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ABSTRACT
Deep Neural Network (DNN) inference efficiency is a key concern
across the myriad of domains now relying on Deep Learning. A
recent promising direction to speed-up inference is to exploitweight
repetition. The key observation is that due to DNN quantization
schemes—which attempt to reduce DNN storage requirements by
reducing the number of bits needed to represent each weight—the
same weight is bound to repeat many times within and across
filters. This enables a weight-repetition aware inference kernel to
factorize and memoize out common sub-computations, reducing
arithmetic per inference while still maintaining the compression
benefits of quantization. Yet, significant challenges remain. For
instance, weight repetition introduces significant irregularity in
the inference operation and hence (up to this point) has required
custom hardware accelerators to derive net benefit.

This paper proposes SumMerge: a new algorithm and set of im-
plementation techniques to make weight repetition practical on
general-purpose devices such as CPUs. The key idea is to formu-
late inference as traversing a sequence of data-flow graphs with
weight-dependent structure. We develop an offline heuristic to select
a data-flow graph structure that minimizes arithmetic operations
per inference (given trained weight values) and use an efficient
online procedure to traverse each data-flow graph and compute
the inference result given DNN inputs. We implement the above
as an optimized C++ routine that runs on a commercial multicore
processor with vector extensions and evaluate performance rela-
tive to Intel’s optimized library oneDNN and the prior-art weight
repetition algorithm (AGR). When applied on top of six different
quantization schemes, SumMerge achieves a speedup of between
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1.09×-2.05× and 1.04×-1.51× relative to oneDNN and AGR, respec-
tively, while simultaneously compressing the DNN model by 8.7×
to 15.4×.
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and its engineering → Software performance.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are used broadly, being the state-
of-the-art technique for tasks ranging from autonomous driving to
healthcare to entertainment and more [10, 23, 27, 28, 31]. As a result,
DNN inference, or evaluation, is becoming a dominant task in a
range of deployments, ranging from cloud to mobile to IoT [20, 36].
Improving the efficiency of inference in these various contexts can
have a large real-world impact.

In this vein, recent work by Hegde et al. [22] proposed to exploit
a phenomenon called weight repetition to dramatically improve
inference efficiency. The key computational primitive for DNNs is
a dot product between vectors of weights and inputs/intermediate
values. The insight is that when the maximum number of unique
values in one vector is smaller than the vector length, some val-
ues will appear multiple times within the vector. Hegde et al. [22]
exploited these repetitions in weight vectors—which are fixed at
inference time – hence the name weight repetition. For example, in
the dot product between weights {𝑥,𝑦, 𝑥} and activations {𝑎, 𝑏, 𝑐},
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one with knowledge of the repetition pattern can refactor the com-
putation into a sum-of-product-of-sums (i.e., 𝑥 (𝑎+𝑐) +𝑦𝑏) to reduce
the number of operations, especially multiplies. (By convention,
we will use letters at the beginning of the alphabet to represent
activations and letters at the end to represent weights.) Hegde et
al. [22] show how more sophisticated algorithms can simultane-
ously eliminate multiplies, adds and memory accesses, and reduce
the DNN model’s size.

Importantly, weight repetition complements existing techniques
to improve inference efficiency, such as weight sparsity (e.g., [18,
19, 30, 38]) and quantization (e.g., [8, 12–14, 18, 32, 33, 37, 39–42]).
That is, more aggressive quantization by definition gives us fewer
unique weights which means more repetitions per weight. Likewise,
weight sparsity may be viewed as a special case of weight repetition.
Sparsity exploits repetitions of the zero-valued weight while weight
repetition can exploit repetitions in any (zero or non-zero) weight.

1.1 This Paper
Although the potential benefits of exploiting weight repetition are
great, we face several challenges before adopting these techniques
in practice. The crux of the problem is that while weight repetition
reduces the amount of arithmetic per inference, it adds significant
irregularity to the computation. Case in point, the techniques in
Hegde et al. [22] call for data-dependent indirection and branching,
and require a custom accelerator to derive net benefit. Yet, the bulk
of DNN inference in the real world is not performed on accelerators,
but rather CPUs and GPUs [2, 7, 20, 36], where irregular compu-
tations are difficult to orchestrate for peak performance. Not to
mention, most mobile devices use relatively old hardware to save
cost [36], making accelerator-based innovations take even longer
to reach the market.

This paper addresses these challenges by proposing SumMerge: a
novel algorithm to improve on the arithmetic savings from weight
repetition, and implementation techniques to improve the regular-
ity of weight repetition exploitation. SumMerge enables the effec-
tive deployment of weight repetition-aware inference on general
purpose devices such as CPUs.

As discussed above, DNN computations are made up of multiple,
independent dot products. The key idea in SumMerge’s algorithm
is to formulate the set of dot products as a shared data-flow graph
where repeated sub-computations within and across dot products
can be computed once, memoized and reused later. This is related
to common subexpression elimination in compilers; here, however,
this is not a purely symbolic process, as the “expressions” form
according to repetition of weight values. Offline (statically), Sum-
Merge performs a search that computes intersections within and
across weight vectors involved in different dot products to discover
redundant sub-computations, and adds those sub-computations
as new unique vertices in the graph. For example, given two dot
products 𝑥 (𝑎 + 𝑐) + 𝑦𝑏 and 𝑥𝑤 + 𝑧 (𝑎 + 𝑐), 𝑎 + 𝑐 is a common sub-
computation and becomes a new vertex with two outgoing edges
(indicating reuse). This process is hierarchical. For example, the
terms 𝑎 and 𝑐 in the example may themselves be the result of many
additions which can be further split into additional vertices and
shared across even more dot products. Finally, online, we traverse
the data-flow graph once to perform the logical work of multiple dot

products; reducing the number of additions, multiplications, mem-
ory accesses and model size (since the single graph now encodes
multiple weight vectors).

On the implementation side, we design the first software-based
kernel for weight repetition that runs on general-purpose devices.
A key idea in the implementation is that while weight repetition-
aware kernels are highly irregular in general, there is significant
regularity along certain dimensions. Continuing the above example,
𝑥 (𝑎 + 𝑐) + 𝑦𝑏 results in irregular computation because inputs that
are summed in parentheses (e.g., 𝑎 and 𝑐) imply indirections and
the positions of parentheses imply branches. Yet, the pattern of this
irregularity—i.e., 𝑥 (?+?) +𝑦?—repeats in multiple dot products, e.g.,
due to sliding window filters in convolutions or the multiple weight
vectors in fully-connected layers. From a software point of view,
DNN inference is a nested series of loops performing sequences
of dot products; we pull the irregularity into the outer loops, and
capture the regular patterns in the innermost loops. This allows
us to leverage performance-oriented features on general-purpose
devices such as vector extensions.

Putting it all together, our kernel is written from scratch in C++
and outperforms the state-of-the-art industry library oneDNN [5],
for performing dense CNN inference on CPUs, and the prior-art
weight repetition algorithm [22] (implemented and optimized in
C++ by us). We implement our kernel on top of multiple existing
quantization schemes to simultaneously reap performance improve-
ment and model compression from repeated weights.
Contributions. This paper makes the following contributions:

(1) We propose SumMerge, a new algorithm for performing
weight repetition-aware inference. To the best of our knowl-
edge, SumMerge is the most efficient weight repetition-
aware inference procedure both in terms of arithmetic re-
duction and model compression.

(2) We design, implement and optimize a software-only ker-
nel for SumMerge which runs on CPUs. To the best of our
knowledge, this is the first work to assess the feasibility of
exploiting weight repetition on general-purpose devices. We
present multiple new techniques to improve efficiency on
these devices.

(3) We evaluate our prototype against oneDNN, Intel’s state-
of-the-art library for DNN inference [5], and the prior-art
weight repetition scheme (called AGR [22]) running on
six different quantization schemes. SumMerge achieves a
speedup of between 1.09×-2.05× and 1.04×-1.51× relative
to oneDNN and AGR, respectively, while simultaneously
compressing the DNN model by 8.7× to 15.4×.

While we evaluate on CNNs, many of our techniques generalize
to other layer types, whose core operations are dot products (such
as MLPs). Moreover, while we evaluate using a CPU platform, we
expect our techniques to be useful on other platforms, such as
GPUs.
Open source.We have open-sourced our prototype kernels of both
SumMerge and AGR to the community here: https://github.com/
rohan-bp/summerge.
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2 BACKGROUND
2.1 Convolutional Neural Network Inference
While our techniques apply to any DNN-based computation that
can be formulated as a matrix multiply, we focus on and explain
ideas in terms of convolutional layers in Convolutional Neural
Networks (CNNs) due to their ubiquity and high computational
cost relative to other layer types [11, 21, 26, 34, 35]. A convolutional
layer consists of applying 𝐾 ‘sliding-window’ filters of dimension
𝑅×𝑆×𝐶 to a𝑊 ×𝐻 ×𝐶 dimension input, generating a (𝑊 −𝑅+1) ×
(𝐻 −𝑆 +1) ×𝐾 output. Each layer’s output becomes the next layer’s
input. (Throughout the paper, we use × to refer to dimensions, and
∗ to refer to scalar multiplication.) For each spatial position in the
input and each filter, this corresponds to a dot product between
a vector of weights (i.e., this layer’s filter values) and a vector of
input activations (i.e., the previous layer’s output values).

For a layer with unit stride and 0 bias, this can be expressed as:

O[(𝑘, 𝑥,𝑦)] =
𝐶−1∑︁
𝑐=0

𝑅−1∑︁
𝑟=0

𝑆−1∑︁
𝑠=0

F[(𝑘, 𝑐, 𝑟, 𝑠)] ∗ I[(𝑐, 𝑥 + 𝑟,𝑦 + 𝑠)] (1)

for 0 ≤ 𝑘 < 𝐾, 0 ≤ 𝑥 ≤𝑊 −𝑅, 0 ≤ 𝑦 ≤ 𝐻−𝑆 , whereO, I and F are
output activations, input activations and filter weights, respectively.
As is the case with other works targeting inference (e.g., [17, 22]),
we assume a batch size of 1, noting that the techniques described
extend to larger batch sizes as well.

2.2 Quantization and Activation Group Reuse
There has been much recent work on quantization schemes that
reduce the number of bits needed to represent the weights (and
activations) of DNNs while preserving model accuracy [8, 12, 13, 18,
32, 33, 37, 39–42]. This decreases thememory footprint of DNNs and
can also be exploited to increase ALU throughput (e.g., for SIMD
implementations, we can fit more elements in a fixed bit-width
vector). Importantly, quantization implies that the DNN weights
are limited to a smaller number 𝑈 of distinct values. One effect
of decreasing 𝑈 is that the number of times a given weight value
appears in each layer (a.k.a. weight repetition) goes up.

Activation Group Reuse (AGR) is a weight-aware inference algo-
rithm proposed by Hegde et al. [22] that takes advantage of weight
repetition to optimize DNN inference. AGR exploits weight repeti-
tion to reduce the number of arithmetic operations and memory
reads, and also compresses the DNN model size, as described below.
Following prior quantization schemes, AGR assumes all filters in a
layer share the same 𝑈 . For inference, the DNN weights are fixed,
known well ahead of time, and typically used for a large number
of inferences; thus, we can afford to do extensive weight-centric
pre-processing if it gives a boost to inference performance and/or
efficiency.

2.2.1 Step 1: Exploiting Intra-Filter Weight Repetition. For a filter
within a given CNN layer, AGR reduces multiplications by factoring
the weights in the filter and computing the dot product as a two-
level expression. Figure 1 depicts the factored version of the dot
product between Input, a vector of input activations, and Filter,
a vector of weights. In this example, the weights in the filter are
quantized such that they are either 𝑥 or 𝑦; this would be the case if
the network had 𝑈 = 2.

a b c d e f

x y y x x yFilter

Input Odense= xa + yb + yc + xd + xe + yf

Ofactor= x(a + d + e) + y(b + c + f)

Figure 1: Exploiting intra-filter repetition by factoring
weights within each dot product (Section 2.2.1). Odense and
Ofactor represent the original and factored dot products, re-
spectively.

a b c d e f

x y y x x yFilter 1

Input

x(a +  d +   e) + y(b + c +  f)

x x x x y yFilter 2

x y x y y yFilter 3

x(a +  d) + ye +  x(b + c) +yf

 xa + yd +  ye +   yb +xc  +yf

Figure 2: Exploiting inter-filter repetition, i.e., activation
group reuse, by recursively factoring across dot products
(Section 2.2.2). The terms 𝑎 + 𝑑 and 𝑏 + 𝑐 can be reused. Note,
AGR does not reuse partial products, e.g., 𝑦𝑒 or 𝑦𝑓 [22]. The
filter expressions have activations aligned to emphasize the
recursive structure: AGR looks within activation groups to
build sub-activation groups, etc.

Factoring allows us to first sum activations in Input that are
to be multiplied by the same weight in Filter, then multiply the
sum by the corresponding weight. Repeating this procedure for
each unique weight and accumulating these products (that are
summed first) permits computing the dot product more efficiently
by avoiding superfluous multiplications. Following notation from
Hegde et al. [22], input activations that are to be summed locally
such as (𝑎, 𝑑, 𝑒) and (𝑏, 𝑐, 𝑓 ) (in Figure 1), are referred to as activation
groups. Adopting this strategy during inference reduces the number
of multiplications in each dot product to at most𝑈 – the number of
unique weights used by the quantization scheme. The consequent
reduction in arithmetic operations is substantial, e.g., using AGR
with the TTQ scheme [42] reduces the number of multiplies from
hundreds or thousands per dot product to ≤ 3.

2.2.2 Step 2: Exploiting Inter-Filter Weight Repetition. As can be
seen from Equation 1, for a given spatial position, the input is in-
variant across all the dot products for the 𝐾 different filters. This
allows AGR to recursively factor groups of dot products and ex-
ploit overlap between activation groups across two or more filters,
further reducing the number of arithmetic operations. See Figure 2
for an example, where Filter from Figure 1 now appears as Filter 1.
Here, inputs (𝑎, 𝑑, 𝑒) form an activation group that will be locally
summed for Filter 1. Recursively looking at the activations (𝑎, 𝑑, 𝑒)
in Filter 2, we find that (𝑎, 𝑑) are multiplied by the same weight in
Filter 2, so (𝑎 + 𝑑) is computed just once and used in the computa-
tion for Filter 1 and Filter 2. This is shown with the dashed box in
Figure 2. Hegde et al. refers to this as activation group reuse (AGR).

AGR applies this idea recursively to find overlap across groups
of 𝐺 filters, where 𝐺 is chosen offline. Specifically, it looks for
“sub-activation groups” for Filter 2 within each activation group of
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Filter 1, “sub-sub-activation groups” for Filter 3 within each sub-
activation group Filter 2, so on to Filter 𝐺 . We call (sub-*)activation
groups of Filter 𝐺—i.e., in Filter 3 in Figure 2—the innermost ac-
tivation groups. These innermost activation groups are computed
first and reused to compute Filter 1 to Filter 𝐺 − 1, the groups in
Filter 𝐺 − 1 are used in Filter 1 to Filter 𝐺 − 2, and so on. This
strategy enables a simple offline recursive procedure to determine
(sub*-)activation group structure and metadata, which is then used
during the online step to perform optimized inference.

The computation savings depends on choosing the right𝐺 given
the number of unique weights𝑈 and the filter dimensions 𝑅×𝑆 ×𝐶 .
Choosing 𝐺 to be too small will result in smaller-than-ideal sav-
ings because the algorithm could otherwise build (sub-*)activation
groups in subsequent filters. On the other hand, if 𝐺 is too large,
(sub-*)activation groups become too small and the cost of transfer-
ring results between dot products increases. Suppose, for simplicity,
that weight values are uniformly distributed. Then the expected size
of the innermost activation group size is (𝑅 ∗ 𝑆 ∗𝐶)/𝑈𝐺 . To maxi-
mize efficiency, AGR uses the largest𝐺 such that (𝑅∗𝑆 ∗𝐶)/𝑈𝐺 ≥ 1,
which indicates that the innermost activation group is non-empty
on average. (If the innermost activation group is empty, AGR does
not save computation and just adds metadata-related overhead.) If
weights follow another distribution (e.g., Laplace), 𝐺 must be set
accordingly, so that innermost activation group size is still ≥ 1 on
average.

3 ALGORITHM
3.1 Main Ideas and Overview
We now propose SumMerge, a new method to exploit weight repe-
tition that significantly outperforms AGR. We start by revisiting
Figure 2, to illustrate a key limitation in the AGR algorithm. While
AGR ensures that sub-activation groups (𝑎, 𝑑) and (𝑏, 𝑐) are com-
puted only once, it cannot reuse computation related to (𝑒, 𝑓 ) which
is a sub-activation group common to both Filter 2 and Filter 3. This
is because the recursive-factorization strategy adopted by AGR
does not allow sub-activation groups in Filter 𝑖 to be built across
activation groups in Filter 𝑖−1. In other words, when Filter 1 builds
activation groups (𝑎, 𝑑, 𝑒) and (𝑏, 𝑐, 𝑓 ), this prevents Filter 2 and
Filter 3 from exploiting repetition in (𝑒, 𝑓 ) because 𝑒 and 𝑓 are
members of different activation groups in Filter 1.

This issue is fundamental to how AGR recursively builds filters,
and the missed opportunity increases as a function of the𝐺 parame-
ter (Section 2.2.2). Section 3.6 shows this quantitatively by showing
arithmetic reduction for AGR compared to SumMerge.

Another consequence of AGR’s design is that while the num-
ber of multiplies per dot product is equal to 𝑈 when 𝐺 = 1 (e.g.,
Figure 1), it grows as a function of 𝑂 (𝑈𝐺 ) in general. For exam-
ple, in Figure 2 there are 12 multiplies needed to evaluate three
dot products: 2 for Filter 1, 4 for Filter 2, 6 for Filter 3. The lower
bound in multiplies is significantly lower—𝑈 ∗𝐺 or 𝑈 ∗ 𝐾 for all
filters—corresponding to one multiply for each unique weight in
each filter.

Optimization metrics. Throughout this section, our goal will
be to perform a convolution in as few arithmetic operations (adds
and multiplies) as possible. Note, adds and multiplies have the same

a b c d e f

x y y x x yFilter 1

Input

x(a + d + e) + y(b + c + f)

x x x x y yFilter 2

x y x y y yFilter 3

x(a + b + c + d) + y(e + f)

x(a + c) + y(b + d + e + f)

x y x y x y

a + d eb + c a + cf b + d e + f

Filter 1 Filter 2 Filter 3

Figure 3: SumMerge graph generation example (using the
same filters as were used in Figure 2). SumMerge evaluates
the data-flow graphmaking up the factorized expressions for
each of the three filters (shown in top half), while ensuring
that shared sub-computations, e.g., 𝑎+𝑐, 𝑏+𝑑 and 𝑒+ 𝑓 are only
computed once. Square boxes with curved edges represent
multiplies to the value inside the box. Circles represent graph
vertices, which involve a sum accumulation over the values
on the incoming edges. Observe, to evaluate 3 dot products
for 𝐾 = 3 filters, SumMerge requires the minimum 𝑈 ∗ 𝐾
multiplies, as desired.

performance cost on our implementation platform (Section 4.1).
Reducing either also reduces the number of memory reads.

3.2 SumMerge Algorithm
The main idea behind SumMerge is to reformulate the dot products
making up the convolution as a traversal over a single data-flow
graph, where vertices in the graph represent shared computations
within/across the dot products and edges represent data transfers.
Figure 3 shows how this idea addresses the missed opportunity
from the example in Figure 2. Here, we sum fragments of activation
groups individually, and memoize/apply those results to build acti-
vation groups for each filter. This allows us to now take advantage
of all three groups of shared terms (𝑎, 𝑑), (𝑏, 𝑐) and (𝑒, 𝑓 ) as well
as others. Although the example only shows a two-level graph, in
general, a graph will contain more levels as the algorithm discovers
additional sub-computations and sub-sub-computations that can
be shared across different subsets of filters.

The algorithm consists of two phases: First (Section 3.3), an
offline step takes a trained CNN layer and generates data-flow
graphs capturingmemoization opportunities across groups of filters
as described above. Second (Section 3.4), an online step takes a
vector of input activations and the graphs from the previous step,
and performs the inference operation.

Unlike AGR, whose offline step is trivial computationally (Sec-
tion 2.2), the offline step for SumMerge requires a non-trivial search
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Figure 4: SumMerge offline phase (Section 3.3): generating
the data-flow graph. A Vertex is a set of integers (indices), an
Edge is a 2-tuple of Vertex. Dimensionality for inputs (Layer
and Weights) are shown in brackets. Filter ID and Weight ID
are integers in the range [0, 𝐾) and [0,𝑈 ), respectively. { and
} represent types of data structures. Loop bound notation
assumes open interval upper bounds; i.e., 𝑖 : 0 → 𝐾 means
𝑖 ∈ [0, 𝐾).

Input: Layer[𝐾 ] [𝑅 ∗ 𝑆 ∗𝐶 ],Weights[𝑈 ]
Output: Vertices, EdgeLists, OutputMap

1 List{Vertex} Vertices;
2 List{List{Vertex ID}} EdgeLists;
3 List{(Vertex ID, Filter ID,Weight ID) }OutputMap;
4 // Add sink vertices to the graph
5 for 𝑖 : 0 → 𝐾 do
6 for 𝑗 : 0 → 𝑈 do
7 vertex = GroupByWeight(Layer[𝑖 ],Weights[ 𝑗 ]);
8 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝐷 = Length(Vertices) ;
9 Vertices.Append(vertex);

10 EdgeLists.Append( [ ]) ;
11 OutputMap.Append( (𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝐷 , 𝑖 , 𝑗 ));
12 end
13 end
14 // Remove intersections from vertices
15 while True do
16 List{Set{Int}} Intersections;
17 𝑙 = Length(Vertices) ;
18 for 𝑖 : 0 → 𝑙 , 𝑗 : 0 → 𝑙 do
19 if 𝑖 ≠ 𝑗 then
20 Intersections.Append(Vertices[𝑖 ] ∩ Vertices[ 𝑗 ]);
21 end
22 end
23 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 , bestIntersection = MaxScore(Vertices, Intersections) ;
24 if𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 == 0 then
25 break;
26 end
27 // Add the new vertex to the graph
28 𝑛𝑒𝑤𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷 = Length(Vertices) ;
29 Vertices.Append(bestIntersection);
30 EdgeLists.Append( [ ]) ;
31 for 𝑖 : 0 → Length(Vertices) do
32 if bestIntersection ⊂ Vertices[i] then
33 Vertices[i] = Vertices[i] - bestIntersection;
34 EdgeLists[i] .Append(𝑛𝑒𝑤𝑉𝑒𝑟𝑡𝑒𝑥𝐼𝐷);
35 end
36 end
37 end
38 // Store a topological ordering of the vertices
39 Vertices, EdgeLists,OutputMap =
40 TopologicalSort(Vertices, EdgeLists,OutputMap);
41 return Vertices, EdgeLists, OutputMap;

to determine which sub-computations to share across filters. How-
ever, this step only needs to be computed once, offline, per trained
network and is dwarfed by the time to train the network.

3.3 Step 1 (Offline): Graph Creation
The offline step takes as input a trained CNN layer and generates
a graph data structure (edges, vertices) that represents the data-
flow for the online step (Section 3.4). By evaluating the data-flow
graph once, we will evaluate 𝐾 dot products, i.e., all filters for a
given spatial position in the input. In what follows, we represent

Figure 5: The MaxScore routine, used to select which vertex
will be split next. The Index sub-routine returns the index
of the first argument within the second. Intersections and
Vertices are defined in Figure 4.

Input: Vertices, Intersections
Output:𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 , bestIntersection

1 List{Int} Scores;
2 for 𝑖 : 0 → Length(Intersections) do
3 𝑠𝑐𝑜𝑟𝑒 = 0;
4 for 𝑗 : 0 → Length(Vertices) do
5 if Intersections[𝑖 ] ⊆ Vertices[ 𝑗 ] then
6 𝑠𝑐𝑜𝑟𝑒 += Length(Intersections[𝑖 ]);
7 end
8 end
9 Scores.Append(𝑠𝑐𝑜𝑟𝑒);

10 end
11 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 = Max(Scores);
12 bestIntersection =
13 Intersections[Index(𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒, Scores) ];
14 return𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 , bestIntersection;

network layer Layer as a 2-dimensional array of weight values, of
dimensions 𝐾 × (𝑅 ∗𝑆 ∗𝐶). As in AGR, we assume there are at most
𝑈 unique weights in Layer.

Graph building is split into two sub-steps. First, we create an ini-
tial data-flow graph where no sub-computations are shared across
dot products. Second, we progressively split these vertices into
smaller vertices with larger out-degree. The idea is that each addi-
tional outwards edge represents a memoization to a later computa-
tion. We now describe each sub-step in detail.

3.3.1 Building Initial Vertices. We first build initial vertices, which
will be the starting point for Section 3.3.2. Given Layer, we first
group all locations (indices, representing input activations) in each
filter that share the same weight, i.e., based on the activation groups
for each filter (Section 2.2.1). Since there are no more than𝑈 unique
weights in each filter, and 𝐾 filters, this results in 𝑈 ∗ 𝐾 groups,
some of which may be empty.

Each of the above groups is a sink vertex in the graph. For ex-
ample, Figure 3 shows 6 sink vertices (the colored circles), where
𝐾 = 3 and𝑈 ∗𝐾 = 6. Each vertex represents a sum over the inwards
edges. For example, if a vertex v∗ has inwards edges (v𝑖 , v∗), then
v∗ =

∑
𝑖 v𝑖 , where each vertex v𝑖 is analogously defined. Thus, in

the figure, the final values for the sink vertices of Filter 1 are 𝑎+𝑑+𝑒
and 𝑏 + 𝑐 + 𝑓 .

We next populate a data structure called the OutputMap, which
associates each sink vertex with a filter ID from 0 to 𝐾 − 1 and a
weight ID from 0 to𝑈 − 1. In the online step, this tells us to which
filter each sink vertex corresponds, and by which weight to multiply
the sink vertex.

Together, this sub-step is shown in Lines 5-13 of Figure 4.

3.3.2 Splitting Vertices. Starting with the above initial data-flow
graph, we now perform transformations on the graph to reduce
the arithmetic required to ‘traverse’ the graph while preserving
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Figure 6: Splitting graph vertices for three filters, showing
one activation group per filter for simplicity. The weightmul-
tiplied to each activation group is arbitrary, hence marked ‘?’.
“Initial graph” represents the output of Section 3.3.1. The first
split reuses the computation𝑏+𝑐+𝑑 because that computation
is the largest overlapping sub-computation in the first two
filters (Section 3.3.2). The notation +𝑎 indicates this vertex is
the result of summing the values on its inwards edges plus
𝑎. Thus, the number of addition operations to evaluate each
graph is proportional to the number of + symbols in each
graph and we want to minimize this value. The second split
further divides the sub-computation from the first split to
reuse computation for the third filter. Note: Filter 1-3 shown
here are different than those used in previous figures.

semantic equivalence.1 Our approach is to iteratively split the ver-
tices formed in the previous sub-step, to discover opportunities to
memoize computations.

Figure 6 shows an example vertex split. The indices (correspond-
ing to input activations) comprising a vertex form a set, and we now
perform set intersections across pairs of vertices (sets). The size of
the intersection indicates overlap between vertices, and this overlap
represents a common sub-computation (sequence of additions) that
can be computed once and reused later. We represent this common
sub-computation by removing the indices in the intersection from
both vertices and building a new vertex containing the common

1Note, we assume multiplication and addition are associative and commutative. While
these properties do not hold for our current evaluation due to our use of floating point
(Section 4.1), they typically do hold for inference due to pervasive use and upcoming
hardware support for fixed point [6].

indices, with outward edges pointing to each of the input vertices,
as shown in the figure “After split 1.”

The challenge is, given the 𝑈 ∗ 𝐾 initial vertices, there are
(𝑈 ∗ 𝐾)2 − 𝑈 ∗ 𝐾 pairs of vertices from which we must choose
to intersect. Further, our choice of which intersections to turn into
vertex splits may impact the quality of results (since multiple in-
tersections will involve the same input activations). In general,
deciding which vertex splits to perform, and in what order, is a
complex combinatorial search problem. For this paper, we propose
a greedy heuristic called MaxScore which finds good solutions
reasonably quickly. While asymptotically this procedure has com-
plexity𝑂 ((𝑅 ∗𝑆 ∗𝐶 ∗𝐾)3) subset-comparison (⊆) operations for the
entire graph-creation process (all of Figure 4), it takes only seconds
to minutes for each DNN layer we evaluate in Section 5.

The heuristic first generates all (𝑈 ∗ 𝐾)2 −𝑈 ∗ 𝐾 intersections,
i.e., computes v𝑖 ∩ v𝑗 for all vertices v𝑖 , v𝑗 where 𝑖 ≠ 𝑗 (Figure 4,
Lines 18-22). Next, we rank these intersections (Figure 5) and pick
the highest-ranking intersection (a set denoted bestIntersection).
The core operation in MaxScore is Figure 5, Line 6, which encodes
two ideas:

• An intersection’s score is proportional to the number of
vertices that intersection is a subset of (which indicates the
degree of reuse).

• An intersection’s score is proportional to the size (Length)
of the intersection (which indicates a greater savings per
reuse).

If the size of bestIntersection is 0, this implies there are no over-
laps left to exploit, and that graph generation is complete. Oth-
erwise, we add the bestIntersection as a new vertex to the graph,
remove the indices in bestIntersection from every vertex v where
bestIntersection ⊂ v, and add a directed edge that points from
bestIntersection to each such v (Figure 4, Lines 30-36). We repeat
the above steps (i.e., we re-generate all possible intersections be-
tween all pairs of vertices, now also counting the new vertex added
by the split, and subsequent steps) until the algorithm terminates
with a bestIntersection of 0. Alternatively, an implementation could
terminate early when all vertices reach a specified minimum size.
Finally, we note that while Figure 4, Line 20 is shown to recompute
all intersections during each iteration (for simplicity), our imple-
mentation only recomputes intersections for vertices that were split
in the previous iteration (to save compute).

To evaluate the graph (Section 3.4), we need to perform compu-
tation (additions) at each vertex and data transfers for each edge.
To make this process more efficient during the online step, we per-
form a topological sort on Vertices (Figure 4, Line 40). Note, sorting
Vertices requires that 𝑣𝑒𝑟𝑡𝑒𝑥𝐼𝐷 and other fields be updated in other
data structures. Hence, evaluation involves a single scan of the
vertex list representing the graph, from sources to sinks, where
each step requires gather-, arithmetic- and scatter-style operations.

Partitioning the filters into groups of𝐺 . Generating a single
data-flow graph for all𝐾 filters typically results in less-than-optimal
arithmetic reduction because the graph has a relatively high number
of edges (data transfers). Thus, for each layer, we break the 𝐾
filters into groups of𝐺 , similar to AGR. This is conceptually simple:
in the above explanations, we replace 𝐾 with 𝐺 and only allow
intersections to be done within the group of 𝐺 filters. Then, to
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Figure 7: SumMerge online phase (Section 3.4): Performing
inference. NumType refers to the data type for weights and
activations. Vertices, EdgeLists and OutputMap are output dur-
ing the offline step (Figure 4). Elements of OutputMap are 3-
tuples as defined in Figure 4. (Not shown) We assume Output
is 0-initialized at the start of the operation.

Input: Inputs[𝑊 ∗𝐻 ∗𝐶 ],Weights[𝑈 ], Vertices, EdgeLists, OutputMap
Output: Output[ (𝑊 − 𝑅 + 1) ∗ (𝐻 − 𝑆 + 1) ∗𝐾 ]

1 InputTile = List{NumType};
2 Graph = List{NumType};
3 // Iterating over every spatial position
4 for 𝑖 : 0 →𝑊 , 𝑗 : 0 → 𝐻 do
5 // Phase 1: Copy the InputTile
6 𝑖𝑛𝑑𝑒𝑥 = 0;
7 for 𝑐 : 0 → 𝐶 , ℎ : 𝑗 → ( 𝑗 + 𝑆) , 𝑤 : 𝑖 → (𝑖 + 𝑅) do
8 InputTile[𝑖𝑛𝑑𝑒𝑥 ] = Input[𝑊 ∗𝐻 ∗ 𝑐 +𝑊 ∗ ℎ + 𝑤 ];
9 𝑖𝑛𝑑𝑒𝑥 += 1;

10 end
11 // Phase 2: Accumulate incoming edges
12 for 𝑣 : 0 → Length(Vertices) do
13 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = 0;
14 for 𝑥 : 0 → Length(EdgeLists[𝑣 ]) do
15 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 += Graph[EdgeLists[𝑣 ] [𝑥 ] ];
16 end
17 for 𝑥 in Vertices[𝑣 ] do
18 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 += InputTile[𝑥 ];
19 end
20 Graph.Append(𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 );
21 end
22 offset = ( (𝑊 − 𝑅 + 1) (𝐻 − 𝑆 + 1) ∗ ℎ + 𝑤) ∗𝐾 ;
23 // Phase 3: Multiply sink vertices with weights
24 for 𝑥 : 0 → Length(OutputMap) do
25 mapping = OutputMap[x ]
26 𝑖𝑛𝑑𝑒𝑥 = offset +mapping[0];
27 𝑠𝑢𝑚 = Graph[mapping[1] ];
28 𝑤𝑒𝑖𝑔ℎ𝑡 = Weights[mapping[2] ];
29 Output[𝑖𝑛𝑑𝑒𝑥 ] += 𝑠𝑢𝑚 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 ;
30 end
31 end
32 return Output;

evaluate all 𝐾 dot products, we evaluate ⌈𝐾/𝐺⌉ data-flow graphs—
one for each group of 𝐺 filters.

The best value of𝐺 is hard to predict, so we test different values,
and choose the best one. The trade-off is: 1) Higher 𝐺 increases
irregularity by increasing the number of vertex splits, i.e., increases
the time to evaluate each graph. 2) Higher 𝐺 implies that more
computation is shared across dot products, i.e., reduces the number
of graphs that need to be evaluated to perform inference.

3.4 Step 2 (Online): Inference
The online step takes a vector of input activations and the data-
flow graphs constructed in the previous section (Section 3.3) and
performs the inference operation. Code for the entire operation is
shown in Figure 7.

For each spatial position 𝑖 and 𝑗 , the computation has three
phases. First (Line 5), we copy the input activations being computed
on at this spatial position to a data structure called InputTile. Second
(Line 11), we traverse the data-flow graph and performs all add
operations. Specifically, for each vertex in the graph, we:

• Accumulate values on all incoming edges into that vertex
(Line 15).

• Accumulate input activations corresponding to the indices
in the vertex itself (Line 18).

Edge values are stored in a temporary structure called Graph and
input activations are read directly from InputTile. Third (Line 23),
we iterate through the OutputMap to perform multiplications on
the partial sums formed during phase 2.

Hardware-level performance considerations. We wrote the
kernel in the above fashion to make it easier to performance opti-
mize. There are two points to emphasize now. First, we copy input
activations into InputTile to improve data locality in the inner loop.
Note that while building InputTile is done online and does take
time, it is a relatively simple memory copy operation (that our tar-
get platform will be able to accelerate with vector moves) and is
amortized over the 𝐾 dot products computed at that spatial posi-
tion. Second, while the innermost loops (Lines 15 and 18) require
expensive indirections, the indirection pattern depends only on the
data-flow graph and not the spatial position (𝑖, 𝑗 ). Further, since
indirections are relative to each spatial position, corresponding in-
put activation indices—i.e., for the same indirection but at different
spatial positions—are related by a simple affine function. Putting
these together, we will be able to vectorize the inner loop without
the use of expensive gather instructions. More details are given in
Section 4.

3.5 Other Considerations
Sparsity. Although sparsity can be viewed as a special case of

weight repetition, the savings are different because of the absorption
property 𝑥 ∗ 0 = 0. We exploit sparsity by forcing GroupByWeight
(Figure 4, Line 7) to return an empty vertex whenever the 2nd
argument (Weights[ 𝑗]) is 0. This means the vertex will have no
incoming edges/partial sum accumulation and that the kernel will
skip all computation needed by only the 0-valued weight.

Per-layer vs. per-filter weights. Depending on the quantization
scheme, the same 𝑈 weights may be shared across all filters (e.g.,
TTQ [42]) or each filter may have a distinct𝑈 weights (e.g., LQ [39]
and LS [32]). Up to this point, the description has been consistent
with the former case. For the latter case, OutputMap is modified
to store weights, not weight IDs, and Weights (input to Figure 4)
becomes𝑈 × 𝐾-dimensional. Correspondingly, Line 28 of Figure 7
indirects into the mapping, not Weights.

3.6 Improvement over AGR
Figures 9-10 compare the arithmetic reduction possible for Sum-
Merge and AGR (Section 2.2), for different synthetic weight distri-
butions, different numbers of unique weights (𝑈 ) and filter sizes
(𝑅 ∗ 𝑆 ∗ 𝐶). We study both uniformly- and Laplacian-distributed
weights as we find these to represent opposite extremes in real
DNN layers. For uniform distributions, one of the 𝑈 weights is
the 0 weight. We show the Laplacian used to generate the data
in Figure 8. To sample Laplacian-distributed weights, we create 𝑈
bins of uniform width from -1 to 1 (Figure 8) and assign each bin
a weight value given by the bin midpoint. We evaluate 𝑈 that are
odd; hence, one weight is always the 0-valued weight and 0 is the
most common weight.
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Figure 8: Probability den-
sity function of a Laplace
distribution with mean =

0.0 and scale = 1.0.

We define the number of
arithmetic operations as the
sum of two-input additions and
multiplications. As expected,
both schemes reduce arithmetic
relative to a conventional dot
product, and benefit from
fewer unique weights (smaller
𝑈 ) and larger filters (larger
𝑅 ∗ 𝑆 ∗ 𝐶). There are two
additional takeaways. First,
given both uniformly- and
Laplacian-distributed weights,
SumMerge improves arithmetic
reduction relative to AGR, for
a given𝑈 and 𝑅 ∗ 𝑆 ∗𝐶 . Second,
while AGR sees roughly the
same improvement for both
weight distributions, SumMerge sees a significant improvement
given a Laplacian distribution.

Figure 9: Arithmetic reduction (higher is better) for Sum-
Merge and AGR given uniformly-distributed weights for dif-
ferent numbers of unique weights (𝑈 ) and filter sizes (𝑅∗𝑆 ∗𝐶).
Results are relative to a dense computation.

Figure 10: Same as Figure 9 but given Laplacian-distributed
weights (with mean = 0 and scale = 1). We do not show data
for𝑈 = 2 because splitting the Laplacian into two bins results
in a uniform distribution.

To understand why, note from Figure 8 that weight distribution
is skewed given a Laplacian. Call the most frequent weight the
common weight. Due to its high frequency, activation groups related
to the common weight (for both AGR and SumMerge) contribute a
relatively large percentage of the total arithmetic. Yet, with AGR
the activation group formed for the common weight becomes (sub-
*)activation groups of rapidly shrinking size as a function of 𝐺

because in AGR, (sub-*)activation groups must be subsets of their
parent activation groups (Section 2.2.2). SumMerge does not have
this restriction (Section 3.1), enabling it to save more computation.

4 KEY OPTIMIZATION TECHNIQUES
We developed a C++ implementation of SumMerge and compared
performance with oneDNN, Intel’s state-of-the-art library for deep
learning. While SumMerge is efficient with regard to the number
of arithmetic operations, it also introduces irregularity in the form
of branches and more frequent, irregular memory accesses when
compared to oneDNN which instead performs a dense version of
convolution. To mitigate these overheads and improve performance
we employ several optimizations discussed below.

4.1 Evaluation Platform
To provide context for some of our design decisions, we briefly
describe our evaluation platform’s hardware while noting that our
techniques can be easily extended to other platforms with SIMD
support. We consider a single node system comprising a general-
purpose processor with 6 Intel Skylake cores and support for SIMD.
In each cycle, each core can execute two AVX-512 arithmetic in-
structions (e.g., vector fused multiply-add, or VFMA), read two
cache lines (64B) and write one cache line from/to the L1 data
cache, and retire four instructions. In addition, FP vector add and
vector multiply have the same latency and throughput; FP scalar
add and multiply have the same throughput, but FP scalar multiply
has two cycles longer latency [16]. Further, each core has 32 vector
registers, a 32KB L1 data cache, a 1MB L2 cache, and a 1.375MB
slice of a shared, non-inclusive L3 cache.

4.2 Exposing Parallelism and Vectorization
Each iteration of the spatial traversal (Figure 7, Line 4) is indepen-
dent in both the𝑊 and 𝐻 dimensions, i.e., there are no data depen-
dencies between different iterations. Further, there is no control-
flow divergence between iterations, i.e., we use the same Vertices,
EdgeLists, and OutputMap in each iteration and all the control
logic in phases 2 and 3 of the online step (Line 11 and Line 23 of
Figure 7) depend on values from these data structures.

The above implies that we can parallelize and vectorize the spa-
tial traversal. Specifically, we use vector instructions throughout
the inner loop and process 𝑉𝑒𝑐𝑡𝑜𝑟𝑊 𝑖𝑑𝑡ℎ iterations of the𝑊 loop
in a single iteration. Further, since each core can execute two vec-
tor instructions in a single cycle, and since our hardware’s vector
arithmetic latency is multiple cycles, we unroll the 𝐻 loop by a
factor𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑈𝑛𝑟𝑜𝑙𝑙𝑖𝑛𝑔. This ensures we have enough instruction
level parallelism (ILP) in the inner loop to fully utilize the vector
functional units in a core.

4.3 Tiling
If the implementation uses vector instructions and loop unrolling as
detailed above, the size of InputTile increases from𝑅∗𝑆∗𝐶 to𝑅∗(𝑆+
𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑈𝑛𝑟𝑜𝑙𝑙𝑖𝑛𝑔− 1) ∗𝐶 ∗𝑉𝑒𝑐𝑡𝑜𝑟𝑊 𝑖𝑑𝑡ℎ. Similarly, if the number
of vertices in the original graph is𝑉 , the memory footprint ofGraph
increases from 𝑉 entries to 𝑉 ∗𝑉𝑒𝑐𝑡𝑜𝑟𝑊 𝑖𝑑𝑡ℎ ∗𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑈𝑛𝑟𝑜𝑙𝑙𝑖𝑛𝑔
entries. This could mean that both Graph and Inputs no longer fit
even in the L3 cache, resulting in long-latency memory accesses.
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To mitigate this effect while still utilizing unrolling and vector
instructions, we reduce the working set size from 𝑅 ∗𝑆 ∗𝐶 indices to
𝑅 ∗𝑆 ∗𝐶𝑡 indices where𝐶𝑡 describes the tile size in the𝐶 dimension.
A consequence of this scheme is that we now only take advantage
of repetitions in a volume of 𝑅 ∗ 𝑆 ∗ 𝐶𝑡 as opposed to 𝑅 ∗ 𝑆 ∗ 𝐶 ,
leading to reduced arithmetic reduction. Also, inference evaluates
(𝐾/𝐺) ∗ (𝐶/𝐶𝑡 ) graphs instead of the (𝐾/𝐺) graphs per spatial
position.

4.4 Multi-threading
While we have described a single-threaded algorithm meant to
run on one physical processor core, there are multiple ways to
multi-thread the computation to take advantage of multiple cores.
We opt for a simple multi-threading strategy whereby inference
is performed on multiple independent inputs, and each physical
core computes on one input. This enables different threads to share
model parameters (e.g., Vertices, EdgeLists, etc.). As each thread is
designed to have sufficient ILP to saturate VFMA bandwidth per
core (Section 4.2), we only run one thread per physical core, i.e.,
disable hyperthreading.

Alternatively, in a scenario involving single-input inference,
there are multiple ways to multi-thread work within a single in-
put due to the abundant coarse-grain parallelism present in DNN
computations. For example, we can parallelize across spatial posi-
tions (𝑊,𝐻 ) or graphs (of which there are ⌈𝐾/𝐺⌉ where 𝐾 ≫ 𝐺 is
typical). Each strategy enables different data sharing. For example,
parallelizing across graphs increases the working set size related to
the Graph data-structure but shares InputTile across threads. Par-
allelizing across spatial positions has the opposite characteristics.

5 EVALUATING PERFORMANCE
We now evaluate SumMerge on multiple real quantized DNNs and
synthetic configurations.

5.1 Methodology
Test environment. All runs for all configurations are performed
on an Intel Core i7-7800X CPU (matching the description in Sec-
tion 4.1). This machine has 6 physical cores, 32/32 KB of L1 instruc-
tion/data cache per core, 1 MB of L2 cache per core, and 8.25 MB
of shared non-inclusive L3 cache. We disable simultaneous multi-
threading as well as dynamic frequency scaling and enable 2MB
pages.

Test methodology. All speedup numbers correspond to the
online step (Section 3.4). The offline step time (Section 3.3) is not
shown but takes a few seconds to several minutes, depending on
𝑅, 𝑆 , 𝐶 , 𝐶𝑡 , 𝐾 and 𝐺 . Overall speedup numbers include the time to
compute all convolutional layers that each quantization scheme
elects to quantize (others are run dense). The fully-connected layer
is always run as dense; further, some schemes do not quantize the
first convolutional layer [42]. All weights and inputs are represented
as 32-bit floating point numbers (FP32) and all arithmetic operations
are computed in terms of FP32 values. Finally, each experiment is
run 50 times when the machine is unloaded; reported values are
from the run with lowest execution time.

Test configurations. We evaluate SumMerge relative to
oneDNN [5], a state-of-the-art CPU library for DNNs on Intel pro-
cessors, and a single-threaded software implementation of the AGR
algorithm (Section 2.2). We constructed the AGR kernel by hand
and carefully applied a number of best-practices optimizations (e.g.,
vectorization/data parallelism and tiling similar to that described
in Section 4, factoring work out of inner loops) to make it as high
performance as possible.

Quantization schemes. To show SumMerge robustness, we
evaluate performance on six quantization schemes (with different𝑈
values), across several DNN architectures and datasets [8, 12, 32, 33,
39, 42]—shown in Table 1. For each entry in the table, we used code
from each work’s public repository to train and quantize each DNN.
(We only evaluated DNN-dataset combinations that were publicly
available/evaluated.) The goal in populating the table was to have
configurations covering several values of 𝑈 , DNN architectures
and datasets. Finally, we only show 𝑈 = 2, 3 configurations as our
current implementation does not see overall speedup for 𝑈 ≥ 4 on
the quantization schemes studied in the table.

Quantization scheme details. For each quantization scheme,
we quantize weights but not activations. While each scheme quan-
tizes to a different set of weights, the primary concern for Sum-
Merge is the effective 𝑈 value, the resulting weight distribution
(Section 3.6) and whether one of the weights is 0 (Section 3.5).
For example, TTQ [42] and LS-T [32] quantize to 𝑈 = 3 weights:
{𝑊𝑛,𝑊𝑝, 0} and {−𝑆𝑘 , 𝑆𝑘 , 0}, respectively, where𝑊𝑛 and𝑊𝑝 are
positive and negative per-layer weights and 𝑆𝑘 is a per-filter weight
(Section 3.5). The difference in values between𝑊𝑛,𝑊𝑝 and 𝑆𝑘 does
not impact performance, but the fact that each scheme includes the
0-valued weight, and the weight distribution of each layer, does
impact performance.

5.2 Main Result
The main result—Overall Speedup vs. oneDNN vs. AGR and DNN
model storage for each quantization scheme configuration—is
shown in Table 1.

5.2.1 Performance results. As we can see, there is a large speedup
range (from 1.09× to 2.05×, single-threaded), relative to oneDNN,
depending on parameters. We also see significant speedup (from
1.04×-1.51×) relative to AGR, consistent with our findings in Sec-
tion 3.6. We now breakdown sources of speedup along several
dimensions (referencing single-threaded speedup numbers for con-
sistency).

Number of unique weights (𝑈 ): Keeping all else constant,
decreasing 𝑈 enables larger speedup, and changing 𝑈 in general
enables speedup/accuracy trade-offs. Consider the LS-1 and LS-T
configurations, which differ only in 𝑈 . The former (𝑈 = 2) loses
2% accuracy relative to a full precision DNN and achieves 2.05×
speedup; the latter (𝑈 = 3) loses 1.3% accuracy and sees 1.52×
speedup. Which configuration is best depends on the deployment
scenario.

Smaller𝑈 enables higher speedup because it implies larger re-
peatedweight overlaps across filters, and consequently higher “best”
𝐺 values (Section 3.3.2). For example, in the LS-1 and LS-T config-
urations, we found that 𝐺 ranges from 6 to 8 (depending on the
layer) for LS-1 and ranges from 4 to 6 for LS-T.
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Table 1: Configurations evaluated and main results. Top-1 “Full” gives validation set accuracy reported from the literature; “Quantized”
accuracies were measured from our trained models after we performed quantization. (Note that while our quantized accuracy shows a several %
drop relative to full precision for ImageNet, this is because we did not have the compute to perform sufficient fine tuning.With fine tuning, prior
work has reported significantly higher quantized accuracy [24, 42], e.g., to within 1% of the full-precision model [24].) BWN configurations were
obtained from the DoReFa-Net repository [41]. VGG*, AlexNet* and AlexNet** are derivative architectures based on VGG [34] and AlexNet [26],
respectively. DNN architectures marked with ‡ have smaller values of𝐶 and 𝐾 than the original architecture to prevent over fitting on smaller
datasets [3, 9]. ST stands for single-threaded, MT stands for multi-threaded.𝐺 range denotes the range of𝐺 values (Section 3.3.2) SumMerge
selects across all layers.

Overall speedup (X) Storage reduction (X)
Top-1 accuracy (%) vs. oneDNN vs. AGR relative to Dense FP32 𝐺

Quantization 𝑈 DNN arch Dataset Full Quantized ST MT ST SumMerge Codebook range
BWN [33] 2 AlexNet* [3] ImageNet [15] 59.7 55.7 1.76 1.47 1.19 14.9 31.9 5-8
BWN 2 AlexNet**‡ [4] SVHN [1] 97.7 97.3 1.61 1.33 1.32 13.9 31.9 4-8
BC [12] 2 ResNet20‡ [21] CIFAR10 [25] 91.9 90.2 1.36 1.39 1.08 11.6 31.8 4-7
ProxQuant [8] 2 ResNet20‡ CIFAR10 91.9 90.3 1.30 1.30 1.04 10.0 31.8 4-6
ProxQuant 3 ResNet20‡ CIFAR10 91.9 91.3 1.09 1.02 1.17 8.7 15.9 3-4
LQ [39] 2 VGG*‡ [9] CIFAR10 93.8 93.7 1.69 1.29 1.22 14.8 31.2 7-8
LQ 2 GoogleNet [35] ImageNet 72.9 69.1 1.60 1.34 1.43 14.3 30.5 3-8
LS-1 [32] 2 ResNet18 [21] CIFAR100 [25] 77.8 75.8 2.05 1.50 1.46 15.4 31.3 6-8
LS-T [32] 3 ResNet18 CIFAR100 77.8 76.5 1.52 1.21 1.43 10.5 15.7 4-6
TTQ [42] 3 AlexNet* ImageNet 59.7 55.2 1.86 1.58 1.51 13.9 15.6 3-9

Figure 11: Per-layer performance analysis (uniformly-distributed weights). Each group/4-tuple indicates layer shape (𝑅, 𝑆,𝐶,𝐾 ). Each number
within each group (2,3,5,7,9,17) indicates a different𝑈 value used for that layer. Note that Sparse speedup is always greater than Dense speedup
because SumMerge saves additional computation in the presence of the 0-valued weight.

Figure 12: Per-layer performance analysis (Laplacian-distributed weights). Conventions are the same as in Figure 11. As in
Figure 10, we do not show data for 𝑈 = 2 because splitting the Laplacian into two bins results in a uniform distribution.

Average filter size: Generally, DNN architectures with larger
filters (larger 𝑅∗𝑆 ∗𝐶) see larger speedup (Section 3.6). Consider the
BC configuration on CIFAR10 relative to the LS-1 configuration on
CIFAR100, which are both𝑈 = 2 but run on ResNet20 and ResNet18,
respectively. ResNet20 has a similar architecture to ResNet18, but
with smaller 𝐶 values, i.e., by a factor of 4 to 8 depending on the

layer. Hence, we should expect higher speedup from ResNet18,
since larger 𝐶 results in a larger window through which to search
for repetitions (when 𝐶 > 𝐶𝑡 , which is not always the case with
ResNet20).

Dataset (weight distribution): Finally, keeping𝑈 and DNN ar-
chitecture constant, we still expect performance differences because
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changing dataset (or even re-training on the same dataset) will re-
sult in a different distribution of weight values, which will impact
data-flow graph structure and therefore speedup (Section 3.6).

Finally, we note that our single-threaded speedups are larger
than their multi-threaded counterparts. We believe this is because
single-threaded SumMerge better exploits the shared parts of the
memory hierarchy than the single-threaded oneDNN.

5.2.2 Storage results. Although SumMerge requires auxiliary data
structures to represent each DNN layer, e.g., Vertices, a key obser-
vation is that this metadata is shared across groups of𝐺 filters. This
means Bytes-per-filter storage is effectively divided by a factor of
𝐺 which enables a substantial storage compression, relative to a
dense representation. We calculate model storage as the sum of
the storage required for all data-flow graphs, where a graph with
𝐸 edges and 𝑉 vertices (representing 𝐺 filters) requires𝑈 ∗ 32 bits
forWeights, 𝐸 ∗ 𝑙𝑜𝑔2(𝑉 ) +𝑉 ∗ log2(𝑉 ) bits for EdgeLists, as well as
𝐾 ∗𝑈 ∗ log2(𝑉 ) bits for OutputMap (stored in sorted order). The
Vertices data structure can be inferred from EdgeLists if we store
the edge lists in the order specified by the topological sort. Storage
for the dense baseline is calculated as 𝑅 ∗ 𝑆 ∗ 𝐶 ∗ 𝐾 ∗ 32 bits per
layer i.e. we assume the weights are stored as FP32 values.

Storage savings and 𝐺 ranges are shown in Table 1. For com-
parison, we also show the compression factor given a standard
codebook scheme—i.e., that represents each weight in log2(𝑈 ) bits—
which is commonly used by quantization schemes [42]. Importantly,
codebook-based schemes do not enable faster inference (in fact,
they would likely slow inference due to indirection logic). Thus,
the takeaway is that SumMerge enables competitive compression
relative to a codebook while simultaneously enabling significant
speedup.

5.3 Per-Layer Analysis
To provide additional insight, we now perform a more comprehen-
sive study using synthetically generated weights, varying 𝑈 , layer
parameters (𝑅, 𝑆,𝐶, 𝐾) and weight distributions. We analyze per-
formance on a range of layer shapes that appear in modern DNNs,
e.g., ResNets [21]. We show results for the two distributions used
in Section 3.6: uniform and Laplacian with 0 mean and 1 scale. To
distinguish the speedup due to weight repetition vs. the speedup
due to sparsity (repetition of the 0-valued weight), we show “Dense”
and “Sparse” data. The former means all 𝑈 weights are non-zero.
The latter means the 0-valued weight is present. All weight values
are assigned using the same methodology as in Section 3.6. All runs
assume an input of dimensions𝑊 = 𝐻 = 112.

The main takeaways echo what we saw in the main result and
Section 3.6. First, speedup increases as𝑈 decreases. Second, speedup
increases as layer size (𝑅 ∗ 𝑆 ∗𝐶) increases. Note, speedup does not
depend on 𝐾 . Thus we expect larger speedup given a layer with
parameters, e.g., (1, 1, 256, 64), relative to a layer with parameters
(1, 1, 64, 256). Third, speedup given Laplacian-distributed weights is
larger thanwith uniformly-distributedweights. Finally, importantly,
both repetition of non-zero-valued weights and the 0-valued weight
independently contribute significantly to overall speedup.

6 RELATEDWORK
We describe related work on quantization and activation group
reuse (AGR) in Section 2 as well as compatibility with SumMerge.

Deep Reuse [29] proposes an algorithm to speedup convolution
by exploiting similarity between vectors of input activations. This
work is complementary to SumMerge in that SumMerge exploits
similarity in weights while Deep Reuse exploits similarity in ac-
tivations. In more detail, Deep Reuse looks for vectors of similar
activations both within and across activation maps, creating vectors
of neurons that closely represent several vectors of consecutive
activations in the input. Next, instead of multiplying entire activa-
tion maps with filters as is the case with dense convolution, Deep
Reuse multiplies these select neuron vectors with filters and then
reconstructs the output activation map to arrive at a similar result
to what is attained by doing the dense version of the operation.
Here, SumMerge can be used as an efficient alternative to doing the
dense operation between a neuron vector and the filters, further
reducing the number of arithmetic operations required.

Cowan et al. [14] discusses a complementary, automated ap-
proach for implementing quantized inference that relies on the
scheduling phase of a compiler and program synthesis techniques.
Specifically, [14] takes as input a quantized inference kernel which
we believe can be replaced by a SumMerge-based kernel. The result
would be an optimized version of SumMerge that takes into ac-
count bitplane scheduling and other complementary optimizations
discussed in [14].

7 CONCLUSION
This paper proposed SumMerge, the first weight repetition-aware
DNN inference kernel that speeds up execution on a general-
purpose platform (as opposed to a custom accelerator). The key
idea is that weight repetition implies a data-flow graph where com-
putations can be simplified within a filter, and memoized across
filters. To prove out the idea, we wrote an optimized C++ kernel
that represents DNN inner products as partially shared data-flow
graphs, evaluates computation in data-flow order, and speeds up
multiple existing quantization schemes relative to an optimized
CPU baseline.
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