP
implementation. It is important to note the regular access pattern
for the memory access and arithmetic computations, i.e. loading
data from the memory of ptr0/ptr1, storing the result to the mem-
ory of sMem, and the linear interpolation operations by the mix
function. More specifically, we benefit from this scheme as follows:
first, we linearly blend two lines of projections (as ptr0 and ptr1 in
Figure 3) into a line of data where all elements in these two lines
are only accessed once in a regular pattern. Second, either of the
linear interpolations in the horizontal or vertical direction could
be easily parallelized. Third, the second linear interpolation can be
performed via cache-optimized access of the intermediate memory
buffer between the vertical and horizontal steps (sMem in line 12
in Algorithm 1) with better locality and fewer linear interpolation
operations.
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Table 1: Evaluation environment.

CPU Name Intel Xeon Intel Xeon Intel Xeon Intel Core AMD ThunderX2 (ARM) Fujitsu (ARM)
E5-2630 v4 E5-2650 v3 Gold 6140 i7-9700K EPYC-7452 CN9975 A64FX

Cores 10 10 18 8 32 28 48
Threads/core 2 2 1 1 1 4 1
Frequency 2.2GHz 2.3GHz 2.3GHz 3.6GHz 2.35GHz 1.8GHz 2.2GHz
Sockets 2 2 2 1 2 2 1

GFLOPS (SP) 704 736 2,649 461 2,406 806 6,800
Max bandwidth 137GB/s 137GB/s 250GB/s 42GB/s 205GB/s 159GB/s 1024GB/s
L1d/L1i cache 32K/32K 32K/32K 32K/32K 32K/32K 32K/32K 32K/32K 3M/3M
L2/L3 cache 256K/25M 256K/25M 1M/25M 256K/12M 512K/16M 256K/32M 32M/—

TDP 85W 105W 140W 95W 155W 150W ∼160W

3.2 OpenCL-optimized Back-projection
This section discusses how to take advantage of OpenCL features
to implement a performance-portable collection of back-projection
kernels based on the optimization techniques we introduced in
previous sections.

3.2.1 OpenCLkernel implementation. In Listing 3, we present
a performance-portable OpenCL implementation of the back-projection
kernel that includes all the discussed optimization techniques in
Algorithm 1).

We elaborate on optimizations techniques Listing 3 as follows:
(I) we use constant memory [14] to cache the projection matrixmat.
The size of each projectionmatrix is as small as 48B (sizeof(float)*4*3)
(II) we pre-pack the indices of 𝑖 and 𝑗 in volume data to an array
(argument vecIJ to bp_optimized kernel). Each work-group pro-
cesses all voxels in a single vertical line and thus the indices of i
and j can be shared by all work-items in a work-group. We use
local memory to share the indices as the variable ij shows. (III) We
use local memory to cache the read-only shared data F, X, andW
(line 6). Note that the batch number (namely nb) ranges between
1∼32 in our implementations. Hence, the required size of local mem-
ory is 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑓 𝑙𝑜𝑎𝑡) ∗ 𝐵 ∗ 3, which is within the capacity of local
memory. All of these values are only computed once as in lines
11∼16 and reused by all work-items in a work-group. Finally, a
barrier is required, line 17, to synchronize all work-items in a work–
group. (IV) Using the proposed bilinear scheme (as in Section 3.1.5),
we perform the linear interpolation via fast local memory (lines
23∼26). More importantly, we can vectorize the computation as Fig-
ure 4 shows. (V) By using the pixel values in local memory (namely
sMem), the second linear interpolation can be performed as shown
in Figure 3b (line 34). (VI) This kernel also exploits the geometric
symmetry to reduce the computation by reusing values computed
at the symmetric point, i.e. the value is computed once to be used
by the point and its symmetric point (shown as the variables y and
_y). We use two-dimensional NDRange to launch this kernel, the
local and global parameters may be written as (nz/2, 1) and (nz/2,
sizeIJ), respectively. Note that sizeIJ is the number of elements in
the array vecIJ. We emphasize the intrinsic that requires the id of
work-items in bold font, e.g. get_global_id, get_local_size . . . , etc.
Several built-in functions are used in our implementation such as
dot, mix, and convert_T. For more explanations on these built-in
functions, the reader can refer to literature as in [33].

Algorithm 2: Prefetching by dual local memory buffers.
Input : . . . . . . ⊲ the input argument are same to Listing 3
Output :volume ⊲ the output volume

1 __local sMem[2][LM_SIZE] ⊲ declear dual scratchpad memories
2 sMem[0]← 𝑖𝑚𝑔 [0] ⊲ prefetching by sub-line alg. as in line 26
3 𝑠𝑢𝑚 ← 0 ⊲ declear registers for accumulation
4 for 𝑖 = 0 to 𝑛𝑏 − 1 do
5 if 𝑖 + 1 < 𝐵 then
6 sMem[(i+1)%2]← 𝑖𝑚𝑔 [𝑖 + 1] ⊲ prefetching without barrier
7 sum← 𝑠𝑀𝑒𝑚 [𝑖%2] ⊲ accumulate result via subline
8 barrier(CLK_LOCAL_MEM_FENCE) ⊲ barrier work-items
9 volume← 𝑠𝑢𝑚 ⊲ update volume by batched processing

3.2.2 Prefetching. The use of OpenCL allows us to take advan-
tage of the double buffers technique to overlap the loading operation
and computation. As shown in Algorithm 2, we declare dual local
memory buffers, which are emphasized in gray color. Hence, we
can perform the load operation (line 6) and computation (line 8)
using different buffers. However, the allocated memory is doubled,
and thus, the available size of processing projections will be limited
by the capacity of local memory.

4 EVALUATION
In this section, we introduce the evaluation environment, report
the results of our experiments, and discuss the advantages and
limitations of the proposed algorithms.

4.1 Experiments Setup
Table 1 shows the CPUs we use to evaluate our implementation.
We use the same OpenCL implementation on all CPUs, without
any customization or optimization to specific targets. For CPUs for
which we did not have access to vendor support of OpenCL, we
use the same OpenMP implementation, namely the ARM and AMD
processors in Table 1.

For the CPUs that use OpenMP library, we employ GCC 9.1.0
(with OpenMP 4.5) for compiling all kernel versions, and "-O3
-fopenmp -lpthread -std=c++11 -march=native -ftree-vectorize -
ftree-slp-vectorize" compilation options. For A64FX processor we
use Fujitsu’s compiler FCC 4.0.0with the compiler options "-Kopenmp
-Kfast -Ksimd=auto -Kassume=memory_bandwidth -O3 -Nlibomp".
On the CPUs that use OpenCL, i.e. Intel CPUs, we use OpenCL
SDK-2019.5.345 and runtime 18.1.0 for developing and running
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Table 2: Back-projection kernel names and optimizations.

API Name Tr
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transpose_mp ✓
OpenMP share_mp ✓ ✓

symmetry_mp ✓ ✓ ✓
subline_mp ✓ ✓ ✓ ✓
transpose_cl ✓
share_cl ✓ ✓
share_lm_cl ✓ ✓ ✓

OpenCL symmetry_cl ✓ ✓ ✓
symmetry_lm_cl ✓ ✓ ✓ ✓
symmetry_pf_cl ✓ ✓ ✓ ✓ ✓

Table 3: Evaluated image reconstruction problem sizes.

label Problem label Problem
P1 2562 × 512⇒ 2563 P7 10242 × 512⇒ 2563

P2 2562 × 512⇒ 5123 P8 10242 × 512⇒ 5123

P3 2562 × 512⇒ 10243 P9 10242 × 512⇒ 10243

P4 5122 × 512⇒ 2563

P5 5122 × 512⇒ 5123 P10 10242 × 512⇒ 13003

P6 5122 × 512⇒ 10243 (13003 volume is ∼8.2GB)

Figure 5: Using our algorithm to reconstruct the volume of
the RabbitCT dataset [42] (512 × 512 × 512⇒ 5123). Rendered
by ImageJ 3D Viewer [40].

OpenCL kernels. All OpenCL kernels are compiled with the com-
piler options "-cl-mad-enable -cl-fast-relaxed-math". Nvidia Tesla
P100/V100 GPUs and CUDA 10.0 SDK [9] are also used for perfor-
mance comparison.

In Table 2, we list a collection of back-projection kernels that
apply the optimizations we proposed in Section 3. We take advan-
tage of both OpenMP and OpenCL to optimize back-projection.
The kernel variants of the employed optimization techniques are
named "Transpose", "Share", . . . , and "Prefetching" and they cor-
respond to the optimization techniques discussed in Section 3.1.
A collective combination of all optimization techniques (namely
symmetry_pf_cl in Table 2) can be found in both Algorithm 1 and
Listing 3 for the OpenCL version.

All evaluations are conducted at single precision. In Table 3, we
list the image reconstruction problem sizes, which are labeled as P1,
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(d) A single i7-9700K CPU.

Figure 6: Performance of top performing kernel (symme-
try_pf_cl) with different batch numbers (nb).

P2,. . . , P10. The sizes of the experimental projections include 2562,
5122, and 10242; the number of projections is fixed as 512; the output
problems include 2563, 5123, 10243, and 13003. It is noteworthy that
the required memory capacity to store a volume of size 13003 is
∼8.2 GB.

4.2 Image Reconstruction Results
In Figure 5, we show an example of the generated volume data by
our algorithms. The projections are from a real-world CT scanner
described in the RabbitCT dataset [42]. Since the arithmetic com-
putation is independent of the content of projections and volume
data, we also use the volume data of RabbitCT to generate a variety
of projections as described in Table 3 by a forward-projection tool
in the RTK. To verify the output, we compare the reconstructed
volume data with the results by RTK library, the Root Mean Square
Error [60] threshold is less than 10e-5. Additionally, we employ the
ImageJ [40] (an image processing tool) to render each generated
volume data and manually inspect them.

4.3 Impact of Reducing Memory Accesses
This section discusses the performance impact of reducing mem-
ory accesses by batched processing. There are four kernels that
reduce the memory accesses, namely subline_mp, share_lm_cl, sym-
metry_lm_cl, and symmetry_pf_cl (the top performing kernel that
includes all optimizations). In Figure 6, we show the performance of
symmetry_pf_cl with different configurations values for the batch
numbers going: 1, 2, 4, . . . , 32. The total number of memory accesses
to projections (in float32 words) is 𝑁𝑚𝑒𝑚𝑃𝑟𝑜 𝑗≈4 ∗ 𝑛𝑥 ∗ 𝑛𝑦 ∗ 𝑛𝑧 ∗ 𝑛𝑝
(four accesses per voxel update by bilinear interpolation). The to-
tal number of memory accesses to the volume data is 𝑁𝑚𝑒𝑚𝑉𝑜𝑙 =

𝑛𝑥 ∗ 𝑛𝑦 ∗ 𝑛𝑧 ∗ 𝑛𝑝/𝑛𝑏, as explained in Section 3.1.3. Therefore, the
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Figure 7: Speed up for OpenMP implementation for different levels of optimizations.
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Figure 8: Speed up for OpenCL implementation (Intel CPUs) at different levels of optimizations.
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Figure 9: Scaling of the proposed back-projection with the
number of threads for problem P5 (512 × 512 × 512⇒ 5123).

total number of memory accesses are

𝑁𝑚𝑒𝑚 = 𝑁𝑚𝑒𝑚𝑃𝑟𝑜 𝑗 + 𝑁𝑚𝑒𝑚𝑉𝑜𝑙 ≈ (4 +
1
𝑛𝑏
) ∗ 𝑛𝑝 ∗ 𝑛𝑥 ∗ 𝑛𝑦 ∗ 𝑛𝑧

For a given image reconstruction problem, the variables np, nx,
ny, and nz are fixed. Consequently, the performance is inversely

proportional to𝑁𝑚𝑒𝑚 . When observing the performance in Figure 6,
the performance behavior demonstrates this inverse proportional
relation to equation 𝑁𝑚𝑒𝑚 .

In addition, we observe a performance gain when using a larger
batch number for most of the image reconstruction cases. Since the
performance of back-projection is bounded by the memory band-
width, the proposed algorithm benefits from the reduced memory
access when batching the projections. To simplify the parameters
configuration, in the following experiments we report results for a
fixed batch number of 32.

4.4 Performance & Scalability on CPUs
This section reports the performance and scalability of the proposed
algorithms. Figure 7 and Figure 8 show the performance of several
back-projection kernels on different CPUs and image reconstruc-
tion problems as listed in Table 3. The levels of optimization of
all evaluated kernels can be found in Table 2. We show speedup
over the baseline, which is the multi-threaded and widely used
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Figure 10: Roofline analysis of symmetry_pf_cl, provided by
Intel advisor profiler [29, 39] on dual Gold-6140 CPUs. The
problem size P1, P2, . . . , P9 are shown as yellow dots.

Listing 4: Assembly snippet from symmetry_pf_clOpenCL ker-
nel with AVX2 vectorization.

1 0x177801a62b4 movsxd rdx, edx
2 0x177801a62b7 vmovups ymm10, ymmword ptr [r8+rdx*4]
3 0x177801a62bd vmovups ymm11, ymmword ptr [r14+rdx*4]
4 0x177801a62c3 vsubps ymm11, ymm11, ymm10
5 0x177801a62c8 vfmadd213ps ymm11, ymm1, ymm10
6 0x177801a62cd mov rsi, rax
7 0x177801a62d0 shl rsi, 0xc
8 0x177801a62d4 add rsi, r11

back-projection implementation in the RTK library. The OpenMP-
optimized subline_mp and OpenCL-based symmetry_pf_cl achieve
the highest performance in most of the cases, due to the collective
use of optimizing techniques. The speedup of subline_mp ranges
from 0.3 to 5.6 and symmetry_pf_cl ranges from 1.5 to 13.1. Upon
investigation, it became clear that this performance differential
between OpenMP and OpenCL is due to the higher quality of vec-
torized code by the OpenCL compiler. Taking the subline kernel as
illustrated in Section 3.1.4 for instance, the assembly snippet can be
found in Listing 4. The quality of those vectorized codes (AVX2) is
competitive to the hand-optimized ones that we tested. To sum up,
the portable performance improvement of the proposed algorithms
is due to better vectorization, improved data locality, and reduced
memory traffic.

Figure 9 shows the scalability of the proposed back-projection
algorithm (subline_mp) on several CPUs (listed in Table 1). The
number of threads is configured as the power of two and ranges
between 1 to 128. The performance on most CPUs scales linearly to
the number of cores up to some point where we observe saturation
of the memory bus.

4.5 Discussion
We show the speedup of several kernels in both Figure 7 and Figure 8
by comparing it with the baseline kernel. We observe the following:
(I) OpenCL-based kernels outperform the OpenMP-based kernels
due to the difference in the quality of the vectorized codes. The
highest speed up among OpenMP-optimized kernels is almost 5.6×,
in comparison to 13.5× for OpenCL-optimized kernels. (II) Prefetch-
ing is effective in improving the performance in several kernels:
symmetry_pf_cl (kernel using prefetching) performs better than
symmetry_cl (kernel not using prefetching) across different CPUs
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Figure 11: Performance comparison with GPUs at single-
precision (end-to-end image reconstruction). Problem P10
can not be solved on P100/V100 GPUs since it exceeds the
capacity of device memory. For GPUs, we use the CUDA im-
plementation in the RTK library.

and image reconstruction problem sizes. The performance gain is
noticeable specially in Gold-6140 CPU, likely due to that CPU’s large
L2/L3 cache (as listed in Table 1). (III) The bilinear interpolation
scheme (in Section 3.1.5) is very effective in improving the perfor-
mance of back-projection kernels. It is clear that both share_lm_cl
and symmetry_lm_cl (kernels using the subline bilinear scheme)
perform better than share_cl and symmetry_cl (kernels not using
the subline bilinear scheme), respectively. (IV) The optimization
techniques such as shared reuse of hoisted variables and exploit-
ing geometry symmetry (illustrated in Section 3.1) contribute to
improving the performance of back-projection kernels. The ker-
nels share_cl, share_lm_cl, and symmetry_cl outperform the kernel
transposal_cl that only transposes the projection and volume. (V) As
shown in Figure 10, we display the Roofline model for the kernel
of the top-performing kernel symmetry_pf_cl on dual Gold-6140
CPUs. The optimizations we introduce push the effective achievable
bandwidth to be between the bandwidths of L3 and L2 caches.

4.5.1 ComparisonwithGPUs. We demonstrate the competitive
performance of our back-projection implementation on the A64FX
ARM CPU by comparing it to the high-end Nvidia P100 [35] and
V100 [36] GPUs (see Figure 11). The RTK library implementation
for GPUs is used for our comparison. RTK is one of the most widely
used open-source library implementations on GPUs, to the author’s
knowledge. Our comparison includes the overhead of moving the
projections from host memory to device memory and excludes
moving the volume back to the CPU. Note that production-level
GPU implementations of back-projection (including RTK) do not
overlap the computation with moving the projections to the device.
That is primarily because overlapping schemes would require com-
plex alterations in the image reconstruction algorithm in addition
to being ineffective when scaling the size of projections (i.e. the
algorithm cannot function on partial projections).

To conduct a fair comparison, we perform all computations in
single precision (without using mixed precision on GPUs or CPUs).
Using the A64FX CPU, we can achieve better performance than
Tesla P100/V100 GPUs on a wide range of image reconstruction
problems. For fairness, we compare our work to RTK’s CUDA imple-
mentation since RTK is one of the most used open libraries in both
research and industry, though RTK’s performance can be further
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optimized using the algorithms in [28]. Note that the implemen-
tation in [28] is not publicly available. The RTK implementation
uses a double buffer method to store volume data (read data from
a volume buffer and write the updated value to another buffer).
Hence, the maximum capacity of the generated volume must be
less than 8 GB. That is because the device memory is limited to
16 GB in P100/V100 GPUs, and a fraction of the device memory
is also required to store the projections. It is important to men-
tion that the A64FX can solve the bigger problems such as P10
(10242 × 512⇒ 13003) in Figure 11, however, the P100/V100 GPUs
are restricted by their memory capacities.

To sum up, with the A64FX CPU we reach performance that ri-
vals the top-performing GPUs when accounting for the unavoidable
data movement overhead.

5 RELATEDWORK
Tomographic image reconstruction has been heavily researched in
the past years. Target-specific hardware is often adopted to speed
up the computation of back-projection. Swindell et al. [53] pro-
posed a linear accelerator to optimize the back-projection for the
first generation CT devices three decades ago. Wu et al. [62] used
Application-Specific Integrated Circuits (ASIC) to speed up the
back-projection algorithm. The authors in [8, 18, 51, 64] also em-
ployed an FPGA to tune the computation of the FDK algorithm.
Several authors also use high-level synthesis methods [8, 18, 51, 64],
e.g. OpenCL, to generate the fast back-projection kernels on FPGAs
rather than using HDL language. Treibig et al. [54] employed the
SIMD instruction set extensions (coded in assembly) to speed up
the back-projection computation and achieved outstanding perfor-
mance on CPUs, e.g. using four Xeon E7-4870 CPU to generate
a volume of size 10243 and achieve the performance of 12 GUPS.
Notably, such performance is less than a quarter of the peak perfor-
mance on Intel CPUs. Furthermore, Treibig et al. took advantage of
the gather load intrinsic to alleviate the pressure of memory traffic
on accessing projections (e.g. access along line 𝑎 in Figure 2). How-
ever, the performance of the optimized kernel was still bounded
by the memory accesses to update the volume data. Unlike their
method, we can fully vectorize the back-projection and reduce the
memory access for projection and volume data. In [20], Johannes et
al. optimized the RabbitCT benchmark on the Intel Xeon Phi accel-
erator. Using a fixed-point DSP (Digital Signal Processor) platform,
Liang et al. presented an optimized implementation of FDK and
achieved state-of-art balance in cost and power consumption [27].
On several hardware accelerator platforms such as CPUs, GPGPUs,
and Intel Xeon Phi, Serrano et al. [47] proposed a parallelized FDK
implementation.

Xiao et al. [56] proposed a super-voxel technique to improve
the data locality of the MBIR algorithm. However, super-voxels
were restricted for parallel-beam based CT. Mert et al. [19] opti-
mized an iterative image reconstruction algorithm and achieved
petaflops performance on Summit supercomputer for parallel-beam
CT systems, yet their solution is difficult to be applied to the cur-
rent generation of CT devices (namely Cone-beam CT). In this
work, we target Cone-beam datasets (7𝑡ℎ generation CT) for which
voxel-based back-projection is required. Lu et al. [28] proposed a

highly optimized back-projection algorithm for out-of-core compu-
tations. Their implementation is more specific for CUDA, e.g. using
texture memory. Furthermore, the projection computation in our
algorithms is fully different from their approach, e.g. we use the
3×4 projection matrix shown in Listing 1.

RTK library (the baseline of this work) is a widely used library
for image reconstruction and provides implementations of back-
projection kernels for both CPU and GPU architectures. Due to
the complexity of overlapping schemes in back-projection, the
unavoidable overhead of data movement between host and device
may degrade the performance. Furthermore, the GPU memory is
limited and thus, volume decomposition techniques are required to
go out-of-core [4, 28].

6 CONCLUSION
We revisit the role of CPUs in image reconstruction, motivated
by the considerations of cost, power, and space requirements. To
use CPUs for compute-intensive medical image processing applica-
tions, this paper proposes performance portable back-projection
algorithms and demonstrates the performance/scaling on a wide
range of multicore processors. Our implementations benefit from
the agnostic vectorization, improved memory access pattern, and
reduced arithmetic computations. We also propose a bilinear in-
terpolation algorithm to cache the sub-line values of projections
for reducing the memory access and the arithmetic computations.
Our results show that the proposed back-projection can achieve,
on average, 5.2× speedup over the multi-threaded implementation
of the most widely used library, on a wide variety of CPUs. We
demonstrate the capability of using an ARM CPU (A64FX) to out-
perform high-end GPUs in the domain of CT, which is traditionally
driven by GPUs.

ACKNOWLEDGMENT
Thisworkwas supported by JSPS KAKENHIGrant Number JP21K17750.
This work was partially supported by JST-CREST under Grant Num-
ber JPMJCR19F5; JST, PRESTO Grant Number JPMJPR20MA, Japan.
We would like to thank Endo Lab at Tokyo Institute of Technology
for providing computing resources. The author wishes to acknowl-
edge useful discussions with Dr. Jintao Meng at Chinese Academy
of Science (CAS).

REFERENCES
[1] Anders H Andersen and Avinash C Kak. 1984. Simultaneous algebraic recon-

struction technique (SART): a superior implementation of the ART algorithm.
Ultrasonic imaging 6, 1 (1984), 81–94.

[2] Good Design Award. 2020. Compact CT (computed tomography) device. https:
//www.g-mark.org/award/describe/45487?locale=en. [Online; accessed 20-Jan-
2021].

[3] Ander Biguri, Manjit Dosanjh, Steven Hancock, and Manuchehr Soleimani. 2016.
TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. Biomedical
Physics & Engineering Express 2, 5 (sep 2016), 055010. https://doi.org/10.1088/2057-
1976/2/5/055010

[4] Ander Biguri, Reuben Lindroos, Robert Bryll, Hossein Towsyfyan, Hans Deyhle,
Ibrahim El khalil Harrane, Richard Boardman, Mark Mavrogordato, Manjit
Dosanjh, Steven Hancock, and Thomas Blumensath. 2020. Arbitrarily large
tomography with iterative algorithms on multiple GPUs using the TIGRE tool-
box. J. Parallel and Distrib. Comput. 146 (2020), 52 – 63. https://doi.org/10.1016/
j.jpdc.2020.07.004

[5] Brian Cabral, Nancy Cam, and Jim Foran. 1994. Accelerated volume rendering
and tomographic reconstruction using texture mapping hardware. In Proceedings
of the 1994 symposium on Volume visualization. 91–98.

https://www.g-mark.org/award/describe/45487?locale=en
https://www.g-mark.org/award/describe/45487?locale=en
https://doi.org/10.1088/2057-1976/2/5/055010
https://doi.org/10.1088/2057-1976/2/5/055010
https://doi.org/10.1016/j.jpdc.2020.07.004
https://doi.org/10.1016/j.jpdc.2020.07.004


ICS ’21, June 14–17, 2021, Virtual Event, USA Chen, P. et al.

[6] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano, and Satoshi
Matsuoka. 2019. iFDK: A Scalable Framework for Instant High-Resolution
Image Reconstruction. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC âĂŹ19). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 84, 24 pages.
https://doi.org/10.1145/3295500.3356163

[7] DP Clark and CT Badea. 2014. Micro-CT of rodents: state-of-the-art and future
perspectives. Physica medica 30, 6 (2014), 619–634.

[8] Srdjan Coric, Miriam Leeser, Eric Miller, and Marc Trepanier. 2002. Parallel-
beam backprojection: an FPGA implementation optimized for medical imaging.
In Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-
programmable gate arrays. ACM, 217–226.

[9] NVIDIA CUDA. 2020. CUDA Toolkit Documentation. NVIDIA Developer Zone.
http://docs.nvidia.com/cuda/index.html (2020).

[10] Daniel Castaño Díez, Hannes Mueller, and Achilleas S Frangakis. 2007. Imple-
mentation and performance evaluation of reconstruction algorithms on graphics
processors. Journal of Structural Biology 157, 1 (2007), 288–295.

[11] Anders Eklund, Paul Dufort, Daniel Forsberg, and Stephen M. LaConte. 2013.
Medical image processing on the GPU âĂŞ Past, present and future.Medical Image
Analysis 17, 8 (2013), 1073 – 1094. https://doi.org/10.1016/j.media.2013.05.008

[12] LA Feldkamp, LC Davis, and JW Kress. 1984. Practical cone-beam algorithm.
JOSA A 1, 6 (1984), 612–619.

[13] Yushan Gao, Ander Biguri, and Thomas Blumensath. 2019. Block stochastic
gradient descent for large-scale tomographic reconstruction in a parallel network.
CoRR abs/1903.11874 (2019). arXiv:1903.11874 http://arxiv.org/abs/1903.11874

[14] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa.
2012. Heterogeneous computing with openCL: revised openCL 1. Newnes.

[15] Lucas L Geyer, U Joseph Schoepf, Felix G Meinel, John W Nance Jr, Gorka Bas-
tarrika, Jonathon A Leipsic, Narinder S Paul, Marco Rengo, Andrea Laghi, and
Carlo N De Cecco. 2015. State of the art: iterative CT reconstruction techniques.
Radiology 276, 2 (2015), 339–357.

[16] Peter J Green. 1990. Bayesian reconstructions from emission tomography data
using a modified EM algorithm. IEEE transactions on medical imaging 9, 1 (1990),
84–93.

[17] Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer
vision. Cambridge university press.

[18] I Henry and Ming Chen. 2012. An FPGA Architecture for Real-Time 3-D Tomo-
graphic Reconstruction. Ph.D. Dissertation. University of California, Los Angeles.

[19] Mert Hidayetoğlu, Tekin Bicer, Simon Garcia de Gonzalo, Bin Ren, Vincent De An-
drade, Doga Gursoy, Raj Kettimuthu, Ian T. Foster, and Wen-mei W. Hwu. 2020.
Petascale XCT: 3D Image Reconstruction with Hierarchical Communications
on Multi-GPU Nodes. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’20). IEEE Press,
Article 37, 13 pages.

[20] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein. 2014. Per-
formance engineering for a medical imaging application on the Intel Xeon Phi
accelerator. InARCS 2014; 2014Workshop Proceedings on Architecture of Computing
Systems. VDE, 1–8.

[21] HMalcolm Hudson and Richard S Larkin. 1994. Accelerated image reconstruction
using ordered subsets of projection data. IEEE transactions on medical imaging
13, 4 (1994), 601–609.

[22] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. Hbm (high bandwidth memory) dram technology and
architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE, 1–4.

[23] Avinash C.. Kak andMalcolm Slaney. 1988. Principles of computerized tomographic
imaging. IEEE press New York.

[24] Ralf Karrenberg and Sebastian Hack. 2012. Improving performance of OpenCL
on CPUs. In International Conference on Compiler Construction. Springer, 1–20.

[25] Vladimir Kasik, Martin Cerny, Marek Penhaker, Václav Snášel, Vilem Novak, and
Radka Pustkova. 2012. Advanced CT and MR image processing with FPGA. In
International Conference on Intelligent Data Engineering and Automated Learning.
Springer, 787–793.

[26] Joo Hwan Lee, Kaushik Patel, Nimit Nigania, Hyojong Kim, and Hyesoon Kim.
2013. OpenCL performance evaluation on modern multi core CPUs. In 2013 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum. IEEE, 1177–1185.

[27] Wenxuan Liang, Hui Zhang, and Guangshu Hu. 2010. Optimized implementation
of the FDK algorithm on one digital signal processor. Tsinghua Science and
Technology 15, 1 (2010), 108–113.

[28] Yuechao Lu, Fumihiko Ino, and Kenichi Hagihara. 2016. Cache-aware GPU
optimization for out-of-core cone beam CT reconstruction of high-resolution
volumes. IEICE TRANSACTIONS on Information and Systems 99, 12 (2016), 3060–
3071.

[29] Diogo Marques, Helder Duarte, Aleksandar Ilic, Leonel Sousa, Roman Belenov,
Philippe Thierry, and Zakhar A Matveev. 2017. Performance analysis with cache-
aware roofline model in intel advisor. In 2017 International Conference on High
Performance Computing & Simulation (HPCS). IEEE, 898–907.

[30] Masatoshi Matsumoto, Soichi Koike, Saori Kashima, and Kazuo Awai. 2015. Ge-
ographic Distribution of CT, MRI and PET Devices in Japan: A Longitudinal
Analysis Based on National Census Data. PLOS ONE 10, 5 (05 2015), 1–12.
https://doi.org/10.1371/journal.pone.0126036

[31] Klaus Mueller, F Xu, and N Neophytou. 2007. Why do GPUs work so well for
acceleration of CT? SPIE Electronic Imaging07 (2007). http://cvc.cs.stonybrook.
edu/Publications/2007/MXN07a

[32] Aaftab Munshi. 2009. The opencl specification. In Hot Chips 21 Symposium (HCS),
2009 IEEE. IEEE, 1–314.

[33] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg. 2011.
OpenCL programming guide. Pearson Education.

[34] Nikon. 2020. Computed Tomography Products. https://www.nikonmetrology.
com/en-gb/products/x-ray-and-ct-inspection/computed-tomography.

[35] Nvidia. 2016. NVIDIA Tesla P100. GP100 Pascal Whitepaper.
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf (2016).

[36] Nvidia. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. Technical
whitepaper. https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-
v100-datasheet-letter-fnl-web.pdf (2017).

[37] Intel OpenCL. 2020. Intel SDK For OpenCL Applications. https://software.
intel.com/content/www/us/en/develop/tools/opencl-sdk.html [Online; accessed
20-Jan-2021].

[38] Willem Jan Palenstijn, Jeroen Bédorf, Jan Sijbers, and K Joost Batenburg. 2016.
A distributed ASTRA toolbox. Advanced structural and chemical imaging 2, 1
(2016), 1–13.

[39] Intel Profilers & Analyzers. 2020. Intel Advisor. https://software.intel.com/
content/www/us/en/develop/tools/advisor.html [Online; accessed 20-Jan-2021].

[40] Wayne S Rasband et al. 1997. ImageJ. http://www.worldlibrary.in/articles/eng/
ImageJ. [Online; accessed 20-Jan-2021].

[41] N Rezvani, D Aruliah, K Jackson, D Moseley, and J Siewerdsen. 2007. SU-FF-I-16:
OSCaR: An open-source cone-beam CT reconstruction tool for imaging research.
Medical Physics 34, 6Part2 (2007), 2341–2341.

[42] Christopher Rohkohl, Benjamin Keck, HG Hofmann, and Joachim Hornegger.
2009. RabbitCTâĂŤan open platform for benchmarking 3D cone-beam recon-
struction algorithms. Medical Physics 36, 9Part1 (2009), 3940–3944.

[43] Amit Sabne, Xiao Wang, Sherman J Kisner, Charles A Bouman, Anand Raghu-
nathan, and Samuel P Midkiff. 2017. Model-based iterative CT image reconstruc-
tion on GPUs. ACM SIGPLAN Notices 52, 8 (2017), 207–220.

[44] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Oda-
jima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi,
Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita, and Toshiyuki
Shimizu. 2020. Co-Design for A64FX Manycore Processor and "Fugaku". In
Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC ’20). IEEE Press, Article 47, 15 pages.

[45] William C Scarfe and Allan G Farman. 2008. What is cone-beam CT and how
does it work? Dental Clinics of North America 52, 4 (2008), 707–730.

[46] Holger Scherl, Markus Kowarschik, Hannes G Hofmann, Benjamin Keck, and
Joachim Hornegger. 2012. Evaluation of state-of-the-art hardware architectures
for fast cone-beam CT reconstruction. Parallel computing 38, 3 (2012), 111–124.

[47] Estefania Serrano, Guzman Bermejo, Javier Garcia Blas, and Jesus Carretero.
2014. High-performance X-ray tomography reconstruction algorithm based on
heterogeneous accelerated computing systems. In Cluster Computing (CLUSTER),
2014 IEEE International Conference on. IEEE, 331–338.

[48] Lawrence A Shepp and Yehuda Vardi. 1982. Maximum likelihood reconstruction
for emission tomography. IEEE transactions on medical imaging 1, 2 (1982),
113–122.

[49] William Stallings. 2003. Computer organization and architecture: designing for
performance. Pearson Education India.

[50] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, et al. 2017. The ARM scalable vector extension. IEEE Micro 37, 2
(2017), 26–39.

[51] Nikhil Subramanian. 2009. A C-to-FPGA solution for accelerating tomographic
reconstruction. Ph.D. Dissertation. University of Washington.

[52] Michael V Swain and Jing Xue. 2009. State of the art of Micro-CT applications in
dental research. International journal of oral science 1, 4 (2009), 177–188.

[53] William Swindell, Robert G Simpson, James R Oleson, Ching-Tai Chen, and
Elmer A Grubbs. 1983. Computed tomography with a linear accelerator with
radiotherapy applications. Medical Physics 10, 4 (1983), 416–420.

[54] Jan Treibig, Georg Hager, Hannes G Hofmann, Joachim Hornegger, and Gerhard
Wellein. 2013. Pushing the limits for medical image reconstruction on recent
standard multicore processors. The International Journal of High Performance
Computing Applications 27, 2 (2013), 162–177.

[55] Xiao Wang, Amit Sabne, Sherman J. Kisner, Anand Raghunathan, Charles A.
Bouman, and Samuel P. Midkiff. 2016. High Performance Model-Based Image
Reconstruction. 21st ACM SIGPLAN Symposium on Principles and Practice of

https://doi.org/10.1145/3295500.3356163
https://doi.org/10.1016/j.media.2013.05.008
https://arxiv.org/abs/1903.11874
http://arxiv.org/abs/1903.11874
https://doi.org/10.1371/journal.pone.0126036
http://cvc.cs.stonybrook.edu/Publications/2007/MXN07a
http://cvc.cs.stonybrook.edu/Publications/2007/MXN07a
https://www.nikonmetrology.com/en-gb/products/x-ray-and-ct-inspection/computed-tomography
https://www.nikonmetrology.com/en-gb/products/x-ray-and-ct-inspection/computed-tomography
https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html
https://software.intel.com/content/www/us/en/develop/tools/opencl-sdk.html
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
https://software.intel.com/content/www/us/en/develop/tools/advisor.html
http://www.worldlibrary.in/articles/eng/ImageJ
http://www.worldlibrary.in/articles/eng/ImageJ


Performance Portable Back-projection Algorithms ICS ’21, June 14–17, 2021, Virtual Event, USA

Parallel Programming (PPoPP’16) (2016), 2:1–2:12. https://github.com/HPImaging/
sv-mbirct

[56] Xiao Wang, Amit Sabne, Sherman J. Kisner, Anand Raghunathan, Charles A.
Bouman, and Samuel P. Midkiff. 2016. High Performance Model-Based Image
Reconstruction. 21st ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’16) (2016), 2:1–2:12. https://github.com/HPImaging/
sv-mbirct

[57] Xiao Wang, Amit Sabne, Putt Sakdhnagool, Sherman J Kisner, Charles A Bouman,
and Samuel P Midkiff. 2017. Massively parallel 3D image reconstruction. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[58] Karl Wiesent, Karl Barth, Nassir Navab, Peter Durlak, Thomas Brunner, Oliver
Schuetz, and Wolfgang Seissler. 2000. Enhanced 3-D-reconstruction algorithm
for C-arm systems suitable for interventional procedures. IEEE transactions on
medical imaging 19, 5 (2000), 391–403.

[59] Wikipedia. 2020. Khronos Group — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/w/index.php?title=Khronos%20Group&oldid=952509717. [Online;
accessed 20-Jan-2021].

[60] Wikipedia. 2020. Root-mean-square deviation — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Root-mean-square%20deviation&
oldid=941256353. [Online; accessed 20-Jan-2021].

[61] Martin J Willemink and Peter B Noël. 2019. The evolution of image reconstruc-
tion for CTâĂŤfrom filtered back projection to artificial intelligence. European
radiology 29, 5 (2019), 2185–2195.

[62] Michael A Wu. 1991. ASIC applications in computed tomography systems. In
ASIC Conference and Exhibit, 1991. Proceedings., Fourth Annual IEEE International.
IEEE, P1–3.

[63] Fang Xu and Klaus Mueller. 2005. Accelerating popular tomographic recon-
struction algorithms on commodity PC graphics hardware. IEEE Transactions on
nuclear science 52, 3 (2005), 654–663.

[64] Xinwei Xue, Arvi Cheryauka, and David Tubbs. 2006. Acceleration of fluoro-CT
reconstruction for a mobile C-Arm on GPU and FPGA hardware: a simulation
study. InMedical Imaging 2006: Physics of Medical Imaging, Vol. 6142. International
Society for Optics and Photonics, 61424L.

[65] Jiansheng Yang, Xiaohu Guo, Qiang Kong, Tie Zhou, and Ming Jiang. 2006.
Parallel implementation of Katsevich’s FBP algorithm. International journal of
biomedical imaging 2006 (2006).

[66] Xiaoyou Ying, Norman J Barlow, andMaureen H Feuston. 2017. Micro–Computed
Tomography and Volumetric Imaging in Developmental Toxicology. In Repro-
ductive and Developmental Toxicology. Elsevier, 1183–1205.

[67] Toshio Yoshida. 2018. Fujitsu high performance CPU for the Post-K Computer.
In Hot Chips, Vol. 30.

[68] Xing Zhao, Jing-jing Hu, and Peng Zhang. 2009. GPU-based 3D cone-beam CT
image reconstruction for large data volume. Journal of Biomedical Imaging 2009
(2009), 8.

[69] Timo Zinsser and Benjamin Keck. 2013. Systematic performance optimization of
cone-beam back-projection on the Kepler architecture. Proceedings of the 12th
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
(2013), 225–228.

https://github.com/HPImaging/sv-mbirct
https://github.com/HPImaging/sv-mbirct
https://github.com/HPImaging/sv-mbirct
https://github.com/HPImaging/sv-mbirct
http://en.wikipedia.org/w/index.php?title=Khronos%20Group&oldid=952509717
http://en.wikipedia.org/w/index.php?title=Khronos%20Group&oldid=952509717
http://en.wikipedia.org/w/index.php?title=Root-mean-square%20deviation&oldid=941256353
http://en.wikipedia.org/w/index.php?title=Root-mean-square%20deviation&oldid=941256353

	Abstract
	1 Introduction
	2 Background
	2.1 CT Image reconstruction
	2.2 Parallel Computation by OpenCL
	2.3 Terminology

	3 Proposed Back-projection Algorithms
	3.1 Algorithmic Optimizations
	3.2 OpenCL-optimized Back-projection

	4 Evaluation
	4.1 Experiments Setup
	4.2 Image Reconstruction Results
	4.3 Impact of Reducing Memory Accesses
	4.4 Performance & Scalability on CPUs
	4.5 Discussion

	5 Related work
	6 Conclusion
	References

