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ABSTRACT

We consider decision problems associated with the linear quadratic

regulator (LQR) and linear quadratic Gaussian (LQG) control prob-

lems in continuous time. The decision problems ask, given the

parameters of a problem and a threshold rational number r , is the
optimal cost less than or equal to the threshold r? LQR and LQG

are fundamental problems in the theory of linear systems and it

is well known that optimal controllers for these problems have

a closed-form solution. However, since the closed-form solutions

involve transcendental functions, they can only be evaluated nu-

merically. Thus, it is possible that numerical imprecisions prevent

answering the decision problem no matter what precision is used

for the computations. Indeed, the computability of these natural

decision problems has remained open.

We show that the problems are decidable. The decidability is

not relative to any given limit on the numerical precision. Our

proof uses the Lindemann-Weierstrass theorem from transcendental

number theory to show that checking whether an exponential

polynomial is less than or equal to a rational threshold is decidable.

We show further that (conditional) decidability results for several

open problems in linear systems theory can be obtained if one

additionally assumes Schanuel’s conjecture, a unifying conjecture

in transcendental number theory.
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1 INTRODUCTION

In 1960, Rudolf Kalman published two groundbreaking papers that
set the stage of much of modern control theory research [17, 18].
In the first paper [17], he defined the linear-quadratic regulator
(LQR) problem, and showed under what circumstances, and how,
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a (closed-form) feedback controller can be designed for a linear

system such that the integral of the square of the tracking error is

minimized. The second paper [18] developed a theory of filtering,

and the two papers together formed the basis for linear-quadratic-

Gaussian (LQG) control.

The LQR and LQG paradigms have been extremely influential in

the subsequent development of control theory. However, one aspect

that has not been studied is the computability of the problem.

Let us be precise. The LQR problem (over finite horizon tf ) asks,
given the linear time-invariant system

Ûx(t) = Ax(t) + Bu(t), x(0) = x0,

to find a feedback control law such that the following quadratic

cost is minimized:

x(tf )
T Sx(tf ) +

∫ tf

0

(
x(t)TQx(t) + u(t)T Ru(t)

)
dt .

Here, the matrices S , Q are symmetric positive semi-definite, and R
is symmetric positive definite.

With every optimization problem, one can associate a natural

decision problem. For the LQR problem, the natural LQR decision
problem is, given a system and a cost function as above, a horizon tf ,
and a rational number c , whether there is a controller that achieves
a cost less than or equal to c . One can define an analogous decision

problem for LQG control. The computability status of these LQR

and LQG decision problems has remained open.

It may come as a surprise to the practitioner that the decision

problem is open. It is well known, from [17], that the optimal con-

troller has a closed-form solution, obtained through analyzing the

associated Ricatti equation. However, the closed-form solution in-

volves transcendental functions and does not immediately imply

the decidability of the associated decision problem. In practice,

the closed-form is evaluated numerically and the accumulation of

numerical errors may make it impossible to answer the decision

problem. For example, suppose that the optimal value is exactly c .
Then, no matter how precisely we bound the numerical computa-

tions, we may never be able to state if the minimum is less than or

equal to c or above c .
There is an implicit belief in the community that decision prob-

lems for continuous-state, continuous-time problems are not amenable

to exact algorithmic analysis, and hence one must formulate the

decision problems relative to a numerical precision. For example,

Blondel and Tsitsiklis’s influential survey on algorithms for con-

trol [9] do not discuss continuous-time problems for the most part,

and state that “Problems of [continuous-state] type do not admit

closed-form or exact algorithmic solutions” and can only be “solved

approximately, by discretizing them” [9, pg. 1267]. We show, con-

trary to this belief, that one can formulate and decide the natural

decision problem without requiring a fixed numerical precision.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3447928.3456634
https://doi.org/10.1145/3447928.3456634
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447928.3456634&domain=pdf&date_stamp=2021-05-19


HSCC ’21, May 19–21, 2021, Nashville, TN, USA Rupak Majumdar and Sadegh Soudjani

In particular, we show how tools from transcendental number

theory can provide an algorithmic framework for many decision

problems in continuous-time, continuous-space, control theory—

including the LQR and LQG decision problems. Our starting point

is the study of exponential-polynomials∑
i
aie

bi ,

where ai , bi are algebraic numbers, that arise as solutions to linear

differential equations. We use the Lindemann-Weierstrass theorem

from transcendental number theory [24] to characterize properties

of exponential-polynomials; in particular, the function

∑
aie

bi t
is

identically zero for distinct algebraic numbers bi if and only if each

ai is zero. A consequence of the result, together with results on

computational algebraic number theory, is that it is decidable if

an exponential polynomial is greater than or equal to a rational

number. We use this decision procedure to show decidability of

several important, and open, problems in control, including LQR

and LQG control.

While we focus on decidability, using quantitative estimates for

the Lindemann-Weierstrass theorem [25], we can provide (some-

what pessimistic) complexity bounds. The complexity bounds are

high and we do not have matching lower bounds at this point.

We leave the goal of proving optimal complexity results for future

work.

For a number of additional questions in continuous-time control,

we show conditional decision procedures, subject to Schanuel’s con-

jecture, a famous unresolved conjecture in transcendental number

theory. Schanuel’s conjecture is a far-reaching generalization of

Lindemann-Weierstrass theorem and many other results in tran-

scendental number theory [24]. A consequence of Schanuel’s con-

jecture is that the theory of reals with bounded exponentials, sines,

and cosines, is decidable [21]. We use this theory to show the con-

ditional decidability of the following problems:

(1) Controllability of linear time-varying systems: [26] Given a

time-varying linear system

Ûx(t) = A(t)x(t) + B(t)u(t),

where thematricesA(t) andB(t) have exponential-polynomial

entries, check if the system is controllable on an interval

[t0, t1]; and
(2) State feedback stabilization with guaranteed transient bounds:

[8, 16] given a Hurwitz matrix A, a rational β that is greater

than the maximum real parts of the eigenvalues of A, and a

rationalM , decide if ||eAt || ≤ Meβt for all t ≥ 0.

As far as we know, algorithmic techniques for solving these prob-

lems (and many others) are open.

Other Related Work. Natural decision problems of other opti-

mization problems are defined analogously to our definition of the

LQR and LQG problems, and studied in complexity theory. For

example, it is known that linear programming is in polynomial

time [19, 20] (and conjectured to be in strongly polynomial time)

and integer-programming [10] and quadratic programming are NP-

complete [27]. In each case, one can show that the problem satisfies

an ordered field property: the optimal value of an instance given

by rational numbers is also rational (and in fact, a “small” rational).

This is unlike the LQR and LQG problems, where the solution can

be transcendental even when the problem is defined using rational

numbers only. To the best of our knowledge, whether the natural

decision problem for semidefinite programming is in polynomial

time remains open; although one can get to within an additive error

of ϵ of the optimal in polynomial time (in the size of the problem

and log(1/ϵ)).
A number of results in linear dynamical systems and the analysis

of continuous-time Markov chains have used either the Lindemann-

Weierstrass theorem or Schanuel’s conjecture to show (conditional)

decidability results [1, 3, 12, 23]. Moreover, there are deep connec-

tions between dynamical systems and problems in Diophantine

approximation [2, 15]. While we focus on a few key problems in this

paper, we believe many other problems in control of linear systems

can be tackled using similar techniques. Also, while Schanuel’s

conjecture may seem too strong a hammer, related problems in

continuous-time linear systems have been open for a long time,

and only known to be conditionally decidable under Schanuel’s

conjecture [5, 23].

Notation.We useN, Z,Q, R,Q, and C for the set of natural numbers,

integers, rationals, reals, algebraic numbers, and complex numbers.

We write In for the identity matrix of size n and e for Euler’s con-
stant.

2 PRELIMINARIES

2.1 Algebraic Numbers

A complex number a is algebraic if it is the root of a univariate

polynomial with integer coefficients. We denote the set of algebraic

numbers byQ; the notation captures the fact that algebraic numbers

form the algebraic closure of Q over C. A transcendental number is

a complex number that is not algebraic.

Given complex numbers a1, . . . ,an , we say they are linearly
dependent over Q if there are d1, . . . ,dn ∈ Q, not all 0 such that∑
i diai = 0. They are called linearly independent otherwise. Like-

wise, we say they are algebraically dependent over Q if there is a

nonzero polynomial P ∈ Q[x1, . . . ,xn ] such that P(a1, . . . ,an ) = 0.

Otherwise, they are algebraically independent over Q.
The defining polynomial of an algebraic number a, written pa ,

is the unique univariate polynomial of least degree and whose

coefficients do not have common factors, which vanishes at a. The
height of p is the maximummagnitude of its coefficients. The height

and degree of an algebraic number is the height and degree of

its defining polynomial, respectively. For a univariate polynomial

p ∈ Z[x], the bit length of p, written ||p ||, is the total length of its list

of coefficients encoded in binary. Thus, the degree of p is bounded

above by ||p || and the height by 2
||p ||

.

An algebraic number a can be represented using its defining

polynomial, together with rational approximations of its real and

imaginary parts that are sufficiently precise to distinguish a from

the other roots of pa . Thus, a representation of a number a consists

of (pa , c,d, r ) ∈ Z[x] × Q
3
where a is the unique root of pa in the

circle in C of radius r centered at c + d i . For an algebraic number

ρ, we write ||ρ || for the bit length of its representation. Given a

real number t and a positive integer m, we say that q ∈ Q is an

m-bit approximation of t if |t − q | < 2
−m

. It is known that, given a

polynomial p, one can compute standard representations of all its

roots in time polynomial in ||p || [13]. Thus, we can computem-bit
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approximations for any algebraic number in time polynomial in

||ρ || and inm.

The following theorem summarizes necessary algorithmic results

for computations with algebraic numbers (see [13]).

Theorem 2.1. (1) [13] Given algebraic numbers a,b, one can
compute a + b, ab, and check if a = b or a ≥ b in time
polynomial in ||a || + ||b ||.

(2) [11] For any fixed real numbers 0 < a < b, there is an al-
gorithm which, given integer p ≥ 0, computes the functions
exp(x), sin(x), and cos(x) in time O(p logp log logp), with
relative error at most O(2−p ), uniformly for all x ∈ [a,b].

(3) There is an algorithm which takes as input a real algebraic
number ρ and a positive number m, and returns an m-bit
approximation of exp(ρ), sin(ρ), cos(ρ) in time polynomial in
both ||ρ || andm.

2.2 Exponential Polynomials and Matrix

Exponentials

Informally, an exponential polynomial is a polynomial function

of variables and exponentials of variables. For any polynomial

p(x1, . . . ,x2n ) in Q[x1, . . . ,x2n ], we associate the exponential poly-
nomial p(x1, . . . ,xn , e

x1 , . . . , exn ).

We also consider the ring of finite sums of the form

∑k
j=1

α je
βj
,

for algebraic numbers α1, . . . ,αk and β1, . . . , βk . Note that since
algebraic numbers form a field, expressions of the above form are

closed under addition and multiplication. Evaluating an exponential

polynomial p(x1, . . . ,xn , e
x1 , . . . , exn ) at a point in Q

n
yields such

a finite sum.

For a matrix A ∈ Rn×n , we write eA for the matrix exponential,

defined by eA := In +A + 1

2!
A2 + . . ..

Recall that the solution of a linear time invariant system

Ûx(t) = Ax(t), x ∈ Rn ,x(0) = x0 (1)

is given by x(t) = eAtx0.

Proposition 2.2. For any matrix A ∈ Q
n×n

and t ∈ Q, each
element of the matrix eAt is a finite sum of the form

∑k
j=1

α je
βj with

algebraic numbers α j and βj , j = 1, . . . ,k .

Proof. LetA = P JP−1
be the Jordan canonical form forA, where

J is an upper block diagonal matrix

J =

©«
Jλ1

0

Jλ2

. . .

0 Jλk

ª®®®®¬
,

where λ1, . . . , λk are distinct eigenvalues of A, each Jλ is of the

form ©«
λ 1 0 . . . 0

0 λ 1 . . . 0

. . . 1

0 . . . 0 λ

ª®®®®¬
,

and the size of Jλ is the multiplicity of λ. Then, eAt = Pe J tP−1
,

where

e J t =

©«
e Jλ1

t
0

e Jλ2
t

. . .

0 e Jλk t

ª®®®®®¬
and, for λ of multiplicitym + 1,

e Jλ t =

©«
eλt teλt t 2

2!
eλt . . . tm

m!
eλt

0 eλt teλt . . . tm−1

(m−1)!
eλt

. . . teλt

0 . . . 0 eλt

ª®®®®®¬
.

Now the eigenvalues of an algebraic matrix, being solutions of

the characteristic equation, are algebraic, and each entry of the

matrix P (and P−1
) is obtained through linear algebra and therefore

algebraic. Thus, each entry of eAt is an exponential polynomial

in t , and for each algebraic number t , is of the form
∑
j α je

βj
for

algebraic numbers α j , βj . □

In fact, the proof demonstrates that whenA is a real-algebraic ma-

trix and x0 is a real-algebraic vector, each coordinate of the solution

vector x(t) of (1) can be expressed as an exponential polynomial

function of the parameter t :

k∑
j=1

Pt (j)e
λj t , (2)

where λ1, . . . , λk are the distinct (real or complex) eigenvalues ofA
and each Pt (j) is a polynomial function of t with (possibly complex)

algebraic coefficients and with degree one less than the multiplicity

of the eigenvalue λj .

2.3 Transcendental Number Theory and

Decision Problems for Exponential

Polynomials

We shall use the following basic result from transcendental number

theory (see, e.g., [24]).

Theorem 2.3 (Lindemann-Weierstrass). If a1, . . . ,an ∈ Q
are linearly independent over Q, then ea1 , . . . ean are algebraically
independent over Q.

The following theorem uses Theorem 2.1 and the Lindemann-

Weierstrass theorem to provide a decision procedure.

Theorem 2.4. Let p(x1, . . . ,xn , e
x1 , . . . , exn ) be an exponen-

tial polynomial. For a tuple α = (α1, . . . ,αn ) ∈ Q
n

and
a real algebraic number r ∈ Q, the problem of deciding if
|p(α1, . . . ,αn , e

α1 , . . . , eαn )| ≥ r is decidable.

Proof. Evaluating the exponential polynomial at α gives a finite

sum of exponentials, call it |η |. Using Theorem 2.1, we can compute

this expression to any desired precision in time polynomial in the

number of bits in the precision. If the finite sum is degenerate,

i.e., every exponential term has coefficient zero, it is an algebraic

number and we can decide if the number is greater than or equal to

r . Otherwise, we know that the number is not algebraic, using the
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Lindemann-Weierstrass theorem, and so | |η | − r | > 0. We compute

a sequence of approximations to | |η | −r |, using Theorem 2.1(3) until

we can establish | |η | − r | > 0. At this point, computing the sign of

|η | − r allows us to decide the problem. □

The following corollary is immediate, since the solution of an

LTI system is an exponential polynomial.

Corollary 2.5. Given the system (1) with a rational matrix A
and a rational vector x0, a rational time point tf and a rational vector
r , the problem of deciding if x(tf ) ≥ r is decidable.

3 DECISION PROBLEMS

3.1 Linear Quadratic Regulator (LQR)

We follow the formulation of Bertsekas [6] for the finite horizon

LQR problem. Consider the LTI system

Ûx(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = x0, (3)

and the quadratic cost over the time interval [0, tf ],

J (x0, tf ) :=

x(tf )
T Sx(tf ) +

∫ tf

0

[x(t)TQx(t) + u(t)T Ru(t)]dt ,

where S and Q are symmetric positive semidefinite, and R is sym-

metric positive definite.

Problem 1. The LQR decision problem asks, given a rational time
bound tf , rational matrices A,B,Q,R, S , a rational initial state x0,
and a rational threshold r > 0, decide if there is a controller for (3)
such that J (x0, tf ) ≤ r .

It is well known that the control policy that minimizes the cost

J (x0, tf ) is of the form u(t) = −R−1BTK(t)x(t), where K(t) is the
solution of the matrix Riccati Equation

ÛK(t) = −K(t)A −ATK(t) + K(t)BR−1BTK(t) −Q (4)

that is solved backward with the terminal condition K(tf ) = S .

Moreover, the optimal cost-to-go function is J∗(t ,x) = xTK(t)x .
This means the minimum cost is J∗(0,x0) = xT

0
K(0)x0.

It is also well known that K(t) = Λ(t)X−1(t), where Λ(t) and
X (t) satisfy the Hamiltonian differential equation:

d

dt

[
X (t)
Λ(t)

]
= H

[
X (t)
Λ(t)

]
, H :=

[
A −BR−1BT

−Q −AT

]
with the final condition X (tf ) = In and Λ(tf ) = S . Then, Λ(t) and
X (t) are exponential polynomials of time:[

X (t)
Λ(t)

]
= eH (t−tf )

[
In
S

]
.

Thus, the entries of K(t) and the optimal cost J (x0) = xT
0
K(0)x0 =

xT
0
Λ(0)X−1(0)x0 are ratios of exponential polynomials.

Theorem 3.1. The LQR decision problem is decidable.

Proof: J (x0, tf ) ≤ r becomes an exponential polynomial inequal-

ity after multiplying both sides by the determinant of X (0). Then,

we use Theorem 2.4. □
We note that one can similarly formulate the decision problem

for the infinite horizon LQR problem. Since the infinite horizon

problem reduces to solving the algebraic Riccati equation, one can

reduce the problem to a satisfiability problem in the theory of reals

with addition and multiplication. Since that theory is decidable [4],

the decidability of the infinite horizon problem follows.

3.2 Linear Quadratic Gaussian (LQG)

A formal treatment of LQG can be found in [14]. Consider the

stochastic LTI system

dx(t) = [Ax(t) + Bu(t)]dt +Gdw(t),

dy(t) = Cdx(t) + dv(t), (5)

wherew(·) and v(·) are Brownian motions, independent from each

other and covariance matrices Q and R, respectively. The initial
condition is normally distributed x(0) ∼ N(0, P0). The goal of the

Kalman Filter is to find an estimator x̂(t) such that the variance of

the estimation is minimized:

J (t) = E
[
(x(t) − x̂(t))T (x(t) − x̂(t))

]
. (6)

It is shown that such an estimator is in fact the expectation of x(t)
conditioned on past information

x̂(t) := E [x(t) | past u(t),y(t)] , (7)

and satisfies the following differential equation

d

dt
x̂(t) = Ax̂(t) + Bu(t) + F (t)[y(t) −Cx̂(t)], (8)

with F (t) = P(t)CT R−1
, and P(t) is the covariance of the estimate

satisfying the Riccati equation:

ÛP(t) = AP(t) + P(t)AT − P(t)CT R−1CP(t) +GQGT ,

initialized at P(0) = P0. We also know that J∗(t) = min J (t) =
trace P(t).

As in the LQR case, we can write P(t) = Λ(t)X−1(t), where Λ(t)
and X (t) satisfy the Hamiltonian differential equation:

d

dt

[
X (t)
Λ(t)

]
=H̄

[
X (t)
Λ(t)

]
, H̄ :=

[
−AT −CT R−1C

−GQGT A

]
with the initial condition X (0) = In and Λ(0) = P0. Then, Λ(t) and
X (t) are exponential polynomials of time:[

X (t)
Λ(t)

]
= eH̄ t

[
In
P0

]
,

and the entries of P(t) and the optimal cost J∗(t) = trace P(t) =
trace (Λ(t)X−1(t)) are ratios of exponential polynomials.

Problem 2. The LQG decision problem asks, given rational ma-
trices A,C,G,Q,R, P0, rational time bound T , and rational threshold
r , whether the least square error of the estimate J∗(T ) is less than or
equal to r .

Theorem 3.2. The LQG decision problem is decidable.

Proof: J∗(T ) ≤ r becomes an exponential polynomial inequality

after multiplying both sides by the determinant of X (T ). Then, we
use Theorem 2.4. □
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4 SCHANUEL’S CONJECTURE AND

FURTHER RESULTS

Let us consider an extension to the LQR decision problem, where

we do not set the initial condition but ask if there is an appropriate

controller for some initial condition from a set.

Problem 3. The LQR with polytopic initial set decision problem

asks, given a rational time bound tf , rational matricesA,B,Q,R,Qtf ,
a bounded polytopic set X0, and a rational threshold r > 0, decide if
there is a controller for (3) such that J (tf ,x0) ≤ r for some x0 ∈ X0.

Similarly, we can extend the LQG problem so that the covariance

of the initial state is not known exactly but is bounded by a polytopic

set.

Problem 4. The LQG with polytopic initial covariance decision

problem asks, given rational matrices A,C,G,Q,R, a bounded poly-
topic set P , and rational time bound tf , and rational threshold r ,
whether the least square error of the estimate J∗(tf ) is less than or
equal to r for x0 ∼ N(0, P0) for some P0 ∈ P .

Unfortunately, these problems do not fall within the purview of

our decision procedure. This is because we existentially quantify

over x0 ∈ X0 (and P0 ∈ P ) and do not have a fixed x0 or P0 with

algebraic coordinates.

It turns out that these, and a number of other related problems,

can be decided if we assume Schanuel’s conjecture. Schanuel’s con-
jecture for the complex numbers is a unifying conjecture in tran-

scendental number theory (see, e.g., [24]).

Conjecture 4.1 (SC). Let a1, . . . ,an be complex numbers that
are linearly independent over rational numbers Q. Then, among the
2n numbers

a1, . . . ,an , e
a1 , . . . , ean

at least n are algebraically independent.

Schanuel’s conjecture is believed to imply many known results in

transcendental number theory as well as all reasonable conjectures

on the values of the exponential function; it is also believed that it

will be a difficult result to prove. Note that the special case where

a1, . . . ,an are all algebraic is the Lindemann-Weierstrass theorem.

An important consequence of Schanuel’s conjecture is that the

theory of reals (R, 0, 1,+, ·, ≤) remains decidable when extended

with the exponential and trigonometric functions over bounded

domains.

For a function f : R→ R and n ∈ N, define the restriction f ↾n
as

f ↾n(x) =

{
f (x) if x ∈ [0,n]

0 otherwise

Let (R, 0, 1,+, ·, <, exp ↾n, sin ↾n, cos ↾n) denote the ordered field

of the real numbers R with addition +, multiplication ·, ordering

<, as well as the restrictions of the exponential, sine, and cosine

functions to [0,n]. Let Tn [R, exp ↾n, sin ↾n, cos ↾n] denote the first
order theory of such structures.

Theorem 4.2 (Macintyre and Wilkie [21, 22]). Assume SC.
For any n ∈ N, the theory RMW := Tn [R, exp ↾n, sin ↾n, cos ↾n] is
decidable.

Macintyre and Wilkie’s result provides a powerful tool to prove

conditional decidability results (assuming Schanuel’s conjecture) for

many problems in linear systems theory. Essentially, we encode the

problem into the first order theory of reals extended with restricted

exponential, sine, and cosine functions, and invoke the decision

procedure.

For example, the LQR with polytopic initial set problem can

be encoded as follows. We compute the expression J (tf ,x0) as in

Section 3.1, but treating x0 as a variable, and ask

∃x0 ∈ X0. J (tf ,x0) ≤ r .

This is a formula inRMW for any polytopeX0 = {x0 ∈ Rn |Dx0 ≤ E}
with algebraic matrices D and E, and can be decided assuming

Schanuel’s conjecture. A similar encoding shows conditional decid-

ability of the extended LQG problem with polytopic bounds on the

initial covariance matrices.

In fact, encoding into the theory of reals with (bounded) exponen-

tials and trigonometric functions enables conditional decidability

results for a number of other open questions in control theory. In

the following, we mention two such problems.

Controllability of Linear Time-Varying Systems Consider a

linear time-varying (LTV) system with state evolution

d

dt
x(t) = A(t)x(t) + B(t)u(t), (9)

where A(t) and B(t) are time-dependent matrices with appropriate

dimensions. The system (9) is controllable on [t0, t1] iff for any

states y and z, there is a control input u(·) such that the closed-loop

trajectory moves from x(t0) = y to x(t1) = z. We consider the

special case when each element of A(t) and B(t) is an exponential

polynomial in t .

Problem 5. The LTV controllability problem asks, givenA(t), B(t),
and an interval [t0, t1] with rational endpoints, is the system (9)

controllable on [t0, t1]?

One way of characterizing controllability and finding an appro-

priate control input is through the controllability Gramian [26],

which involves the integration of the state-transition matrix of the

system. A simpler condition for controllability is a rank condition

stated next.

Theorem 4.3 (Sontag [26]). Let B0(t) = B(t) and define for each
i ≥ 0,

Bi+1(t) = A(t)Bi (t) −
d

dt
Bi (t). (10)

The system with analytic matrices A(t) and B(t) is controllable on
[t0, t1] if and only if [B0(t̄),B1(t̄), . . . ,Bn−1(t̄)] has rank n for some
t̄ ∈ [t0, t1].

This rank condition is sufficient for controllability according to

Proposition 3.5.16 and Corollary 3.5.18 in Sontag [26]. The condition

is also necessary according to [26, Exercise 3.5.23]. We show that

the characterization of Theorem 4.3 is conditionally decidable when

A(·) and B(·) are exponential polynomials. in

Theorem 4.4. Assume Schanuel’s conjecture. SupposeG : R≥0 →

Rn×m withm ≥ n where elements of G(·) are exponential polynomi-
als. Checking if there exists t ∈ [t0, t1] such that G(t) has rank n is
decidable.
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Proof: This problem amounts to selectingn columns i = (i1, i2, . . . , in )
of G(·) and computing the determinant detGi(t) which is again an

exponential polynomial. Here,Gi is the matrix obtained by keeping

the columns i1, . . . , in of G. The claim is equivalent to

∃i. ∃t ∈ [t0, t1]. detGi(t) , 0.

This is a statement in RMW and is decidable subject to SC. □
The following corollary is immediate, since A(·) and each Bi (·)

are exponential polynomials. Note that the quantification over i is
actually a disjunction over the finitely many choices of columns.

Corollary 4.5. Assume Schanuel’s conjecture. The LTV control-
lability decision problem is decidable when each element of A(t) and
B(t) are exponential polynomials in t .

Exponential Stability An LTI system of the form

d

dt
x(t) = Ax(t), t ≥ 0 (11)

is exponentially stable if and only if there are constantsM ≥ 1 and

β < 0 such that

∥eAt ∥ ≤ Meβt , t ≥ 0. (12)

The exponent β < 0 determines the long-term behavior and the

factor M ≥ 1 bounds the transient behavior. Let γ (A) denote the
maximum of the real parts of the eigenvalues ofA. It is well-known
that γ (A) < 0 implies exponential stability: for any β > γ (A) there
exists a constantM ≥ 1 such that (12) holds.

Problem 6. Given A and β > γ (A), determine the minimal value
ofM ≥ 1 satisfying (12).

This problem is mentioned in [7] as an open problem (see also

[16]). The related decision problem is as follows.

Problem 7. Given A, β > γ (A), and M0 > 1 decide if there is
M ∈ [1,M0] such that (12) holds.

The decision version checks if the minimal M belongs to a

bounded interval and its decidability is equivalent to the existence

of an algorithm that can approximateM with any arbitrary preci-

sion using bisection onM0.

Theorem 4.6. Assume Schanuel’s conjecture. Then, Problem 7 is
decidable.

Proof: We reduce the problem to a sentence in RMW. The state-

ment of the problem can be written as

∃M ∈ [1,M0] s .t . ∀t ∈ R≥0. ∥e
At ∥ ≤ Meβt .

Its negation is

∀M ∈ [1,M0]. ∃t ∈ R≥0. ∥e
At ∥ ≥ Meβt .

Due to the monotonicity of the exponential function, the universal

quantifier overM can be eliminated:

∃t ∈ R≥0. ∥e
At ∥ ≥ M0e

βt . (13)

Note that RMW uses bounded versions of exponentials and trigono-

metric functions. We first show that t in the statement (13) belongs

to a bounded interval. Define
¯β := (β+γ (A))/2 and Ā := A− ¯βIn . Ma-

trix Ā has all its eigenvalues in the left half-plane, which means the

Lyapunov equation ĀT P+PĀ ≤ 0 has a positive definite solution for

P that is computable in the theory of reals. Using [16, Lemma 2.1]

we get ∥eAt ∥ ≤
√
κ(P)e

¯βt
for all t ≥ 0, where κ(P) := ∥P ∥∥P−1∥.

Then, t in the statement (13) should satisfy the inequality√
κ(P)e

¯βt ≥ M0e
βt ⇒ t ≤

lnκ(P) − 2 lnM0

β − γ (A)
.

Denote this upper bound by τ . Then (13) is equivalent to

∃t ∈ [0,τ ] ∃x0 ∈ Rn with ∥x0∥ = 1,

xT
0
e(A−β I)

T te(A−β I)tx0 ≥ M2

0

⇔∃t ∈ [0,τ ] ∃x0 ∈ [0, 1]n ∃y ∈ R s .t .[
∥x0∥

2 − 1

]
2

+
[
xT

0
e(A−β I)

T te(A−β I)tx0 −M2

0
− y2

]
2

= 0

It is not difficult so see that |y | ≤
√
κ(P).

The last equality is an exponential polynomial as a function of t ,
y, and elements of x0. □

5 DISCUSSION

We have shown that results from transcendental number theory

can be used to show decidability of problems in continuous-time,

continuous-state, linear systems theory. While the associated con-

trol and optimization problems have been studied extensively, the

computability status of these basic problems had remained open.

One can ask why a decision problem is interesting, if there is

an analytic closed-form solution known, such as in the case of the

linear quadratic regular. On top of the natural theoretical interest in

the computability status of a fundamental algorithm, we argue that

a computability result is interesting for these problems because it

helps answer whether numerical computations converge at some

finite precision or whether one cannot decide the problem nomatter

what numerical precision is chosen.

While we focus on decidability issues, one can estimate the com-
putational complexity of our decision procedure using quantitative

versions of Lindemann-Weierstrass’s theorem. A result of Sert [25]

shows that, in order to show that an exponential polynomial is dis-

tinct from zero, it is sufficient to compute anm-bit approximation

wherem is bounded by a double exponential function of the input.

Unfortunately, we do not know corresponding lower bounds on

the computational complexity.
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