N)
e FSA: Fronthaul Slicing Architecture for 5G using dataplane

programmable switches

Nishant Budhdev Raj Joshi Pravein Govindan Kannan

National University of Singapore

Mun Choon Chan

National University of Singapore

ABSTRACT

5G networks are gaining pace in development and deployment in
recent years. One of 5G’s key objective is to support a variety of use
cases with different Service Level Objectives (SLOs). Slicing is a key
part of 5G that allows operators to provide a tailored set of resources
to different use cases in order to meet their SLOs. Existing works
focus on slicing in the frontend or the C-RAN. However, slicing is
missing in the fronthaul network that connects the frontend to the
C-RAN. This leads to over-provisioning in the fronthaul and the
C-RAN, and also limits the scalability of the network.

In this paper, we design and implement Fronthaul Slicing Ar-
chitecture (FSA), which to the best of our knowledge, is the first
slicing architecture for the fronthaul network. FSA runs in the
switch dataplane and uses information from the wireless sched-
ule to identify the slice of a fronthaul data packet at line-rate. It
enables multipoint-to-multipoint routing as well as packet prior-
itization to provide multiplexing gains in the fronthaul and the
C-RAN, making the system more scalable. Our testbed evaluation
using scaled-up LTE traces shows that FSA can support accurate
multipoint-to-multipoint routing for 80 Gbps of fronthaul traffic.
Further, the slice-aware packet scheduling enabled by FSA’s packet
prioritization reduces the 95 percentile Flowlet Completion Times
(FCT) of latency-sensitive traffic by up to 4 times.

CCS CONCEPTS

« Networks — Wireless access points, base stations and in-
frastructure; Programmable networks; Wireless access points,
base stations and infrastructure; Programmable networks.

KEYWORDS
5G Cellular Networks, Slicing, Programmable Switches

ACM Reference Format:

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan,
and Tulika Mitra. 2021. FSA: Fronthaul Slicing Architecture for 5G using
dataplane programmable switches. In The 27th Annual International Con-
ference on Mobile Computing and Networking (ACM MobiCom ’21), October
25-29, 2021, New Orleans, LA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3447993.3483247

This work is licensed under a Creative Commons Attribution International 4.0 License.
ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8342-4/21/10.

https://doi.org/10.1145/3447993.3483247

723

National University of Singapore

IBM Research - India
Tulika Mitra
National University of Singapore

Fronthaul

]Iow power
p hardware
eREC
le) Jhigh performance
reliable hardware
A

i commodity
hardware

Network
..................... sy

I 1 Fronthaul Packets

Frontend _ C-RAN

mMTC

uRLLC l
eMBB A

eRE

Wireless Schedule

frequency
|]
]

Figure 1: Overview of Fronthaul Slicing Architecture (FSA)

1 INTRODUCTION

5G networks aim to support use cases in diverse domains such
as Internet-of-Things, intelligent transport systems, telemedicine,
industrial control systems, etc., beyond the basic use cases of voice
and data supported by previous cellular network technologies. Con-
sequently, 5G networks need to provide a diverse set of Service
Level Objectives (SLOs) for these new use cases. At the same time,
5G networks have explored the use of the Cloud Radio Access Net-
work (C-RAN) architecture as it allows operators to reduce costs by
multiplexing resources and to enable new features with centralized
and coordinated decision making [1-3]. Fig. 1 shows a simplified
view of a C-RAN architecture. It consists of (1) a radio frontend
responsible for transmitting and receiving radio signals consisting
of enhanced Radio Equipment (eRE), (2) a RAN with the compute el-
ements responsible for processing the radio signals called enhanced
Radio Equipment Controller (eREC), and (3) a fronthaul network
that enables communication of digitized radio signals between the
eREs and the eRECs.

To support different SLOs, 5G introduces a critical technology
called slicing, which allows operators to support multiple virtual
networks on top of shared infrastructure [4]. This allows network
operators to deploy a tailored set of resources for specific use cases.
For example, low power hardware along with fine-grained schedul-
ing for massive Machine Type Communication (mMTC) [5], high
performance reliable hardware along with low latency access to
the wireless channel for ultra-Reliable Low Latency (uRLLC) use
cases [6, 7], and shared pool of commodity hardware for enhanced
Mobile Broadband (eMBB). To this end, there exists a large body
of work that explores slicing in the radio frontend (wireless spec-
trum) [8], the RAN [9-12], and the Core Network [13, 14].

However, these proposals lack slicing in the fronthaul network
which leads to two major problems. First, without fronthaul slic-
ing, there is a point-to-point connection between an eRE and an

https://doi.org/10.1145/3447993.3483247
https://doi.org/10.1145/3447993.3483247
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447993.3483247&domain=pdf&date_stamp=2021-10-25

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

eREC [15]. This implies that users from slices with different SLOs
connected to an eRE, are processed together on the assigned eREC.
As aresult, each eREC may have to provision for low power hard-
ware for mMTC users, high performance reliable hardware for
uRLLC, and commodity hardware for eMBB. This leads to over-
provisioning of each eREC with a variety of hardware to support
peak workloads for each use case, while in practice cellular net-
work traffic is known to have bursty peaks and low average utiliza-
tion [16]. Additionally, a point-to-point connection between an eRE
and an eREC limits the scalability of the system as the number of
5G users per eRE increases. This is because the maximum number
of users per eRE is limited by the processing capacity of the as-
signed eREC. Second, without fronthaul slicing, operators lack the
ability to provide differentiated services in the fronthaul network.
Services such as packet prioritization can help operators satisfy
different SLOs without over-provisioning the fronthaul network.
In summary, lack of fronthaul slicing leads to over-provisioning in
the fronthaul and the C-RAN as well as limits the scalability of the
5G network.

In this paper, we address the above issues by enabling slicing
in the fronthaul network. Fronthaul slicing enables multipoint-to-
multipoint routing which allows the digitized radio signals to be
routed from any eRE to any eREC and vice versa. For example, in
Fig. 1, we see that the uRLLC traffic (yellow) from an eRE could be
routed to an eREC with high performance hardware while mMTC
traffic (violet) from the same eRE could be routed to another eREC
with low power hardware. This way each eREC can be provisioned
with only a singular hardware type. This also improves resource
efficiency in the C-RAN, as traffic from several eREs can be multi-
plexed across the combined pool of eRECs. Such slice-based routing
also enables recently proposed C-RAN architectures [17-21] that
distribute baseband processing across multiple eRECs by taking
into account the different slice SLOs. Also, multipoint-to-multipoint
routing makes the system scalable by allowing operators to add
new eRECs to support increased traffic loads, without needing to
upgrade each eREC. Other than multipoint-to-multipoint routing,
fronthaul slicing also enables packet prioritization. With packet
prioritization, traffic with stricter SLOs (uURLLC) could be prior-
itized over other traffic (mMTC) in the fronthaul network. This
allows operators to satisfy different SLOs efficiently without over-
provisioning the fronthaul network.

However, slicing the fronthaul network to enable multipoint-to-
multipoint routing and packet prioritization is not straightforward.
The first challenge lies in identifying the slice/user to which a
fronthaul network packet belongs. This challenge originates from
the functional split deployed in the C-RAN architecture. The func-
tional split defines how the processing of traffic is split between the
eRE and the eREC. Due to the need to lower the cost of eREs, which
are expected to be deployed in large numbers in 5G, the commonly
chosen functional splits minimize the amount of processing at the
eRE [22, 23]. As a result, the slice identifier information available
in the Access Layer (MAC) is missing from the fronthaul packets in
the uplink direction, since the eREs do not perform MAC layer pro-
cessing in the most common functional splits [24]. In other words,
it is not possible to look at a packet in the fronthaul network and
identify the slice/user that it belongs to. The second challenge is to
correctly route the fronthaul data packets after the user has been

724

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

identified. In cellular networks, nearly 70% of the user sessions are
very short in duration (active for ~1 millisecond) [25]. As a result,
the information required to perform multipoint-to-multipoint rout-
ing - the slice/user identifier and the destination eREC - changes at
a very high rate. Conventional switches which update their routing
tables via the control plane do not support such high frequency
routing updates due to the high latency of the control plane [26].

Our solution called the Fronthaul Slicing Architecture (FSA) ad-
dresses the two challenges as follows. First, we observe that while
slice/user information may not be available in the fronthaul pack-
ets, the information is available in the wireless schedule since all
transmissions in a cellular network are scheduled by the network
scheduler in advance. As a result, slice information for all packets
in the fronthaul can be precisely identified using the wireless sched-
ule which is generated in advance. Based on this observation, our
key idea is to transform the wireless schedule into a sequence of
expected uplink packets and use this sequence in the fronthaul to
identify the slice/user. Fig. 1 shows a simple representation of the
relationship between the wireless schedule and the corresponding
sequence of uplink packets in the fronthaul. To address the second
challenge and enable multipoint-to-multipoint routing, FSA intro-
duces a high frequency dynamic forwarding scheme in which the
routing table of a fronthaul switch is continuously updated based
on the wireless schedule known in advance. This enables FSA to
route the fronthaul packets to the correct eREC with the wireless
schedule being generated every millisecond independently for each
eRE. FSA leverages programmable switches for implementing both
slice identification and high frequency dynamic forwarding. FSA
runs entirely in the dataplane and implements an SRAM-based
dynamic routing table that can be updated in the switch dataplane
at line rate. We also build a slice-aware packet scheduler as an
example use case of the packet prioritization enabled by FSA. The
packet scheduler prioritizes the fronthaul packets based on the slice
a packet belongs to, and the user’s expected baseband processing
time.

In summary, we make the following contributions:

o To the best of our knowledge, FSA is the first work to enable
slicing in the fronthaul by identifying the slice/user for each
packet at line rate in the switch dataplane.

e FSA enables multipoint-to-multipoint routing through a
high-frequency dynamic forwarding scheme that allows fron-
thaul packets to be routed from any eRE to any eREC dy-
namically. The design of the forwarding scheme can handle
packet drops and reordering with minimal overhead.

e FSA also enables packet prioritization in the fronthaul net-
work. As an example use case, we design and implement
a slice-aware packet scheduler that minimizes latency for
delay-sensitive slices by using Least Slack Time First (LSTF)
scheduling in the switch dataplane.

We implement FSA and the two functions of multipoint-to-
multipoint routing and packet prioritization (enabled by it) on an
Intel Tofino [27] programmable switch. We evaluate FSA on a hard-
ware testbed using 5G traces obtained by upscaling real LTE traces.
Our results show that the forwarding schedule can be updated in
the switch dataplane at line rate and with a worst-case latency
of less than 6 us, which is less than the smallest scheduling slot
of 62.5 us in 5G [28]. Further, our evaluations show that FSA can

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches

support accurate multipoint-to-multipoint dynamic routing with
an aggregate fronthaul traffic of ~80 Gbps sent from 8 base stations.
With the slice-aware packet scheduling (Least-Slack-Time-First) im-
plemented on FSA, we observe 4x reduction in the 95th percentile of
the flowlet completion time for latency-sensitive traffic as compared
to a FIFO-based scheduler. Also, FSA’s implementation consumes
very little extra resources in the switch dataplane, requiring an
additional SRAM usage of only 10.42%.

The remaining paper is organized as follows. In §2, we present
the background and related work. §3 and §4 present the design
and implementation of FSA’s high-frequency dynamic forwarding
scheme. We detail the slice-aware packet scheduling in §5 and
evaluate FSA in §6. In §7, we discuss how FSA can be modified to
support other functional splits and finally conclude in §8.

2 BACKGROUND AND RELATED WORK

Functional split. With the introduction of C-RAN, network op-
erators can now distribute the radio processing between the eRE
and eREC. This distribution is known as the functional split. In one
extreme, nearly all radio processing is done on the eREs (traditional
RAN design). These are called the higher functional splits. The
other extreme is where nearly all radio processing is performed
in the cloud (eREC). These are called the lower functional splits.
Between these two extremes, there are a variety of functional split
options with each split providing a unique trade-off between cost
for fronthaul equipment and the CAPEX/OPEX for the RAN. As the
amount of radio processing performed in the eRE increases, the cost
of the eRE also increases; while the amount of traffic in fronthaul
network reduces. Conversely, centralized radio processing can sig-
nificantly reduces cost of eREs [22], but these gains come with the
need to provide high throughout and low latency for fronthaul traf-
fic. The remaining discussion in this paper considers the 7-2 split
which allocates majority of the baseband processing functions to
the eREC [29]. This split reduces fronthaul throughput significantly
by removing IQ samples corresponding to unallocated parts of the
wireless network schedule. In §7, we discuss how FSA can enable
fronthaul slicing for other functional splits.

2.1 Related Work

Slicing in cellular networks has received substantial attention due to
its benefits for enabling wide-variety of SLOs, and ensuring efficient
resource usage. Owing to the ease of slicing compute resources
and the Core Network, much of the research on slicing focuses on
RAN [9-12, 30] and the Core Network [13, 14]. PRAN [30] intro-
duces flexible RAN processing for users associated with an eRE.
This flexibility allows users from each slice to have customized data-
plane processing with specialized functions to meet their individual
SLOs. To extend this flexibility to the wireless channel Orion [8]
proposes a RAN slicing architecture that introduces slicing in the
wireless channel, to support smaller scheduling intervals for low
latency and low-power use cases.

Unlike the RAN and the Core Network, slicing in the fronthaul
is challenging due to the high throughput and low-latency nature
of fronthaul traffic. Larsen et al. [31] show that while slicing a
packet-switched fronthaul network can bring great advantages,
fronthaul slicing in 5G needs to be flexible to support a wide variety

725

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

of functional. Fronthaul slicing can also be used to support Multiple
Network Operators with different functional splits and SLOs on the
same physical network [32].

In the past decade, multiple protocols have been developed
for fronthaul networks such as Common Public Radio Interface
(CPRI) [15], IEEE 802.1CM [33], Open Base Station Architecture
Initiative (OBSAI) [34] etc. Of these protocols, CPRI is the most
widely adopted protocol for fronthaul networks. CPRI uses a se-
rial interface that transmits digitized radio samples at a constant
bit-rate in the fronthaul. However, due its serial interface, CPRI
can only support point-to-point transmissions as it does not use
Ethernet frame/packet-based transmission. This along with inte-
grated protocol design and high throughput makes CPRI highly
inefficient for 5G networks. Thus, a successor to the protocol was
developed, known as enhanced CPRI (eCPRI) [35], which is built
on top of Ethernet/IP protocols. eCPRI also supports a wide variety
functional splits to enable operators to optimize their fronthaul
networks. Additionally, eCPRI uses a modular protocol stack which
enables cellular operators to use standard protocols for control
messaging and time synchronization, while still using eCPRI for
transporting digitized radio samples.

Similar to eCPRI, IEEE 802.1CM [33] also uses a packet-based
transmission for fronthaul networks. 802.1CM also provides opera-
tors the ability to categorize fronthaul traffic into 8 different priority
classes using a 3-bit Priority Code Point field [36], similar to the
QoS Class Identifiers available in LTE [37]. However, classifying
and prioritizing the fronthaul traffic into just 8 unique classes limits
the ability to support a wide variety of use cases with different SLOs.
Additionally, this information is insufficient for supporting a flexi-
ble multipoint-to-multipoint fronthaul network critical for scaling
in 5G. Also, for lower functional splits, the slice/user information
is unavailable at the eRE, and hence marking the priority class for
the uplink traffic requires a non-trivial solution. In contrast, FSA
which uses eCPRI, can support lower functional splits, provide per-
user slicing and prioritization as well as multipoint-to-multipoint
routing.

3 DESIGN SPACE AND CHALLENGES

In order to provide multipoint-to-multipoint routing and packet
prioritization in the fronthaul network, the first step is to identify
the slice for each packet in the fronthaul. Recall that slice informa-
tion is not available for most functional splits. As mentioned before,
our key insight is to use the wireless schedule (which is known in
advance) to identify the slice. Given this key insight, in this section,
we describe the various ways in which it can be realized in practice.
Note that, while traffic flow is bi-directional, in this paper, we focus
on the uplink direction (eRE to eREC) as the slice/user identification
information is unavailable at the eRE for most functional splits.

Identification at the eRE. The uplink wireless transmissions from
users are received by the eREs which are then digitized for trans-
mission to the eREC. If the eREs are provided with the wireless
schedule, they need to tag the packets with both the slice/user
identifier and the routing information before transmission. Imple-
menting such a function on the eREs is non-trivial as most eREs use
specialized hardware for processing which do not easily support the
addition of new features. Additionally, supporting such a feature

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

on new eREs will increase the cost for 5G, as the number of eREs
will increase significantly to compensate for smaller coverage [16].
Finally, coordinating the wireless schedule with a large number
of eREs within a tight timing constraint entails high coordination
complexity.

Identification at the eREC. A diametrically opposite solution
would be to implement slice identification in the eREC as a network
function running on servers. In such a scenario, eRECs would be
made aware of the uplink wireless schedule and they would then
tag the incoming fronthaul data packets with slice and routing
information. However, since each base station in 5G is capable
of generating over 300 Gbps [35] of fronthaul traffic, and each C-
RAN can manage ~1000 base stations, we would need to scale out
the fronthaul slicing operation across 100’s of servers similar to
traditional L4 load balancing [38]. This would dramatically increase
both the CAPEX and OPEX of the C-RAN.

Identification at fronthaul switches. In FSA, we take a middle
ground to realize fronthaul slicing on switches in the fronthaul
network. In such a deployment, the wireless scheduler sends the
schedule to the network switches in the fronthaul network. Com-
pared to slicing at the eREs, schedule coordination in this scenario
is much simple and has no scalability concerns since the number of
network switches involved is relatively small. Each switch serves a
large number of base stations simultaneously, processing up to sev-
eral Tbps of traffic. Prior works have shows that network functions
such as L4 load balancing when performed by a switch can replace
hundreds of servers [39]. Thus it is natural to do identification on
the switch to support multipoint-to-multipoint routing and packet
prioritization.

While the high-level insight of using a wireless schedule to iden-
tify a packet’s slice may sound simple, there are several challenges
to realize the same on a network switch. First, the uplink wireless
network schedule can be thought of as representing the number
of frequency resource blocks allocated to different users within a
time slot of 1 ms. It is not straightforward to use this information
for slice identification. Further, the schedule is generated only 4 ms
in advance and a new schedule is generated every 1 ms. As a result,
FSA has to identify the slice for each packet at a high rate and with
low latency.

Key idea. Our key idea is to translate the uplink wireless sched-
ule of an eRE into a sequence of forwarding actions that correspond
to the sequence in which packets would be sent on the uplink by the
eRE (see Fig. 1). Then we install this sequence of forwarding actions
in the dataplane of the switch where they get applied to the arriv-
ing uplink packets in sequence. We keep updating the sequence of
forwarding actions in the switch dataplane as the wireless schedule
keeps changing every 1 ms.

It is not possible to realize this idea on traditional network
switches because the “match-action” paradigm limits these switches
to perform packet forwarding based on only the contents of the
packet being forwarded. Instead, we use an emerging programmable
switch [27, 40, 41] which allows us to do packet forwarding and
scheduling more flexibly. Programmable switches provide flexible
packet parsing (custom headers) and header manipulation through
reconfigurable match-action pipelines. Most importantly, they pro-
vide transactional stateful memory that allows stateful processing

726

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

across packets at line rate. This allows us to use additional infor-
mation such as timing and byte count to make forwarding and
scheduling decisions. As the transactional stateful memory can be
updated in the dataplane at line rate, we can provide sub-millisecond
timing guarantees on updating the sequence of forwarding actions
to keep up with changes in the wireless schedule.

4 DESIGN & IMPLEMENTATION

Our design takes advantage of two key observations: (i) even though
there is no explicit user identifier in the fronthaul (eCPRI) data
packet, each packet contains a unique sequence number (Fig. 2)
that increases monotonically, and (ii) packet arrival sequence in the
fronthaul can be determined from the uplink transmission schedule
which is generated by the wireless network scheduler. We leverage
the uplink transmission schedule coupled with the monotonically
increasing sequence number to identify the user.

High Level Workflow. In FSA, after a transmission schedule
is generated by the network scheduler, it is first converted into a
series of [sequence number, destination server ID] pairs (§4.1). This
information is then sent to the switch via special “Schedule Packets”
or s-packets. Each s-packet contains [sequence number, destination
server ID] pairs corresponding to each user in the wireless schedule.
To help differentiate packets from users in the wireless schedule,
the sequence number in the pair refers to the sequence number of
the last fronthaul data packet for the user. To store this information
in the switch, FSA uses a “ring buffer” implemented using SRAM-
based register arrays in the switch dataplane. To manipulate this
“ring buffer” in the high-speed network data-plane, FSA additionally
maintains a read and a write index. When the switch receives the
s-packet, it adds the entries from the packet into the “ring buffer”
starting at the location pointed to by the write index and incre-
ments the write index correspondingly. When the switch receives
a fronthaul data packet, it reads the entry in the ring buffer at the
location specified by the read index. Upon receiving all the packets
of a particular user (based on the schedule), the FSA increments
the read index. Finally, since the network schedule is generated for
each base station separately, FSA maintains a unique ring buffer
for each base station along with separate read and write indices for
it. FSA uses the 48-bit source MAC address of the base-stations to
redirect the processing to the right “ring buffer”. In summary, FSA
implements a high-speed dynamic forwarding scheme that runs
entirely in the switch dataplane.

4.1 Wireless Schedule Conversion

FSA uses the wireless schedule to identify the slice/user for each
packet in the fronthaul. This is feasible as all transmissions in the
cellular network are scheduled by the wireless scheduler which
dynamically allocates the resources in the wireless channel. The
digitized radio samples of these scheduled users are then trans-
mitted over the fronthaul. The number of samples generated in
each time interval is dependent on base station attributes such as
sampling frequency, wireless bandwidth, sample size, etc., as well
as the functional split, which are all known a priori and are rarely
changed. Using these attributes combined with the wireless alloca-
tion provided by the wireless scheduler, we can calculate the size
of the digitized radio samples, as well as the number of fronthaul

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches
| Preamble|Ethernet|eCPRI common | eCPRI IQ Header [[{l:2115

.
Sequence Sequence Server

Nqumber Number ID
2Byte | 2Byte 2Byte

m eCPRI common | s-packet Header Séhédule Entries

Subframe No. of
ID entries
1Byte 1Byte

Figure 2: eCPRI header for two message types

packets for each user in the wireless schedule. FSA then uses this
information together with the packet sequence number field in
the eCPRI IQ Header (see Fig. 2) to identify the slice/user for each
packet in the fronthaul at line rate.

Generation of s-packets. When a wireless schedule is generated,
the scheduler also crafts the s-packet, which is a regular eCPRI
packet with a custom message type and header fields (“s-packet
Header” and “Schedule Entries” as shown in Fig. 2. The s-packet
header contains the base-station MAC address which is used to
identify the appropriate base-station to whom the schedule en-
tries should be added. The field “Number of entries” in the header
corresponds to the number of entries in the s-packet header. The
subsequent headers consist of the list of schedule entries. Each en-
try corresponds to a user that is allocated resources in the wireless
schedule and contains information that is written to the ring buffer
to identify and route the user accurately.

4.2 Forwarding Information

Once the s-packet is received by the switch, FSA first identifies the
base station ID for the schedule packet by using the “Base Station
MAC address” field in the s-packet header. After identifying the
base station ID, FSA:

(1) writes the [16-bit sequence number, 16-bit destination server

ID] in the ring buffer at the index indicated by the write index
(2) increments the write index for the ring buffer
(3) decrements the header field “Number of entries” in the s-packet
(4) removes the corresponding schedule entry from the s-packet
(5) Recirculates the packet back if the “Number of entries” is not

zero, thus implementing an updation loop
(6) Drops the packet if “Number of entries” becomes zero
Fig. 3 summarizes this process. Each entry in the ring buffer con-
sists of a 16-bit sequence number and a 16-bit destination server
ID, which is stored together in a 32-bit SRAM register. The 16-bit
sequence number corresponds to the sequence number for the last
fronthaul packet belonging to the user. Note that, we store a 16-bit
server ID instead of the physical server destination MAC/IP address
to reduce storage overhead in the ring buffer. To convert a server ID
to its destination MAC/IP address, we use a standard match-action
table, as the total number of servers in the C-RAN is mostly con-
stant. This table is updated only when servers are added/removed
in the C-RAN. Thus for each base station, we can support up to
65K unique destination addresses.

The ring buffer only maintains entries corresponding to users
that have been allocated wireless resources in the next few millisec-
onds. As a result, the amount of SRAM memory required for storing
the [sequence number, destination server ID] pairs is reduced sig-
nificantly. However, it is crucial that such a compact representation
can deal with loss and/or reordering of data/eCPRI packets as well

727

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

as s-packets since the routing scheme relies solely on the sequencing
of fronthaul packets. We address these issues in §4.4.

4.3 Ring Buffer

At the core of our solution is the design of the ring buffer data
structure which enables high frequency dynamic forwarding in
the switch dataplane. The switch dataplane provides high-speed
transactional stateful memory in the switch dataplane is available
in the form of SRAM-based register arrays. Implementing and main-
taining the ring buffer data structure using such a memory requires
handling the following constraints: (i) Due to the limited size of
SRAM memory available (10’s of MBs) in the switch dataplane, the
ring buffer has to be implemented within strict memory constraints
in order to scale to several hundreds/thousands of base stations
and users. (ii) SRAM memory blocks in the switch dataplane are
single-ported (for power and cost reasons) due to which the register
arrays built using them can only read/write a single entry in one
memory access. Further, to maintain line-rate processing in the
dataplane, only one memory access is allowed in a single dataplane
pass of a packet [42]. In this section, we describe how the ring
buffer is designed while handling these SRAM memory constraints.

FSA maintains one ring buffer for each base station connected to
the switch. Each ring buffer has at least 40 entries, as the wireless
schedule is generated at least 4 ms in advance and each schedule
contains no more than 10 users [43]. We also maintain a read and a
write index for each ring buffer. The write index indicates the posi-
tion where new schedule entries will be added by the s-packets. The
read index indicates the position that contains the slice/user iden-
tity and the routing information for the next incoming fronthaul
data packet. The range of sequence numbers between the read and
write index indicates the sequence numbers of fronthaul packets
scheduled for transmission in the network by the network sched-
uler in the next few milliseconds. By keeping packet forwarding
information for only a short time window, we reduce the amount
of SRAM required for the ring buffer.

To address the second constraint, we implement a ring buffer
across multiple register arrays. Therefore, even though the pro-
grammable switch hardware allows access to a single index in a
register array each pass, we can now read/write multiple entries
by accessing data from each register array in parallel. We use the
term splitting ratio to indicate the number of register arrays used
for implementing the ring buffer. For a splitting ratio of n:1, the
ring buffer is divided into n register arrays. Clearly, n is bounded by
the number of register arrays that could be formed using the SRAM
memory blocks available in the switch dataplane architecture. In
our implementation, the splitting ratio is 4:1 (see Fig. 3).

4.4 Handling Reordering & Drops

As FSA uses packet ordering to build and continuously update a
schedule-based routing table in the dataplane, it is extremely imper-
ative to handle reordering and packet drops to maintain consistent
routing. Fig. 4 shows examples of packet sequences that can lead
to erroneous user identification (packets highlighted in red). With-
out proper care, the routing context loses synchronization and can
route packets to the wrong destination in case of mis-identification.

One way to handle reordering/drops is to compare the received
packet’s sequence number to multiple entries in the ring buffer.

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

common header
L2 & eCPRI register
remaining ring number arrays
buffer entries of entries

I~ e

parsed subframe @ /

entries number
recirculate

o
o
N
o

Figure 3: Adding entries in the ring buffer using the s-packet. The small red arrow
denotes the write index. The s-packet is recirculated if it has remaining buffer entries
(case on the left) and is dropped otherwise (case on the right).

sequence destlnatlon
number address
ekl 10Ey
entries
read index
Inconkﬁlrt1g TPl q] s greater final
packe [He1 alse deggnation
) address
[05@ is greater 38
.l:.—0- 00 . .
is greater
ershied | K38
s

compare
against

Figure 5: Handling reordering in the dataplane.

However, due to the limitations of the SRAM-based register mem-
ory, only one entry from each register array can be accessed in
a single packet pass. However, as mentioned earlier(§4.3), since,
we implement the ring buffer using n register-arrays, we can now
look-up n consecutive entries for comparison to identify the correct
slice/user in the presence of packet reordering and drops.

4.4.1 Reordering. The eCPRI protocol header includes a sequence
number that allows us to detect message reordering [35]. In FSA,
we do not guarantee ordering for packets that are received out-of-
order at the switch. Instead, we detect the potential reordering and
ensure that it does not cause mis-identification and cause routing
errors. The logic to identify the reordering is provided below.

Upon an incoming data packet, we read n subsequent entries
from the schedule to be compared against the sequence number
incoming packet’s header. The comparison can lead to the following
subsequent steps:

(1) First, if the packet sequence number is less than all n values
in the array registers, the packet has arrived too late. We can
either drop the packet, multicast the packet to all servers, or
forward the packet to a server that can determine the packet’s
destination address. We leave this decision to the cellular oper-
ator.

(2) If the packet sequence number is greater than all n values, the
packet has arrived too early. In this case, we recirculate the
packet within the switch to delay its processing.

(3) Finally, for cases where the packet sequence number matches
one of the n entries, FSA simply routes the packet to the correct
destination using the corresponding server ID (shown in Fig. 5).

4.4.2 Data Packet drops. Recall that there is no mechanism for
data packet retransmission in the fronthaul due to the real-time
nature of cellular networks. Therefore, a data packet drop directly

728

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

00”03‘5”3“0” _ User2 Usert
sequence
olo number
X l nifl- o
Drop 5] 4

Figure 4: Valid and invalid packet se-
quences

impacts FSA’s routing consistency when a user’s last packet in the
schedule is dropped. This packet can be identified using a specific
bit (concatenation bit set to 0) in the eCPRI header as shown in Fig. 4.
Such a drop causes the read index to not move forward correctly to
the next user. It is important to note since FSA reads n forwarding
entries in a single pass, forwarding can still continue correctly even
when the read index lags behind (we call this drift). However, if
this drift grows beyond n due to multiple packet drops, it can cause
FSA to misidentify users and route them incorrectly.

To remedy the situation, we keep track of the drift, i.e. the dif-
ference between the read index and the index of the user identified
by comparing the sequence numbers. When a packet with concate-
nation bit 0 is dropped, this drift value will increase with every
subsequent packet. When the drift value increases beyond a thresh-
old, we generate a “Drift Packet” which will adjust the read index
based on the value of the drift. For example, if the drift value is
negative, it implies that the read index has consistently lagged be-
hind the actual user index identified by using the sequence number.
Once the value reaches a threshold, we generate a “Drift Packet”
and send it to the recirculation port. To generate the “Drift Packet”,
we clone any incoming packet and add a custom header before
sending it to the recirculation port. When the packet recirculates,
it will increment the read index to fix the error.

4.4.3 Schedule Packet drops. For handling s-packet drops we track
the subframe ID (refer Fig. 2) of the most recent s-packet received
for each base station. In case of a drop, when the switch receives
an s-packet whose subframe ID is not the immediate next value, it
generates a NACK packet in the dataplane to inform the network
scheduler to retransmit the packet. Since a network schedule is
generated 4 millisecond in advance and the round trip time in the
fronthaul between the eREC and the switch is less than 10us (§6.5),
retransmission of an s-packet can be completed in time well before
data packets corresponding to the schedule are received at the
switch.

4.5 Putting it all together

Fig. 6 illustrates the key components of FSA on the switch dataplane
and how eCPRI packets are processed. When the switch receives
an eCPRI packet, first it checks whether the packet is a fronthaul
data packet (IQ) or an s-packet from the scheduler. Then, FSA gets
the base station ID of the packet using the source MAC address or
base station MAC address field respectively. If it is a fronthaul data
packet, it accesses the read index for the base station ID and reads

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches

destination
server

Sequence
number | Hit

o]
data

Server ID
to MAC/IP|
address

(§4.2)

Late NF
Read L2/L3 Packet server
Index arrval |
4

table

(§4.3)
L

Check
number of|
entries
(§4.2)

[zero

Remove
entries from
header
(§4.2)

non
zero,
O

Schedule
data

Write
Index

Figure 6: Key components of FSA

4 entries from the ring buffer. It then generates the 32-bit sequence
number by left shifting the 16-bit sequence number in the packet
header and compares it with the values read from the ring buffer. If
there is a match against any of the entries, it directly accesses the
MAC/IP address of the destination server using the server ID.

On the other hand, if the packet is an s-packet, FSA accesses the
write index and writes up to 4 entries in the ring buffer. It then
updates the number of entries in the header and recirculates the
packet till all the entries are written in the ring buffer. Once all
entries are written, the packet is dropped.

Overhead of FSA. In FSA, storing forwarding information in
the ring buffer consumes SRAM-based memory resources in the
dataplane. Considering that the network schedule is generated 4
subframes/slots in advance and there is uplink data for a maximum
of 10 users in each subframe/slot, FSA requires 40 entries in the ring
buffer per base station. Also, updating this forwarding information
using s-packets incurs some amount of latency and bandwidth over-
heads. From our evaluation, we show that it takes an s-packet less
than 2ps to write up to 10 entries in the dataplane as the packet
needs to be recirculated multiple times since FSA can write 4 entries
in each pass. For bandwidth, since FSA needs additional s-packets
which are also recirculated, it affects both the switch pipeline pro-
cessing and the link bandwidth consumption. This overhead scales
linearly with the number of base stations supported by the switch.

FSA also consumes link bandwidth for transmitting s-packets
from the network scheduler in the C-RAN to the switch in the
fronthaul. In the evaluation (§6), we show that both the switch
pipeline and the link bandwidth overheads are negligible for real
network traces.

5 FRONTHAUL PACKET SCHEDULING

In §3, we described how FSA identifies the user (and thus slice)
for a fronthaul packet in order to enable multipoint-to-multipoint
routing. This information can be also used by the cellular operator
to provide differentiated services such as packet prioritization in
the fronthaul. In this section, we describe how FSA provides packet
prioritization through scheduling by designing the Least Slack Time
First (LSTF) scheduler in the switch dataplane.

5.1 LSTF

LSTF [44, 45] schedules packets in increasing order of slack time,
i.e., the time remaining until each packet’s deadline. The slack time
for each packet is the amount of excess time left after subtracting
the current waiting time and total processing time from its deadline.

slack_time = (deadline — processing_time)

1

— waiting_time_experienced

729

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

In practice, LSTF can minimize average flow completion times,
minimize tail latency and achieve per-flow fairness. All of these
are desirable properties for a packet prioritization/scheduling al-
gorithm in the 5G fronthaul to support use cases with different
deadlines such as industrial automation (uRLLC), smart sensor net-
works (mMTC) and AR/VR, 4K streaming video (eMBB). In addition,
a user can be allocated varying amounts of wireless spectrum in
each schedule consequently requiring different processing times in
the C-RAN. Therefore, it is beneficial to have a packet prioritiza-
tion/scheduling algorithm in the fronthaul that takes into account
the different packet deadlines such that packets with shorter dead-
lines spend little time queuing in the fronthaul.

Strawman solution. One approach is to include the packet dead-
line in the packet (via an additional header) at the source (eRE). The
slack time can then be calculated by subtracting the wait time at
each of the switch’s priority queues. The rank of each packet will
then be the sum of the slack time and the arrival time [46]. However,
this requires the eRE to be aware of the user type, calculate the
corresponding slack time and add it in the header.

Our approach. Our approach does not require any additional
header. We calculate each component of the slack time as follows:

(1) Deadline: We create multiple partitions in the virtual server
ID address space to address servers belonging to different use
cases/MVNOs. This approach allows us to identify the user type
and the corresponding deadline. We use a deadline of 0.6 ms, 2.5 ms
and 2.5 ms for uRLLC, mMTC, and eMBB users respectively [43].
These deadlines can be changed according to the deployed network
configuration.

(2) Processing Time: The processing time for each user depends on
multiple factors such as allocated bandwidth, modulation scheme,
number of spatial layers, etc. However, we know that the number of
fronthaul packets for each user is also proportional to the allocated
bandwidth and the number of spatial layers. Hence, we can use the
packet sequence number stored in the ring buffers to calculate the
relative processing time for each user. Note that the modulation
scheme used does not affect the number of fronthaul packets for
a user and has a limited impact on the baseband processing time
required [47].

(3) Waiting Time Experienced: For each packet, we need to mea-
sure the expected one-way delay and add/subtract any additional
delay/advance. This can be calculated as:

waiting_time_experienced = one_way_delay

+ (arrival_time — previous_packet_arrival_time

()

We use the one-way delay measurement mechanism available
in eCPRI, which sends a packet periodically with message type 5,
to measure the one-way delay. This value can be stored either in a
register in the dataplane or in a match-action table and updated via
the control plane. To calculate the delay experienced by each packet
in the fronthaul, we take advantage of the fact that the fronthaul
traffic is constant-bit rate in nature and hence the inter-packet
arrival gap is nearly constant. Therefore, if a packet experiences
additional delay in upstream switches, the inter-packet arrival gap
will be larger for the delayed packet. Subtracting the expected inter-
packet gap from the calculated inter-packet gap gives us the amount

— inter_packet_gap)

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

7
3 S 6
22 I
? 2] By
2 differentusers =, © 3 oogummessossseososIsnd g
T1 32 ——— different users
\ o ——
m 1
0 0 ot
59365 59366 72119 72120 8927 11840 11841
Time (ms) Time (ms)

(a) Packet arrivals from the same base station

(b) Packet arrivals at Host 1 from different base stations

Figure 7: Snapshot of packet arrival sequences validating FSA’s ability to enable multipoint-to-multipoint routing

of delay experienced by the packet till the current time. A more
accurate measurement of the waiting time experienced using time
synchronization is beyond the scope of this paper.

While traditional packet schedulers do not explicitly support
LSTF, Sharma et al. [48] propose a novel way for implementing LSTF
(approximated) on the programmable switch. Using this approach
we are able to assign appropriate priority values to each fronthaul
packet based on the slack time calculated in the dataplane. All
uRLLC users are assigned value 7 which corresponds to the highest
priority value (for 8 priority queues). The remaining users are
classified into 7 different groups based on their user transmission
size and experienced delay. Overall, the implementation of LSTF
consists of only 20 lines of P4 code in the dataplane.

6 EVALUATION

FSA is implemented on an Intel Tofino switch in ~1000 lines of
P4 code [49]. We use Intel P4 Studio 9.2.0 [50] to compile and load
FSA’s P4 code into the switch dataplane. We evaluate FSA on a
hardware testbed using real and synthetic cellular network packet
traces. Our key findings are:
FSA is able to support multipoint-to-multipoint routing for
10 Gbps synthetic traffic from 8 base stations to 4 hosts.
FSA is able to update routing information entirely in the
dataplane with low latency (0.5 ps - 2 pis).
With LSTF, FSA reduces the 951 percentile flowlet comple-
tion time for uRLLC users by 4x as compared to FIFO.
FSA uses less than 10% and 6% of the SRAM and TCAM
resources respectively in the switch dataplane.
Experimental setup. Our testbed consists of 2 Wedge100BF-32X
switches [51] with the Intel Tofino programmable ASIC and com-
modity servers. The first switch runs FSA and is responsible for
slicing fronthaul traffic. The second switch generates the fronthaul
traffic for multiple eREs using a packet generator. Additionally, the
second switch is also responsible for receiving the fronthaul traffic
after the eCPRI packets are processed and routed by the switch
running FSA. For each packet that leaves the switch, we also ob-
tain its egress timestamp from the port [52] and conversely for
each packet we receive, we capture its ingress MAC timestamp. As
the same switch is used for generating and receiving traffic, these
timestamps are used to evaluate the correctness of FSA in §6.1
We use network schedules captured from multiple LTE eRE in a
real cellular network across multiple days during the day. Users in
the captured schedule are classified into different use cases based
on their traffic patterns [53]. Each eRE has a bandwidth of 20 MHz
and the sampling frequency for each eRE is 30.84 MHz. We scale
the captured schedule by 8x to simulate a 5G eRE with 40 MHz
bandwidth, and 4 layers. We assume that each sample consists of
15+15 bits of in-phase and quadrature (IQ) data. These samples are

730

transmitted over the fronthaul using the eCPRI protocol [35]. Using
the base station parameters (1200 subcarriers) and the network
schedule, the packet generator switch generates fronthaul pack-
ets with appropriate header fields corresponding to each network
schedule. We generate eight 1400 byte packets for each Resource
Block which consists of 12 subcarriers resulting in a maximum
bandwidth consumption of 9.6 Gbps per 5G eRE. The size of the
packet accounts for the Ethernet, eCPRI common, and message
headers along with additional parity bits added to the payload to
ensure error-free decoding at the receiver.

6.1 Functional Verification

Slicing fronthaul traffic from a single base station. First, we
verify that FSA performs fronthaul slicing correctly from a sin-
gle base station whose users are allocated across 4 different hosts.
As an illustration, Fig. 7(a) shows a snapshot of network sched-
ules at 59365 ms, 72119 ms and 72120 ms. Each color in Fig. 7(a)
corresponds to a unique user or Cell Radio Network Temporary
Identifier (CRNTI). At 59356 ms, we observe that 5 users are al-
located the wireless channel. Users in the network schedule are
allocated to Hosts 1,0,3,0 and 2 respectively. Additionally, the packet
arrivals across and within hosts are also equally spaced out due
to the constant bit-rate nature of fronthaul traffic generated by
the eRE. Similarly, for network schedules at time 72119 ms and
72120 ms, we can clearly observe that FSA is able to route packets
for a different set of users with different host allocations. Overall,
in this experiment, FSA processed 1.27 million eCPRI packets over
a duration of 120 s with users distributed across 4 hosts.

Slicing fronthaul traffic from multiple base stations. Next,
we verify that slicing is performed correctly when 8 base stations
are transmitting to 4 hosts with each base station generating its
network schedule independently. As an illustration, we plot two
such network schedules at times 8927 ms and 11840 ms in Fig. 7(b).
The plot shows a snapshot of two unique time-frames with a large
number of active user transmissions all allocated to Host 1. Similar
to Fig. 7(a), each color in Fig. 7(b) corresponds to a unique user. At
8927 ms, we observe there are 9 active users from 6 base stations
that are mapped to Host 1. Although Host 1 receives a similar
number of fronthaul packets from base station ID 3 and 7, there
are three active users for base station ID 3 as compared to only one
active user for base station ID 7. Similarly, for base station ID 4
and 5 which have similar amounts of fronthaul traffic, the number
of active users are 2 and 1 respectively. Note that in the interest
of simplicity, Fig.7(b) does not show the active users during these
timeframes mapped to other hosts. Overall, we run the experiment
for 120 secs, forwarding a total of nearly 10.5 million eCPRI packets
from 8 base stations and verify that FSA is able to correctly deliver
all eCPRI packets to the correct host.

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches

~

60 |Fronthaul Throughput +—

]

N

=3

Active Users
10 o

User Throughput

Throughput (Gbps)

No. od Users No. of Host

o o

50 55 60
Time (seconds)

(a) Fronthaul and User
throughput

a
3

55 60
Time (seconds)

(b) Active Hosts and
users

Figure 8: Fronthaul and Wireless statistics for network trace
with 8 base stations

[% Packet Drop

Host 3 * againg
read index
Host 2 / region
Host 1
Host 0
\4
16 17 18 19
Time (ms)

Figure 9: Routing in the presence of packet drops
6.2 Network and System Statistics

We also measure statistics such as fronthaul throughput, user through-
put, active hosts, and the number of active users in our experiments.
User throughput refers to the aggregate throughput observed by the
end users within the cellular network for a given network schedule.
Similarly, the number of active users refers to the number of users
scheduled for transmission. Active hosts refer to the number of
hosts which receive data within a particular network schedule.

Fig. 8(a) shows the fronthaul and user throughput for 8 base
stations for 10 s of the trace starting from 50 s. Two points of in-
terest are marked in the graph as points 1 and 2. We observe that
fronthaul throughput at point 1 is twice as high as it is at point 2.
However, the aggregate end-user throughput at both these times is
almost the same. This can be explained by the fact that fronthaul
throughput is independent of the modulation schemes used during
wireless transmission. This is because fronthaul data consists of
sampled radio signals which haven’t been processed. Thus, even
though the fronthaul throughput is higher at the earlier point, most
users transmit using QPSK modulation and hence the effective user
throughput achieved is much lower. Note that although high fron-
thaul throughput does not necessarily imply high user throughput,
it does imply larger wireless channel allocation since fronthaul
traffic is proportional to the amount of allocated wireless channel.

Fig. 8(b) shows the number of active users and hosts for the
same time frame between 50 and 60 seconds. We observe that the
average number of active users is ~3 for each network schedule
for a combined traffic of 8 base stations. Thus, even in the worst
case where each active user belongs to a unique base station, at
least 5 base stations on average do not contain any active users
and hence incur minimal overhead when slicing resource is utilized
according to active user traffic. We also note that the average aggre-
gate fronthaul throughput is around 10 Gbps while the maximum
aggregate fronthaul throughput reaches 80 Gbps. Thus, the average
bandwidth needed from the aggregate switch to the C-RAN servers
is much lower than 80 Gbps. Hence, the multipoint-to-multipoint
switching provided by FSA achieves significant savings in terms of
bandwidth required to the C-RAN.

731

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

6.3 Handling Packet Drops

To evaluate how well FSA handles packet drops, we use the same
setup as used in the previous section’s experiments with 1 base
station. During the experiment, we randomly drop fronthaul and
schedule packets to observe the behavior of FSA. In the case of
fronthaul packet drops, we expect FSA to continue routing packets
to the correct destinations by correcting the read index in the data-
plane itself. For schedule packet drops we expect FSA to generate
a packet that is sent back to the network scheduler to ask it to
retransmit the dropped packet.

Fronthaul packet drops. Fig. 9 depicts a snapshot of the host
packet arrivals when fronthaul packets are dropped. The first packet
which is dropped is one of the fronthaul packets among many others
belonging to the same user. As the dropped packet does not mark
the end of the user’s fronthaul packets, the read index in FSA is
unchanged and packets continue to be routed to correct destination
hosts. Note that since the drift value for read index is maintained
separately for each ring buffer, drift for a particular base station
does not impact the routing for users from other base stations.

Next, we demonstrate a case where the last packet (indicated by
the concatenation bit 0) for a user is dropped. Here, we immediately
see (in Fig. 9) that the read index starts lagging and the current
user identified using the sequence number is at read index + 1.
This is because the read index did not get incremented as the last
packet for the user was dropped. As detailed in §4.4, once FSA
observes the read index lagging for multiple consecutive packets,
it generates a packet in the dataplane to fix the drift in the read
index. The threshold for the number of consecutive packets can be
set and updated by the cellular operator via the control plane at
runtime. For our experiments, we set the threshold to 4. This implies
that when we see 4 consecutive packets where the current user is
identified at read index + 1, FSA will automatically fix the drift to
ensure that the current user always maps to the read index. Fig. 9
also shows the scenario where the last packet for consecutive users
is dropped. We see that FSA continues to route packets accurately
despite such an event, demonstrating the robustness and speedy
nature of our dataplane solution.

Finally, Fig. 9 also shows a scenario where multiple consecutive
fronthaul packets along with the last packet from the same user
are dropped. Note that packets other than the last packet do not
cause the read index to lag. Additionally, we observe that the time
taken to fix the drift in the read index is dependent on the number
of packets it receives from the base station, 4 in this case. This
implies that in the absence of any packets from the base station the
dataplane algorithm is not triggered. However, since no packet is
sent by the base station, the drift in the read index does not affect
the operation of the switch. As soon as the switch receives new
packets, the solution is triggered and drift in the read index is fixed.
Overall, when we introduce up to 7.3% of random drops in the
transmission of 2717 eCPRI packets, there is no error observed in
the multipoint-to-multipoint routing.

6.4 Packet Scheduling with FSA

To demonstrate the utility of packet prioritization enabled by FSA,
we compare the completion time for each user in the network sched-
ule when using a FSA-enabled user-aware LSTF scheduling policy

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

[%Last Fronthaul Packet for user/flowlet |

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

[Last Fronthaul Packet for user/flowlet |

7 7
.§ g [—— Flowlet completion time;’f é g | = Flowlet completion time 4:(
8y uRLLC 84 uRLLC
%) 177
@ 3 o 3
8?2 8?2
m 1 m 1
0 0
30747 30748 30747 30748
Time (ms) Time (ms)
(a) FIFO (b) LSTF
Figure 10: Snapshot of packet departure sequence at switch under different packet scheduling algorithms
1 1 1
0.75 | ors [| T 0.75
T 05| T 05 5 05
L LSTF — 0.25 LSTF — 0.25 LSTF =—
0z FIFO — FIFO — FIFO —
0 . 0 ‘ 0
0 50 100 150 200 250 0 250 500 750 500 1000 1500

Flowlet Completion Time (us)

(a) uRLLC users

Flowlet Completion Time (us)

(b) small eMBB flowlets

Flowlet Completion Time (us)

(c) large eMBB flowlets

Figure 11: 95/"percentile Flowlet Completion Time between LSTF and FIFO scheduling for different user types

versus a simple FIFO scheduling policy without user-awareness. To
understand why packet scheduling can have an impact on the slack,
we note that in a single (1 ms) wireless allocation schedule, a user
can be allocated multiple resource blocks which can translate to
multiple eCPRI packets. However, in order to start processing the
user in the C-RAN, all packets of the user have to be received by
the server. In order to capture this behavior, we define a flowlet as
the set of packets belonging to a user in a given network schedule.
The metric we use is thus the time taken to transmit all the packets
for a user. We call this the flowlet completion time (FCT).

Fig.10 depicts the impact of LSTF and FIFO scheduling policy on
flowlet completion time for a given schedule. Since FSA enables us
to identify each user’s packets in the fronthaul, we observe that
uRLLC user from base station 4 encounters minimal queuing in
the switch as it is allocated the highest priority under LSTF. The
flowlet completion for the uRLLC user under FSA is nearly 50%
shorter compared to the completion time in FIFO. Additionally, we
also observe that since LSTF favors large users with significant
processing time over small users since the former has less slack
time, the FCT for large users from base station’s 6 and 7 is ~15%
lower when using an LSTF policy instead of a FIFO policy.

Fig. 11 depicts the 95™ percentile FCT for different user types
and sizes. From Fig. 11(a), we observe that FIFO leads to increased
FCT for uRLLC users. This increase of over 100 ys in for some
users is significant and accounts for nearly 10% of the 1 ms E2E
latency required for uRLLC users. Similarly, for large eMBB users,
LSTF reduces flowlet completion by up to 250 ps which accounts
for approximately 6% of the 4 ms E2E latency required for eMBB
users. This is because users with large wireless resource allocation
require much larger processing duration and therefore have lower
slack time.

Naturally, there is a trade-off. We plot the FCT of small eMBB
users in Fig. 11(b). We observe that since LSTF prioritizes critical
and/or large users over small users, the FCT for small users in-
creases significantly versus using a FIFO policy. However, since
these users require significantly less baseband processing in the

732

C-RAN, the increase in the network latency does not impact the
overall performance for these users.

6.5 Latency in FSA

In this section, we show the latency incurred in various components
of FSA. The setup is shown in Fig. 13 where 8 eREs send aggregated
traffic of up to 80Gbps to 5 eRECs through the FSA switch. Each eRE
is connected to the FSA switch via a dedicated 10G link and each
eREC is connected to the FSA switch using a 25G link. 5 timestamps
are recorded for control and the associated data packet transfers

o fo: timestamp when an s-packet is transmitted by eREC.

e t1: timestamp when an s-packet arrives at FSA switch.

e t;: timestamp when processing of s-packet is completed and
all the routing entries are from the s-packet have been added.
ty: timestamp when the fronthaul packet corresponding to
the s-packet arrives at the FSA switch.

t3: timestamp when the fronthaul packet corresponding to
the s-packet arrives at the eREC.

Based on these timestamps, we compute the CDF of the following
latencies. Fig. 12(a) shows the latency between the transmission
of the s-packet (to) to the update of the routing entries ¢;. Since
the local clocks on the eREC and the switch are not synchronized,
we estimate the one-way latency (#1 - tp) as half of the round trip
time between eREC and the switch. The results show that this
insertion latency varies between 2.5us to 6us. When the s-packet
contains 4 or 10 entries, the average latencies are about 2.9us or
4.5us respectively.

In order for routing to work correctly, processing of the s-packet
has to be completed (¢;) before the arrival of the associated data
packet (t2). In Fig. 12(b), we show the CDF of (¢ — t1) the time it
takes for the switch to insert the routing entries after receiving
the s-packet and, (t; — t1) the time it takes for the data packet to
arrive at the switch after the associated s-packet is received. Since
1, t{, and ty are recorded at the FSA switch, all these timestamps
are obtained from the internal clock in the FSA switch. The result
shows there is a minimum time gap separation of 1.19us between

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

Routing update (4 entries) ----
Routing update (10 entries)

Insertion (4 entries) --

FSA-eRE-FSA (1% pkt)
Insertion (10 entries) — FSA-eRE-FSA (10" pkt) —

FSAround-trip —

1 . 1

0.8

08 |- t:t,

I " S

06 0.6 [

/ ;

. H 5
g : g

o o :
04 04+

0.2 02 -

04 (
0.2

0 0L

] e -
/
!

0 25 5
Latency (us)

75 0 25

(a) Routing update latency (t; — to)

5

(b) Insertion latency (t; — t1)

75 10 12.
Latency (us)

0
15 0 10 20 30 40 50

Latency (us)

(c) FSA round-trip latency (t3 — to)

and packet arrival latency (t2 — t1)

Figure 12: Latencies involved in FSA’s end-to-end operation. Refer to Fig. 13 for timestamp labels.

[== Schedule Packet

A

— Fronthaul Data Packet |
3

t,
t, t,
:t2 :t
eREs FSA eRECs

Figure 13: Evaluation setup for §6.5 experiments.

(tp — t1) and (tl/ — t1) for the first routing entry update to the first
data packet arrival. For the subsequent updates and packets, the
gap is even larger since the routing update takes even less. The
result shows the minimum time gap separation between (t — t1)
and (t{ — t;) for the 10 routing entry update and the 10th packet is
11.11ps.

Finally, we look at the latency incurred in the fronthaul network
running FSA, estimated as (3 - to). This result provides a measure
of the additional latency added by FSA. Fig. 12(c) shows that this
latency varies between 10us to 40us. The overall latency overhead
added by FSA is thus small. In all the above evaluations, we as-
sume that the eRE generates traffic immediately after receiving
the s-packet. However, in LTE the gap between the schedule trans-
mission and the corresponding uplink data reception is 4 ms [43].
During this 4 ms the eRE transmits the schedule to the user, the user
processes the received schedule, the user processes the uplink data
based on the received schedule, and finally transmits the processed
uplink data back to the eRE.

6.6 FSA Overhead and Resource Usage

Overhead. We evaluate the overhead due to additional packets
generated by the system to update network schedule information at
the switch. In Table 1, we note that on average each base station’s
schedule can be updated at the FSA-switch with a usage of only
236.67 Kbps of link capacity and consumes only 1005 pps of pipeline
capacity. Overall, for supporting 1000 eREs, the Schedule Packets
will incur an additional overhead of 0.007% and 0.1% of switch-
ing and pipeline capacity in the FSA-switch respectively. We also
estimate the maximum usage for 1000 eREs where each network
schedule contains the maximum number of entries, i.e. 12. The
maximum link capacity and pipeline overhead is 0.018% and 0.33%
of the switch’s total switching and pipeline capacity respectively.

Dataplane Resource Usage. As explained in §4.5, for each base
station about 40 schedule entries are required to be stored in the
SRAM-based ring buffer. However, considering shorter scheduling
intervals by future 5G deployments, in this evaluation we consider

733

Table 1: Overhead for transmitting Schedule Packets

Link Capacity Pipeline
1eRE 236.67 Kbps 1005.11 pps
Total for 1000 eREs 0.007% 0.10%
Max. for 1000 eREs 0.018% 0.33%

Table 2: Switch dataplane resources required FSA

Resource switch.p4[54] FSA

Exact Crossbar 29.36% 6.12%
Hash Bits 34.74% 6.51%
SRAM 29.58% 10.42%
Stateful ALU 14.58% 11.46%
TCAM 32.29% 5.60%
Ternary Crossbar 43.18% 4.55%
VLIW Instructions 36.72% 13.80%

128 schedule entries per base station. Our prototype implementa-
tion supports 1000 base stations and therefore has a ring buffer of
128K schedule entries. Table 2 shows the various switch dataplane
resources required by FSA as well as those required by the baseline
switch.p4 [50, 54]. switch.p4 is a baseline P4 program that repre-
sents a standard L2/L3 switch with all the common networking
features as well as support for VXLAN. We see that compared to
switch.p4, FSA consumes very little resources in the switch data-
plane. In particular, FSA requires only about 10% of the total SRAM,
even while supporting 1000 base stations. Since the sum of values in
both the columns is less than 100%, this implies both switch.p4 and
FSA can easily fit within the resource constraints of the switch dat-
aplane. This is especially useful for backward compatibility, which
requires supporting legacy LTE/3G eREs on the fronthaul that re-
quires standard L2/L3 forwarding support since all the processing
for them is done at the eRE. In practice, due to the high throughput
nature of the fronthaul traffic, the bottleneck for a fronthaul switch
to support more number of base stations is likely to be the switch’s
maximum throughput capacity, rather than the switch’s hardware
resources.

7 DISCUSSION

So far we have discussed the design and implementation of FSA us-
ing the 7-2 functional split. In this section, we discuss how FSA can
support the other functional splits. A survey of the different func-
tional splits can be found in [55, 56]. The functional split options
range from Split 1, where nearly all of the baseband processing is
performed at the eRE, to Split 8, where only the RF processing is
performed at the eRE and the raw IQ data is sent over the fronthaul
to be processed at the eREC.

ACM MobiCom ’21, October 25-29, 2021, New Orleans, LA, USA

Nishant Budhdev, Raj Joshi, Pravein Govindan Kannan, Mun Choon Chan, and Tulika Mitra

Table 3: Study on FSA support for different functional splits.

Protocol Split Max. fronthaul FSA- Details
stack P throughput supported
(Gbps)
RLC & PDCP 1/2/3 3 Yes Significant processing done at eRE and hence need FSA for multipoint-to-multipoint routing only.
RLC-MAC 4 4.5 Yes FSA can also match on slice/user ID along with sequence numbers to identify and route packets.
Split MAC/MAC-PHY 5/6 7.1/7.1 Yes Schedule information needs to be sent for each layer separately.

High PHY 7-3 15.2 Yes Similar to 5/6.

Low PHY 7-2* 15.2 Yes Detailed explanation given in this paper.

Low PHY 7-2x 15.2 Yes Similar to 7-2 but requires duplication of packets for subframes containing SRS symbols.

Low PHY 7-1 60.4 Yes Similar to 7-2x but schedule information needs to be sent for each antenna port separately.

RF-PHY 8 157.4 N.A. FSA cannot separate user’s as fronthaul data consists of IQ pairs in the time domain.

Table 3 summarizes the available split options and how FSA can
support them. Each split represents a specific trade-off between the
cost of the hardware (eRE and eREC) and the amount of fronthaul
traffic required. For example, Split 8 requires the least amount of
processing at the eRE but incurs the highest amount of fronthaul
traffic while the reverse is true for Split 1. From Table 3, we can
see that FSA can support split options 1-7 with little modification.
For splits 1/2/3 the slice identifiers are available at the eRE and
hence FSA needs to only provide high frequency dynamic routing
to enable multipoint-to-multipoint fronthaul networks. Since the
majority of the processing is done at the eRE in these splits, any
packet prioritization in the fronthaul would only provide minimal
gains. For splits options 4/5/6/7-3, FSA can enable fronthaul slicing
by using ring buffers to store schedule information for different lay-
ers. Note that, in split 4, even though the slice/user information can
be added to the fronthaul packet in the form of a VLAN tag to the
eCPRI packet, operators cannot route packets simply on the basis
of the VLAN tag using conventional L2/L3 switches. This is because
the slice/user identifier information keeps changing frequently as
a result of a large number of short user sessions [25]. Conventional
L2/L3 switches cannot support the required high-frequency rout-
ing updates because of the high latency of the control plane [26]
which is used for updates. Therefore, even when slice/user informa-
tion is available in the packet, we still require FSA’s SRAM-based
high frequency dynamic forwarding scheme in order to enable
multipoint-to-multipoint routing. For splits 7-2x/7-1, FSA would be
required to duplicate some packets since fronthaul data packets can
contain uplink data belonging to multiple users. FSA cannot sup-
port user-level slicing for networks using split 8, since the fronthaul
data needs to be converted from the time domain to the frequency
domain in order to separate different user’s data. In practice, split 8
is rarely chosen since it is difficult to deploy eREs with fronthaul
network links supporting the required throughput (~100’s of Gbps).

We note that any implementation of fronthaul slicing which
supports lower functional splits would need to provide additional
support beyond simple slice/user identification. For example, sup-
porting multipoint-to-multipoint routing requires marking each
fronthaul packet with the destination eREC’s address. Supporting
packet prioritization requires the ability to implement packet sched-
uling schemes in the fronthaul switch. Accordingly, FSA also ad-
dresses issues beyond simply identifying the slice/user for fronthaul
packets. It looks at how features such as multipoint-to-multipoint
routing and slice-based resource allocation can be supported in the
fronthaul network.

734

Clearly, FSA’s cross-layer design has its limitations in the sense
that more processing and state management is needed in the fron-
thaul switches. However, as we show in the evaluation, FSA’s re-
source requirement in the switch dataplane is much smaller than
the commodity L2/L3 switches (Table 2), and that it adds negligible
overhead to the switch’s dataplane performance (Table 1). We note
that any solution for fronthaul slicing which supports lower func-
tional splits would require a cross-layer design because slice/user
identifiers available in the MAC layer are missing from the fron-
thaul packets as the eREs do not perform MAC layer processing.
Such cross-layer designs have become easier to implement in recent
years since Software Defined Networking has allowed operators
to separate dataplane functions such as baseband processing from
control plane functions such as network scheduling. Also, given
that the industry is already using programmable switches in the 5G
core network [57], we believe that FSA’s reliance on programmable
switches is in line with the current technology trends.

8 CONCLUSION

In this paper, we design and implement FSA, which provides slicing
in the fronthaul network by using the wireless schedule to identify
the slice/user for each fronthaul packet. FSA enables multipoint-
to-multipoint routing through a high-frequency dynamic routing
scheme. It also enables packet prioritization in the fronthaul net-
work. FSA runs entirely in the dataplane of a programmable switch
at line rate. Our testbed evaluation shows that FSA can update
routing entries with a worst case latency of 6 us and support ac-
curate multipoint-to-multipoint routing for ~80 Gbps of fronthaul
traffic. The slice-aware packet scheduling enabled by FSA’s packet
prioritization reduces the 95" percentile flow completion times by
4x for latency-sensitive traffic. We believe that FSA’s benefits go
beyond multipoint-to-multipoint routing and packet prioritization.
FSA can also be used to support and enhance other features such as
broadcast/multicast (MBSFN), coordinated multi-point, joint trans-
mission, etc.

Acknowledgement. We thank our shepherd and anonymous
reviewers for their valuable feedback on previous drafts of this
paper. We also thank Changhoon Kim (Stanford University) and
Jeongkeun Lee (Intel Barefoot Switch Division) for their helpful
suggestions. This research was supported by the Singapore Ministry
of Education Academic Research Fund Tier 1 (T1 251RES1910) and
Tier 2 (MOE2019-T2-2-134).

FSA: Fronthaul Slicing Architecture for 5G using dataplane programmable switches ACM MobiCom 21, October 25-29, 2021, New Orleans, LA, USA

REFERENCES [38

Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,

(1]

SKT. SK Telecom’s 5G Architecture Design & Implementation Guidelines, 2015.

Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. Maglev: A fast and reliable software network load balancer.

[2] Huawei. 5G Network Architecture: A High-Level Perspective, 2016.

[3] Ericsson. The four key components of Cloud RAN, 2020. In USENIX NSDI{ 2016. : . X
https://www.ericsson.com/en/blog/2020/8/the-four-components-of-cloud- Rui Mlao, Hongyi Zeng, Changhoon Klm’-] eongkeun Lee, a“?‘ Mmlap YL“ Silkroad:
ran. Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.

[4] 3GPP. TS 28.500: Management Concept, Architecture and Requirements for In ACM SIGCOMM’ 2017. i X
Mobile Network that include Virtualized Network Functions. 2016. Cavium. Xgllant ethernet switch product family, 2018.

[5] 3GPP TR 38.913. Study on Scenarios and Requirements for Next Generation Intel. Flexpipe, 2018.)))
Access Technologies. 2017. Pat Bosshart, Glen Glhb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin

[6] Thilina N Weerasinghe, Indika AM Balapuwaduge, and Frank Y Li. Priority- Izzard, Fernando Mujica, 'fmd Mark Hf)rgwitz. Forwarding metamorphosis: Fast
based initial access for URLLC traffic in massive IoT networks: Schemes and programmable matc.h—a'ctlon processing in hardware for SDN. ACM SIGCOMM
performance analysis. Elsevier Computer Networks, 2020. Computer Communication Review, 2013"

[7] Eunkyung Kim and Heesoo Lee. Low-latency random access in wireless networks. 3GPP. TS 36.213 v14.2.0 : E’UTRA Physical Layer Pmcedh,‘res; 2017. .

Elsevier ICT Express, 2021. Josgph Y-T Legng) A new algorithm for scheduling periodic, real-time tasks.

[8] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. Orion: RAN slicing Sprlnger Al'gorlthmwfz, 1989. . .
for a flexible and cost-effective multi-service mobile network architecture. In Radhika Mlttal,‘ Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Universal
ACM MOBICOM, 2017. packet scheduling. In USENIX NSDI, 2016.

[9] Yasir Zaki, Liang Zhao, Carmelita Goerg, and Andreas Timm-Giel. LTE Mobile Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Cho!e,
Network Virtualization. Springer Mobile Networks and Applications, 2011. Shax}g-Tse Chuang, Anurag Agrawal, Hari Balaknshna.\n, Tom Edsall, Sachin

[10] Aditya Gudipati, Li Erran Li, and Sachin Katti. Radiovisor: A slicing plane for Katti, and Nick McKeown. Programmable packet scheduling at line rate. In ACM
radio access networks. In ACM HotSDN, 2014. SI'GCOMM’ 2016. i X 3 X
[11] Ian F Akyildiz, Pu Wang, and Shih-Chun Lin. SoftAir: A software defined net- Nishant Budhdev, Mun Choon Chan, and Tulika Mitra. PR’: Power Efficient and
working architecture for 5G wireless systems. Elsevier Computer Networks, 2015. Low Latency Baseband Prgcessmg for LTE Fefntocellsi In IEEE INFOCOM, 2018.
[12] Chengchao Liang and F Richard Yu. Wireless Virtualization for Next Generation N'a\veen Kr Shaqna, Chenxingyu Zhaq, Ming _Llu’ Pravein G Kannan, Changhoon
Mobile Cellular Networks. IEEE Wireless Communications, 2015. Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. Programmable Calendar
[13] Navid Nikaein, Eryk Schiller, Romain Favraud, Kostas Katsalis, Donatos Q};eues for ngh'Speeq Packet Scheduling. In USENIX NSDI, 2020.
Stavropoulos, Islam Alyafawi, Zhongliang Zhao, Torsten Braun, and Thana- Github. FSA; https://github.com/NUS-CIR/FSA.
sis Korakis. Network store: Exploring slicing in future 5G networks. In ACM Intel P4Stud19.
MobiArch, 2015. https://www.intel.com/content/www/xa/en/products/network-
[14] Peter Rost, Albert Banchs, Ignacio Berberana, Markus Breitbach, Mark Doll, io/programmable-ethernet-switch/p4-suite/p4-studio.html.
Heinz Droste, Christian Mannweiler, Miguel A Puente, Konstantinos Samdanis, EdgeCpre Wédge 100BF-32X, 20'19' i o
and Bessem Sayadi. Mobile network architecture evolution toward 5G. IEEE Pravein QOV}nd?“ Kannan, Raj]oshl, and Mun Choon. Ch?n. Precise time-
Communications Magazine, 2016. synchronization in the data-plane using programmable switching ASICs. In ACM
[15] CPRI Consortium et al. CPRI Specification V7.0, 2015. SQSR’ 2019. . . .
[16] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An, Nishant 3udhdev, Mun Chgon Chan, and Tulika Mltra.' Postér: I§0RAN: Isolation
Yiming Shi, Liang Liu, and Huadong Ma. Understanding Operational 5G: A First and Scal?ng for 5G RAN via User-Level Data Plane Virtualization. In IEEE IFIP
Measurement Study on Its Coverage, Performance and Energy Consumption. In Netwqumg, ?020' . . .
ACM SIGCOMM, 2020. Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi, and Mun Choon Chan.
[17] Open Networking Foundation. Aether, 2020. Debuggirfg Tr.ansient Faults in Data Centers using Synchronized Network-wide
https://www.opennetworking.org/aether/. Packet Histories. In USENIX NSDI, 2021. . . .
[18] Nokia. AirScale Cloud RAN, 2019. https://www.nokia.com/networks/solutions/ 5G Fundamentals: Functional Split Overview,
airscale-cloud-ran/#overview. 2019. https://www.hubersuhner.com/en/documents-
[19] Huawei. 5G Network Architecture: A High Level Perspective, 2016. repos.itor y/ teghnologi'es/ pdf/fiber-optics-documents/5g-fundamentals-
[20] ITU. 5G networks and 3GPP Release 15, 2019. fgnctlonal—spht—oveerew. . .
[21] 5G-PPP Architecture Working Group. 5G Architecture v3.0, 2019. Line MP Larsen, Aleksandra Checko, anq Henrik L Christiansen. A survey of
[22] Uwe Détsch, Mark Doll, Hans-Peter Mayer, Frank Schaich, Jonathan Segel, and the fL}nctlonal splits prop?sed for 5G mobile crosshaul networks. IEEE Commu-
Philippe Sehier. Quantitative analysis of split base station processing and de- nications Surveys & Tutorml‘s, 2018.
termination of advantageous architectures for LTE. Bell Labs Technical Journal,] If(alx)lo'om. Cloud Edge Fabric. https://www.kaloom.com/products/cloud-edge-
2013. abric.
[23] Gabriel Otero Pérez, José Alberto Hernandez, and David Larrabeiti. Fronthaul
network modeling and dimensioning meeting ultra-low latency requirements
for 5G. IEEE/OSA Journal of Optical Communications and Networking, 2018.
[24] Anil Umesh Tatsuro Yajima, Toru Uchino, and Suguru Okuyama. Overview of
O-RAN Fronthaul Specifications. 2019.
[25] Yaxiong Xie, Fan Yi, and Kyle Jamieson. PBE-CC: Congestion Control via
Endpoint-Centric, Physical-Layer Bandwidth Measurements. ACM SIGCOMM,
2020.
[26] Maciej Kuzniar, Peter Peresini, and Dejan Kosti¢. What you need to know about
SDN flow tables. In Springer PAM, 2015.
[27] Intel Tofino.
https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series/tofino.html.
[28] 3GPP. TS 38.211 v15.2.0 : 5G; NR; Physical channels and modulation. 2018.
[29] Anil Umesh, Tatsuro Yajima, Toru Uchino, and Suguru Okuyama. Overview of
O-RAN Fronthaul Specification. NTT Docomo Technical Journal, 2019.
[30] Wenfei Wu, Li Erran Li, Aurojit Panda, and Scott Shenker. PRAN: Programmable
Radio Access Networks. In ACM HotNets, 2014.
[31] Line MP Larsen, Michael S Berger, and Henrik L Christiansen. Fronthaul for
Cloud-RAN enabling network slicing in 5G mobile networks. Hindawi WCNC,
2018.
[32] MEF White Paper. Slicing for Shared 5G Fronthaul and Backhaul, 2020.
[33] IEEE. IEEE 802.1CM - Time-Sensitive Networking for Fronthaul, 2018.
[34] OBSAL Reference Point 3 Specification V4.0, 2010.
[35] CPRI Consortium et al. eCPRI Specification V2.0, 2019.
[36] IEEE. 802.1Q-2014 - Bridges and Bridged Networks, 2014.
[37] 3GPP. 3GPP TS 23.203 Policy and Control Charging Architecture, 2015.

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/xa/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html
https://www.intel.com/content/www/xa/en/products/network-io/programmable-ethernet-switch/p4-suite/p4-studio.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Related Work

	3 Design Space and Challenges
	4 Design & Implementation
	4.1 Wireless Schedule Conversion
	4.2 Forwarding Information
	4.3 Ring Buffer
	4.4 Handling Reordering & Drops
	4.5 Putting it all together

	5 Fronthaul Packet Scheduling
	5.1 LSTF

	6 Evaluation
	6.1 Functional Verification
	6.2 Network and System Statistics
	6.3 Handling Packet Drops
	6.4 Packet Scheduling with FSA
	6.5 Latency in FSA
	6.6 FSA Overhead and Resource Usage

	7 Discussion
	8 Conclusion
	References

