
ProMT: Optimizing Integrity Tree Updates for Write-Intensive
Pages in Secure NVMs

Mazen Alwadi
mazen.alwadi@knights.ucf.edu
University of Central Florida

Orlando, Florida, USA

David Mohaisen
david.mohaisen@ucf.edu

University of Central Florida
Orlando, Florida, USA

Amro Awad
ajawad@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

ABSTRACT
Current computer systems are vulnerable to a wide range of at-
tacks caused by the proliferation of accelerators, and the fact that
current system comprise multiple SoCs provided from different
vendors. Thus, major processor vendors are moving towards lim-
iting the trust boundary to the processor chip only as in Intel’s
SGX, and AMD’s SME. This secure boundary limitation requires
protecting the memory content against data remanence attacks,
which were performed against DRAM in the form of cold-boot
attack and are more successful against NVM due to NVM’s data
persistency feature. However, implementing secure memory fea-
tures, such as memory encryption and integrity verification has
a non-trivial performance overhead, and can significantly reduce
the emerging NVM’s expected lifetime. Previous work looked at
reducing the overheads of the secure memory implementation by
packing more counters into a cache line, increasing the cacheability
of security metadata, slightly reducing the size of the integrity tree,
or using the ECC chip to store the MAC values. However, the root
update process is barely studied, which requires a sequential update
of the MAC values in all the integrity tree levels.

In this paper, we propose ProMT, a novel memory controller
design that ensures a persistently secure system with minimal over-
heads. ProMT protects the data confidentiality and ensures the data
integrity with minimal overheads. ProMT reduces the performance
overhead of secure memory implementation to 11.7%, extends the
NVM’s life time by 3.59x, and enables the system recovery in a
fraction of a second.

CCS CONCEPTS
• Security and privacy→Hardware-based security protocols.

KEYWORDS
Non-Volatile Memory, Secure Memory, Integrity Verification, In-
tegrity Tree.
ACM Reference Format:
Mazen Alwadi, David Mohaisen, and Amro Awad. 2021. ProMT: Optimiz-
ing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs. In
2021 International Conference on Supercomputing (ICS ’21), June 14–17, 2021,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8335-6/21/06. . . $15.00
https://doi.org/10.1145/3447818.3460377

Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3447818.3460377

1 INTRODUCTION
Current computing systems suffer from a very wide attack sur-
face, mainly due to the fact that such systems comprise of tens
to hundreds of sub-systems that could be manufactured by differ-
ent vendors. Vulnerabilities, backdoors, and potentially hardware
trojans injected anywhere in the system form a serious risk for con-
fidentiality and integrity of data in computing systems. Rightfully,
processor vendors minimize the trust boundaries to only include the
processor chips, e.g., AMD’s Secure Memory Encryption (SME)[1],
Intel’s Software Guard Extension (SGX)[19], and Total Memory
Encryption (TME)[4]. This trust boundary limitation mandates pro-
viding security measures, (i.e., memory encryption and integrity
verification), to protect the memory content. Counter mode encryp-
tion and integrity trees are used in state-of-the-art schemes to meet
these security requirements [18, 20, 42, 43, 45, 47].

Counter mode encryption protects the data confidentiality by
assigning an encryption counter for each data cache line, which is
used to encrypt/decrypt the data cache line whenever it is written or
read to or from the memory [33, 55, 58]. The integrity tree hashes
the memory content into a tree structure and keeps the root of
the tree in the processor. The root is used to verify the integrity
of the data whenever it is read from the memory [19, 22, 39]. To
be able to verify the data using the root, it must reflect the most
recent state of the memory, which requires updating the whole
integrity tree branch for each memory write [11, 34, 58]. Clearly,
these security measures are incompatible with the emerging Non-
Volatile Memories (NVMs).

Emerging NVMs have a compelling set of features such as data
persistency, capacities that are up to 3TBs/socket, and ultra-low
idle power consumption [3, 5–8]. On the other hand, NVMs have a
limited write endurance and slow power-consuming writes [13, 28,
29, 55]. Due to these features, implementing memory encryption
and integrity verification can lead to several problems. First, as
the NVMs retain the data during power loss episodes, the used
encryption counters and integrity tree nodes need to be persisted
atomically with the data to ensure the system’s ability to recover,
which leads to the second problem. Second, persisting the security
metadata can lead to tens of writes for each data write in practical
size NVMs. Third, before persisting the updates, the integrity tree
root needs to be updated by hashing all the updated branch levels.
Clearly, updating the integrity tree root resides on the critical path
of the write operation, and for a 3TBs memory, the integrity tree can
reach 11 levels and a root, which takes 440-880 cycles to complete
using a 40-80 cycle hashing function [20, 31, 44]. Moreover, these

479

https://doi.org/10.1145/3447818.3460377
https://doi.org/10.1145/3447818.3460377
https://doi.org/10.1145/3447818.3460377
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447818.3460377&domain=pdf&date_stamp=2021-06-04

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

11 updates of the integrity tree, the encryption counter update, the
MAC value, and the data cache line need to be held in the write
buffer until the root has been successfully updated, thus filling the
processor buffers and stalling the execution.
Solutions and Shortcomings. Prior work addressed the first two
problems but not the third. For instance, Liu et al. [34], Osiris [55],
and SuperMem [60] addressed the crash consistency problem by
proposing solutions to recover or persist the encryption counters,
but ignored the required time to rebuild the integrity tree. Anubis
[58], Phoenix [11], Triad-NVM [13], and SheildNVM [53] proposed
schemes to rebuild the integrity tree after crashes. However, the
overheads of updating the integrity tree root was rarely studied
until recently. Freij et al. [20] discussed the overheads of crash con-
sistency requirements in light of the enforced persist ordering, and
proposed a Persist Level Parallelism (PLP) optimizations to reduce
these overheads. However, the PLP optimizations are discussing
the ordering, possible overlapping of the integrity tree updates, and
assume a pipeline large enough to perform the updates of the WPQ
entries, which can be 32-64 entries. Clearly, assuming this number
of hashing engines is not realistic, as these engines have to be lo-
cated in the secure region—inside the processor chip. Additionally,
the proposed scheme works on updating the integrity tree root,
then persisting the data, MAC, and encryption counter but not the
integrity tree intermediate nodes. While the followed technique is
sufficient to recover the system, rebuilding the integrity tree can
take hours for practical size NVMs [11, 58].
Our Approach. To bridge this gap and address the aforementioned
problem, we propose ProMT. In ProMT, we make the observation
that not all memory pages are updated at the same frequency. More-
over, to ensure the system’s data integrity and timely updates of the
integrity tree root, updating the integrity tree protecting the whole
memory is not necessary. Thus, ProMT shortens the root’s update
path by using a separate small integrity tree, which is used to protect
the hot pages. To do so, ProMT tracks the hotness of memory pages
using descriptor blocks that are arranged in a Multi-Queue (MQ)
structure, cached, and controlled by the memory controller. These
hot pages are dynamically detected and assigned to the hot tree,
which effectively reduces the time required to update the root by the
difference in the number of levels between the two integrity trees.
Additionally, ProMT allows the system to recover from crashes in
a fraction of a second, and effectively reduces the number of writes
required to enable the system’s recovery. Moreover, ProMT avoids
the re-encryption overheads that would be required to map the
pages to a hot region. To evaluate our scheme, we use the Gem5 [16]
simulator to run 10 memory intensive applications from SPEC2006
benchmark suite [23], and 7 persistent multi-threaded applications
that were developed in-house, similar to [10, 35]. Compared to an
eagerly updated integrity tree, ProMT improves the performance
by 63.6%, reduces the writes by 3.59x, and enables the system’s
recoverability in 3ms, compared to a lazy-update scheme.

In summary, we make the following novel contributions:

• We propose ProMT, a novel memory controller design that
significantly reduces the overhead of updating the integrity
tree root, reduces the write traffic to thememory, and enables
the system recovery in a fraction of a second.

• We discuss several design options of ProMT, and provide a
detailed analysis about how these options can impact the
system’s performance.

• We discuss how ProMT can be integrated with state-of-the-
art encryption, integrity verification, and secure memory
schemes.

The rest of the paper is organized as follows. In section 2 we
discuss the related background concepts and motivate our work. In
section 3, we discuss our design, potential design options, and the
impact of our design on the overall system security. In section 4, we
discuss the used applications and the testing methods we followed
for evaluating our work. In section 5, we analyze the evaluation
results and the performance of our scheme, followed by the related
work and conclusion in sections 6 and 7.

2 BACKGROUND AND MOTIVATION
In this section, we introduce the background and motivation. First,
we review the threat model followed by various related concepts
that will help the reader understand our work, then make the case
for our contributions by a concrete motivation.

2.1 Background
ThreatModel. Similar to state-of-the-art schemes in secure-memory
implementation [11–15, 46, 55, 56, 58, 60], we assume a passive at-
tacker capable of scanning the memory and snooping the memory
bus. We also assume an active attacker capable of dropping packets,
tampering with the memory content, and replying old memory
data. Thus, our scheme limits the trust boundaries to the processor
chip only. Finally, memory access pattern leakage [48, 49], timing
side-channel leakage [49], and power analysis [36] attacks are all
beyond our threat model and the scope of this paper.
Emerging Non-Volatile Memories (NVMs). Emerging NVMs
blur the boundary between storage and memory systems by intro-
ducing a set of compelling features . Such NVMs feature access
latencies comparable to DRAM, byte addressability, data persis-
tency, ultra-low idle power consumption, and high density [11–
15, 55, 56, 58, 60]. Due to these features, researchers are expecting
NVMs to be integrated into memory systems as a main memory
[30, 32, 58, 60], as part of the main memory as in hybrid systems
[37, 38, 50, 51], or as extensions to the main memory as in fabric-
attached memory systems [25–27]. However, such NVMs suffer a
limited write endurance and power-consuming writes.

While NVMs data persistency might be the most attractive fea-
ture, as it enables hosting persistent data such as filesystems and
checkpointing. Data persistency facilitates data remanence attacks,
which requires security measures to ensure the NVMs’ data confi-
dentiality and integrity.
CounterMode Encryption. The counter mode encryption is used
in state-of-the-art secure memory schemes [11–15, 42, 43, 46, 47,
55, 56, 58, 60] to protect the data confidentiality. Figure 1 shows
the split counter mode encryption and how it works. The split
counter mode arranges one major counter and 64 minor counters in
a single cache line. The major counter has a size of 64-bits and the
minor counters have a size of 7-bits each [11, 58]. To complete the
encryption/decryption, an initialization vector (IV) is formed using
the major counter, minor counter, the data page offset, the data page

480

ProMT: Optimizing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs ICS ’21, June 14–17, 2021, Virtual Event, USA

Major ctr Minor ctr Page offset Page IDPadding

AES ctr
mode Key

IV

OTP

Paintext

Ciphertext

Figure 1: Split counter-mode encryption.

ID and some padding. The IV is encrypted using an AES engine
with a secure processor key to generate a One-Time Pad (OTP). The
OTP is then xored with the plaintext/ciphertext to complete the
encryption/decryption.

The counter mode is widely used due to its performance and
security advantages. In terms of performance, the counter mode
encryption allows overlapping the OTP generation time with the
memory read, which leaves only the xor operation exposed to the
critical path of the memory read. In terms of security, the counter
mode thwarts dictionary attacks, snooping attacks, and known-
plaintext attacks [11, 33, 55, 58]. However, in order to ensure the
security of the counter mode encryption, encryption counters reuse
is prohibited, as it facilitates known-plaintext attacks. Note that the
counter mode encryption ensures the temporal and spatial unique-
ness of the IV, as it integrates the encrypted cache line address
in the IV, and increments the associated minor counter each time
the cache line is written back to the memory. Whenever a minor
counter overflows, the page’s major counter is incremented, all
the minor counters in the same cache line are reset, and the page
is re-encrypted using the new counters. Despite the advantages
of counter mode encryption, it does not ensure memory integrity,
which is achieved using an integrity tree.
Integrity Trees. An integrity tree is a tree of hashes, in its most
basic form, where the data cache lines are hashed together to form
the first level of the tree, then each 𝑁 nodes of the first level are
hashed together to generate the second level and so on. The same
process continues until a single node is generated, which is referred
to as the root. The number of nodes hashed together to generate the
next level is typically referred to as the tree arity. The root is always
kept in the secure region and used to verify the integrity of the
memory content [11, 13, 19, 22, 39, 58]. Rogers et al. [39] proposed
the Bonsai-Merkle Tree (BMT), which builds the Merkle tree over
the encryption counters, and protects the data cache lines with
MAC values calculated over the data and the encryption counters.
Integrity trees were developed into two major types, the general
Merkle Tree (MT), and the Tree of Counters (ToC) used in Intel’s
Software Guard Extension (SGX) [19, 22, 47]. Each of these forms
has a different arity, update style, and node structure as we discuss
below.
General Merkle Tree. This tree is shown in Figure 2-A, and pro-
tects the encryption counters by hashing the encryption counters
and forming the tree. The root of the tree is kept in the processor
and used to verify the integrity of the encryption counters. When-
ever an encryption counter is read from the memory, the whole MT
branch is rehashed to calculate a root value. The calculated root

value is then compared against the processor stored root, and if they
match, the encryption counter’s integrity is verified. A faster way
to verify the integrity can be achieved by stopping the verification
process with the first MT node cache hit, as cached nodes’ integrity
were verified when they were fetched. While the general MT is
used to verify the encryption counters’ integrity, data integrity
is protected using Keyed Message Authentication Codes (HMAC)
values [39, 40, 43, 52], as shown in Figure 2-C. The MAC values
are calculated over the encrypted data, encryption counter, the
processor key, and the data address as:

MAC = 𝐻𝑘 (encrypted data, EC, address) (1)

where 𝐻𝑘 is the keyed MAC function. Including the data and EC
prevents replaying old pairs of {data, MAC}, using the processor
key prevents attackers from forging {data, MAC} pairs, using the
encryption counter ensures the temporal uniqueness, and the ad-
dress is used to ensure spatial uniqueness, which prevents splicing
attacks [22, 39].

The general Merkle Tree has three main differences from the
ToC. First, the general Merkle Tree does not associate any MAC
values with the encryption counter block, which allows higher
arity. Second, each node in higher levels is just a hash of its direct
children [11, 58]. Thus, the update process of the general MT is
a serial process, as the update of any level cannot start until the
update of its direct child level finished updating [11, 58]. Third, the
general MT can be rebuilt if the encryption counters were persisted.
However, rebuilding the tree can take several hours for practical
size NVMs as discussed by Anubis [58].
Tree of Counters. As shown in Figure 2-B, the ToC serves the
same purpose by protecting the encryption counters’ integrity.
However, the ToC has some differences in terms of encryption
counters’ arrangement and intermediate tree nodes.

The counter node encryption in ToC has 8 encryption counters of
56-bit each, a 56-bit MAC value, and 8 unused bits. TheMAC value is
calculated over the node’s encryption counters, and a version from
the parent node. While the lowest level counters are used to encrypt
the data, the intermediate node’s counters are typically referred to
as versions, and are not associated with the data. Whenever a data
cache line is written back to the memory, the associated encryption
counter is incremented, which leads to incrementing the version
in the encryption counter’s parent, and updating the encryption
counter’s MAC [11, 19, 22, 43, 46, 47, 58]. Note that the update is
propagated until the root is updated. Since nodes’ updates do not
need to wait for child nodes to finish updating, the ToC update
process can be parallelized [19, 22, 58].
Write Atomicity. Write atomicity is required to enable persistent
security of the secure NVM, as if a crash happened and the security
metadata were not up-to-date, the security metadata will fail to
verify the memory’s integrity [34, 55, 56], which can lead to either
losing terabytes of data or accepting the risk that data might be
tampered with.

To avoid the inconsistency of data and its associated security
metadata, the existing memory controller’s persistent buffer known
as the Write Pending Queue (WPQ) is used [2, 13, 41]. The WPQ is
provided with enough power by the Asynchronous DRAM Refresh
(ADR) feature to flush its content to the NVM in case of crashes.

481

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

Encryption
counters

56-bit
EC

MAC00 MAC01

Hash Hash

Hash

Secure region

Intermediate
node

A00 A01 A02 A03 A04 A05 A06 A07

MAC10B00 B01 B02 B03 B04 B05 B06 B07

C08 C09 C10 C11 C12 C13 C14 C15C00 C01 C02 C03 C04 C05 C06 C07C1 C2 C3 C4 C5 C6 C7 C8

H1 H2 H3 H4 H5 H6 H7 H8

H21 H22 H23 H24

H31 H32

R

56-bit
MAC

B) Tree of CountersA) General Merkle Tree

MAC
generation

Processor
key

MAC

{Encrypted data, MAC}

write to
memory

Encrypted data

Encryption counter
Address

C) MAC generation

Figure 2: Integrity trees and MAC generation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SJENG
SOPLEX

BTREE
AVL

ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Lazy Update
Strict

Figure 3: Performance overhead ofMerkle Tree root updates
compared to a write-back scheme.

2.2 Motivation
As discussed earlier, updating the integrity tree root is a very costly
operation. The performance overhead of this operation stems from
the sequential hashing process of the whole MT branch. Moreover,
the latency of each hashing operation can be 40-80 cycles, which
resides on the critical path of the memory writes [20, 31, 44]. More-
over, the MT branch depth exceeds 10 levels for practical size NVMs,
and due to the atomicity requirement, these updates need to be
held in the write buffer until the root is updated. Figure 3 shows
the performance overhead caused by the root updates, compared
to an encrypted memory that uses a write back policy and does not
provide the crash consistency.

As shown in Figure 3, the performance overhead of updating the
MT root can reach to 1.8x on average. The performance overhead is
directly related to the number of writes the application is sending
to the memory and the number of the MT levels. As we have no
control over the number of writes the application is making, we
aim to reduce this overhead by reducing the number of MT levels.
As the memory pages are not accessed at the same rate, protecting
the most updated pages with a small MT can reduce the overhead.
Figure 4 shows the spatial distribution of the memory accesses.

In Figure 4, the y-axis represents the offset, which is a group of
4 pages. The x-axis shows the frame number, which contains 64
groups. The z-axis shows the number of accesses to each group.
Clearly, protecting the hot pages with a smaller Merkle Tree can

Figure 4: Memory accesses of RBTREE application.

reduce the performance overhead. However, protecting all these
hot pages will require a decently sized Merkle Tree, which will not
yield much of improvement. On the other hand, the figure shows
the spatial distribution of the accesses, combining this with the
temporal hotness of each page can allow us to have a small Merkle
Tree, which can improve the performance significantly.

3 DESIGN
ProMT aims to improve the performance of integrity protected
memories by reducing the overhead caused by the frequent integrity
tree root updates. The main reason of these overheads is the number
of MT nodes to be updated for each write, which can be reduced
if the number of MT levels is reduced. ProMT relies on the fact
that not all memory pages are updated at the same rate. Therefore,
ProMT uses an additional small MT to protect the hot pages and
reduce the number of levels to be updated for each write.

3.1 Design overview
Reducing the overheads of the MT can be achieved by reducing the
number of its levels, which reduces the number of MAC calculations
required to update the MT root. As discussed in section 2.2, we can
exploit the observation that memory pages are updated at different
rates. Thus, we can reduce the MT depth by building a small MT
over the hot pages.

Applying such a technique requires careful consideration as it
can cause higher overheads due to three main challenges. First,
integrity trees are rigid structures used to protect a consecutive
memory region. Additionally, the application’s data can be scattered
across the whole physical address space, which makes using a

482

ProMT: Optimizing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs ICS ’21, June 14–17, 2021, Virtual Event, USA

dynamically growing integrity tree very complicated, if possible in
the first place. Second, choosing the hot region to protect with the
hot MT. Using a second integrity tree requires building the tree over
a different set of encryption counters, which requires re-encrypting
the pages as they are mapped/evicted to/from the hot region. Third,
detecting the hot pages dynamically, with high accuracy, and low
overheads. Identifying the hot pages requires tracking the accesses
to all memory pages, which can cause a high performance overhead
and requires non-realistic on-chip storage.

We discuss the potential design options below, followed by our
chosen design.

3.2 Design options
The first design option is to allocate a dedicated hot memory region
to which we copy the hot pages. The hot region should have a
separate set of encryption counters and a separate integrity tree.
However, this option requires copying the page once declared hot,
then copy it back and re-encrypt it once evicted. Such a scheme, in
most cases, will incur more writes, MAC calculations, and higher
performance overhead.

The second option, is to use a different set of encryption coun-
ters and a separate integrity tree but without allocating a dedicated
memory region. Once a hot page is detected, the encryption coun-
ters of the hot MT are used to re-encrypt the page. This scheme
does not require copying the data pages but requires re-encryption
for each insertion/eviction.

The third option is similar to the second option in terms of
counters, integrity tree, and region allocation. However, in this op-
tion, instead of re-encrypting the page at eviction time, the global
MT’s encryption counter value is replaced with the hot encryp-
tion counter’s value and the integrity tree is updated. While this
technique can eliminate half of the re-encryption writes, this is
only possible if the hot encryption counter value is larger than the
global MT’s one, which is necessary to preserve the security of
counter mode encryption. Moreover, this scheme will increase the
rate of incrementing the encryption counters, as the hot region
encryption counters will resume using the hot counter value used
for the previous page. Thus, updating the encryption counters for
the pages protected using the same encryption counter of the hot
MT at almost the sum of all updates for those pages, which leads
to a faster overflow of the counters.

As discussed above, the previously mentioned design options
are costly in terms of performance, MAC calculations, and NVM
writes. While the last design option can partially solve the problem
by eliminating half of the writes, we observe that it can completely
eliminate the writes if the page’s hot encryption counter has the
same value as the page’s global MT encryption counter, which leads
us to ProMT design.

3.3 ProMT design
ProMT design is built on the observation that if the page’s associated
encryption counters in the global MT and the hot MT are equal on
eviction and insertion, there will be no need to re-encrypt the page
and it would be sufficient to just update the upper MT levels to
ensure the correctness of integrity verification. Thus, ProMT does
not use a different set of encryption counters for the hot MT, but

DA
DA

DA
D

DA
DA

DA
D

DA
DA

DA
D

DA
DA

DA
D

PA PA PA PA

PA PA PA PA

PA PA PA PA

PA PA PA PA

Set 0

Set 1

Set 2

Set n

Descriptors cache

36 8 3 20 36

1 2 3 4 5

128-bit

Descriptor structure

1

2

3

4

5

: Page number

: Access counter

: Queue number

: Demotion flag

: Expiration time

24

6

6 : Padding/Hot EC

7 : Frame pointer

1

7

Figure 5: Arrangement and caching of descriptors.

remaps the hot page’s encryption counter from the global MT to
the hot MT. Thus, the encryption counter updates of the hot page
are no longer propagated to the global MT, and the updates are
propagated to the hot MT instead. On eviction, it is sufficient to
propagate the update to the global MT once. Assuming 𝐿𝐺−𝑀𝑇

is
the number of levels in the global MT, and 𝐿𝐻−𝑀𝑇

is the number
of levels in the hot MT, and k is the number of writes to a hot
page P. The number of avoided MAC calculations when the page is
protected by the hot MT is:

MACs Reduction = (𝐿𝐺−𝑀𝑇
− 𝐿𝐻−𝑀𝑇

) ∗ (𝑘 − 1) (2)

As shown in Equation 2, the number of MACs required to up-
date the integrity tree protecting a hot page can be reduced to
≈𝐿𝐻−𝑀𝑇

/𝐿𝐺−𝑀𝑇
. Note that ProMT design does not allocate a dedi-

cated memory region, which eliminates the need for copying the
pages from/to the hot region. Additionally, ProMT uses the same
encryption counter used by the global MT, which eliminates the
need for the re-encryption. Finally, ProMT allows assigning any
page on the physical address space to the hot MT without the need
to expand or dynamically grow the hot MT. However, to enable this
dynamic remapping of the pages, tracking the encryption counters
of the hot MT becomes a crash consistency requirement as we
discuss below.

3.3.1 Hot pages detection. Identifying hot pages is done by track-
ing the number of writes to each page. For that, ProMT creates a
descriptor block for each accessed page and organizes these blocks
in a Multi-Queue (MQ) structure, which was originally introduced
to rank disk blocks and used later by Ramos et al. [38] for page
placement in hybrid memory systems. Each descriptor block con-
tains the page number, an access counter to count the number of
accesses, a queue number to identify the queue to which the block
belongs, an expiration time used for evictions from the hot region,
a frame pointer to the next block in the queue, and the encryption
counter number in the hot MT if the page is hot.

3.3.2 Page tracking. A descriptor block is created and inserted to
Q0 on the first access to the page. A descriptor block is promoted
to Q1 when the access counter reaches 2 accesses, and promoted to
Q2 on 4 accesses and so on. Whenever a page gets an access the
descriptor’s expiration time is set to the current time + life time, if a
descriptor expiration time is reached, the descriptor gets demoted,
its expiration time gets reset, then inserted to the tail of the below
queue. If the descriptor gets demoted two consecutive times, it gets
inserted to the tail of Q3 which we use to select victims for eviction.
To reduce the overhead of checking the MQ, the demotions are

483

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

performed at the end of each epoch by checking only the head of
each queue, as insertion, promotion, and demotions are inserted to
the tail of each queue, the head of each queue represents the least
recently accessed block. For more details about the MQ, we refer
the readers to Ramos et al. [38].

NVM

Global MT and ECs

Hot MT
Descriptors

Security
metadata

cache

Read queue

Memory controller
Read

request

1
2

Descriptors
cache

Read
data

3

Read EC/
global MT

Read
descriptor

Read hot
MT

Read if
miss

HMAC

{Data, Address}

EC

Comparator

Integrity
engine

4

5

Data
AES

encryption
engine

Hashing

Figure 6: ProMT read operation.

Optimization. Since the MQ size can reach a size that is not fea-
sible to keep in the processor chip, we store the MQ in the NVM
and use a small cache in the memory controller to cache the MQ
descriptors. To ensure retrieving the descriptor block in a single
memory access and increase the descriptors cacheability, we group
each four descriptor blocks in a single cache line and store them in
a table. The table entry number is calculated using a modules oper-
ation of the page physical address and the number of groups. We
directly map the pages into the table entries to prevent collisions
and enforce a single access retrieval. The descriptor block and the
descriptors cache are shown in Figure 5.

3.3.3 ProMT’s read operation. As shown in Figure 6, upon receiv-
ing a read request, the memory controller starts by forwarding
the request to the NVM, and requests the associated encryption
counter if not present in the security metadata cache. Then, checks
if the requested cache line is protected by the global or the hot
MT by checking the descriptors cache, then requests the required
global/hot MT nodes from the security metadata cache. After re-
ceiving the data cache line and the associated security metadata,
the memory controller verifies the encryption counter’s integrity
using the global/hot MT, then verifies the integrity of the cache
line data using the HMAC that is calculated over the data and its
encryption counter.

3.3.4 ProMT’s write operation. As shown in Figure 7, upon receiv-
ing a write request, the memory controller starts by checking the
page hotness and increments the access counter in its descriptor
block. If the page reaches the hotness threshold, a victim page is se-
lected for eviction while the data is being encrypted. Then, the data
is written back, the HMAC is updated, and the integrity updates
are reflected to the hot MT, and the evicted page’s integrity updates
are reflected to the global MT. If the page did not reach the hotness

NVM

Global MT and ECs

Hot MT
DescriptorsSecurity

metadata
cache

WPQ

Memory controller

Write
request

1

Descriptors
cache

Write
data

2

Read EC/
global MT

Read
descriptor

Read hot
MT

Read if
miss

Data

AES
encryption

engine

EC3

HMAC

Integrity
engine

4
MT

updates

Hashing

Figure 7: ProMT write operation.

threshold, the integrity updates are reflected to the global MT. Note
that when a page is inserted to the hot MT, the total number of
writes to update both integrity trees is 𝐿𝐻−𝑀𝑇

+ 𝐿𝐺−𝑀𝑇
.

3.4 ProMT’s without persistence
Since ProMT uses a general MT to protect the hot region pages,
updates to the hot MT are not essential for the crash consistency
as long as the root of the hot MT is up-to-date. Due to the small
size of the hot MT, and the ability to regenerate the general MT,
ProMT can be optimized to reduce the number of writes to the
NVM. ProMT No Persist (ProMT-NP) reduces the number of writes
at the cost of extra recovery time, which is required to regenerate
the hot MT during the recovery phase.

3.4.1 ProMT’s impact on recoverability. Since the global MT and
the hot MT are eagerly updated, the security metadata is ensured
to be consistent with the data. However, as the encryption counters
can be protected by either of the integrity trees, we need to be able
to identify the encryption counters that were protected by the hot
MT before the crash. To identify these encryption counters, we
persist the addresses of the hot MT encryption counters.

ProMT-NP relaxes persisting the updates of the hot MT, and
relies on rebuilding the MT during the recovery phase to ensure
crash consistency. Thus, whenever a page is mapped to the hot MT,
the page’s encryption counter’s address needs to be persisted to
the tracking region. In the recovery phase, the memory controller
iterates over the tracking region and rebuilds the hot MT, then the
system is recovered.

3.5 Design discussion
3.5.1 ProMT’s hardware modifications. ProMT modifies the mem-
ory controller to check if the page is mapped to the hot MT before
performing the security operations, and updates theMQ descriptors
as required. Therefore, besides the already existing components in
modern processors, ProMT requires a small cache to cache the MQ
descriptors and a persistent register to persist the hot MT root. On
the other hand, Freij et al. [20] scheme, assumes a large pipeline and
redundant hashing engines to update the MT root. Schemes like

484

ProMT: Optimizing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs ICS ’21, June 14–17, 2021, Virtual Event, USA

Anubis [58] and Phoenix [11] assume a single persistent register.
Thus, ProMT requires less hardware modifications when compared
to schemes improving the MT root updates, but more hardware
modifications when compared with recoverability schemes.

3.5.2 ProMT with large scale systems. In case of a large scale sys-
tem with multiple memory controllers. We assume each memory
controller to be responsible for the security operations of its as-
sociated memory region, where each memory region is protected
with a separate integrity tree. Thus, each memory controller can
implement ProMT locally to reduce the overheads of the MT root
updates.

3.6 Security discussion
3.6.1 ProMT’s impact on encryption. ProMT does not change the
hot pages’ encryption counters, but simply propagates the updates
of these pages to the hot MT instead of the global MT. Thus, it has
no effect on the encryption process. Note that using a different set
of encryption counters would require enforcing a monotonically
increasing encryption counter for the hot pages, which is required
to prevent the reuse of encryption counters.

3.6.2 ProMT’s impact on integrity. While ProMT maintains two
separate integrity trees, ProMT does not change the integrity protec-
tion nor the verification process of the protected data. The integrity
verification process can be split into two phases, the data integrity
and the encryption counters integrity. The data integrity is verified
using the HMAC, which is calculated over the data, the encryption
counter, and the data cache line address. As ProMT does not af-
fect any of the HMAC components, ProMT does not affect the data
integrity verification. The encryption counter’s integrity can be ver-
ified using the integrity tree, which hashes the encryption counter
cache line along with other cache lines to generate the parent node.
The integrity verification of both integrity trees is straightforward,
but swapping pages and using different encryption counters in the
hot MTmight look as if it opens a room for known-plaintext attacks.
Since the encryption counters protected by the hot MT are dynam-
ically changing, an encryption counter of a smaller value might
replace another encryption counter of a larger value. However, this
replacement is still safe as the encryption counters in both cases
belong to different data pages with different addresses, which will
always generate different HMAC values as shown in Equation (1).

4 METHODOLOGY
In order to evaluate our scheme, we used the Gem5 [16] simulator,
a cycle level simulator. To accurately measure the overheads of our
scheme, we implemented the security metadata caches, the integrity
trees, descriptors cache, modified the memory controller to handle
the security metadata operations and ProMT operations, and added
a latency of 24-cycles to simulate the overall AES encryption as in
[55].

As shown in Table 1, we simulated a 4-core x86-64 processor with
out-of-order execution. We used a 16GB PCM-based main memory
with parameters as in [28]. We used three levels of caching where
the LLC is shared. We used an 8-way, 256kB security metadata
cache as in [11, 58].

Table 1: Configuration of the simulated system

Processor
CPU 4 Cores, X86-64, Out-of-Order, 1.00GHz
L1 Cache Private, 2 Cycles, 32KB,2-Way
L2 Cache Private, 20 Cycles, 512KB, 8-Way
L3 Cache Shared, 32 Cycles, 8MB, 64-Way
Cacheline Size 64Byte

DDR-based PCMMain Memory
Capacity 16GB
PCM Latencies Read 60ns, Write 150ns

Encryption Parameters
Security Metadata Cache 256KB, 8-Way, 64B Block

We evaluated ProMT using 10 memory intensive workloads from
SPEC2006 benchmark suite [23]. Additionally, we implemented and
ran 7 multi-threaded persistent applications. We ran each applica-
tion for 500M instructions after fast forwarding to a representative
region and warming up the caches.

The in-house benchmarks were designed to stress the memory
usage and were used in previous work [10, 35]. The description of
these benchmarks is as below.
1 ARSWP: Randomly swaps two keys in the database.
2 RANDWR: Updates a random value in the database.
3 SEQWR: Updates the database in a sequential manner.
4 AVL: Maps the database into an AVL tree and a randomly gener-
ated key is searched in the mapped database. If the key is not found
an insertion operation is triggered.
5 BTREE: Similar to AVL but uses a B-tree instead.
6 RBTREE: Similar to AVL but uses RBTREE instead. 7 QUEUE:
Performs frequent enqueue and dequeue operations in a large
queue.

Table 2 shows the used benchmarks, their MPKIs, and Writes
Per Kilo Instruction (WPKI).

Table 2: Benchmarks Description

Benchmark MPKI, WPKI Benchmark MPKI, WPKI
MCF 49.9, 8.64 ASTAR 0.001, 0.0005
Libquantum 27.1, 9.96 CACTUS 3.70, 0.93
LBM 23.9, 8.05 SJENG 0.48, 0.22
SOPLEX 2.13, 1.00 OMNETPP 0.49, 0.25
ZEUS 13.6, 4.41 BWAVES 25.5, 2.91
ARSWP 8.1, 3.1 QUEUE 69.2, 32.84
RBTREE 4.16, 1.60 BTREE 6.20, 2.38
RANDWR 19.30, 8.92 SEQWR 17.05, 7.8
AVL 0.04, 0.01

The following schemes are used in our evaluation:
1 Lazy-Update: Updates the encryption counters in the caches
and does not propagate the update to the integrity tree until the
dirty counter is evicted. This scheme does not ensure the system
recoverability and is used as the baseline.
2 Strict-Update: This scheme eagerly updates the integrity tree
root and persists the updated nodes to the memory. Thus, it ensures
an instant recovery of the system.
3 ProMT: Our proposed scheme that uses a Hot MT of 4 levels,
and declares a hot page after 4 accesses to the page. This scheme
eagerly updates the Hot MT and the global MT, and persists the
updated nodes.
4 ProMT-NP: The optimization of our proposed scheme. This
scheme works as the previous scheme, but does not persist the

485

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

updated Hot MT nodes, and relies on rebuilding the Hot MT during
the recovery time.

5 EVALUATION
In this section, we evaluate ProMT against the schemes mentioned
in 4. Then, we conduct a sensitivity analysis by varying the pa-
rameters of our scheme and show their impact on the system’s
performance.

5.1 The impact of ProMT on performance
Figure 8 shows the performance of the schemes normalized by the
lazy update scheme. The Strict-Persist scheme incurs an average of
81.7% performance overhead, which spikes for the LIBQUANTUM,
LBM, RANDWR, RBTREE, ARSWP and Zeus applications. While
high overhead in the SPEC applications is caused by their high
number of writes as shown in Table 2, the overhead of the parallel
persistent applications is caused by there low security metadata
cache hit rate.

Note that the Strict-Persist scheme overheads are directly related
to the number of writes, as each write will result in a root update,
which requires 11 MAC calculations. On the other hand, ProMT
significantly improves the performance with an average overhead
of 25.6%, which spikes for LIBQUANTUM, RANDWR and LBM ap-
plications. Note that ProMT reduced the performance overhead of
these applications to 2.12x, 2.27x and 1.86x respectively.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SJENG
SOPLEX

BTREE
AVL

ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Lazy Update
Strict

ProMT
ProMT-NP

Figure 8: Normalized execution time of the evaluated
schemes.

The performance improvement of ProMT can be attributed to
its ability to detect the hot pages and mapping them into the hot
MT, which leads to less number of MAC calculations to update the
root. Figure 9 shows the normalized number of MAC calculations
by the schemes. As shown in Figure 9, ProMT reduces the number
of MAC calculations to an average of 2.4x, where the Strict-Persist
scheme has an average of 29.13x MAC calculations.

As Figure 10 shows, SJENG and ASTAR have very low hit rate
in the hot MT and the descriptors cache (35.5%, 48.7%, 35.9%, and
5.3%), which means these applications are detecting a few pages as
hot but these pages are not getting reused, which can be inferred by
comparing the number of MAC calculations for these applications
in ProMT against the Strict-Persist scheme. In contrast, LIBQUAN-
TUM and LBM applications are causing a high number of MAC
calculations due to the high write intensity in these applications,

 0.1

 1

 10

 100

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SJENG
SOPLEX

BTREE
AVL

ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

N
o

rm
a

li
z
e

d
 #

 o
f

M
A

C
 c

a
lc

u
la

ti
o

n
s

Lazy Update Strict ProMT ProMT-NP

Figure 9: Normalized number of MAC calculations.

as shown in Table 2. Note the number of MAC calculations in these
applications is slightly higher than the number of levels in hot MT,
which is caused by misses and evictions from hot MT. Finally, we
notice that QUEUE and AVL applications have better performance
in the strict scheme than ProMT, despite having a high number
of writes. Which is explained by the tremendous reduction in the
number of memory reads due to the increased cache hit rate as
shown later.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SJENG
SOPLEX

BTREE
AVL

ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

P
ro

M
T

 s
tr

u
c

tu
re

s
 h

it
ra

te

HotMT
Descriptors cache

Figure 10: ProMT structures hit rates.

On the other hand, we note that CACTUS, MCF,RBTREE, and
ZEUS applications are causing less MAC calculations than the base-
line, which can be explained by the high number of hot pages in
these applications (hot MT hit rate), and the high hit rates in the
descriptors cache as shown in Figure 10. Additionally, these applica-
tions are showing the least hit rates in the security metadata cache
hit rates (64.9%, 63.7%, 78.3% and 73.7%), which causes high number
of evictions in the baseline and translates to additional number of
MAC calculations.

After evaluating ProMT and analyzing the performance over-
heads of ProMT, we highlight that the overheads are mainly gener-
ated by the number of MAC calculations and holding the atomicity
requirements, which requires holding all the data writes and the
global/hot MT updates in the WPQ until the root is successfully up-
dated. However, holding the writes in the WPQ can lead to stalling
the processor due to an inability to evict dirty cached nodes as the
WPQ is full. Thus, in ProMT-NP, we eagerly update the hot MT but
without persisting the hot MT updates. While this can reduce the
number of writes and alleviate some of the pressure of the WPQ, it

486

ProMT: Optimizing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs ICS ’21, June 14–17, 2021, Virtual Event, USA

will require rebuilding the hot MT after crashes during the recovery
phase. As shown in Figure 8, ProMT-NP reduces the performance
overhead even further to reach 17.4%, which is dominated by the
same applications as ProMT. However, ProMT-NP still drops the
overhead of all the applications.

5.2 The impact of ProMT on the number of
memory reads

ProMT improves the system’s performance using a small hot MT.
However, detecting the hot pages requires tracking the memory
accesses to these pages, which is done using the MQ and cached in
the descriptors cache. Thus, whenever a cache line is requested, its
associated descriptor block needs to be updated. While updating
the page’s associated descriptor is typically done in the cache, a
miss in the descriptors cache requires a memory read to fetch its
associated descriptor. On the other hand, ProMT can reduce the
number of the security metadata reads required to verify hot page’s
integrity.

 0

 0.5

 1

 1.5

 2

 2.5

 3

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SJENG
SOPLEX

BTREE
AVL

ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

N
o

rm
a

li
z
e

d
 R

e
a

d
s

Lazy Update
Strict

ProMT
ProMT-NP

Figure 11: Normalized number of reads.

Figure 11 shows the impact of ProMT on the number of memory
reads. As shown in Figure 11, ProMT causes an average of 20%
memory reads, which is directly correlated with the descriptors
cache hit rate shown in Figure 10. We observe the number of reads
in QUEUE and AVL applications drops significantly in the strict
persist scheme, which is caused by the increased cache hit rate. On
the other hand, our scheme can affect the number of memory reads
in two contradicting ways, the overheads of the descriptors cache
misses dominates the effect of reads reduction for the integrity
verification. Note that ProMT and ProMT-NP have the same impact
on the number of reads, as the only difference is not pushing the hot
MT updates to the WPQ. However, ProMT can adopt Synergy [43]
and replace the ECC bits with the MAC value to reduce the number
of reads (results are not shown for the lack of space), which drops
the average number of reads from 120% to an average of 59.3%.

5.3 The impact of ProMT on the number of
memory writes

Ensuring the memory integrity and the system’s ability to recover
from crashes requires maintaining a root value that reflects the
memories most recent state. While having a fresh root enables the
system recovery, rebuilding the integrity tree can take several hours
as indicated by Anubis [58]. Thus, the integrity tree, or at least some

of the tree levels, need to be persisted to ensure a fast recovery,
as discussed in Triad-NVM [13]. However, strictly persisting the
integrity tree nodes exacerbates the NVM’s life endurance problem.

 0

 2

 4

 6

 8

 10

ASTAR
BWAVES

CACTUS

LBM
LIBQUA.

ZEUS
MCF

OMNETPP

SOPLEX

SJENG
BTREE

AVL
ARSWP

QUEUE

RBTREE

RANDWR

SEQWR

AVG

11.63x 11.35x

N
o

rm
a
li
z
e
d

 W
ri

te
s

Lazy Update
Strict

ProMT
ProMT-NP

Figure 12: Normalized number of writes.

Figure 12 shows the impact of ProMT on the number of memory
writes. As Figure 12 shows, our schemes incur an average of 3.8x and
2.33x writes for ProMT and ProMT-NP respectively. We observe
that ProMT reduces the number of writes by 40-50% except for
ASTAR, SJENG, AVL, and MCF. ProMT causes higher number of
writes for ASTAR and SJENG applications, which are caused by
detecting some pages as hot but barely using them, thus leading to
extra number of writes when the pages are evicted from the hot MT,
which can be explained by the low hit rates of these applications
as shown in Figure 10. MCF shows an improvement of 20% only,
which is due to the large working set that causes a large number
of hot MT evictions. On the other hand, AVL shows a significant
increase in the number of writes as it has a very small number
of writes, thus the small increase caused by hot MT evictions are
showing a large increase in the normalized figure.

Similarly, ProMT-NP reduces the number of writes by 65% to
75% except for ASTAR, SJENG, andMCF. ASTAR does not show any
improvement nor extra overhead, as the writes to the hot MT are
relaxed, which makes for the overheads of hot MT evictions, and
MCF shows 45% reduction.

5.4 Sensitivity analysis
5.4.1 The impact of hot pages detection threshold on performance.
The hot page detection threshold can affect the performance in two
different ways. First, detecting the hot pages earlier by reducing
the hot page detection threshold. Second, preventing the premature
hot pages eviction by increasing the hot page detection threshold.

Figure 13 shows the average impact of varying the hot pages
detection threshold on the performance. As shown in Figure 13,
the performance overhead of ProMT remains at 40% when the
threshold is below 4 accesses, but increases slightly to reach 43.1%
and 44.8% when the number of accesses is increased to 8 and 16,
respectively. However, we observe that increasing the threshold
negatively impacts the performance of all the applications except for
MCF, where the performance improves by 5.2%. This improvement
is stemming from the prevention of premature hot pages eviction.
Similarly, the performance overhead of ProMT-NP almost stays at

487

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

Figure 13: Performance sensitivity to the hot page detection
threshold.

18% when the threshold is below 4, but increases to 18.7% and 20.2%
when the threshold increases to 8 and 16, respectively.

5.4.2 The impact of hot MT levels on performance. The size of the
hot region or the number of hot MT levels can affect the perfor-
mance in two different ways. First, decreasing the number of hot
MT levels/reducing the size of the hot region can lead to reducing
the number of MAC calculations required to update the root. Sec-
ond, increasing the number of hot MT levels/increasing the size of
the hot region can lead to increasing the hit rate of hot pages.

Figure 14: Performance sensitivity to the number of Hot MT
levels.

Figure 14 shows the impact of varying the number of hot MT
levels on the performance. As shown in Figure 14, the performance
overhead of ProMT is reduced from 48.8%, 44.8%, and 40% when
the number of levels is increased from 2, 3, to 4. Then, it starts to
increase and reaches 40.02% when the number of levels reaches 5.
However, we observe that increasing the number of hot MT levels
negatively impacts the performance of all the applications except
for MCF, where the performance improves from 3.01x, 2.32x, to
1.18x when the number of levels increases from 2, 3, to 4. However,
the performance starts to decrease slightly when the number of
levels is increased to 5. Additionally, the performance of OMNETPP
improves by 4% when the number of levels increases from 2 to 3, but
then increases again when the number of levels is increased to 4 and
5. Similar behavior is observed in ZEUS, SOPLEX and SJENG. This
behavior can be explained by the applications having a working set
that cannot be accommodated in the processor caches, but can be
protected by the small hot MT, which the application is accessing
frequently. The behavior of other applications indicates having a
large working set that the hot MT cannot cover.

On the other hand, the performance of ProMT-NP improves as
the number of levels increases as shown in Figure 14. The perfor-
mance overhead of ProMT-NP is 36.9%, 30.1%, 17.4%, and 11.7%
for hot MT levels of 2, 3, 4, and 5, respectively. We observe that
all the applications are showing a similar behavior when the num-
ber of hot MT levels increases. This behavior can be explained by
the large hot region of 128MB, which may accommodate a large
portion of the memory footprint of these applications. However,
increasing the number of hot MT levels increases the recovery time
significantly as discussed in [58].

Figure 15: ProMT-NP recovery time.

5.4.3 The impact of hot MT levels on ProMT-NP recovery time.
ProMT does not require any recovery time as the hot MT as eagerly
updated and persisted. On the other hand, ProMT-NP improves the
performance by updating the hot MT nodes in the cache but not
the memory.

Figure 15 shows the impact of the number of hot MT levels on
the recovery time of ProMT-NP. Increasing the number of the hot
MT levels can lead to an exponential increase in the recovery time,
as it would take 0.5 µs to recover a small hot MT of 3 levels; this
recovery time grows to reach 3.5 ms when the number of hot MT
levels is increased to 5.

6 RELATEDWORK
In this section, we review the related studies in secure memory
implementation, NVM crash consistency, and improving the per-
formance of NVMs.

Secure memory implementation has been attracting the atten-
tion of researchers in the past few years. Synergy [43] proposed
using the Error Correction Code (ECC) chip to store the data MAC
values, and store the ECC bits in a different location in the memory.
Synergy reduces the number of memory reads by fetching the MAC
alongside the data in a single read, and only reads the ECC bits
when an error is detected, which can be detected using the MAC.
VAULT [47] proposed a variable arity integrity tree, which aims to
reduce the integrity tree levels and improve its cacheability. Simi-
larly, Morphable [42] packs more encryption counters in a single
cache line, which results in a smaller integrity tree and increases its
cacheability. Taassori et al. [46] proposed using separate integrity
trees and separate security metadata caches for each application to
prevent side-channel attacks in the security metadata cache. Addi-
tionally, the proposed scheme combines the parity bits inside the
integrity tree structure to reduce the memory accesses in case of
errors.

488

ProMT: Optimizing Integrity Tree Updates for Write-Intensive Pages in Secure NVMs ICS ’21, June 14–17, 2021, Virtual Event, USA

In terms of crash consistency, Osiris [55] proposed a scheme that
allows the encryption counters recovery with a minimal perfor-
mance overhead, but assumes its feasible to rebuild the integrity
tree after crashes. Anubis [58] argues that rebuilding the integrity
tree is not always possible, and it can take several hours for prac-
tical size NVMs. Anubis proposed a scheme that enables recover-
ing the system in a fraction of a second by tracking the security
metadata cache updates. Phoenix [11] argues that recovering the
security metadata cache does not require tracking all the ToC up-
dates, and proposed a scheme to recover the security metadata
cache of ToC integrity protected system with minimal overheads.
SuperMem [60] proposed using a write-through security meta-
data cache that utilizes a locality-aware counter write coalescing
scheme. Several other studies addressed the crash consistency prob-
lem [13, 14, 34, 53, 54, 56, 59]. Additionally, different aspects of
NVM performance, security, and integration are discussed in vari-
ous studies [9, 10, 17, 18, 21, 24, 45, 57].

7 CONCLUSION
In this work, we present a novel mechanism that improves the
performance of integrity protected systems by reducing the num-
ber of MAC calculations required to update the integrity tree root.
Maintaining an up-to-date root is essential for the system’s recov-
erability. We note that the memory pages are updated at different
rates, and the application’s memory footprint does not consume
the whole memory. Thus, we proposed ProMT, which reduces the
number of MAC calculations by using a small integrity tree that
protects the application’s hot pages. Then, we optimized ProMT
even further and proposed ProMT-NP, which relaxes persisting
the hot MT nodes to achieve better performance at the cost of a
fraction of a second in the recovery time.

8 ACKNOWLEDGMENTS
This research was developed with funding from the Defense Ad-
vanced Research Projects Agency (DARPA). The views, opinions
and/or findings expressed are those of the author and should not be
interpreted as representing the official views or policies of the De-
partment of Defense or the U.S. Government. Approved for public
release. Distribution is unlimited.

REFERENCES
[1] [n.d.]. AMD Memory Encryption. http://amd-dev.wpengine.netdna-cdn.

com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-
Public.pdf. Accessed: 2020-02-15.

[2] [n.d.]. deprecating PCOMTI. https://software.intel.com/content/www/us/en/
develop/blogs/deprecate-pcommit-instruction.html. Accessed: 2020-03-03.

[3] [n.d.]. Enhancing High-Performance Computing with Persistent Mem-
ory Technology. https://software.intel.com/content/www/us/en/develop/
articles/enhancing-high-performance-computing-with-persistent-memory-
technology.html. Accessed: 2020-02-15.

[4] [n.d.]. Intel Architecture, Memory Encryption Technologies Specifica-
tion. https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-
Total-Memory-Encryption-Spec.pdf. Accessed: 2020-02-15.

[5] [n.d.]. Intel Optane DC Persistent Memory. https://builders.intel.com/
docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-
workloads.pdf. Accessed: 2020-24-07.

[6] [n.d.]. NVDIMM. https://www.jedec.org/sites/default/files/Bill_Gervasi.pdf.
Accessed: 2020-02-02.

[7] [n.d.]. NVDIMM - Changes are Here So What’s Next. https:
//www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%
20Here%20So%20What’s%20Next%20-%20final.pdf. Accessed: 2020-03-29.

[8] [n.d.]. NVDIMM-P. https://software.intel.com/content/www/us/en/
develop/articles/enabling-persistent-memory-in-the-storage-performance-
development-kit-spdk.html. Accessed: 2020-02-02.

[9] Mohammad Alshboul, James Tuck, and Yan Solihin. 2018. Lazy persistency:
A high-performing and write-efficient software persistency technique. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 439–451.

[10] Mazen Alwadi, Vamsee Reddy Kommareddy, Clayton Hughes, Saimon Hammond,
and Amro Awad. 2021. Stealth-Persist: Architectural Support for Persistent
Applications in Hybrid Memory Systems. In 2021 IEEE International Symposium
on High Performance Computer Architecture (HPCA). ACM.

[11] Mazen Alwadi, Aziz Mohaisen, and Amro Awad. 2019. Phoenix: To-
wards Persistently Secure, Recoverable, and NVM Friendly Tree of Counters.
arXiv:1911.01922 [cs.CR]

[12] Amro Awad, Pratyusa Manadhata, Stuart Haber, Yan Solihin, and William Horne.
2016. Silent shredder: Zero-cost shredding for secure non-volatile main memory
controllers. ACM SIGOPS Operating Systems Review 50, 2 (2016), 263–276.

[13] Amro Awad, Yan Solihin, Laurent Njilla, Mao Ye, and Kazi Zubair. 2019. Triad-
NVM: Persistency for Integrity-Protected and Encrypted Non-Volatile Memories.
In Proceedings of the 46th International Symposium on Computer Architecture.
ACM, 169–180.

[14] Amro Awad, Suboh Suboh, Mao Ye, Kazi Abu Zubair, and Mazen Al-Wadi. 2019.
Persistently-Secure Processors: Challenges and Opportunities for Securing Non-
Volatile Memories. In 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 610–614.

[15] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. 2017. Obfusmem:
A low-overhead access obfuscation for trusted memories. In Proceedings of the
44th Annual International Symposium on Computer Architecture. 107–119.

[16] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[17] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. 2012. NV-Heaps: making persistent objects
fast and safe with next-generation, non-volatile memories. ACM Sigplan Notices
47, 4 (2012), 105–118.

[18] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus: Efficient
algorithms for persistent transactional memory. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures. 271–282.

[19] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1–118.

[20] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin. [n.d.]. Persist
Level Parallelism: Streamlining Integrity Tree Updates for Secure Persistent
Memory. ([n. d.]).

[21] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. 2019. Pisces: a scalable and efficient persistent transac-
tional memory. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19). 913–928.

[22] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. Cryptology ePrint Archive, Report 2016/204. https://eprint.iacr.org/
2016/204.

[23] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (sep 2006), 1–17. https://doi.org/10.1145/
1186736.1186737

[24] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. 2017. Language-level persistency.
In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 481–493.

[25] Vamsee Reddy Kommareddy, Amro Awad, Clayton Hughes, and Simon David
Hammond. 2019. Enforcing Fairness in Disaggregated Non-Volatile Memory Sys-
tems. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States).

[26] Vamsee Reddy Kommareddy, Clayton Hughes, Simon David Hammond, and
Amro Awad. 2020. DeACT: Architecture-Aware Virtual Memory Support for
Fabric Attached Memory Systems. arXiv preprint arXiv:2008.00171 (2020).

[27] Vamsee Reddy Kommareddy, Jagadish Kotra, Clayton Hughes, Simon David
Hammond, and Amro Awad. [n.d.]. PreFAM: Understanding the Impact of
Prefetching in Fabric-Attached Memory Architectures. ([n. d.]).

[28] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. ACM SIGARCH Computer
Architecture News 37, 3 (2009), 2–13.

[29] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. 2010. Phase-change technology and the future of main
memory. IEEE micro 1 (2010), 143–143.

[30] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur
Mutlu, and Doug Burger. 2010. Phase-change technology and the future of main
memory. IEEE micro 30, 1 (2010), 143–143.

489

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/articles/enhancing-high-performance-computing-with-persistent-memory-technology.html
https://software.intel.com/content/www/us/en/develop/articles/enhancing-high-performance-computing-with-persistent-memory-technology.html
https://software.intel.com/content/www/us/en/develop/articles/enhancing-high-performance-computing-with-persistent-memory-technology.html
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf
https://builders.intel.com/docs/networkbuilders/intel-optane-dc-persistent-memory-telecom-use-case-workloads.pdf
https://www.jedec.org/sites/default/files/Bill_Gervasi.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What's%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What's%20Next%20-%20final.pdf
https://www.snia.org/sites/default/files/SSSI/NVDIMM%20-%20Changes%20are%20Here%20So%20What's%20Next%20-%20final.pdf
https://software.intel.com/content/www/us/en/develop/articles/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://software.intel.com/content/www/us/en/develop/articles/enabling-persistent-memory-in-the-storage-performance-development-kit-spdk.html
https://arxiv.org/abs/1911.01922
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737

ICS ’21, June 14–17, 2021, Virtual Event, USA Mazen Alwadi, David Mohaisen, and Amro Awad

[31] Tamara Silbergleit Lehman, Andrew D Hilton, and Benjamin C Lee. 2016. Poi-
sonIvy: Safe speculation for secure memory. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[32] Zhongqi Li, Ruijin Zhou, and Tao Li. 2013. Exploring high-performance and
energy proportional interface for phase change memory systems. IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA)
(2013), 210–221.

[33] Helger Lipmaa, Phillip Rogaway, and DavidWagner. 2000. CTR-mode encryption.
In First NIST Workshop on Modes of Operation, Vol. 39.

[34] Sihang Liu, Aasheesh Kolli, Jinglei Ren, and Samira Khan. 2018. Crash consistency
in encrypted non-volatile main memory systems. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 310–323.

[35] Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and
Samira Khan. 2019. Janus: Optimizing memory and storage support for non-
volatile memory systems. In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 143–156.

[36] Thomas S Messerges. 2000. Securing the AES finalists against power analysis
attacks. In International Workshop on Fast Software Encryption. Springer, 150–164.

[37] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. 2009. Scal-
able high performance main memory system using phase-change memory tech-
nology. In Proceedings of the 36th annual international symposium on Computer
architecture. 24–33.

[38] Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement
in hybrid memory systems. In Proceedings of the international conference on
Supercomputing. 85–95.

[39] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. 2007. Using
address independent seed encryption and bonsai merkle trees to make secure pro-
cessors os-and performance-friendly. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 183–196.

[40] Brian Rogers, Chenyu Yan, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.
2008. Single-level integrity and confidentiality protection for distributed shared
memory multiprocessors. In 2008 IEEE 14th International Symposium on High
Performance Computer Architecture. IEEE, 161–172.

[41] Andy Rudoff. 2017. Persistent memory programming. Login: The Usenix Magazine
42, 2 (2017), 34–40.

[42] Gururaj Saileshwar, Prashant Nair, Prakash Ramrakhyani, Wendy Elsasser, Jose
Joao, and Moinuddin Qureshi. 2018. Morphable Counters: Enabling Compact In-
tegrity Trees For Low-Overhead Secure Memories. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 416–427.

[43] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy Elsasser,
and Moinuddin K Qureshi. 2018. Synergy: Rethinking secure-memory design
for error-correcting memories. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 454–465.

[44] G Edward Suh, Dwaine Clarke, Blaise Gasend, Marten Van Dijk, and Srinivas
Devadas. 2003. Efficient memory integrity verification and encryption for secure
processors. In Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36. IEEE, 339–350.

[45] Shivam Swami and Kartik Mohanram. 2018. ARSENAL: Architecture for secure
non-volatile memories. IEEE Computer Architecture Letters 17, 2 (2018), 192–196.

[46] Meysam Taassori, Rajeev Balasubramonian, Siddhartha Chhabra, Alaa R
Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan Stutsman. 2020. Com-
pact leakage-free support for integrity and reliability. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 735–748.

[47] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018. VAULT: Reduc-
ing paging overheads in SGX with efficient integrity verification structures. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 665–678.

[48] Rujia Wang, Youtao Zhang, and Jun Yang. 2017. Cooperative Path-ORAM for
Effective Memory Bandwidth Sharing in Server Settings. In High Performance
Computer Architecture (HPCA).

[49] Yao Wang, Andrew Ferraiuolo, and G Edward Suh. 2014. Timing channel protec-
tion for a shared memory controller. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 225–236.

[50] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. Hikv: A hybrid index key-
value store for dram-nvm memory systems. In 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17). 349–362.

[51] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for
hybrid volatile/non-volatile main memories. In 14th {USENIX} Conference on
File and Storage Technologies ({FAST} 16). 323–338.

[52] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin.
2006. Improving cost, performance, and security of memory encryption and
authentication. In ACM SIGARCH Computer Architecture News, Vol. 34. IEEE
Computer Society, 179–190.

[53] Fan Yang, Youmin Chen, Haiyu Mao, Youyou Lu, and Jiwu Shu. 2020. ShieldNVM:
An Efficient and Fast Recoverable System for Secure Non-Volatile Memory. ACM
Transactions on Storage (TOS) 16, 2 (2020), 1–31.

[54] Fan Yang, Youyou Lu, Youmin Chen, Haiyu Mao, and Jiwu Shu. 2019. No
compromises: Secure NVM with crash consistency, write-efficiency and high-
performance. In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
1–6.

[55] Mao Ye, Clayton Hughes, and Amro Awad. 2018. Osiris: A Low-Cost Mechanism
to Enable Restoration of Secure Non-Volatile Memories. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 403–
415.

[56] Mao Ye, Kazi Zubair, Aziz Mohaisen, and Amro Awad. 2019. Towards Low-Cost
Mechanisms to Enable Restoration of Encrypted Non-Volatile Memories. IEEE
Transactions on Dependable and Secure Computing (2019).

[57] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P Jouppi. 2013.
Kiln: Closing the performance gap between systems with and without persistence
support. In 2013 46th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 421–432.

[58] Kazi Abu Zubair and Amro Awad. 2019. Anubis: ultra-low overhead and recovery
time for secure non-volatile memories. In Proceedings of the 46th International
Symposium on Computer Architecture. ACM, 157–168.

[59] Pengfei Zuo and Yu Hua. 2018. SecPM: a secure and persistent memory system
for non-volatile memory. In 10th {USENIX} Workshop on Hot Topics in Storage
and File Systems (HotStorage 18).

[60] Pengfei Zuo, Yu Hua, and Yuan Xie. 2019. SuperMem: Enabling application-
transparent secure persistent memory with low overheads. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. 479–492.

490

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Design
	3.1 Design overview
	3.2 Design options
	3.3 ProMT design
	3.4 ProMT's without persistence
	3.5 Design discussion
	3.6 Security discussion

	4 Methodology
	5 Evaluation
	5.1 The impact of ProMT on performance
	5.2 The impact of ProMT on the number of memory reads
	5.3 The impact of ProMT on the number of memory writes
	5.4 Sensitivity analysis

	6 Related work
	7 Conclusion
	8 Acknowledgments
	References

