
Planar: A Programmable Accelerator for
Near-Memory Data Rearrangement

Adrián Barredo
Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
adrian.barredo@bsc.es

Adrià Armejach
Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
adria.armejach@bsc.es

Jonathan C. Beard
Arm Research

Austin, Texas, USA
jonathan.beard@arm.com

Miquel Moretó
Barcelona Supercomputing Center (BSC)
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
miquel.moreto@bsc.es

ABSTRACT

Many applications employ irregular and sparse memory accesses
that cannot take advantage of existing cache hierarchies in high
performance processors. To solve this problem, Data Layout Trans-
formation (DLT) techniques rearrange sparse data into a dense
representation, improving locality and cache utilization. However,
prior proposals in this space fail to provide a design that (i) scales
with multi-core systems, (ii) hides rearrangement latency, and (iii)
provides the necessary interfaces to ease programmability.

In this work we present Planar, a programmable near-memory
accelerator that rearranges sparse data into dense. By placing Pla-
nar devices at the memory controller level we enable a design that
scales well with multi-core systems, hides operation latency by per-
forming non-blocking fine-grain data rearrangements, and eases
programmability by supporting virtual memory and conventional
memory allocation mechanisms. Our evaluation shows that Pla-
nar leads to significant reductions in data movement and dynamic
energy, providing an average 4.58× speedup.

CCS CONCEPTS

• Hardware → Memory and dense storage; • Computer sys-

tems organization→Multicore architectures; • General and
reference → Performance; • Computing methodologies →
Vector / streaming algorithms.

KEYWORDS

Data layout transformation, Sparse data, Near-memory accelerator

Table 1: Comparison with state-of-the-art DLT proposals.

Features Impulse [12] DLT Acc. [27] SPiDRE [7] DRE [39] Planar

Full design ✓ ✓ ✗ ✓ ✓

Scalable design ✗ ✓ ✓ ✗ ✓

Non-blocking DLT ✓ ✗ ✓ ✗ ✓

Fine-grain sync. ✓ ✗ ✗ ✗ ✓

VM support ✓ ✓ ✓ ✗ ✓

Normal allocator ✗ ✓ ✓ ✗ ✓

ACM Reference Format:

Adrián Barredo, Adrià Armejach, Jonathan C. Beard, and Miquel Moretó.
2021. Planar: A Programmable Accelerator for Near-Memory Data Re-
arrangement. In 2021 International Conference on Supercomputing (ICS ’21),

June 14–17, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3447818.3460368

1 INTRODUCTION

Memory latencies have not experienced the near-exponential im-
provements seen in processing speed and memory capacity [20, 21].
As a result, data access times increasingly limit system performance,
a phenomenon known as the Memory Wall [60]. Deep cache hier-
archies are the natural solution to this trend, providing low-latency
data access to high-performance out-of-order processing units. Ap-
plications that have locality of reference benefit from cache hier-
archies [51, 54], while prefetchers act in the background to hide
memory access latency [44].

In the presence of sparsity and irregular reuse distances, studies
show that data prefetching is not effective [66], utilization of trans-
mitted bandwidth can be as low as 20% [7], and that most blocks in
the last level cache are not reused before eviction [8, 52]. In addi-
tion, for applications with dependent or indirect access loads, every
cache level increases the overall round-trip access latency [18]. Fi-
nally, irregular and sparse patterns preclude harnessing data-level
parallelism via vector instructions that operate on multiple data
values (SIMD) [40, 53, 55]. Data movement not only affects perfor-
mance: approximately two-thirds of the energy required to compute
is consumed by data movement, specifically by the memory and
interconnect [11].

Data Layout Transformation (DLT) mechanisms have been pro-
posed to tackle these problems. DLT aims to rearrange sparse data

The final publication is available at ACM via
 http://dx.doi.org/10.1145/3447818.3460368

https://doi.org/10.1145/3447818.3460368
https://doi.org/10.1145/3447818.3460368

into a dense representation to improve locality and make better
use of the memory hierarchy. Table 1 qualitatively compares mul-
tiple state-of-the-art proposals. A balanced design should fulfill
three principles. First, a comprehensive design that scales well with
multi-core systems by carefully choosing where rearrangements
occur. Second, maximize system performance by providing non-
blocking fine-grain rearrangements to hide DLT latency. Third, ease
programmability for the DLT engine and target applications by pro-
viding virtual memory (VM) support and conventional memory
allocation mechanisms. Previous proposals make compromises on
these design principles hindering their adoption.

In this paper we present a ProgrammabLe Accelerator for Near-
memory datA Rearrangement (Planar). Planar is located within
the system-on-chip at the same level as the memory controllers,
avoiding custom off-chip memory modifications that are difficult
to adopt. Our design is non-blocking as it decouples access and
execute, allowing overlap of data rearrangements and host core
computation. In addition, we provide mechanisms for fine-grain
synchronization between Planar and host cores to allow dense
data to be consumed as it is rearranged, hiding rearrangement
latency. Planar is programmable via simple library calls that can
be inserted by a programmer or by a compiler pass. This simple
programming interface is possible due to the fact that Planar has
virtual memory support and employs well-known existing memory
management mechanisms for the new dense data structures.

Moreover, Planar enables applications to take better advan-
tage of the memory hierarchy by exploiting locality of dense data,
and unlocks additional performance due to better prefetching and
vectorization. On the latter, Planar allows compilers to optimize
instruction emission for contiguous memory [57], which is critical
to vector performance [45].
This paper makes the following contributions:

• We introduce minimal functional changes to incorporate Planar
into a system-on-chip with out-of-order cores. By locating Pla-
nar devices at the memory controller level we enable the design
to (i) scale with multi-core systems, (ii) perform fine-grain non-
blocking data rearrangements, (iii) operate with virtual memory
support, and (iv) be off-chip memory technology agnostic. No
solution in the state-of-the-art provides all such properties.

• A detailed evaluation using a full-system cycle-accurate simu-
lator shows that a multi-core system with Planar achieves an
average speedup of 4.58× across a wide range of applications
featuring sparse and irregular access patterns. This performance
improvement is due to Planar reducing L1-D cache misses by an
average of 89% and L1-D cache miss latency by an average of 53%.
Overall, dynamic energy consumption is reduced by more than
40%. Planar also enables additional vectorization of rearranged
codes, increasing the average speedup to 5.71×.

• We show that Planar outperforms software DLT techniques
in Section 2 and two state-of-the-art hardware proposals, Im-
pulse [12] and a DLT accelerator [27], in Section 5. Our compar-
ison shows that, on average, Planar outperforms Impulse by
2.12× and the DLT accelerator by 2.23×. Thanks to non-blocking
fine-grain rearrangements, Planar can hide DLT latency, allow-
ing the host to consume dense data as it is rearranged.

1 void stride_kernel(double *x, int *idx, ...){
2
3 for (len = 0; i < len; len++) {
4 v1s1m3(); v1s2m3(); v1s3m3(); v2s2m3(); v2s2m4();
5 v1s1i3(x, idx);
6 }
7 }
8 void v1s1i3(double *x, int *idx, ...){
9
10 for(j = 0; j < irep; j++) {
11 t1 = 1.0/(double)(j+1);
12 for(i = 0; i < n; i++)
13 y[...] += t1*x[idx[i]]; //irregular accesses
14 }
15 }

Figure 1: Original STRIDE code.

1 void stride_kernel(double *x, int *idx, ...){
2
3 for (len = 0; i < len; len++) {
4 v1s1m3(); v1s2m3(); v1s3m3(); v2s2m3(); v2s2m4();
5 v1s1i3_sw_rearr(x, idx);
6 }
7 }
8 void v1s1i3_sw_rearr(double *x, int *idx, ...){
9
10 x_rearr = malloc(size);
11 for(i = 0; i < n; i++)
12 x_rearr[i] = x[idx[i]]; //software rearrangement
13
14 for(j = 0; j < irep; j++) {
15 t1 = 1.0/(double)(j+1);
16 for(i = 0; i < n; i++)
17 y[...] += t1*x_rearr[i]; //regular accesses
18 }
19 free(x_rearr);
20 }

Figure 2: Software-rearranged STRIDE code.

2 MOTIVATION

To explain the limitations of DLT techniques in software, and the
advantages of performing DLT with Planar, we have chosen a rep-
resentative case study based on the STRIDE benchmark 1. STRIDE
is a memory intensive benchmark that consists of a loop where
every iteration executes six different kernels. In the original code,
v1s1i3 is the kernel with sparse memory accesses (see lines 8-15 in
Figure 1). The memory access pattern is governed by the idx array
which is populated with a configurable input stride2.

The programmer could decide to replace the indirect memory
accesses from x with sequential ones in an x_rearr array using a
software DLT solution, as shown in Figure 2. This extra code should
be placed just before the original loop in v1s1i3 (see lines 10-12 in
Figure 2). This software rearrangement is beneficial as x is accessed
irep times in the baseline with strided accesses, and only once in
this new version. As a result, execution time improves 22.1% on
average for different stride values in the indirection vector idx.

In this paper we present Planar, a hardware solution that per-
forms near-memory data layout transformations. Figure 3 shows
the pseudo-code of STRIDE compatible with Planar. The rearrange
function (offload function in lines 1-7) performs the data layout
transformation using the Planar devices. Several Planar devices
can be allocated to do this transformation in parallel (line 12) and
execute the rearrange function (line 13), extracting higher memory-
level parallelism (MLP) than in the software rearrangement version.
Finally, the Planar devices are released (line 6).

1Section 4 describes the benchmark in detail.
2Section 4 describes the strides employed in the evaluation.

1 void offload(double *x, int *idx, double *x_rearr, ...){
2 // Rearrange function executed on PLANAR
3 for(i = start_idx; i < end_idx; i++)
4 x_rearr[i] = x[idx[i]];
5 // Release device if last element
6 planar_release();
7 }
8 void stride_kernel(double *x, int *idx, ...){
9
10 for (len = 0; i < len; len++) {
11 x_rearr = malloc(size);
12 n_dev = planar_alloc(min, max);
13 offload«n_dev»(x, idx, x_rearr, size, ...);
14 v1s1m3(); v1s2m3(); v1s3m3(); v2s2m3(); v2s2m4();
15 v1s1i3_hw_rearr(x_rearr);
16 free(x_rearr);
17 }
18 }
19 void v1s1i3_hw_rearr(double *x_rearr, ...){
20
21 for(j = 0; j < irep; j++) {
22 t1 = 1.0/(double)(j+1);
23 for(i = 0; i < n; i++)
24 y[...] += t1*x_rearr[i]; //regular accesses
25 }
26 }

Figure 3: Planar-rearranged STRIDE code.

This rearrangement can be done ahead of time while the host
is operating on the first five kernels, thereby overlapping data
rearrangements and host execution (see lines 14-15 in Figure 3). As
a result, Planar effectively hides rearrangement latency Executing
STRIDE with eight Planar devices provides average performance
speedups of 2.77× and 3.39× over software-rearranged and the
original versions, respectively.

Planar provides the required hardware support to enable fast
data rearrangement near memory, converting sparse data to dense,
resulting in a more efficient usage of the available bandwidth. This
transformation is done while the host core performs useful compu-
tation, effectively decoupling access to memory and execution.

3 PLANAR DESIGN

Planar targets applications with irregular memory access patterns.
In such applications, the memory subsystem is poorly utilized,
leading to latency and bandwidth bottlenecks because of low cache
block utilization [8] caused by disperse memory accesses that lead
to high (but underutilized) traffic on data transfer networks (e.g.,
coherence bus, interconnects) [43].

Figure 4 shows a high level system overview with two Planar
devices. Planar is implemented as a near-memory programmable
accelerator connected to the main coherence bus with direct access
to the memory controllers. Despite being programmable, it is a
simple device that can be implemented as a microcontroller. It is
comparable to an Arm Cortex 𝑀0+, with the addition of a 64-bit
ALU and minimal support for data caching and address translation.

The design enables accesses from the cores to bypass the Planar
units in normal operation, while allowing the Planar units to use
the same memory controllers when commanded by the host core.
In the figure, every core is augmented with a small Rearrangement

Control Table (RCT) to monitor the status of ongoing transforma-
tions. The RCT has one entry per rearrangement in flight, within
each RCT entry there is a slot for each Planar device and per-
device sub-entries containing rearrangement progress information
(three 64-bit entries to track virtual address range and status).

RCT L1

Core

M
em

o
ry

Coherent Interconnect

Page #17 Page #32 Dense Data

L2 Slice MC

PLANAR Device

µTLB

µCachesRCT L1

Core

L2 Slice….. MC…..

µCore

O
n

 c
h

ip

Page #3

PLANAR Device

Control logic

Figure 4: System overview with two Planar devices. Cores

are augmented with a Rearrangement Control Table (RCT)
to monitor ongoing rearrangements.

Planar creates a new structure whose elements are sorted the
way they are to be accessed by the host core. This way, cache block
and bandwidth utilization improves. The operation latency can be
hidden if the rearrangement can start before the data is needed by
the host core, and via fine-grain synchronization of rearranged data,
overlapping rearrangement with computation. Multiple devices can
apply the same rearrange function, or multiple rearrange functions
can be done in parallel by different devices.

Figure 4 shows an example with two Planar devices. A host

core has requested them to perform the near-memory data restruc-
turing of the sparse elements in color from data pages 3, 17 and 32.
The result is a dense version of the data placed into another data
page. The host core may access this new dense structure via con-
tiguous accesses instead of the original sparse accesses, reducing
data movement and hiding latency. As an example, if the core only
uses one 8B value from each of the cache blocks accessed (64B) the
total payload needed would be 48B (six elements). In the original
case, the core would have to access six different cache blocks (i.e.,
384B). However, with Planar the reduced payload would be a sin-
gle cache block (assuming they are aligned), i.e., 64B with 48B of
the transfer actually utilized. This represents an 83% reduction in
data movement for this simple case example. Moreover, dense data
presents additional opportunities to improve performance: (i) sim-
ple next-block prefetching schemes are efficient, and (ii) data-level
parallelism via vectorization can be exploited.

The following sections provide the operational details of Pla-
nar, including the required modifications at application level, the
different phases involved in a rearrangement, and finally, a com-
prehensive step-by-step example of operation.

3.1 Modifications to Application Code

In our implementation, the programmer is responsible for providing
a rearrange function to map the irregular data access to a dense data
access. Most actions taken to offload to Planar units are handled
either by the hardware or via library calls as shown in Figure 3.

• planar_alloc() takes a minimum and maximum number of
devices to be allocated and returns the number of allocated de-
vices. Planar devices are simple and can have just a few in-flight
memory requests, so it is difficult for a single device to saturate
memory bandwidth. Having several allocated devices leads to

higher memory-level parallelism and to better utilization of the
memory bandwidth.

• offloadFunc<<<N>>>() contains the code that is executed in
Planar, including the rearrange function. The 𝑁 parameter be-
tween triple chevrons determines the number of devices to of-
fload to, and it is used to calculate the start and end bounds of
the rearrange loop for each device.

• planar_release() signals the device to finish.
The information to produce a rearrange function is known at

compile time although data is often dynamic (e.g., loop bounds), so
a compiler supporting Planar may enable transparent rearrange-
ments as suggested by prior works [30, 46].

3.2 Allocation of Memory and PLANAR

A memory region is allocated for the Planar devices (line 11 in
Figure 3). It prevents the host core from accessing an outdated dense
structure (i.e., from a previous rearrange task).

To allocate the devices, the planar_alloc function is used, as
there can be multiple host cores planning to use these devices at
the same time. In our proposal, the cores can access a list of the
available Planar devices from a firmware table and dynamically
choose a minimum and a maximum number of devices they want
to use. Each device is accessed via a memory mapped work queue,
which could be virtualized by the operating system using many
existing mechanisms [56].

If there are not enough available Planar accelerators, the host
core suspends until later notification is received when the minimum
number of accelerators is available.

3.3 Offloading of Rearrange Function

When offloadFunc<<<N>>> is called, a command data packet is
created for each of the 𝑁 Planar devices. The packet consists of
pointers to the sparse and final dense data, and the start address
(virtual program counter) of the rearrange function. The boundaries
of the dense data structure are used to split the workload among
all the Planar devices (𝑁) in charge of rearranging the same data
structure. This data packet is the equivalent of two cache blocks
of data (including a header of setup information for the host core).
Approximately five cycles are needed to save this setup informa-
tion. Subsequent transport of this setup information to the Planar
devices is dependent on the topology of the interconnect and la-
tency of cache write-back between the host and the Planar units.
Further details about our configuration are given in Table 2. Once
the command packet is sent, the host core updates the RCT entries
of the allocated Planar devices.

Planar is by definition an accelerator. As such it must com-
municate results with the host core. To do so, it makes use of a
common coherent interconnect. Planar will often work on shared
data with the host core, meaning that modified data could exist
within the host caches. In order to maintain memory consistency
between the host core and Planar, flush operations are triggered
from Planar before the rearrangement starts. To achieve this, after
receiving the command packet, Planar issues cache maintenance
commands [38] to flush the sparse data address range from caches.
They are issued from a state machine co-located with the Planar
device. Once it finishes, the data rearrangement can start.

3.4 Execution of Rearrange Functions

Every device has received its rearrange function, data pointers and
work boundaries in the offloading phase. Therefore, in this phase
every Planar device accesses the sparse data, performing the irreg-
ular memory accesses, and populating the dense data structure. It is
worth noting that Planar is designed to have virtual memory sup-
port. This can be accomplished by connecting the Planar devices
to an input-output memory management unit (IOMMU), which
provides virtual-to-physical address translation for the direct mem-
ory accesses (DMA) that Planar performs. The operating system
also keeps track of the pages being accessed by the Planar devices.
Whenever a rearrangement is happening, the involved data blocks
are available to the host core in shared state but read only. This
way, memory consistency is ensured.

3.5 Fine-Grain Synchronization Between

PLANAR and Host

Once a Planar device completely populates a set of cache blocks
(number explored in Section 5.1) belonging to a dense structure, a
cache maintenance operation is issued to flush the blocks from the
cache, forcing a writeback to main memory.

A synchronization mechanism between Planar and the host

core is needed to ensure the host only accesses data when it is
ready. After the flush to a set of dense cache blocks is issued, a
synchronization packet is created, containing the index of the last
element in the last cache block. This packet is sent to the host

core in order to update the corresponding RCT entry and to wake
up the host in case it is suspended. The RCT keeps information
for every rearrangement in flight from a host core, including the
boundaries (virtual addresses) for every Planar device as well as
the last rearranged element.

After the RCT is updated, a cache maintenance packet is sent
to the core’s cache to invalidate the set of cache blocks in case
they are present in the caches. This is necessary as some hardware
units, such as the prefetchers, may issue memory requests to these
memory locations while Planar is operating, caching data that has
not yet been rearranged. As explained in Section 3.4, data being
rearranged is in read only state and it cannot be accessed by the
host due to the RCT. For this reason, writebacks of these invalidated
cache blocks are not needed. After invalidation, the host core or
other hardware units can access a valid version of the dense data,
located in main memory, as mediated by the RCT.

Whenever a load address is calculated in the execute stage of
the host core, if the RCT contains valid entries it will be accessed
and every virtual data range compared with the load address. If
a match is found and the load address is part of the already rear-
ranged region, the memory request can proceed. Otherwise, the
load instruction is moved to a FIFO queue. The queue size is limited
by the instruction window of the host core, since the host core will
stall or suspend as it will not be able to proceed with the execution.
Later Planar synchronization messages will notify the host core,
which will check the FIFO queue, moving the instructions to the
load-store queue as data becomes ready.

3.6 Release of PLANAR Devices and Memory

Planar devices are released via the planar_release call (Figure 3,
line 6). The Planar device sends a packet to the host and suspends,
becoming available for future operations. Once the host core re-
ceives the packet, the related RCT entry is cleared. Finally, after the
dense data is consumed by the host, it is freed (Figure 3, line 16).

3.7 PLANAR Execution Example

Figure 5 shows a detailed example of operation with Planar. It
considers a single rearrangement performed by one Planar device.
It shows four main hardware components (top), the host core, the
coherent interconnect, the Planar accelerator and a representa-
tion of several main memory pages. From the core, we show the
view of the RCT, the data cache (D$), and the FIFO queue used to
hold instructions that try to access data still not rearranged. From
Planar, we show the logic that, amongst other things, is in charge
of processing command packets from/to all the devices, and from
the device itself, the core (𝜇core) and data cache (𝜇$).

In Phase #1 (Section 3.2), the dense structure is allocated 1 via
a malloc call to store the dense data. The planar_alloc function
triggers the allocation of the devices. In the example, all the devices
are free and one device is requested, therefore device ID0 is reserved
for the current process (PID 33), allocating entry 0 in the RCT 2 .

In Phase #2 (Section 3.3), offloading begins by sending a com-
mand data packet 1 from the core to Planar. This packet contains
the information to program Planar, including the rearrange func-
tion and the loop bounds, which depend on the number of devices
involved. After that, the core updates the corresponding RCT entry
with the dense virtual address range and offset of rearranged ele-
ments 2 . When the control logic receives a command packet it uses
a state machine to issue cache maintenance flush requests of the
sparse data 3 . This ensures Planar devices will access the latest
version from main memory. Finally, the control logic programs the
Planar device to start the rearrangement 4 .

In Phase #3 (Section 3.4), Planar starts executing the rearrange-
ment, accessing the sparse data (@𝐴) and writing to the dense data
structure (@𝐴′) 1 . Subsequent accesses will fill a cache block with
dense data 2 3 4 . The device continues executing the rearrange
function, filling dense cache blocks until the operation completes.

In Phase #4 (Section 3.5), the synchronization phase ensures that
the host core obtains the results produced by the Planar device
in a timely manner, while preventing the core from accessing data
that has not yet been rearranged. Note that actions in this phase can
happen in parallel with Phase #3 actions. Therefore, to achieve this
fine-grain synchronization, in this example, for each dense cache
block that is completely populated, a cache maintenance operation
is issued to flush the block to the memory controller (MC) 1 . This
data is eventually written to main memory in the dense data page 2 .
Additionally, a synchronization packet is sent to the core to notify
a new dense block is available, updating the corresponding RCT
entry offset fi eld 3 . To prevent the core from accessing stale data,
an invalidation is sent to the cache hierarchy 4 , ensuring the dense
data will be fetched from main memory. Finally, the FIFO queue
is checked for stalled instructions to the now available rearranged
cache block 5 , which would be able to proceed. The other mecha-
nism present in this phase is triggered when the host core issues

Table 2: gem5 simulation parameters.

Cores 8 single-threaded out-of-order cores, 2GHz
Core details

Fetch, decode, rename width 4 insts/cycle
Dispatch, issue, commit width 8 insts/cycle
Branch target buffer 1 way, 2048 entries
Branch predictor Bimode, 8K+8K entries, RAS 16 entries
Load and store queues 48 entries, 48 entries
Physical registers 256 integer + 256 floating point
Issue queue, re-order buffer 92 entries, 192 entries
Functional units 3 Int ALU + 2 FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (3c.), div (12c.)
Instruction latencies (FP) add (5c.), mul (4c.), div (9c.)
L1 instruction cache 48KB, 3-way, 64B/block, 1 cycle access lat.
L1 data cache 32KB, 2-way, 64B/block, 2 cycle access lat.
L2 banked unified cache 2MB, 16-way, 64B/block, 12 cycle access lat.
Prefetcher Stride prefetcher

Memory details

Type DDR4 2400
Channel 2 channels, 16GB/s per channel

Planar details

Number of devices 8
𝜇Core in-order core, single-threaded, 2GHz
Functional units 1 Int ALU
Instruction latencies (Int) add (3c.), mul (3c.), div (9c.)
L1 instruction 𝜇cache 1KB, 2-way, 64B/block, 1 cycle access lat.
L1 data 𝜇cache 1KB, 2-way, 64B/block, 2 cycle access lat.
Translation lookaside buffer (𝜇TLB) 8 entries

a load and there are in-flight rearrangements 6 . The RCT table is
checked to see if the virtual target address conflicts with an in-flight
range for the executing process. If that is the case the current offset
determines if the rearranged data is ready to be consumed. If that is
not the case, the load instruction is stalled and placed into the FIFO
queue 8 . Eventually, the target address of the load instruction will
be rearranged and the FIFO checked, allowing it to execute.

In Phase #5 (Section 3.6), when the dense structure has been fully
populated 1 , Planar is released. A packet is sent to the host to
indicate the operation has completed 2 , which clears the pertinent
RCT entry 3 . In addition, the accelerator control logic is notified 4

and the device suspends. Once dense data is consumed, it is freed.

4 METHODOLOGY

4.1 Full-System Simulation Infrastructure

We employ gem5 [9] to simulate an Arm 64-bit architecture in detail
with a full-system environment. The simulated system runs Ubuntu
18.10 with Linux kernel v4.15. We simulate an eight out-of-order
core processor using the detailed CPU and memory models of gem5,
extended with the micro-architectural support for Planar. Planar
is modelled as a simple in-order core connected to the memory bus.
Section 5 presents a design space exploration to size the Planar
hardware. Table 2 shows the architectural parameters used.

As explained in Section 3, the offloading and synchronization
phases require flush and invalidation mechanism to maintain cache
consistency. In addition, command and synchronization packets to
communicate with Planar and update the RCT in the host core are
needed. These functionalities have been added to gem5 by means
of ISA extensions and all operation latencies are modelled in detail.

Figure 5: Execution example for a rearrangement that employs one Planar device.

4.2 Benchmarks

The evaluation considers a set of representative applications. Table 3
summarizes the employed benchmarks with their parameters and
inputs. It contains the number of different rearrangements, split
among the available devices. For example, if 8 Planar devices are
available, every rearrangement will be performed on 4 devices in
SymGS. The evaluated benchmarks contain strided and irregular
memory accesses.

CompMG is the multigrid sparse solver present in HPCG [48].
EBOX [22] is an extended box filtering approximation of a Gaussian
convolution for an image.MatMul [2] is an optimized matrix-matrix
multiplication with blocking support. Meabo [3] is a multi-phased
multi-purpose micro-benchmark, frequently used for energy effi-
ciency studies. Spatter [35] is used for timing scatter/gather kernels
on CPUs and GPUs. SpMV [18] is the sparse matrix-vector multi-
plication. The sparse matrix is represented in the CSR format [10]
and the vector is dense. STRIDE [49] is a memory stress benchmark
commonly used to characterize the memory system of HPC sys-
tems. Finally, SymGS is a Symmetric Gauss-Seidel smoother from
HPCG [48], and performs a forward and backward triangular solve.

We modified these applications to use software rearrangement
techniques similar to the one shown in Figure 2. All modified ver-
sions perform worse except STRIDE. This is due to the overhead to
perform the data rearrangement on the core, which precludes com-
putation overlap with the rearrangements, and due to involving the
entire memory hierarchy, which adds additional latency and can
lead to cache thrashing. For this reason, our evaluation in Section 5
uses the original unmodified application codes as the baseline.

Table 3: List of evaluated benchmarks.

Benchmark Option Input # rearr. regions

CompMG

bcspwr10 (A), bcsstk15 (B),
blckhole (C), circuit_1 (D),
ex12 (E), lns_3937 (H),
G30 (F), jan99jac100sc (G)

2

EBOX Stride: 8, 16 and 32 400,000 double-type elems 4

MatMul

1x1 block of 400x400 elems,
2x2 blocks of 200x200 elems,
4x4 blocks of 100x100 elems,
2x2 blocks of 300x300 elems,
3x3 blocks of 200x200 elems,
6x6 blocks of 200x200 elems

1

Meabo Phase2 300,000 double-type elems 1

Spatter Distance: 1, 2, 4, 8, 16,
32, 64, 128, 256, random 300,000 double-type elems 1

SpMV A, B, C, D, E, F, G, H 1

STRIDE Distance: 1, 2, 4, 8,
16, 32, 64, 128 320,000 double-type elems 1

SymGS A, B, C, D, E, F, G, H 2

The selected benchmarks have been modified to work with Pla-
nar. This process involves: (i) to define the rearrange function; (ii)
to replace the original irregular accesses to the original data struc-
tures with the dense ones; and (iii) to add the Planar allocation,
offload, and release calls. In most of the mentioned benchmarks,
very few modifications are required to the original code: ≈20 lines
of code for the rearrange function, the three Planar library calls,
allocation via regular malloc/free of the dense data structure, and
the code modifications to access the new dense data structure.

Figure 6: Normalized Planar design impact to performance

in Spatter. Pipeline width (left), number of functional units

(center) and L1-D cache size (right). In the 𝑥-axis the pipeline

widths, number of functional units and cache size in KB.

Figure 7: Performance relative to the number of Planar de-

vices (𝑥-axis), normalized to 64.

Spatter MatMul EBOX Meabo SpMV SymGS CmpMG AVG0.96

0.98

1.00

1.02

S
pe

ed
up

64B 4kB 8kB

Figure 8: Speedupwith eight Planar devices using different

synchronization granularities. Results normalized to 64B.

5 RESULTS AND DISCUSSION

5.1 Design Space Exploration

In this section we size Planar hardware with a design space ex-
ploration study. Planar is envisioned as a simple microcontroller
with in-order execution. For this reason, we explore the pipeline
width, the data cache size, the synchronization granularity, and the
number of functional units and Planar devices.

Pipeline width: Figure 6 (left) depicts the performance impact
when changing the Planar pipeline width. Results are obtained
using the average of all the inputs of the Spatter benchmark normal-
ized to the single-issue scenario. When changing the input distance
from 1 to 256 (see Table 3), Spatter provides a wide coverage of
different irregular memory access patterns. Increasing the pipeline
width from one to two provides between 2.0% and 4.0% improve-
ments for the different inputs (3.1% on average). Further increasing
the pipeline width provides diminishing improvements (3.9% and
4.3% on average for 4- and 8-wide pipelines, respectively). For small
input distances, Spatter shows more cache locality. Thus, having
a wider pipeline width in Planar provides higher performance
benefits. As input distance increases, the latency of the memory
requests hides the reduced performance of a narrow pipeline width.

Number of functional units: Figure 6 (center) shows the per-
formance impact with respect to the number of functional units
in Planar. Results are obtained using Spatter, normalized to one
functional unit scenario. Increasing the number of functional units
provides a marginal performance benefit, reaching an average 0.42%
improvement with 8 units.

Cache size: Figure 6 (right) depicts the performance impact with
respect to L1-D cache size. Spatter results are normalized to the
1KB scenario. In this case, increasing the data cache size provides
negligible performance benefits (0.28% on average with 32KB). This
is expected as the rearrange function has a streaming memory ac-
cess pattern with nearly no temporal locality. Only for small input
distances, Spatter shows some cache locality, providing reduced
benefits. As distance increases, the cache size does not provide any
performance benefit. Regarding the L1-I cache, the rearrange func-
tion requires less than 100 instructions in the evaluated benchmarks.
Thus, it does not exceed the 1KB capacity.

Number of Planar devices: Figure 7 shows the impact of
the number of Planar devices to performance. Due to hardware
constraints, it is difficult for a single device to saturate the memory
bandwidth, as not many outstanding memory requests are allowed
per device. Results are obtained by performing the average across
all inputs for the selected applications. We limit this study to the
benchmarks that contain only a single rearrangement. This way we
keep the number of devices per rearrangement constant. Results are
normalized to the 64-Planar device scenario, which represents a
close-to-ideal case in our simulation infrastructure. All benchmarks
except STRIDE are sensitive to the number of Planar devices. With
a single Planar device, performance degrades 9.5% on average with
respect to 64 devices. Increasing the number of devices from 1 to
2 provides a 5.1% performance improvement, while moving from
2 to 4 provides an additional 3% improvement. With 8 devices all
benchmarks are already within 1.0% the performance of 64.

Synchronization granularity: During the execution example
of the design we assumed the RCT table is updated after every pop-
ulated dense cache block (Section 3.7). However, synchronization
between Planar and host can be done at a coarser granularity. We
analyze scenarios where the host is notified it can consume rear-
ranged data after 64B (cache block size), 4KB (page size), and 8KB.
Fine-grain synchronization lets the host consume dense data as Pla-
nar rearranges it, but increases synchronization traffic. As Figure 8
shows, coarser grain granularities of 4KB cause less than 1% perfor-
mance slowdown on average. This is because after the first dense
chunk finishes, Planar and host can overlap subsequent chunk
rearrangements with compute over already rearranged chunks. Us-
ing a synchronization granularity of 4KB reduces the total message
count by 64 with respect to 64B.

Selected configuration: At the device level there is no signifi-
cant improvement as the hardware complexity increases. For this
reason, we choose a simple, low-power, dual issue in-order Planar
accelerator, with a single integer functional unit, and a 1KB L1-D
cache. The selected ratio of Planar devices with respect to off-
chip bandwidth is one for every 4GB/s. Therefore, eight devices in
our simulated system, as further increasing the number of devices
provides negligible benefits. Finally, we chose a synchronization
granularity of 4KB between Planar and host cores.

0
1
2
3
4
5
6
7
8

S
pe

ed
up

no
rm

al
iz

ed
to

sc
al

ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE
Baseline + 256 SVE
Baseline + 512 SVE
PLANAR + Scalar
PLANAR + 128 SVE
PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 9: Speedups with eight Planar devices for one and eight host core runs. Both normalized to Baseline + Scalar.

0

5

10

15

20

25

30

B
W

(G
B

/s
)

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE
Baseline + 256 SVE
Baseline + 512 SVE
PLANAR + Scalar
PLANAR + 128 SVE
PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 10: Average memory bandwidth usage with eight Planar devices for one and eight host cores.

5.2 Performance Evaluation

In this section, we analyze the performance impact of Planar. We
use the applications described in Table 3. For each application we
evaluate all the listed inputs and plot the average. We run simu-
lations with one and eight threads to see their behavior. We also
evaluate the impact of compiler auto-vectorization using the re-
cently proposed Scalable Vector Extension (SVE) ISA [53]. SVE is
vector length agnostic, meaning that a single binary can run on any
target vector length [4]. Therefore, we evaluate a scalar binary and
an SVE-enabled binary with vector lengths of 128, 256, and 512 bits.
Figure 9 shows speedup for the evaluated benchmarks normalized
to the scalar baseline system without Planar devices (Baseline +
Scalar) for each core count. Figure 10 shows the average memory
bandwidth usage.

In Spatter, a 3.44× speedup is achieved when using Planar
and a single thread without vectorization. However, benefits are
input-dependent. Low distances lead to lower sparseness and more
cache locality. Higher distances affect execution time as there is
a lower cache block utilization. Results also demonstrate that the
original code is not auto-vectorized due to the irregular memory
access pattern. However, Planar versions allow efficient auto-
vectorization as memory accesses are now contiguous. Therefore,
Planar unlocks further performance improvements through data-
level parallelism, achieving 3.4×, 4.02× and 4.13× speedup for 128,
256, and 512-bit SVE, respectively. Memory bandwidth is better
utilized with Planar as cores now bring useful dense data into their
caches, while sparse accesses are done near-memory. With eight
threads, the speedups remain significant at 3.61× for scalar, with
similar results for the vectorized versions. In this case vectorization
is not improving performance significantly because with Planar
we are able to saturate memory bandwidth, driving 29GB/s out of
the 32GB/s peak.

In MatMul, sparse memory accesses appear when accessing the
second matrix. In this case, Planar dynamically transposes one of
the input matrices to create a contiguous memory access pattern
from the host core standpoint. The bigger the blocks, the higher
the distance between elements. Using multiple matrix block sizes,
an average 2.31× speedup is obtained on a single thread. In the
baseline, vectorization provides a small performance benefit of 11%,
as some phases of the application can be vectorized. Using Planar,
SVE improves execution time as memory bandwidth is not a con-
straint. For instance, 512-bit SVE can drive an additional 6.05GB/s
of memory bandwidth as the same baseline configuration, translat-
ing into a 6.70× speedup. With eight threads, Planar speedups are
3.24× for scalar. However, vectorization for wide vectors offers low
returns as memory bandwidth saturates.

EBOX performs a Gaussian convolution by means of a filtering
approximation. Filters take samples of the inputs to process the
data. Consequently, Planar can be a good method to reorganize the
input data and improve performance. In particular, EBOX extracts
particular positions of an input and operates on them in two pairs
(i.e., A[i] = p1*(B[-]-C[-]) + p2*(D[-]-E[-])). We have used Planar to
create four dense structures, one for each element in the two pairs
(i.e., B, C, D, E). As a result, we obtain a speedup of 1.86× for scalar
and up to 6.83× for 512-bit SVE with good vector performance
scaling. In the multi-threaded scenarios the performance behavior
is similar. Note that in eight thread runs Planar again provides
better normalized speedup compared to single-thread (i.e., 2.37×
compared to 1.86×). This means that the overall design is well
balanced in terms of compute, memory bandwidth and acceleration.

In Meabo, memory is accessed using a random indirection vector,
which leads to non-existent locality and low cache block utiliza-
tion. Single-thread runs with Planar obtain 4.85×, 6.14×, 7.07×,
and 7.67× speedup for scalar, 128, 256, 512-bit SVE. Using a dense

0
1
2
3
4
5
6
7
8

R
ed

uc
tio

n
no

rm
al

iz
ed

to
sc

al
ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE
Baseline + 256 SVE
Baseline + 512 SVE
PLANAR + Scalar
PLANAR + 128 SVE
PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 11: L1D miss reduction with 8 Planar devices for one and eight cores, both normalized to baseline scalar.

structure makes a large difference in this benchmark as memory
bandwidth is poorly utilized in the baseline: due to (i) the low
amount of reuse, and (ii) the small amount of memory level paral-
lelism the cores are able to extract, as stalls are common due to long
latency misses and contention. With Planar the memory band-
width utilization almost doubles both for single and multi-threaded
scenarios, saturating it in the latter.

In SpMV and SymGS, the matrix is compressed in CSR format
and the vector is accessed sparsely, jumping from one element
to the other. This vector is rearranged by Planar. Performance
is dependent on the vector access pattern. For this reason, the
selected input matrices that define the vector access pattern are
obtained from a wide variety of scientific domains. In SpMV the
matrix is traversed forward, while in SymGS it is done forward
and backwards, requiring two rearrange tasks. On average, a 3.9×
speedup is obtained for the scalar code on both applications. SVE
512-bit vectorization yields a 4.93× speedup, while the baseline
cannot be efficiently vectorized by the compiler. The performance
gap is larger on eight thread runs with a 6.7× speedup.

STRIDE is a memory-intensive application where the use of
longer distances implies requestingmemorymore often, since fewer
elements per cache block are accessed. In this particular benchmark,
the host core and Planar can operate at the same time, competing
for memory bandwidth resources. We evaluate multiple inputs to
study this phenomenon and obtain an average speedup of 3.21× in
the scalar version. Even though some phases in this benchmark are
auto-vectorized in the baseline code, the phase with sparse memory
accesses is again not vectorized. For this reason, baseline reaches an
improvement of 1.15× using 512-bit SVE, while the Planar version
obtains 5.77× for the same configuration.

Lastly, CompMG performs recursive calls that contain several
calls to SpMV and SymGS. For every CompMG call only two differ-
ent rearrange tasks are required, as the rearrange task in SpMV is
the same as the first rearrange in SymGS (i.e., the forward matrix
traversal). Planar speedups are 3.8×, 3.32×, 3.74× and 4.45× for
scalar, 128, 256, and 512-bit SVE. Using eight threads we observe
a better speedup than in the single thread case, such as a 5.19× in
Planar with SVE 512-bit.

5.3 Impact to the Memory Hierarchy

Contiguous accesses to a dense data structure offer significant
benefits compared to the original sparse access pattern, such as
high cache block utilization and efficient data prefetching. Next
lines demonstrate the impact Planar has on the memory hierarchy.

Figure 11 shows L1D miss reduction on host cores. The L1D is
critical for the core’s performance, and Planar rearrangements
enable an average L1D miss reduction of 1.89× for one core. In
Planar, all the elements contained in a rearranged cache block
are referenced by the host core, whereas in the baseline, only one
element is accessed in the worst case. The dense structure also
causes a reduction of 53% in L1D miss latency. This is due to: (i) less
touched cache blocks due to locality within a cache block, and (ii)
memory access latencies being hidden due to better prefetching.
Prefetching is less effective with irregular accesses, where data
locality is difficult to exploit.

Figure 12 shows the data movement reduction in the L1D-L2
bus. The dense structure enables efficient cache block utilization
and reduces cache pollution. On average, there is a 1.65× data
movement reduction for one core.

In terms of DRAM accesses, one of the advantages of performing
DLT is that subsequent accesses to the dense structure do not
require accessing the intermediate data structure of the indirect
memory access. In the baseline, both the intermediate and sparse
structures are accessed. The latter may even have cache blocks
accessed more than once, due to the significant cache pollution.
Figure 13 depicts the normalized number of DRAM accesses. When
using Planar, 1.6% of the total DRAM accesses are generated by
Planar devices on average (up to 9.09% in CompMG). Overall,
there is an average 41.89% DRAM access reduction. This reduction
is primarily due to increased reuse, which can be observed indirectly
through the increased L1D hit rate (see Figure 11) and L1D to L2
bandwidth reduction (see Figure 12). Despite writing the dense
data structure back to memory, the actual accesses to DRAM are
reduced because of better data cache utilization and far higher
reuse of cached data. Writing data back to main memory reduces
the repeated rearrangement calls needed by alternatives such as
Impulse, and enables the dense data structure to be reused many
times before being freed.

5.4 Area and Power Overhead

Planar devices can be compared to the Arm Cortex 𝑀0+ micro-
processor, which is augmented with a 64-bit ALU (as discussed in
Section 3). Using public data for an equivalent𝑀0+ at 40LP [15], the
dynamic power is given as 5.3𝜇𝑊 /𝑀𝐻𝑧 and the floor planned area
as .008𝑚𝑚2. To estimate the area of a single microcontroller, we
scale these numbers, considering fin pitch, gate pitch, and intercon-
nect pitch, using data from [5, 14, 16, 58, 59, 62] to arrive at a 12×
area reduction when moving from 40nm to 7nm and an estimated

0
1
2
3
4
5
6
7

R
ed

uc
tio

n
no

rm
al

iz
ed

to
sc

al
ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE
Baseline + 256 SVE
Baseline + 512 SVE
PLANAR + Scalar
PLANAR + 128 SVE
PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 12: Byte reduction in the L1D-L2 bus with 8 Planar for one and eight cores, normalized to baseline scalar.

0.0

0.5

1.0

N
or

m
.

M
em

.
A

cc
.

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
STRIDE

B P
CompMG

B P
AVG

CPU PLANAR

Figure 13: Normalized DRAM accesses for baseline (B) and

Planar (P) on 8 cores with scalar codes.

reduction in power of 10×. Therefore, a system-on-chip could place
8 Planar devices, with their caches, using < .25𝑚𝑚2. Equivalently,
energy for this configuration would be < .015𝑊 /𝐺𝐻𝑧.

We also estimate the area of the out-of-order core described in
Table 2. We start from a similar production core at 20nm [41] and
scale it to 7nm, arriving at a ≈ 4𝑚𝑚2 in area. The approximate area
ratio of a Planar device to an out-of-order core is 1 : 16, i.e., 8
Planar devices are equivalent to 50% of a single out-of-order core.
The ratio for dynamic power is 1 : 260 assuming both run at 2GHz.

To estimate the dynamic energy and power consumption for our
Planar proposal we used McPAT 1.3 [37] with the enhancements
proposed by Xi et al. [61]. We performed this estimation, using a
process technology node of 22nm, a supply voltage of 0.8V, and
the default clock gating scheme. Figure 14 depicts the dynamic
energy reduction for the applications with eight host cores. Overall,
dynamic energy is reduced by more than 40% and up to 70% in
Meabo. Energy savings are mainly due to reduced data movement
across the memory hierarchy and reduced execution time (speedup)
as shown in Figure 9.

Figure 15 depicts the dynamic energy breakdown for the same
applications. Compared to the baseline, Planar spends less DRAM
energy. As explained in Section 5.3, Planar creates a dense struc-
ture and makes the applications more compute intensive form the
host standpoint, as average data access latencies are lower.

The total dynamic power is higher in Planar. On average, the
dynamic power increases with Planar by 2.41× in the cores, by
1.41× in the memory controller, and by 1.14× in DRAM. This is due
to an increase in terms of activity per unit of time. However, taking
into account the performance speedups of Planar, the overall
energy spent is significantly reduced. As previously discussed, static
power is merely affected when adding Planar.

0.0

0.5

1.0

R
ed

uc
tio

n

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
CompMG

Cores PLANAR NOC L2 MC DRAM

Figure 14: Dynamic energy reduction baseline (B) vs Planar

(P) with scalar application binaries on eight host cores.

0.0

0.5

1.0

B
re

ak
do

w
n

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
CompMG

Cores PLANAR NOC L2 MC DRAM

Figure 15: Dynamic energy breakdown baseline (B) vs Pla-

nar (P) with scalar application binaries on eight host cores.

5.5 Comparison to Other Proposals

In this section, we quantitatively compare Planar to Impulse [12]
and to a recent DLT accelerator proposal [27]. Impulse is a hard-
ware approach that creates a dense structure out of a sparse one.
It performs data reordering in the memory controller as the host
core accesses memory belonging to a shadow address space, which
must be contiguous in physical memory. Thus, Impulse rearranges
data just in time, not like Planar which is capable of rearranging
data before-hand as the host is executing other code regions. There-
fore, Impulse cannot hide the rearrangement latency. Moreover,
in case the dense data is evicted and requested by the host again,
Impulse will perform a new rearrangement, as it cannot assume
that the original and new rearrage functions are the same. Finally,
in a design with multiple memory controllers, the rearrange func-
tions of different Impulse instances are not synchronized, limiting
scalability.

Figure 16 depicts the performance comparison between Planar
and Impulse for SpMV. Planar obtains an average 2.12× speedup
compared to Impulse. This is due to: (i) higher MLP of data re-
arrangements in Planar; (ii) more data reuse; and (iii) less data
movement in the cache hierarchy as dense data is created just once.
For instance, snoop traffic from the core to the L2 cache is 21×
higher in Impulse.

Planar: A Programmable Accelerator for Near-Memory Data Rearrangement ICS ’21, June 14–17, 2021, Virtual Event, USA

In contrast, the DLT accelerator is tightly coupled to the host
core, whereas Planar is connected to the memory controller. It
can bypass the cache hierarchy and directly access main memory,
as Planar does, but requires an additional data bus. The acceler-
ator does not allow the host to consume dense data as the device
rearranges it, blocking memory accesses on the host during DLT
operation tomaintain data consistency. Moreover, it supports a max-
imum of four parallel operations, contrary to Planar, where more
devices can be added to the system, enabling additional parallelism.

Figure 17 depicts the performance comparison between Planar
and the DLT accelerator for several benchmarks. We employ up to 8
Planar devices and also allow up to 8 simultaneous operations on
the DLT accelerator. On average, Planar obtains a 2.23× speedup
compared to the DLT accelerator, with a maximum of 5.82× in
SymGS. This is due to two main reasons: in Planar (i) the host
is not blocked while devices are operating, as Planar effectively
decouples rearrange and compute, and (ii) the host can consume
dense data as it is rearranged, which hides rearrangement latencies.

6 RELATEDWORK

Data layout transformation (DLT) is a solution to increase the effi-
ciency of memory accesses [17, 36]. Nevertheless, it is not always
obvious which layout will better serve a particular application and
hardware combination.DLT in software can be driven by run-ahead
or decoupled threads [47], or by customized data structures de-
signed to reduce data movement [63]. Although run-ahead threads
may run speculatively to hide memory access latency, they are
limited by the instruction window they can execute ahead of the
main thread. This situation significantly limits the overlap of data
rearrangements and computation.

Others works have also focused on DLT, including: the Impulse
memory controller [12, 65], the tightly-coupled DLT accelerator
by Hoang et al. [27], DReAM [23], the data rearrangement engine
(DRE) [39], and the SPiDRE system architecture [7]. We have com-
pared Planar qualitatively to these proposals in Section 1, and
quantitatively to the first two in Section 5.5. In this paper, we
demonstrate Planar within a general-purpose system architec-
ture, featuring a scalable design that is able to hide rearrangement
latency while providing programming interfaces that can be easily
incorporated into any application. As shown in Table 1, prior pro-
posals do not provide some of these features, limiting their adoption.
Moreover, prior proposals are largely demonstrated on a specific
application domain (e.g., pointer chasing), or with high-level system
architecture descriptions [7] that prevent quantitative comparisons.

DLT can be considered a form of Decoupled Access Execute
(DAE). In this context we may include the works of Smith [50],

A B C D E F G H AVG0

2

4

S
pe

ed
up

Impulse PLANAR

Figure 16: Performance of Impulse vs Planar in SpMV. In

the 𝑥-axis, the matrix inputs from Table 3.

Spatter MatMul EBOX Meabo SpMV SymGSCmpMG AVG0

2

4

6

S
pe

ed
up

4 DLT Acc 8 DLT Acc 4 PLANAR 8 PLANAR

Figure 17: Performance of the DLT accelerator vs Planar.

Koukos et al. [32, 33], Jimborean et al. [29] and Charitopoulos et
al. [13]. A key difference between standard DAE and Planar is
that traditional DAE focuses primarily on maximizing memory-
level parallelism and reducing memory latency experienced by the
host core. However, Planar accomplishes both tasks while also
reducing data movement (see Figures 12 and 13).

Other works that belong to the Processing In/Near Memory
(PINM) field, include: Computational Ram [19], Terasys [24], and
DIVA [25]. More recent PINM efforts are well summarized by
Zhang et al.. [64] and Balasubramonian et al. [6]. While they focus
on the more general problem of PINM, we focus on offload with
the purpose of DLT for traditional cores.

Planar also shares some pointswith the concept of data prefetch-
ing. Data prefetching, when data retrieved is fully utilized, can
reduce latency while having a negligible impact on overall data
movement. However, in many workloads data is not fully utilized
leading to much wasted bandwidth and energy consumption [8].
Planar moves the data access outside of the primary core, just
as standard prefetching does. In contrast, it is driven by access
code derived from the application and it also reduces data motion
whereas prefetchers typically increase it [28]. Prefetchers for work-
loads most similar to those evaluated here include the works of
Ainsworth et al. [1], Kocberber et al. [31] and Kumar et al. [34]
Unlike them, Planar is a general purpose approach suitable for
multi-core scenarios. Moreover, Planar is not limited by the shape
the data structure has, operates with virtual memory, reduces data
motion, and exposes vectorization.

While it is often assumed that applications can be authored to
minimize data movement for even the most irregular and sparse ap-
plications, many real applications cannot be. Several recent works
have examined this phenomena for dynamic graphs [26, 42]. In
summary, they found that static graphs could make use of spe-
cialized data structures. However, in many cases the processing
time for setting up specialized structures for dynamic graphs far
outweighed the cost to process a less optimal structure which is
more amenable to dynamic updates. Instead of focusing on pre-
processing for optimal locality, technologies such as Planar enable
application developers to have the impact associated with special-
ized data structures (i.e., maximizing cache utilization) without
spending time developing them.

7 CONCLUSIONS

Irregular memory accesses represent a challenge for current and fu-
ture architectures. In this work, we present Planar, a programmable
near-memory accelerator that rearranges sparse data into a dense
representation. Contrary to prior proposals, the design of Planar

scales with multi-core systems, hides operation latency by per-
forming non-blocking fine-grain data rearrangements, and eases
programmability by supporting virtual memory and conventional
memory allocation mechanisms. Moreover, accesses to the dense
structure expose locality, favouring prefetching and enabling effi-
cient vectorization in applications with irregular memory accesses.
No prior solution provides all such properties at once.

Our evaluation shows that Planar improves cache block uti-
lization and reduces on-chip data movement. As a result, Planar
improves performance for single-threaded runs by 3.28× and 5.56×,
and for multi-threaded executions by 4.58× and 5.71×, for scalar
and compiler-vectorized codes. Finally, we compare Planar to
two state-of-the-art proposals, achieving 2.12× and 2.23× average
performance improvements.

8 ACKNOWLEDGMENTS

A. Barredo has been partially supported by the Spanish Govern-
ment under Formación del Personal Investigador fellowship number
BES-2017-080635. A. Armejach has been partially supported by the
Spanish Ministry of Economy, Industry and Competitiveness under
Juan de la Cierva postdoctoral fellowship number IJCI-2017-33945.
M. Moretó has been partially supported by the Spanish Ministry
of Economy, Industry and Competitiveness under Ramon y Cajal
fellowship number RYC-2016-21104. This work has been partially
supported by the European Union’s Horizon 2020 research and in-
novation program under the Mont-Blanc 2020 project (grant agree-
ment 779877), by the Spanish Ministry of Science and Innovation
(PID2019-107255GB-C21/AEI/10.13039/501100011033), by the Gen-
eralitat de Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328),
and by the Arm-BSC Centre of Excellence.

REFERENCES

[1] Sam Ainsworth and Timothy M Jones. 2016. Graph prefetching using data
structure knowledge. In Proceedings of the 2016 International Conference on Su-

percomputing.
[2] Sumaia Al-Ghuribi. 2012. Matrix Multiplication Algorithms. International Journal

of Computer Science and Network Security (2012).
[3] Arm Limited. 2018. Meabo. Available at https://github.com/ARM-software/

meabo.
[4] Adrià Armejach, Helena Caminal, Juan M. Cebrian, Rekai González-Alberquilla,

Chris Adeniyi-Jones, Mateo Valero, Marc Casas, and Miquel Moretó. 2018. Stencil
codes on a vector length agnostic architecture. In Proceedings of the 27th Inter-

national Conference on Parallel Architectures and Compilation Techniques, PACT

2018. 13:1–13:12.
[5] F Arnaud, A Thean, M Eller, M Lipinski, YW Teh, M Ostermayr, K Kang, NS Kim,

K Ohuchi, JP Han, et al. 2009. Competitive and cost effective high-k based 28nm
CMOS technology for low power applications. In IEEE International Electron

Devices Meeting (IEDM).
[6] Rajeev Balasubramonian, Jichuan Chang, Troy Manning, Jaime H Moreno,

Richard Murphy, Ravi Nair, and Steven Swanson. 2014. Near-data processing:
Insights from a MICRO-46 Workshop. Micro 34 (2014).

[7] Jonathan C Beard. 2017. The Sparse Data Reduction Engine (SPiDRE): Chop-
ping Sparse Data One Byte at a Time. In Proceedings of the Second International

Symposium on Memory Systems.
[8] Jonathan C Beard and Joshua Randall. 2017. Eliminating Dark Bandwidth: a

data-centric view of scalable, efficient performance, post-Moore. In International

Conference on High Performance Computing.
[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay Vaish,
Mark Hill, and David Wood. 2011. The gem5 simulator. (2011).

[10] Susan Blackford. 2000. Compressed row storage. http://www.netlib.org/utk/
people/JackDongarra/etemplates/node373.html Accessed December 2019.

[11] Shekhar Borkar. 2013. Role of interconnects in the future of computing. Journal
of Lightwave Technology (2013).

[12] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, Erik
Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael Parker, et al.
1999. Impulse: Building a smarter memory controller. In High-Performance

Computer Architecture, Proceedings. Fifth International Symposium On.
[13] George Charitopoulos, Charalampos Vatsolakis, Grigorios Chrysos, and Dioni-

sios N Pnevmatikatos. 2018. A decoupled access-execute architecture for recon-
figurable accelerators. In Proceedings of the 15th ACM International Conference on

Computing Frontiers.
[14] Kuan-Lun Cheng, CC Wu, YP Wang, Da-Wen Lin, CM Chu, YY Tarng, SY Lu,

SJ Yang, MH Hsieh, CM Liu, et al. 2007. A highly scaled, high performance
45 nm bulk logic CMOS technology with 0.242 𝜇m2 SRAM cell. In 2007 IEEE

International Electron Devices Meeting.
[15] CortexM0 [n.d.]. Arm Cortex-M0. Accessed April 2019.
[16] Denis C Daly, Laura C Fujino, and Kenneth C Smith. 2018. Through the Looking

Glass-The 2018 Edition: Trends in Solid-State Circuits from the 65th ISSCC. IEEE
Solid-State Circuits Magazine (2018).

[17] Inderjit S. Dhillon and Dharmendra S. Modha. 2001. Concept Decompositions
for Large Sparse Text Data Using Clustering. Machine Learning (2001). https:
//doi.org/10.1023/A:1007612920971

[18] Athena Elafrou, Georgios I. Goumas, and Nectarios Koziris. 2017. Performance
Analysis and Optimization of Sparse Matrix-Vector Multiplication on Modern
Multi- and Many-Core Processors. CoRR (2017). http://arxiv.org/abs/1711.05487

[19] Duncan G Elliott, WMartin Snelgrove, and Michael Stumm. 1992. Computational
RAM: A memory-SIMD hybrid and its application to DSP. In Custom Integrated

Circuits Conference.
[20] Amin Farmahini-Farahani, Sudhanva Gurumurthi, Gabriel Loh, and Michael

Ignatowski. 2018. Challenges of High-Capacity DRAM Stacks and Potential
Directions. In Proceedings of the Workshop on Memory Centric High Performance

Computing.
[21] Gene Fuller. 2017. Future lithography technology. In Single Frequency Semicon-

ductor Lasers.
[22] Pascal Getreuer. 2013. A Survey of Gaussian Convolution Algorithms. Image

Processing On Line (2013).
[23] Mohsen Ghasempour, Aamer Jaleel, Jim D. Garside, and Mikel Luján. 2016.

DReAM: Dynamic Re-arrangement of Address Mapping to Improve the Per-
formance of DRAMs. In Proceedings of the Second International Symposium on

Memory Systems (MEMSYS ’16).
[24] Maya Gokhale, Bill Holmes, and Ken Iobst. 1995. Processing in memory: The

Terasys massively parallel PIM array. Computer (1995).
[25] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline Chame, Jeff Draper,

Jeff LaCoss, John Granacki, Jay Brockman, Apoorv Srivastava, et al. 1999. Map-
ping irregular applications to DIVA, a PIM-based data-intensive architecture. In
Proceedings of the 1999 ACM/IEEE conference on Supercomputing.

[26] Eric Hein and Tom Conte. 2016. DynoGraph: Benchmarking Dynamic Graph
Analytics. In SC16: International Conference for High Performance Computing,

Networking, Storage and Analysis. http://sc16. supercomputing. org/sc-archive/tech_

poster/tech_poster_pages/post214. html Poster.
[27] Tung Hoang, Amirali Shambayati, and Andrew Chien. 2016. A Data Layout

Transformation (DLT) Accelerator: Architectural Support for Data Movement
Optimization in Accelerated-centric Heterogeneous Systems.

[28] Mahzabeen Islam, Soumik Banerjee, Mitesh Meswani, and Krishna Kavi. 2016.
Prefetching As a Potentially Effective Technique for Hybrid Memory Optimiza-
tion. In Proceedings of the Second International Symposium on Memory Systems

(MEMSYS ’16).
[29] Alexandra Jimborean, Konstantinos Koukos, Vasileios Spiliopoulos, David Black-

Schaffer, and Stefanos Kaxiras. 2014. Fix the Code. Don’T Tweak the Hardware: A
New Compiler Approach to Voltage-Frequency Scaling. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimization (CGO

’14).
[30] Wenting Jin. 2017. Feedback Compilation for Decoupled Access-Execute Tech-

niques.
[31] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and

Parthasarathy Ranganathan. 2013. Meet the walkers: Accelerating index tra-
versals for in-memory databases. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture.
[32] Konstantinos Koukos, David Black-Schaffer, Vasileios Spiliopoulos, and Stefanos

Kaxiras. 2013. Towards more efficient execution: A decoupled access-execute
approach. In Proceedings of the 27th international ACM conference on International

conference on supercomputing.
[33] Konstantinos Koukos, Per Ekemark, Georgios Zacharopoulos, Vasileios Spiliopou-

los, Stefanos Kaxiras, and Alexandra Jimborean. 2016. Multiversioned Decoupled
Access-execute: The Key to Energy-efficient Compilation of General-purpose
Programs. In Proceedings of the 25th International Conference on Compiler Con-

struction (CC 2016).
[34] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srinivasan, Dan Lin, and

Jordon Phillips. 2014. SQRL: hardware accelerator for collecting software data
structures. In Proceedings of the 23rd international conference on Parallel architec-

tures and compilation.

https://github.com/ARM-software/meabo
https://github.com/ARM-software/meabo
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
https://doi.org/10.1023/A:1007612920971
https://doi.org/10.1023/A:1007612920971
http://arxiv.org/abs/1711.05487

[35] Patrick Lavin, E. Jason Riedy, Rich Vuduc, and Jeffrey Young. 2018. Spat-
ter: A Benchmark Suite for Evaluating Sparse Access Patterns. CoRR (2018).
arXiv:1811.03743 http://arxiv.org/abs/1811.03743

[36] Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very Sparse Random
Projections. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining.
[37] Sheng Li, Jung HoAhn, Richard Strong, Jay Brockman, Dean Tullsen, and Norman

Jouppi. 2009. McPAT: An integrated power, area, and timing modeling framework
for multicore and manycore architectures. Proceedings of the Annual International
Symposium on Microarchitecture, MICRO, 469–480.

[38] Arm Limited. 2015. ARM Cortex-A Series. Programmer’s Guide for ARMv8-A.
[39] Scott Lloyd and Maya Gokhale. 2015. In-Memory Data Rearrangement for Irreg-

ular, Data-Intensive Computing. Computer (2015).
[40] Chris Lomont. 2011. Introduction to Intel Advanced Vector Extensions. Intel

White Paper (2011).
[41] Hugh T Mair, Gordon Gammie, Alice Wang, Rolf Lagerquist, CJ Chung, Sumanth

Gururajarao, Ping Kao, Anand Rajagopalan, Anirban Saha, Amit Jain, et al. 2016.
4.3 A 20nm 2.5 GHz ultra-low-power tri-cluster CPU subsystem with adaptive
power allocation for optimal mobile SoC performance. In 2016 IEEE International

Solid-State Circuits Conference (ISSCC).
[42] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything

you always wanted to know about multicore graph processing but were afraid
to ask. In 2017 USENIX Annual Technical Conference USENIX ATC 17.

[43] John Mellor-Crummey, David Whalley, and Ken Kennedy. 1999. Improving
memory hierarchy performance for irregular applications. In Proceedings of the

13th international conference on Supercomputing.
[44] Sparsh Mittal. 2016. A survey of recent prefetching techniques for processor

caches. ACM Computing Surveys (CSUR) (2016).
[45] Leonid Oliker, Andrew Canning, Jonathan Carter, John Shalf, David Skinner,

Ethier Ethier, Rupak Biswas, Jahed Djomehri, and Rob Van der Wijngaart. 2003.
Evaluation of cache-based superscalar and cacheless vector architectures for
scientific computations. In SC’03: Proceedings of the 2003 ACM/IEEE Conference

on Supercomputing.
[46] Georgios Petrousis. 2017. An Evaluation of Decoupled Access Execute on ARMv8.

Master’s thesis. Uppsala University.
[47] T. Ramírez, A. Pajuelo, O. J. Santana, O. Mutlu, and M. Valero. 2010. Efficient

Runahead Threads. In 2010 19th International Conference on Parallel Architectures

and Compilation Techniques (PACT).
[48] Sandia Report, Jack Dongarra, and Michael A. Heroux. 2013. Toward a New

Metric for Ranking High Performance Computing Systems.
[49] Oak Ridge, Argonne, and Livermore. 2018. The Coral-2 Benchmark Suite. Avail-

able at https://asc.llnl.gov/coral-2-benchmarks/.
[50] James E Smith. 1982. Decoupled access/execute computer architectures. In ACM

SIGARCH Computer Architecture News.
[51] Jeffrey R Spirn and Peter J Denning. 1972. Experiments with program locality. In

Proc. of ACM Fall Joint Computer Conference, Part I.
[52] James R Srinivasan. 2011. Improving cache utilisation. Technical Report. Univer-

sity of Cambridge, Computer Laboratory.

[53] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, et al. 2017. The Arm scalable vector extension. IEEE Micro (2017).

[54] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro
Bianco, Bradford L Chamberlain, Romain Cledat, H Carter Edwards, Hal Finkel,
et al. 2017. Trends in data locality abstractions for HPC systems. IEEE Transactions
on Parallel and Distributed Systems (2017).

[55] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. 2011.
The RISC-v instruction set manual, volume I: Base user-level ISA. EECS Depart-
ment, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 116 (2011).

[56] John Wiegert, Greg Regnier, and Jeff Jackson. 2007. Challenges for scalable net-
working in a virtualized server. In 2007 16th International Conference on Computer

Communications and Networks. IEEE, 179–184.
[57] Michael Joseph Wolfe. 1996. High performance compilers for parallel computing.

Addison-Wesley.
[58] Shien-Yang Wu, CY Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang, M Liang, T

Miyashita, CH Tsai, BC Hsu, et al. 2013. A 16nm FinFET CMOS technology
for mobile SoC and computing applications. In 2013 IEEE International Electron

Devices Meeting.
[59] Shien-Yang Wu, CY Lin, MC Chiang, JJ Liaw, JY Cheng, SH Yang, CH Tsai, PN

Chen, T Miyashita, CH Chang, et al. 2016. A 7nm CMOS platform technology
featuring 4th generation FinFET transistors with a 0.027 𝜇m2 high density 6-T
SRAM cell for mobile SoC applications. In 2016 IEEE International Electron Devices

Meeting (IEDM).
[60] Wm Wulf and Sally A. McKee. 1994. Hitting the Memory Wall: Implications of the

Obvious. Technical Report. Charlottesville, VA, USA.
[61] S. L. Xi, H. Jacobson, P. Bose, G. Wei, and D. Brooks. 2015. Quantifying sources

of error in McPAT and potential impacts on architectural studies. In 2015 IEEE

21st International Symposium on High Performance Computer Architecture (HPCA).
577–589.

[62] R Xie, P Montanini, K Akarvardar, N Tripathi, B Haran, S Johnson, T Hook, B
Hamieh, D Corliss, J Wang, et al. 2016. A 7nm FinFET technology featuring EUV
patterning and dual strained high mobility channels. In 2016 IEEE International

Electron Devices Meeting (IEDM).
[63] T. Yamada, S. Hirasawa, H. Takizawa, and H. Kobayashi. 2015. A Case Study

of User-Defined Code Transformations for Data Layout Optimizations. In 2015

Third International Symposium on Computing and Networking (CANDAR).
[64] Dong Ping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph Greathouse,

Mitesh Meswani, Mark Nutter, and Mike Ignatowski. 2013. A new perspective on
processing-in-memory architecture design. In Proceedings of the ACM SIGPLAN

Workshop on Memory Systems Performance and Correctness.
[65] Lixin Zhang, Zhen Fang, Mide Parker, Binu K. Mathew, Lambert Schaelicke,

John B. Carter, Wilson C. Hsieh, and Sally A. McKee. 2001. The Impulse Memory
Controller. IEEE Trans. Comput. (2001).

[66] Xiaotong Zhuang and H-HS Lee. 2003. A hardware-based cache pollution filtering
mechanism for aggressive prefetches. In 2003 International Conference on Parallel

Processing, 2003. Proceedings.

https://arxiv.org/abs/1811.03743
http://arxiv.org/abs/1811.03743
https://asc.llnl.gov/coral-2-benchmarks/

	Abstract
	1 Introduction
	2 Motivation
	3 PLANAR Design
	3.1 Modifications to Application Code
	3.2 Allocation of Memory and PLANAR
	3.3 Offloading of Rearrange Function
	3.4 Execution of Rearrange Functions
	3.5 Fine-Grain Synchronization Between PLANAR and Host
	3.6 Release of PLANAR Devices and Memory
	3.7 PLANAR Execution Example

	4 Methodology
	4.1 Full-System Simulation Infrastructure
	4.2 Benchmarks

	5 Results and Discussion
	5.1 Design Space Exploration
	5.2 Performance Evaluation
	5.3 Impact to the Memory Hierarchy
	5.4 Area and Power Overhead
	5.5 Comparison to Other Proposals

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

