
Task-Graph Scheduling Extensions for Efficient
Synchronization and Communication

Seonmyeong Bak
Georgia Tech

Atlanta, GA, USA
sbak5@gatech.edu

Oscar Hernandez
Oak Ridge National Laboratory

Oak Ridge, TN, USA
oscar@ornl.gov

Mark Gates
University of Tennessee, Knoxville

Knoxville, TN, USA
mgates3@icl.utk.edu

Piotr Luszczek
University of Tennessee, Knoxville

Knoxville, TN, USA
luszczek@icl.utk.edu

Vivek Sarkar
Georgia Tech

Atlanta, GA, USA
vsarkar@gatech.edu

Abstract
Task graphs have been studied for decades as a foun-
dation for scheduling irregular parallel applications and
incorporated in programming models such as OpenMP.
While many high-performance parallel libraries are based
on task graphs, they also have additional scheduling re-
quirements, such as synchronization from inner levels of
data parallelism and internal blocking communications.

In this paper, we extend task-graph scheduling to
support efficient synchronization and communication
within tasks. Our scheduler avoids deadlock and oversub-
scription of worker threads, and refines victim selection
to increase the overlap of sibling tasks. To the best of
our knowledge, our approach is the first to combine
gang-scheduling and work-stealing in a single runtime.
Our approach has been evaluated on the SLATE high-
performance linear algebra library. Relative to the LLVM
OMP runtime, our runtime demonstrates performance
improvements of up to 13.82%, 15.2%, and 36.94% for
LU, QR, and Cholesky, respectively, evaluated across
different configurations.

Keywords: Gang Scheduling, OpenMP, Runtime System,
Task Graph, Work Stealing

1 Introduction
On-node parallelism in high-performance computing sys-
tems has increased significantly over the past years. This
massive amount of parallelism has the potential to de-
liver significant speedups, but there is a concomitant
burden on application developers to exploit this paral-
lelism in the presence of inherent load imbalances and
communication/synchronization requirements. One pop-
ular approach to reduce the complexity of application
development for modern processors is to introduce high-
performance libraries. High-performance linear algebra
libraries have pioneered the use of task graphs to deal
with load imbalances in parallel kernels such as LU, QR,

and Cholesky factorizations while also exploiting data
locality across dependent blocks.

At the same time, there is now increased support
for task-parallel execution models with task dependen-
cies in modern parallel programming models, such as
OpenMP. Many task graphs in real-world applications
include library calls or nested parallel regions that in-
volve blocking operations such as barriers. They often
include mixed sequences of communication and compu-
tation operations for latency hiding. The tasks also often
create groups of child tasks to exploit potential available
resources. However, current task-based programming
models are unable to support these real-world applica-
tion requirements, which motivates the work presented
in this paper.

Further, tasks often spawn nested parallel regions
through calls to library functions or user code with in-
ternal parallelism. These nested parallel regions lead
to execution by additional pools of threads, which in
turn causes oversubscription of cores. This oversubscrip-
tion can delay intra/inter-node communication or syn-
chronization operations, which often occur in periodic
time steps. Scheduling these operations without interfer-
ence from other parallel regions helps reduce the overall
critical path of the application. On the other hand, de-
laying the execution of communication operations can
lead to overall degraded performance. One approach to
addressing the challenge of oversubscription in nested
parallel regions is to adopt the use of user-level threads
(ULTs)[4, 17]. However, ULTs cannot support general
nested parallel regions involving blocking synchroniza-
tion and communication operations. In general, adopting
ULTs can lead to deadlock because all of the ULTs are
not guaranteed to be scheduled onto worker threads
when a blocking operation occurs. Figure 1a(a) shows
how adopting ULTs can lead to deadlock when a nested
parallel region contains blocking synchronization opera-
tions.

ar
X

iv
:2

01
1.

03
19

6v
1

 [
cs

.D
C

]
 6

 N
ov

 2
02

0

In this work, we show how a standard task sched-
uling runtime system can be extended to support the
real-world constraints discussed above by (1) combining
gang-scheduling and work-stealing and (2) supporting
hybrid victim selection. Our approach provides deadlock-
avoidance in the scenario where multiple user-level con-
texts are synchronized with blocking operations. The
integration of gang-scheduling with work-stealing helps
nested parallel regions run efficiently without oversub-
scription and deadlock.

The parallel regions to be gang-scheduled are created
as ULTs and scheduled onto a consecutive set of cores
that are close to the worker that executed the task that
initiated the parallel region, as shown in Figure 1a(b).
Workers can schedule other tasks in work-stealing mode
while they are gang-scheduling ULTs from specified par-
allel regions. ULTs that are gang-scheduled on reserved
workers can steal tasks from their parallel region when
they reach a join barrier. When multiple gangs are cre-
ated within the same node, they’re ordered globally to
prevent a deadlock across ULTs that are scheduled on
workers. This hybrid scheduling of gang-scheduling and
work-stealing reduces interference and increases data lo-
cality for data parallel tasks that involve synchronization
and communication in each time step.

In addition to gang-scheduling, our runtime system
adopts a hybrid victim selection policy in work-stealing
to increase communication-computation overlap as well
as data locality. Figure 2 shows the performance differ-
ence from different victim selection policies. The existing
OpenMP runtime systems schedule tasks as in the Lo-
cality case, while our approach pursues both the Locality
and the Overlapping cases. To the best of our knowl-
edge, ours is the first work to propose and implement a

(a) Deadlock in nested parallel regions of tasks or ULTs

(b) Deadlock avoidance with gang-scheduling of nested par-
allel regions

Figure 1. Deadlock issues in nested parallel regions from
a group of tasks or User-level Threads(ULT)

Figure 2. Difference in critical path of mixed sequences
of communication and computations

hybrid scheduling of gang-scheduling and work-stealing
as well as hybrid victim selection in a production-level
runtime system and to demonstrate the implementation
on real-world examples.

The contributions of this paper are as follows:
∙ Extension of task-based runtime systems to in-

tegrate gang-scheduling with work-stealing in an
efficient manner.

∙ Introduction of hybrid victim selection to increase
the overlap of tasks in task graphs while still pre-
serving data locality.

∙ Evaluation of our approach on real-world linear
algebra kernels in the SLATE library: LU, QR,
and Cholesky factorizations. Relative to the LLVM
OMP runtime, our runtime demonstrates perfor-
mance improvements of up to 13.82%, 15.2%, and
36.94% for LU, QR, and Cholesky, respectively,
evaluated across different configurations.

2 Background
2.1 Task graphs in Task-Level Programming Models
Many task-level parallel programming models have in-
troduced task graphs in different ways to extract par-
allelism from irregular parallel applications. The first
type of interface for task graphs is explicit task depen-
dency through objects such as promises and futures in
C++ 11 [18] and Go [11]. Tasks wait on objects until
the predecessors of the objects put data on the objects,
which resolve the dependencies of the successors. The
other type is implicit task dependency, which automates
the management of objects to improve programmability
with the help of compiler and runtime systems that form
dependencies through directives as depend in OpenMP
4.0 [24] or data flow of variables. After dependencies
of tasks are resolved, they become ready tasks and are
treated as normal tasks. Most task-based runtime sys-
tems including OpenMP use per-thread stealing queues
so threads where the tasks become ready push tasks to
their local work-stealing queue.

2.2 User-level threads for Task-Level Programming
Models

In parallel programming models, user-level threads (ULTs)
have been used to resolve oversubscription issues by
scheduling user-level threads onto kernel-level threads

2

(KLTs) when multiple parallel regions are running on the
same cores. The mapping of ULT to KLT enables light-
weight context switching through storing necessary data
for context switching in a user space rather than in a
kernel space. There have been several implementation of
user-level threads to benefit from its lightweight context
switching in different contexts [20, 31, 32]. In spite of
the benefits of ULT, they have deadlock issues because
of a lack of coordination with kernels as described in
Figure 1a(a). The OS kernel cannot identify the status
of each ULT, which can lead to deadlock if user-level
threads encounter blocking operations such as barriers
and locks. There have been several efforts where runtime
systems share ULT information with the OS kernel, such
as scheduler activations [3]. However, the previous works
require significant changes in both the ULT runtime and
OS kernel, which has inhibited the adoption of their
APIs in operating systems.

2.3 Gang-scheduling and Work-stealing
Gang-scheduling [13, 26] was initially proposed to reduce
the interference of a group of threads by other threads
or processes. Gang-scheduling, as first introduced, uses a
matrix to pack thread requests from processes in which
each row is scheduled one at a time. Thus, context switch-
ing occurs when it moves from one row to the next row,
which reduces the delay in communication across threads
incurred by unnecessary context switching. However, a
waste of resources results when the threads in each gang
have a load imbalance or insufficient cores are available
to meet their requests. Different packing policies have
been proposed to address these inefficiencies [12, 13, 33],
but they did not solve the issue completely. Also, gang-
scheduling introduces significant overhead through its
use of global data structures. In contrast, work-stealing
is a distributed scheduling policy in which each worker
schedules tasks independently. Each worker creates tasks
and pushes them into their work-stealing queues. Then,
other workers steal tasks from the worker by running
a work-stealing algorithm independently. Work-stealing
maximizes load balancing but incurs overheads due to
reduced locality through context switching as well as
communication delays, since locality and communica-
tion are not part of the task-parallel models that work-
stealing schedulers were designed to support. Extended
work-stealing algorithms have been introduced to allevi-
ate the cost of work-stealing by considering the locality
of participating processing elements [1, 15, 23]. Some
of the previous works also extended work-stealing to
distributed systems [10, 22, 29].

3 Design
This section describes the algorithm and interface we de-
signed to address the limitations of current task-parallel
runtimes mentioned in Section 1. We propose the use
of gang-scheduling to schedule ULTs of a parallel re-
gion without oversubscription and deadlock. Our design
supports the use of gang-scheduling for specific paral-
lel regions or globally, while other parallel regions and
tasks are scheduled with work-stealing. In addition to
gang-scheduling, we also discuss how the victim selec-
tion policy, which impacts how a task graph is traversed,
affects the overlapping of communication and compu-
tation tasks, and we propose a hybrid victim selection
policy to improve the overlapping supported by the task
scheduler.

3.1 Gang-Scheduling of Data-Parallel Tasks
3.1.1 Integrating gang-scheduling with work-stealing.
Gang-scheduling and work-stealing have been thought of
as oil and water in task scheduling. Each has its advan-
tages and disadvantages as compared to the other. Inte-
grating them so that each can be used in cases when it
is beneficial can help improve the overall performance of
task-parallel applications. We propose extending the omp
parallel construct to schedule threads of selected parallel
regions in gang-scheduling mode. Users can apply gang-
scheduling to upcoming or all parallel regions through
our proposed API in Listing 1. By default, all top-level
parallel regions are scheduled in gang-scheduling mode.
Other parallel regions that are not set by the proposed
API are scheduled in work-stealing mode by putting all
their ULTs into the calling worker’s local work-stealing
queue. For the rest of this paper, we refer to ULTs to be
scheduled in gang-scheduling mode as gang ULTs, while
other ULTs and tasks are referred to as normal ULTs
and tasks.
export OMP_GANG_SCHED =1; // Apply gang - scheduling to

all parallel regions
void ompx_set_gang_sched (); // All following parallel

regions are gang - scheduled after this call
void ompx_reset_gang_sched (); // Parallel regions

after this call are scheduled in default
scheduling policy

Listing 1. API to apply gang-scheduling to parallel
regions

3.1.2 Gang-scheduling of user-level threads without dead-
lock. When multiple gang-scheduled parallel regions are
running simultaneously, it is important they be scheduled
without the possibility of deadlock. To prevent deadlock
as described in Figure 1a, we assign a monotonically
increasing gang id to each parallel region, which is in-
cremented atomically across all workers. We use this
gang id to restrict the scheduling order of gangs so as
to guarantee that deadlock does not occur. Algorithm

3

1 describes how the gang ULTs from a parallel region
are assigned the gang_id and nest_level of the current
worker; the runtime system then gang-schedules gang
ULTs of each parallel region. gang_sched() is synchro-
nized by a shared lock in the fork stage of a region in
the OpenMP runtime. The fork phase involves access
to global data structures which are synchronized by a
global lock for the fork and join phases in the runtime
system. Thus, parallel regions have an inevitable serial-
ization in the fork phase, and gang_sched contributes
a marginal additional waiting time to the fork phase of
each region.

When each gang is assigned a set of workers (“reserved”
workers), the number of gang ULTs and the distance
of each worker from the master thread are considered.
We assume that all the worker threads are pinned to
avoid any migration cost and uncertainty that may be
caused by the OS thread scheduler. The workers that are
closer to the current worker and less loaded with gang-
scheduled ULTs have higher priority in get_workers().
Workers are selected to be as close to each other (prefer-
ably, consecutive) as possible.

Gang ULTs become stealable after they are scheduled
onto the reserved workers. Other workers can steal the
gang ULTs from the reserved workers, which enables
an earlier start of gang ULTs if the reserved workers
for the gang are busy executing other normal ULTs

Algorithm 1 Gang-scheduling with Load Balancing and
Deadlock Avoidance
1: function gang_sched(𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡, 𝑡ℎ𝑟𝑒𝑎𝑑𝑠)
2: ◁ Gang-schedule threads to n_request workers
3: 𝑔𝑎𝑛𝑔_𝑖𝑑← 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐_𝑔𝑎𝑛𝑔_𝑖𝑑
4: 𝑤𝑜𝑟𝑘𝑒𝑟𝑠← 𝑔𝑒𝑡_𝑤𝑜𝑟𝑘𝑒𝑟𝑠𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡
5: 𝑛_𝑔𝑎𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑𝑠← 𝑛_𝑔𝑎𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡
6: for 𝑖 = 0 𝑡𝑜 𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡− 1 do
7: 𝑡ℎ𝑟𝑒𝑎𝑑𝑖gang_id ← 𝑔𝑎𝑛𝑔_𝑖𝑑
8: 𝑡ℎ𝑟𝑒𝑎𝑑𝑖nest_level ← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟nest_level
9: 𝑝𝑢𝑠ℎ 𝑡ℎ𝑟𝑒𝑎𝑑𝑖 𝑡𝑜 𝑤𝑜𝑟𝑘𝑒𝑟𝑖gang_deq

10: function get_workers(𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡)
11: ◁ Retrieve a list of least loaded n_request workers
12: 𝑎𝑣𝑔_𝑙𝑜𝑎𝑑← 𝑛_𝑔𝑎𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑛_𝑤𝑜𝑟𝑘𝑒𝑟𝑠
13: if 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 >= 𝑛_𝑤𝑜𝑟𝑘𝑒𝑟𝑠 then
14: 𝑠𝑡𝑎𝑟𝑡_𝑤𝑜𝑟𝑘𝑒𝑟 ← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑− 𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡2
15: else
16: 𝑠𝑡𝑎𝑟𝑡_𝑤𝑜𝑟𝑘𝑒𝑟 ← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟_𝑖𝑑 1
17: 𝑖𝑑𝑥← 𝑠𝑡𝑎𝑟𝑡_𝑤𝑜𝑟𝑘𝑒𝑟, 𝑖← 0
18: while 𝑖 < 𝑛_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 do
19: if 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑𝑥𝑛_𝑔𝑎𝑛𝑔_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 <= 𝑎𝑣𝑔_𝑙𝑜𝑎𝑑 then
20: 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑤𝑜𝑟𝑘𝑒𝑟𝑠𝑖 ← 𝑤𝑜𝑟𝑘𝑒𝑟𝑖𝑑𝑥

21: 𝑖𝑑𝑥← 𝑖𝑑𝑥 1%𝑛_𝑤𝑜𝑟𝑘𝑒𝑟𝑠
return 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑤𝑜𝑟𝑘𝑒𝑟𝑠

22: function is_eligible_to_sched(𝑡ℎ𝑟𝑒𝑎𝑑)
23: ◁ Check if worker can steal thread
24: if 𝑤𝑜𝑟𝑘𝑒𝑟𝑐𝑢𝑟_𝑔𝑎𝑛𝑔_𝑖𝑑 < 0 then return true
25: if 𝑡ℎ𝑟𝑒𝑎𝑑𝑛𝑒𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 > 𝑤𝑜𝑟𝑘𝑒𝑟𝑛𝑒𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 then return true
26: else if 𝑡ℎ𝑟𝑒𝑎𝑑𝑛𝑒𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 = 𝑤𝑜𝑟𝑘𝑒𝑟𝑛𝑒𝑠𝑡_𝑙𝑒𝑣𝑒𝑙

∧ 𝑡ℎ𝑟𝑒𝑎𝑑𝑔𝑎𝑛𝑔_𝑖𝑑 < 𝑤𝑜𝑟𝑘𝑒𝑟𝑔𝑎𝑛𝑔_𝑖𝑑 then return true
27: return false

and tasks. This is because we only consider the number
of gang ULTs on each worker. This additional work-
stealing resolves unidentified load imbalance without
tracking all normal ULTs and tasks. The work-stealing
of gang ULTs happens at every scheduling point, such
as barriers, along with normal tasks and ULTs. Gang
ULTs have the highest priority in work-stealing and go
through an additional function to check if each gang
ULT from a victim worker can be scheduled on the caller
through is_eligible_to_sched. This function compares
the nest-level and gang_id of the current worker with the
corresponding variables in the victim gang ULT which
are assigned in gang_sched. This function guarantees
parallel regions are scheduled in a certain partial order
where gangs, which are started earlier or in lower nested
levels, have precedence over those that started later or
are in upper levels. In this way, our gang-scheduling
approach prevents deadlock of multiple parallel regions
contending on the same pool of workers as described in
Figure 1a, allowing us to benefit from work-stealing for
load balancing.

When gang ULTs reach a join-barrier at the end of a
parallel region, they can steal normal ULTs and tasks
from workers in parallel regions of the upper nest level
even when they’re not reserved for the gang. When any
stolen task spawns a parallel region, the task is suspended
to prevent a waiting time incurred by the new nested
parallel region. Each suspended task is pushed back to a
separate work-stealing queue for suspended tasks. These
tasks have higher priority than other tasks.

3.1.3 Comparison with previous work. With the algo-
rithms and heuristics described in this section, only
selected parallel regions are guaranteed to be scheduled
in gang-scheduling mode. The gang-scheduling we pro-
posed is relatively relaxed compared with previous work
because our algorithm guarantees a parallel region to
run simultaneously at some point in runtime. Some of
the threads in the region can run earlier than others,
which may lose the locality of stronger approaches to
gang-scheduling. However, this relaxed gang-scheduling
algorithm can also result in less waiting time and more
efficient use of workers. Our scheme doesn’t require a
global table to keep track of threads and reduces waiting
time by allowing each region to start immediately and
to make ULTs stealable after being gang-scheduled.

3.2 Hybrid Victim Selection for Overlapping and
Data Locality

Task graphs involving communication and computation
tasks are commonly used to exploit parallelism by over-
lapping tasks in different iterations of iterative applica-
tions. In linear algebra kernels, block-based algorithms
have similar task graphs to overlap the waiting time of

4

current tasks by doing some computation for the next
tasks. As mentioned in Section 1, many task-level run-
time systems use heuristics to schedule tasks in task
graphs to maximize data locality. One of the common
heuristics is to use a history of previous successful steals.
This heuristic is intuitively helpful for data locality by
making workers steal the same loaded victim threads
until their task queue becomes empty. However, this
heuristic may prevent the overlapping of communication
and computation across sibling tasks. When one task
becomes ready earlier than another and both of them
have nested child tasks to exploit potential available
parallelism, the history-based heuristic makes all work-
ers first steal the child tasks from the first task, before
moving on to the next task—even though the next task
becomes ready while the first and its child tasks are being
executed. This prevents overlapping of communication
on the next task with computation on the first task.
To resolve these unintended anomalies, we tested ran-
dom work-stealing, which just chooses a victim thread
randomly without the use of history. This random steal-
ing, however, suffers from a loss of data locality. Thus,
we combined history-based and random work-stealing
so that each worker alternatively steals tasks from its
history of successful steals and from random victims.
This simple heuristic can make use of data locality and
overlapping of communication and computation tasks.

Algorithm 2 is a combined algorithm that chooses vic-
tim workers for stealing. Each worker calls do_workstealing
when their local-task queue is empty and waiting for
other threads on any synchronization point. First, each
worker tries to retrieve the victim thread from its local
history of steals. If this steal turns out to be successful,
then it moves to the next slot in the local steal history

Algorithm 2 Work-Stealing with hybrid of history and
random victim selection
1: function Do_WorkStealing
2: ◁ Steal a task from other workers, record the steal for the

next steal
3: 𝑐𝑢𝑟_𝑖𝑑𝑥← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟history_idx
4: 𝑣𝑖𝑐𝑡𝑖𝑚← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑣𝑖𝑐𝑡𝑖𝑚, 𝑡𝑎𝑠𝑘 ← 𝑠𝑡𝑒𝑎𝑙_𝑡𝑎𝑠𝑘𝑣𝑖𝑐𝑡𝑖𝑚
5: if 𝑡𝑎𝑠𝑘 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 then
6: 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟prev_victim_idcur_idx ← 𝑣𝑖𝑐𝑡𝑖𝑚
7: 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟history_idx
8: else
9: 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟prev_victim_idcur_idx ← −1

10: 𝑑𝑒𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟history_idx
11: return 𝑡𝑎𝑠𝑘
12: function Select_Victim
13: ◁ Retrieve a worker id from previous steals or rand()
14: 𝑐𝑢𝑟_𝑖𝑑𝑥← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟history_idx
15: if 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟prev_victim_idcur_idx >= 0 then
16: 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑑← 𝑐𝑢𝑟_𝑤𝑜𝑟𝑘𝑒𝑟prev_victim_idcur_idx
17: else
18: 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑑← 𝑟𝑎𝑛𝑑 % 𝑛_𝑤𝑜𝑟𝑘𝑒𝑟𝑠

return 𝑣𝑖𝑐𝑡𝑖𝑚_𝑖𝑑

array. This makes the worker try random-stealing after
a successful steal. If the current steal fails, regardless of
whether it uses history or a randomly chosen victim, it
moves back to its previous slot in the history array. If the
entry has a valid victim thread id, this worker will try
to steal from the victim where the latest successful steal
occurred. If not, it keeps stealing from randomly chosen
victims. This combined selection of victim from history
and random method prevents workers from repeatedly
stealing from the same victim, which would result in a
serialized sequence of communication and computation
without overlapping.

4 Implementation
In this section, we introduce our integrated runtime sys-
tem of Habanero-C library and LLVM OpenMP runtime
to implement the proposed gang-scheduling algorithm
and victim selection policy.

4.1 Overview of Our Implementation
We integrated LLVM OpenMP runtime and Habanero-C
library (HClib) to use HClib’s user-level threading rou-
tines. This integrated runtime creates OpenMP threads
as user-level threads that run on HClib workers. This
runtime can run pure C++ codes using HClib APIs,
OpenMP codes, and HClib with OpenMP codes. In this
work, we use pure OpenMP codes to focus on the task
dependency graph issues in production-level applications.
The user needs to load this library to their application
binary using OpenMP through LD_PRELOAD. The
LLVM OpenMP runtime supports gcc, icc, and clang,
so any OpenMP binary built with the compilers can run
on our integrated runtime without any change to their
codes.

Figure 3 shows how OpenMP instances are scheduled
onto HClib workers when gang-scheduling is enabled
through the interface in Algorithm 1. User-level threads
in each gang can be stolen by idle workers. When idle
workers try to steal a ULT from any gang, they check
with IS_ELIGIBLE_SCHED function if it is fine to
schedule the ULT by comparing their active gang_id and
nest_level with the ULT. Within each gang, OpenMP

Figure 3. Implementation of Integrated HClib and
OpenMP runtime

5

threads steal tasks through the hybrid victim selection.
In the following sections, we will describe how we im-
plement gang-scheduling and work-stealing for nested-
parallel regions in this integrated runtime system.

4.2 Scheduling of Parallel Regions on the shared pool
of workers

Multiple OpenMP instances can run on this integrated
runtime system by gang-scheduling and work-stealing, so
workers may have different nest-levels. User-level threads
from each OpenMP instance running on the workers
should be able to get access to each other. So, we im-
plemented that each worker has arrays for its active
gang_id, nest_level and thread_array. These arrays are
indexed by internal_nest_level of each worker to point
to an active entry for the current running parallel region.

Figure 4 shows how our implementation schedules mul-
tiple parallel regions onto the shared workers. When any
ULT on each worker tries to schedule a new OpenMP
instance onto workers, it creates a new thread_array
which is assigned an atomically incremented gang_id.
Each ULT also contains a copy of gang_id, nest_level
and pointer to thread_array. When each ULT is el-
igible on a worker by IS_ELIGIBLE_SCHED, it is
stolen by the worker, which copies the information of the
ULT to its local entries indexed by internal_nest_level
for gang_id, nest_level and thread_array. The worker
store its worker id and internal_nest _level in the
thread_array[internal_nest_level][the ULT’s thread id]
where other ULTs can find the ULT and its work-stealing
queue on this worker. So, other workers scheduling ULTs
in the same OpenMP instance steal a task through this

Figure 4. Gang-scheduling for nest-parallel regions and
Work-stealing within and across gangs

shared thread_array. Each worker keeps a separate ar-
ray of queues for normal ULTs and tasks indexed by
internal_nest_level, which are reused without being re-
allocated for each new instance. For gang ULTs, each
worker has a local gang_deq where a master thread ini-
tiating a parallel region pushes a gang ULT through
gang_sched function in Algorithm 1, which has highest
priority over other queues. Each worker gets a ULT by
atomically popping from this gang_deq. On any sched-
uling point, each worker checks this queue first before
they schedule tasks in queues[internal_nest_level].

4.3 Work-stealing across different Parallel Regions
Each gang has reserved workers. Any synchronizations,
such as barriers and locks, are handled without dead-
lock within each gang. Each worker does work-stealing
among workers where ULTs in the same gang are running.
As mentioned above, each worker finds a work-stealing
queue of a victim ULT through recorded info in the
shared thread_array. Work-stealing across different par-
allel regions is not allowed in the middle of each parallel
region. When each ULT reaches its join barrier at the
end of its parallel region, it can steal tasks from other
parallel regions. This work-stealing out of parallel re-
gions is allowed because we assume there is no work
left until the end of this parallel regions, and this cross-
region work-stealing has been proven to help reduce
the idle time of unbalanced parallel regions in previous
works [4]. If any stolen task leads to a nested parallel
region, the task is suspended and pushed to the worker’s
local work-stealing queue for suspended tasks, which has
the highest priority over other queues. To prevent any
possibility that the work-stealing can lead to a dead-
lock by creating a cycle, we restrict this out-of-region
work-stealing to happen from lower nested parallel re-
gions to upper parallel regions on each worker. In other
words, each worker can do this out-of-region stealing at
thread_array[internal_nest_level:0].

5 Application Study
We use three linear algebra kernels from the SLATE
library [14] to showcase the benefits of our work: LU,
QR, and Cholesky. SLATE is a state-of-the-art library
developed by the University of Tennessee that is de-
signed to make efficient use of the latest multicore CPUs
and GPUs in large-scale computing with common paral-
lel computing techniques such as wavefront parallelism
for latency hiding and heterogeneous use of CPU and
GPU in distributed environments. SLATE outperforms
existing vendor-provided libraries and its predecessor,
ScaLAPACK [9]. For our evaluation, we used the NERSC

6

Cori GPU cluster and built SLATE from its main reposi-
tory1 with the configuration in Table 1. For the baseline
OpenMP runtime system, we used the LLVM OpenMP
runtime, which was forked from the LLVM github repos-
itory on 06/29/2020.

Hardware Configuration (per node) Software Configuration
Cluster NERSC Cori GPU SLATE 06/22/2020 Commit
CPU 2 x Intel Skylake 6148 (20C, 40SMT) Compiler GCC 8.3
GPU 8 x Nvidia V100 MKL 2020.0.166
NIC 4 x dual-port Mellanox EDR CUDA/MPI 10.2.89, OpenMPI 4.0.3

Table 1. Hardware/Software Configuration for Experi-
ments

We tested different configurations of ranks-per-node
and cores-per-rank using the LLVM OMP baseline, and
selected the best configurations for all our experiments
as follows. For LU and QR, we ran each kernel with 4
MPI ranks on each node with 10 OpenMP threads per
rank , while for Cholesky, we used 2 MPI ranks per node
with 20 OpenMP threads per rank. For GPU runs, we
used 4 GPUs per node which showed the best baseline
performance. The OpenMP threads and HClib workers
are pinned in the same fashion, using the best affinity
setting among those tested.

We ran SLATE’s performance test suite to measure
the performance of each kernel in GFlops with different
configurations. Each performance measure is a mean of
6 runs after the first run as warm-up. We ran the kernels
with small and large matrices to cover common sizes of
input matrices on single and multi-node runs. For GPU
runs, we used only large matrices where the GPU version
starts to outperform the CPU-only runs. For Cholesky,
we ran the CPU-only version because the GPU version
of Cholesky offloads the trailing matrix update to the
GPU, without offering an opportunity to overlap the
trailing task and panel task (since no prior runtime was
able to exploit this overlap using the victim selection
approach in our runtime).

For comparison, we ran the test suite with the ScaLA-
PACK reference implementation using sequential MKL
(denoted by ScaLAPACK (MKL)), the SLATE default
implementation using omp task depend on LLVM OpenMP
runtime (denoted by LLVM OMP), and the same SLATE
implementation on our integrated runtime (denoted by
HClib OMP).

5.1 Overview of Task Graphs for LU, QR, and
Cholesky in SLATE

Figure 5 shows the general form of task graphs for factor-
ization kernels in SLATE. SLATE uses lookahead tasks
and panel factorization for overlapping of computation
and communication as well as data locality. Factoriza-
tion kernels factor panels (each panel is a block column)
1https://bitbucket.org/icl/slate

Figure 5. Simplified task graph of factorization kernels
in SLATE

and then send tiles in the factored panel to other ranks
so that they can update their next block column and
trailing submatrix. Lookahead tasks update the next
block column for the next panel factorization, and the
trailing submatrix task updates the rest of the trailing
submatrix. Panel and lookahead tasks are assigned a
higher priority than trailing submatrix computation with
a priority clause to accelerate the critical path of the
task graph, which is supported by only a few OpenMP
runtime systems such as GNU OpenMP. Regardless of
the support of priority, it doesn’t guarantee that the
scheduling of higher priority tasks will precede lower pri-
ority tasks even when it is supported because a priority
clause simply gives precedence to only ready tasks speci-
fied with higher priority. The trailing submatrix[i-1] task
and its child tasks become ready earlier than the panel
task[i] and its child tasks. For this sequence of tasks, the
common history-based work-stealing can prevent the ex-
pected overlapping of computation in trailing submatrix
and communication in panel task. Cholesky factorization
has significant degradation from this anomaly.

Each factorization kernel has a different series of com-
putations and communication routines in the panel,
lookahead, and trailing submatrix tasks depending on
its algorithm. Each of the tasks consists of a block of
columns. In the following sections, we’ll discuss in detail
how our suggested approaches improve the performance
of these kernels.

5.2 LU, QR Factorization: Gang-Scheduling of
Parallel Panel Factorization

LU factorization is a basic factorization kernel for solving
linear systems of equations in which the coefficient matri-
ces are non-symmetric. Several optimizations for LU fac-
torization have been suggested. SLATE adopts a multi-
threaded panel algorithm to achieve a best-performing
LU implementation [21]. Figure 6 shows what each task
in the task graph in Figure 5 does in the LU and QR
factorization of SLATE. First, the LU factorization in
SLATE does a panel factorization on a block of columns
in panel tasks. The panel factorization is parallelized in
a nested-parallel region.

7

Each panel is internally decomposed into tiles. Each
thread is persistently assigned tiles in a round-robin man-
ner, which helps cache reuse and load balancing. Each

Figure 6. Panel, lookahead, and submatrix tasks of LU
and QR in SLATE

 0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

 2000 4000 6000 8000 10000 12000 14000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)

HClib OMP(CPU)

(a) LU, 1-node, small size

 0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0
1800.0
2000.0

 15000 20000 25000 30000 35000 40000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)
HClib OMP(CPU)

LLVM OMP(GPU)
HClib OMP(GPU)

(b) LU, 1-node, large size

 0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

 2000 4000 6000 8000 10000 12000 14000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)

HClib OMP(CPU)

(c) QR, 1-node, small size

 0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

 15000 20000 25000 30000 35000 40000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)
HClib OMP(CPU)

LLVM OMP(GPU)
HClib OMP(GPU)

(d) QR, 1-node, large size

 0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

 20000 30000 40000 50000 60000 70000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)
HClib OMP(CPU)

LLVM OMP(GPU)
HClib OMP(GPU)

(e) LU, 4-node, large size

 0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

 20000 30000 40000 50000 60000 70000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)
HClib OMP(CPU)

LLVM OMP(GPU)
HClib OMP(GPU)

(f) QR, 4-node, large size

Figure 7. Performance of LU / QR factorization on single
/ 4-node of Cori-GPU (Skylake + V100) with double
precision (CPU: CPU-Only, GPU: CPU+GPU)

thread factors a column, and an updated trailing matrix
in the assigned blocks is synchronized at the end of each
step (using a custom barrier operation in the library),
until a master thread does partial pivoting across threads
and other ranks. Because of these synchronizations, a
user-level threaded runtime without coordination can
lead to deadlock. After the panel factorization, all ranks
exchange the rows to be swapped for partial pivoting;
the first rank broadcasts the top row down the matrix.
The default implementation in SLATE uses a nested par-
allel region for the parallel panel factorization. However,
this nested parallel region interrupts the communication
and synchronization by oversubscription of threads on
the same cores. Our gang-scheduling makes sure the
nested parallel region runs on reserved workers without
interference from OpenMP threads in the upper level
while other workers can schedule trailing submatrix tasks
for overlapping. As Figure 5 implies, trailing submatrix
task[i-1] can run concurrently with panel task[i]. The
workers, which are scheduled for gang-scheduling, help
to execute the trailing submatrix tasks by work-stealing
when they reach the join barrier of the nested parallel
region.

Figures 7a, 7b, 7e show the performance of LU fac-
torization on single- and multi-node runs on Cori GPU
in double precision. The LU implementation of SLATE
includes the sequential global pivoting phase after the
OpenMP region, so the overall improvement is relatively
small compared with other kernels, which is up to 13.82%
on CPU-only runs. Our gang-scheduling has diminishing
improvement in CPU-only runs with bigger matrices.
However, with bigger matrices, the GPU version of LU
outperforms CPU-only runs and the reduction in syn-
chronization and communication leads to noticeable im-
provement in GPU runs. We’ll explain this performance
trend in CPU-only and GPU runs in the following sec-
tion.

Similarly, QR factorization does parallel panel factor-
ization. Unlike LU, QR doesn’t include partial pivoting,
so panel tasks in QR do not involve global communica-
tion for pivoting and QR doesn’t have sequential global
pivoting after the parallel region. Thus, QR factoriza-
tion shows relatively more significant speed-up with
our runtime over the baseline LLVM OpenMP runtime
with oversubscription compared with LU factorization.
SLATE uses a communication-avoiding QR algorithm
for QR factorization. It doesn’t include any communi-
cation in the panel factorization, while each panel task
transfers the tiles factored after the panel factorization
to other ranks before it proceeds with lookahead and
trailing submatrix tasks. The panel factorization is also
the most critical task to the task graph of QR factoriza-
tion in SLATE. Thus, gang-scheduling helps minimize

8

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

LLV
M

HClib
LLV

M
HClib

LLV
M

HClib
LLV

M
HClib

Ex
ec

ut
io

n
tim

e(
N

or
m

al
iz

ed
 to

 L
LV

M
)

Runtime / Matrix Size(Device)

Others
Panel

MPI Comm

35000(CPU+GPU)25000(CPU+GPU)25000(CPU)6000(CPU)

(a) LU

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

LLV
M

HClib
LLV

M
HClib

LLV
M

HClib
LLV

M
HClib

Ex
ec

ut
io

n
tim

e(
N

or
m

al
iz

ed
 to

 L
LV

M
)

Runtime / Matrix Size(Device)

Others
Panel

MPI Comm

35000(CPU+GPU)25000(CPU+GPU)25000(CPU)6000(CPU)

(b) QR

Figure 8. Detailed Critical Path of LU and QR factorization on a single node with LLVM and HClib OMP

the interference of the nested parallel regions as it does
for LU.

Figures 7c, 7d, 7f show the performance of QR fac-
torization on single- and multi-node runs. Our work
improves the QR factorization up to 14.7% at CPU-only
runs and 15.2% at GPU runs on a single node over
CPU-only and GPU runs with LLVM OpenMP run-
time. Gang-scheduling shows considerable improvement
in 4-node runs up to 12.8%. QR factorization also has di-
minishing returns of improvement with bigger matrices,
as explained in the following section.

5.3 Detailed Analysis of Improvement in LU and QR
Figure 8 represents how much MPI routines, panel task
and other routines consist of the overall execution time
in terms of critical path. The tasks transfer tiles between
ranks in the beginning and end of panel, lookahead,
and submatrix tasks. So, MPI communication and panel
factorization determines the length of the critical path
of LU and QR task graphs. Child tasks from lookahead
and trailing submatrix tasks run in parallel with these
routines to overlap the critical routines, which consists
of most portion of Others. Each bar is normalized to the
total execution time of LLVM with the corresponding
input matrix.

The benefits of gang-scheduling in our integrated run-
time for single- and multi-node runs diminish for both
LU and QR factorization. Gang-scheduling helps remove
the delayed synchronization by oversubscription with
deadlock avoidance, which leads to reduction in Panel.
The reduction makes the tile transfer happen earlier, at
the end of the panel task, which shortens the waiting
time in other MPI ranks that need the tiles to proceed.
This is shown on the reduction of MPI Comm in Figure 8.
This improvement is diluted with the combined effect
of oversubscription. The degree of degradation incurred
by oversubscription depends on the inter-barrier time of
an application [16]. The bigger input matrix has longer
inter-barrier time, which leads to less significant degrada-
tion from context switching by oversubscription. Rather,

oversubscription hides waiting time from OS and hard-
ware events monitored at the kernel-level, which makes
our runtime shows increase in Others consisting of single-
threaded BLAS kernels. It is because the latency hiding
of oversubscription is removed. The decreasing degra-
dation of oversubscription on bigger matrices leads to
diminishing returns of gang-scheduling over oversubscrip-
tion.

However, the benefit of gang-scheduling becomes more
significant on the GPU offloaded version because a sig-
nificant portion of computation in others is offloaded to
GPUs where oversubscription helps on the large matrices.
A larger portion of the single-threaded BLAS kernels is
offloaded in LU than in QR. So, QR has diminishing re-
turns on the GPU version as the size of the input matrix
becomes bigger. If more computation in QR is offloaded,
our gang-scheduling can bring more improvement in QR.

5.4 Cholesky Factorization: Maximized Overlap of
Communication and Computation

Cholesky factorization is a decomposition of a Hermitian
positive definite matrix into a lower triangular matrix
and its conjugate transpose. Cholesky is used for stan-
dard scientific computations such as linear least squares
and Monte Carlo simulations. It has proven to be twice

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

LU QR

Cho
les

ky LU QR

Cho
les

kyG
Fl

op
s(

N
or

m
al

iz
ed

 to
 G

an
g+

H
is

to
ry

)

Runtime / Matrix Size(Device)

Gang+History
Gang+Hybrid

14000(CPU)6000(CPU)

Figure 9. Performance Difference of LU, QR, and
Cholesky with history and hybrid victim Selection on
HClib OMP

9

Figure 10. Panel, Lookahead, and Submatrix Tasks of
Cholesky in SLATE

as efficient as LU when it is applicable. The panel fac-
torization is much lighter, so lookahead and trailing sub-
matrix tasks are critical to improving the performance
of Cholesky. As we mentioned above, trailing submatrix
tasks [i-1] and panel task[i] can run concurrently. LU and
QR factorization have heavy panel tasks which are par-
allelized in a nested-parallel region, so any workers that
finish lookahead tasks will push dependent panel tasks
into ready queues. Most often, they’re pushed to the
worker’s work-stealing queue, so panel tasks are likely to
be scheduled just after lookahead tasks. Also, the panel
tasks are heavy and take a large portion of execution
time, so the degree of overlapping of the panel tasks
and trailing submatrix tasks have limited impact on the
performance. In Figure 9 , the victim selection policies
don’t affect LU and QR significantly while Cholesky is
highly influenced by the victim policies which affect the
overlapping of the two tasks. As described in Figure 10,
its panel factorization is done in a bunch of indepen-
dent tasks and takes less time than trailing submatrix
tasks, so when the panel task becomes available after
its preceding lookahead task is done, child tasks from
the preceding trailing submatrix task are already being
scheduled. The timing for the child tasks from the panel
tasks is determined by how each worker chooses a victim
for work-stealing. If they use the typical history-based
victim selection, every worker will keep stealing from the
worker in which the trailing submatrix is running and
create its child tasks. This work-stealing from the same
victim leads to a delay in the scheduling of the panel
task and less overlapping of inter-node communication
on the panel task with the child tasks from the trailing
submatrix task.

Figures 11a, 11b, 11c show the performance of Cholesky
factorization. As we expected, the improved overlapping
of computation in trailing submatrix tasks and com-
munication in panel tasks enhances the performance of
Cholesky factorization significantly. The improvement is
more significant with bigger matrices because it takes
more time to transfer tiles to other ranks and update
the trailing submatrix, which gives more opportunity for
overlapping. On a single node, the improvement is up
to 36.94% with double-precision. On 4-node runs, the
kernel is improved up to 28.83%.

We analyze Cholesky in detail to clarify where the im-
provement comes from. We profile each OpenMP worker

 0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

 2000 4000 6000 8000 10000 12000 14000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)

HClib OMP(CPU)

(a) CPU-Only, 1-node

 0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

 15000 20000 25000 30000 35000 40000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)

HClib OMP(CPU)

(b) CPU-Only, 1-node

 0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

 20000 30000 40000 50000 60000 70000

G
Fl

op
s

Matrix Size

ScaLAPACK(MKL)
LLVM OMP(CPU)

HClib OMP(CPU)

(c) CPU-Only, 4-node

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

LLV
M

HClib
LLV

M
HClib

Ex
ec

ut
io

n
tim

e(
N

or
m

al
iz

ed
 to

 L
LV

M
)

Runtime / Matrix Size(Device)

Idle
MPI_Recv

MPI_Isend/Wait
Compute

14000(CPU)6000(CPU)

(d) Stacked Bar, CPU-Only, 1-
node

Figure 11. Performance of Cholesky factorization on
single/4-node of Cori-GPU (Skylake + V100) with dou-
ble precision (CPU: CPU-Only)

in different MPI ranks and compute the average of each
event such as Idle, MPI_Recv, MPI_Isend/Wait, and
Compute which includes all computations from panel,
lookahead, and trailing submatrix tasks. The largest
portion of Idle consists of waiting time until the updated
tiles are received through MPI_Recv from other MPI
ranks. Figure 11d shows the detailed analysis of Cholesky
factorization on a single node with two matrix sizes on
LLVM and HClib OMP. In the small matrix, the amount
of computation is relatively small, which doesn’t affect
the degree of overlapping significantly regardless of when
MPI routines are called. However, on the large matrix,
the computation from the trailing submatrix takes longer
time, which can overlap MPI routines. So, our victim
selection successfully hides the latency of MPI routines,
which leads to significant reduction in the overall idle
time.

6 Related Work
6.1 Task Graphs in Task-Based Parallel

Programming Models
Task graphs have been adopted in most industry and aca-
demic works. As mentioned in earlier sections, languages
supporting task graphs provide constructs for explicit
task dependency through objects such as promise and
futures in C++11 [18], Habanero [5], Go [11]. A recent

10

work, Legate-Numpy [6], shows that implicit parallelism
can be extracted from the data flow of library calls. These
task-based parallel programming models supporting task
graphs haven’t paid much attention to data-parallel tasks
or overlapping of tasks on the graphs. Hence, we have
focused our attention on these tasks, which are highly
crucial for performance.

6.2 Runtime Systems Based on User-level Threads
User-level threads have been adopted to benefit from
their lightweight context switching cost. One of the most
common uses of ULTs is to remove the oversubscription
by multiple parallel regions. Lithe [27] resolved the com-
posability of different OpenMP instances by providing
a dedicated partition of cores to each instance through
user-level contexts. However, this partitioning can lead
to less resource utilization because of imbalanced loads
across instances. Several runtime systems [4, 17, 25, 28]
share the underlying kernel-level threads through work-
stealing or their own scheduling algorithm with ULTs.
They tried to make use of the lightweight context switch-
ing cost of ULTs in different contexts but couldn’t resolve
the deadlock issue completely. Shenango [25] tried to
provide a bypass for blocking kernel calls, but other
blocking operations used in library calls or written by
users can lead to a deadlock. Our work benefits from
the advantages of ULTs without deadlock or inefficient
resource utilization due to coarse-grained partitioning.

6.3 Communication and Computation Overlap
Asynchronous parallel programming models [2, 7, 8, 19]
have been suggested for overlapping by making all of the
function calls asynchronous, which directs the runtime
system to interleave communication and computation
inherently. However, asynchronous parallel programming
models require significant effort on the part of users to
write their applications without deadlock, and tracking
control flow of functions calls is not intuitive. J. Richard
et al. [30] studied the overlapping of OpenMP tasks with
asynchronous MPI routines in which the application
uses the priority clause and task loops. As previously
mentioned, the examples we used cannot benefit from
the priority clause because it works only for ready tasks.
Our victim selection helps the overlapping of child tasks
from multiple ready tasks even when priority doesn’t
help or is not supported.

7 Conclusion
In this work, we proposed gang-scheduling and hybrid
victim selection in our runtime system to improve the
performance of task graphs involving inter/intra-node

communication and computation. Our approach sched-
ules nested parallel regions involving blocking synchro-
nizations and global communications with minimal in-
terference as well as with desirable data locality. It is
implemented efficiently using a monotonic identifier and
an eligibility function to enforce an ordering of gangs so
as to ensure the absence of deadlock. Also, it interop-
erates with work-stealing to minimize unused resources
within and across gangs. Our suggested victim selection
resolved the problem of the common heuristic based
on a history of previously successful steals by applying
random-stealing and history-based alternatives within a
fixed window size to overlap communication and compu-
tation.

We evaluated our work on three commonly used linear
algebra kernels, LU, QR, and Cholesky factorizations,
from the state of the art SLATE library. Our approach
showed an improvement for LU of 13.82% on a single
node in double precision and of 11.36% on multiple
nodes. The improvements for QR went up to 15.21%
on a single node and 12.78% on four nodes with double
precision. Cholesky factorization was improved by our
hybrid victim selection, with an improvement of up to
36.94% on a single node and 28.83% on multiple nodes
with double precision. Further, unlike current runtimes,
our approach guarantees the absence of deadlock in
these kernels for all inputs. Finally, our approach is
applicable to any application written using task graphs
that also needs to perform additional synchronization
and communication operations as in the SLATE library.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe.

2000. The Data Locality of Work Stealing. In Proceedings of
the Twelfth Annual ACM Symposium on Parallel Algorithms
and Architectures (Bar Harbor, Maine, USA) (SPAA ’00).
Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/341800.341801

[2] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer,
Harshitha Menon, Eric Mikida, Xiang Ni, Michael Rob-
son, Yanhua Sun, Ehsan Totoni, Lukasz Wesolowski, and
Laxmikant Kale. 2014. Parallel Programming with Migrat-
able Objects: Charm++ in Practice. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14). 647–658.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,
and Henry M. Levy. 1992. Scheduler Activations: Effective
Kernel Support for the User-Level Management of Parallelism.
ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 53–79. https:
//doi.org/10.1145/146941.146944

[4] Seonmyeong Bak, Harshitha Menon, Sam White, Matthias
Diener, and Laxmikant V. Kalé. 2018. Multi-Level Load
Balancing with an Integrated Runtime Approach. In 18th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2018, Washington, DC, USA,
May 1-4, 2018. 31–40. https://doi.org/10.1109/CCGRID.2018.
00018

11

https://doi.org/10.1145/341800.341801
https://doi.org/10.1145/146941.146944
https://doi.org/10.1145/146941.146944
https://doi.org/10.1109/CCGRID.2018.00018
https://doi.org/10.1109/CCGRID.2018.00018

[5] Rajkishore Barik, Zoran Budimlic, Vincent Cave, Sanjay Chat-
terjee, Yi Guo, David Peixotto, Raghavan Raman, Jun Shi-
rako, Sağnak Taşırlar, Yonghong Yan, et al. 2009. The Ha-
banero Multicore Software Research Project. In Proceedings
of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications.
ACM, 735–736.

[6] Michael Bauer and Michael Garland. 2019. Legate NumPy:
Accelerated and Distributed Array Computing. In Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado)
(SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 23, 23 pages. https://doi.org/10.1145/
3295500.3356175

[7] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex
Aiken. 2012. Legion: expressing locality and independence
with logical regions. In Proceedings of the international con-
ference on high performance computing, networking, storage
and analysis. IEEE Computer Society Press, 66.

[8] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. 2005. X10: An Object-oriented
Approach to Non-uniform Cluster Computing. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications
(San Diego, CA, USA) (OOPSLA ’05). ACM, New York, NY,
USA, 519–538.

[9] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1996.
ScaLAPACK: A portable linear algebra library for distributed
memory computers — Design issues and performance. In
Applied Parallel Computing Computations in Physics, Chem-
istry and Engineering Science, Jack Dongarra, Kaj Madsen,
and Jerzy Waśniewski (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 95–106.

[10] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha. 2009. Scalable work stealing. In Proceedings
of the Conference on High Performance Computing Network-
ing, Storage and Analysis. 1–11.

[11] Alan A.A. Donovan and Brian W. Kernighan. 2015. The Go
Programming Language (1st ed.). Addison-Wesley Profes-
sional.

[12] Dror G. Feitelson. 1996. Packing schemes for gang sched-
uling. In Job Scheduling Strategies for Parallel Processing,
Dror G. Feitelson and Larry Rudolph (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 89–110.

[13] Dror G. Feitelson and Larry Rudolph. 1992. Gang sched-
uling performance benefits for fine-grain synchronization.
J. Parallel and Distrib. Comput. 16, 4 (1992), 306 – 318.
https://doi.org/10.1016/0743-7315(92)90014-E

[14] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and
Jack Dongarra. 2019. SLATE: Design of a Modern Distributed
and Accelerated Linear Algebra Library. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC
’19). Association for Computing Machinery, New York, NY,
USA, Article 26, 18 pages. https://doi.org/10.1145/3295500.
3356223

[15] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. 2010.
SLAW: a scalable locality-aware adaptive work-stealing sched-
uler for multi-core systems. In ACM Sigplan Notices, Vol. 45.
ACM, 341–342.

[16] C. Iancu, S. Hofmeyr, F. Blagojević, and Y. Zheng. 2010.
Oversubscription on multicore processors. In 2010 IEEE In-
ternational Symposium on Parallel Distributed Processing
(IPDPS). 1–11.

[17] S. Iwasaki, A. Amer, K. Taura, S. Seo, and P. Balaji. 2019.
BOLT: Optimizing OpenMP Parallel Regions with User-Level
Threads. In 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 29–42.
https://doi.org/10.1109/PACT.2019.00011

[18] Nicolai M. Josuttis. 2012. The C++ Standard Library: A Tu-
torial and Reference (2nd ed.). Addison-Wesley Professional.

[19] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach,
Adrian Serio, and Dietmar Fey. 2014. HPX: A task based
programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global
Address Space Programming Models. ACM, 6.

[20] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and J.
Yelon. 1996. Converse: an interoperable framework for parallel
programming. In Proceedings of International Conference on
Parallel Processing. 212–217. https://doi.org/10.1109/IPPS.
1996.508060

[21] Jakub Kurzak, Mark Gates, Ali Charara, Asim YarKhan,
Ichitaro Yamazaki, and Jack Dongarra. 2019. Linear Sys-
tems Solvers for Distributed-Memory Machines with GPU
Accelerators. In Euro-Par 2019: Parallel Processing, Ramin
Yahyapour (Ed.). Springer International Publishing, Cham,
495–506.

[22] Jonathan Lifflander, Sriram Krishnamoorthy, and
Laxmikant V. Kale. 2012. Work Stealing and Persistence-
Based Load Balancers for Iterative Overdecomposed
Applications. In Proceedings of the 21st International
Symposium on High-Performance Parallel and Distributed
Computing (Delft, The Netherlands) (HPDC ’12). Asso-
ciation for Computing Machinery, New York, NY, USA,
137–148. https://doi.org/10.1145/2287076.2287103

[23] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. 2014. Op-
timizing Data Locality for Fork/Join Programs Using Con-
strained Work Stealing. In SC ’14: Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis. 857–868.

[24] OpenMP ARB. 2013. OpenMP Application Program Interface
Version 4.0. In The OpenMP Forum, Tech. Rep. https:
//www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

[25] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. 2019. Shenango: Achieving
High CPU Efficiency for Latency-sensitive Datacenter Work-
loads. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 361–378. https://www.usenix.org/conference/
nsdi19/presentation/ousterhout

[26] John K. Ousterhout. 1982. Scheduling Techniques for Con-
current Systems. In Proceedings of the 3rd International Con-
ference on Distributed Computing Systems, Miami/Ft. Laud-
erdale, Florida, USA, October 18-22, 1982. IEEE Computer
Society, 22–30.

[27] Heidi Pan, Benjamin Hindman, and Krste Asanoviundefined.
2010. Composing Parallel Software Efficiently with Lithe.
In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (Toronto,
Ontario, Canada) (PLDI ’10). Association for Computing
Machinery, New York, NY, USA, 376–387. https://doi.org/
10.1145/1806596.1806639

12

https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1016/0743-7315(92)90014-E
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1109/PACT.2019.00011
https://doi.org/10.1109/IPPS.1996.508060
https://doi.org/10.1109/IPPS.1996.508060
https://doi.org/10.1145/2287076.2287103
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/1806596.1806639
https://doi.org/10.1145/1806596.1806639

[28] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. 2018. Arachne: Core-Aware Thread Man-
agement. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 145–160. https://www.usenix.org/conference/
osdi18/presentation/qin

[29] Jean-Noël Quintin and Frédéric Wagner. 2010. Hierarchi-
cal Work-Stealing. In Euro-Par 2010 - Parallel Processing,
Pasqua D’Ambra, Mario Guarracino, and Domenico Talia
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 217–
229.

[30] Jérôme Richard, Guillaume Latu, Julien Bigot, and Thierry
Gautier. 2019. Fine-Grained MPI+OpenMP Plasma Simu-
lations: Communication Overlap with Dependent Tasks. In
Euro-Par 2019: Parallel Processing, Ramin Yahyapour (Ed.).
Springer International Publishing, Cham, 419–433.

[31] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
P. Carns, A. Castelló, D. Genet, T. Herault, S. Iwasaki, P.
Jindal, L. V. Kalé, S. Krishnamoorthy, J. Lifflander, H. Lu,
E. Meneses, M. Snir, Y. Sun, K. Taura, and P. Beckman.
2018. Argobots: A Lightweight Low-Level Threading and
Tasking Framework. IEEE Transactions on Parallel and
Distributed Systems 29, 3 (March 2018), 512–526. https:
//doi.org/10.1109/TPDS.2017.2766062

[32] K. B. Wheeler, R. C. Murphy, and D. Thain. 2008. Qthreads:
An API for programming with millions of lightweight threads.
In 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing. 1–8. https://doi.org/10.1109/IPDPS.2008.
4536359

[33] Y. Wiseman and D. G. Feitelson. 2003. Paired gang scheduling.
IEEE Transactions on Parallel and Distributed Systems 14,
6 (June 2003), 581–592. https://doi.org/10.1109/TPDS.2003.
1206505

13

https://www.usenix.org/conference/osdi18/presentation/qin
https://www.usenix.org/conference/osdi18/presentation/qin
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1109/TPDS.2017.2766062
https://doi.org/10.1109/IPDPS.2008.4536359
https://doi.org/10.1109/IPDPS.2008.4536359
https://doi.org/10.1109/TPDS.2003.1206505
https://doi.org/10.1109/TPDS.2003.1206505

	Abstract
	1 Introduction
	2 Background
	2.1 Task graphs in Task-Level Programming Models
	2.2 User-level threads for Task-Level Programming Models
	2.3 Gang-scheduling and Work-stealing

	3 Design
	3.1 Gang-Scheduling of Data-Parallel Tasks
	3.2 Hybrid Victim Selection for Overlapping and Data Locality

	4 Implementation
	4.1 Overview of Our Implementation
	4.2 Scheduling of Parallel Regions on the shared pool of workers
	4.3 Work-stealing across different Parallel Regions

	5 Application Study
	5.1 Overview of Task Graphs for LU, QR, and Cholesky in SLATE
	5.2 LU, QR Factorization: Gang-Scheduling of Parallel Panel Factorization
	5.3 Detailed Analysis of Improvement in LU and QR
	5.4 Cholesky Factorization: Maximized Overlap of Communication and Computation

	6 Related Work
	6.1 Task Graphs in Task-Based Parallel Programming Models
	6.2 Runtime Systems Based on User-level Threads
	6.3 Communication and Computation Overlap

	7 Conclusion
	References

