
This is a repository copy of RISE: robust wireless sensing using probabilistic and statistical
assessments.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177285/

Version: Accepted Version

Proceedings Paper:
Zhai, S, Tang, Z, Nurmi, P et al. (3 more authors) (2021) RISE: robust wireless sensing
using probabilistic and statistical assessments. In: MobiCom '21: Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking. The 27th Annual
International Conference On Mobile Computing And Networking (Mobicom), 31 Jan - 02
Feb 2022, New Orleans, Louisiana, USA. Association for Computing Machinery , pp. 309-
322. ISBN 978-1-4503-8342-4

https://doi.org/10.1145/3447993.3483253

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

RISE: Robust Wireless Sensing using Probabilistic and Statistical
Assessments

Shuangjiao Zhai1, Zhanyong Tang*1,4, Petteri Nurmi2,
Dingyi Fang1,4, Xiaojiang Chen1,4, Zheng Wang*3

1Northwest University, China, 2University of Helsinki, Finland, 3University of Leeds, United Kingdom
4Shaanxi International Joint Research Centre for the Battery-Free Internet of Things

1sjzhai@stumail.nwu.edu.cn, 1,4{zytang,dyf,xjchen}@nwu.edu.cn, 2ptnurmi@cs.helsinki.fi, 3z.wang5@leeds.ac.uk

ABSTRACT
Wireless sensing builds upon machine learning shows encouraging

results. However, adopting wireless sensing as a large-scale solution

remains challenging as experiences from deployments have shown

the performance of a machine-learned model to suffer when there

are changes in the environment, e.g., when furniture is moved or

when other objects are added or removed from the environment.

We present Rise, a novel solution for enhancing the robustness and

performance of learning-based wireless sensing techniques against

such changes during a deployment. Rise combines probability and

statistical assessments together with anomaly detection to identify

samples that are likely to be misclassified and uses feedback on

these samples to update a deployed wireless sensing model. We val-

idate Rise through extensive empirical benchmarks by considering

11 representative sensing methods covering a broad range of wire-

less sensing tasks. Our results show that Rise can identify 92.3% of

misclassifications on average. We showcase how Rise can be com-

bined with incremental learning to help wireless sensing models

retain their performance against dynamic changes in the operating

environment to reduce the maintenance cost, paving the way for

learning-based wireless sensing to become capable of supporting

long-term monitoring in complex everyday environments.

CCS CONCEPTS

·Human-centered computing→Ubiquitous andmobile com-

puting.

KEYWORDS

Wireless Sensing, Machine Learning, Statistical Assessments

ACM Reference Format:

Shuangjiao Zhai1, Zhanyong Tang*1,4, Petteri Nurmi2,, Dingyi Fang1,4,

Xiaojiang Chen1,4, Zheng Wang*3. 2021. RISE: Robust Wireless Sensing

using Probabilistic and Statistical Assessments. In Proceedings of ACM

Conference (Conference’17). ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Wireless signals like WiFi, RFID and (ultra)sound are emerging as a

powerful modality for ubiquitous sensing [6, 21, 22, 27, 37, 41, 47, 50,

56, 77, 88, 94]. Indeed, wireless sensing now underpins many emerg-

ing applications, ranging from smart home personalization [16, 24]

*Corresponding faculty authors: Zhanyong Tang (zytang@nwu.edu.cn) and Zheng
Wang (z.wang5@leeds.ac.uk).

Conference’17, July 2017, Washington, DC, USA

2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and fall monitoring [95, 99, 100] to emotion detection [98] and vital

sign monitoring [14, 36, 44, 54, 63, 73].

Machine learning is an established technique for supporting

wireless sensing. A machine-learned classifier is trained on a set

of labeled training samples and quantifiable properties, or features,

of the wireless signal domain. The model learns the correlation

between these features and the target activity. The learned model is

then applied to a test sample collected from the deployed environ-

ment. Studies show that machine-learning models can outperform

approaches relied on expert-crafted analytical models [46, 76].

Despite many promising results, adopting learning-based wire-

less sensing as a ubiquitous solution remains challenging as experi-

ences from deployments have shown such approaches to be sensi-

tive to environmental changes [64, 71, 74, 81]. As we will show in

this paper, even small changes in the environment can significantly

degrade the performance of a machine-learned sensing model. The

main reason for this stems from the fact that many wireless sensing

approaches rely on machine-learning techniques that inherently

assume the training and test samples to come from the same or

similar distribution (so-called i.i.d. assumption) [72]. Changes like

moving or adding furniture, or changing the position and distance

of wireless devices or the location where the activity is performed

can result in a changing multi-path, bringing noise into the wireless

signal characteristics. This causes the incoming test distribution

to diverge from the training samples’, leading to poor prediction

accuracy [83]. This problem is known as data drift [1, 68, 101] and

manifests itself as deteriorated and unreliable performance, i.e., the

robustness of the wireless sensing solution suffers.

Existing works to improve the robustness of learning-based wire-

less sensing focus solely on improving model capabilities at design

time. For example, data augmentation methods employ transla-

tion functions to generate synthetic or virtual training samples

[15, 71, 96] or reuse knowledge from different tasks [28] to improve

the generalization ability of a machine-learning model. These ap-

proaches, while important, are unlikely to cover all possible changes

in the environment ahead of time [74]. Indeed, as we will show later

in the paper, a data augmentation approach alone is inadequate for

addressing data drift in deployments. Another solution is to find

a set of features that are robust to the environment, e.g., through

domain adaptation methods [83, 85]. Although this may be possible

for certain tasks and environments, it is very hard, if not impossi-

ble, to find such universal features across diverse sensing tasks and

environments. The limitations of these design-time methodologies

call for a different approach to address data drift.

Conference’17, July 2017, Washington, DC, USA Zhai et al.

This paper presents Rise1, a novel approach for addressing data

drift in learning-based wireless sensing and improving sensing ro-

bustness during deployment. Our approach is based on classification

with rejections [9, 39, 66], an emerging paradigm for tackling data

drift by identifying and mitigating the drift as it occurs. Offering

such a capability allows the deployed system to adapt to changes

to improve its robustness. Here, the key and challenge of Rise are
to quickly and decisively determine when data drift occurs and

take action against it. Adaptation can be then achieved by either

updating the model using drifting samples, rejecting drifting points

where a misprediction could have a severe consequence, or choos-

ing an alternative model capable of handling the given input. By

targeting the deployment-phase, Rise thus provides an orthogonal

approach for design-time solutions. It ensures the performance of

an already-deployed sensing system is robust across changes and

consistent over time.

Rise offers a novel and general framework for supporting learning-

based sensing methods through classification with rejections. For

a test input, Rise quantifies the confidence and credibility of the

prediction. It then uses the quantified evaluation to recommend if

we should accept the sensing outcome or if a further investigation is

needed. To estimate the model’s confidence (or certainty) in making

a prediction, Rise leverages the probability distribution produced

during the classification process. This approach alone, however, is

insufficient as drifting samples may lead to an artificially skewed

probability across class labels, resulting in falsely high confidence.

To mitigate this issue, we further consider statistical evidence to

assess the credibility (or error bound) of a prediction. We leverage

conformal prediction theory [7] to quantify the non-conformity

of a test input to the training samples. Our intuition is that if the

test sample is significantly different from the training distribution,

the predictive model will struggle to make a correct prediction be-

cause it has not acquired such knowledge during training. To detect

potential mispredictions, we use the probabilistic and statistical

assessment to build an unsupervised anomaly detector to approve

or reject a sensing outcome based on the assessments. Our insight

is that the underlying classifier is only effective when it is confident

in its prediction, and its judgement is considered to be credible.

We show that Rise can effectively support two strategies for

enhancing sensing robustness and helping to maintain consistently

good performance over time. The first is to adopt incremental learn-

ing [2, 26] to retrain the sensing model using drifting samples

collected from the deployed environment. Rise is helpful in this

scenario because it only asks for user confirmation to label the

drifting data but not the typical sample where the deployed model

can make a correct prediction. Depending on the applications, Rise
only requires user feedback to label a handful of shifting samples to

adapt the sensing model to changes in the environment. The second

strategy is to adopt a łmixture-of-expertsž based approach [96], by

employing multiple predictive models (referred to as experts) and

only using predictions with high confidence and high credibility.

Both strategies are orthogonal and thus can be combined.

Results. We evaluate Rise2 by applying it to 11 representative

learning-based sensing methods [33, 40, 48, 64, 69, 71, 80, 81, 83,

1Rise =Robust wIreless SEnsing.
2Code and data are available at: https://github.com/NWU-NISL-Sensing/RISE.

Sender Receiver15cm 15cm
S2 S1 S3

Sender Receiver
S4

Sender Receiver
S5

(a) (b)

Figure 1: Wireless sensing settings (a) and impact of environ-

mental changes (b). Dots in subgraph (a)markwhere gestures

were performed, and 𝑆1 − 𝑆5 denote different wireless setups.

The x-axis of subgraph (b) denotes the training-testing setup.

For example, 𝑆1 − 𝑆2 means the model is trained on data

collected from setting 𝑆1, and the trained model is tested in

setting 𝑆2.

84, 93]. Our large-scale case studies target various sensing tasks,

ranging from gesture and identify recognition to finger input iden-

tification, covering WiFi, RFID, and sound signals as well as vi-

bration and sensor data, and diverse machine learning algorithms

(including methods based on deep neural networks [83]) and signal

features. We empirically demonstrate that learning-based sensing

approaches are fragile , and small changes in the environment can

result in poor performance. We show that Rise is useful in detect-

ing drifting samples, as it successfully identifies on average 92.3%
(up to 100%) of the drifting samples with an average false-positive

rate of 1.8%. With incremental learning, Rise can boost the sensing

performance in a dynamic environment to what can be obtained in

a static setting. We showcase that Rise achieves this by incurring

little human involvement as it only requires user feedback to label

between 1 − 3 predicted drifting samples and using them to update

the sensing model for an environmental change. The result is a

new way of identifying ageing sensing models and ameliorating

wireless sensing robustness and performance in the face of data

drift during the deployment.

Contributions. This paper is the first to:

• exploit classification with rejections to enhance learning-based

sensing robustness (Section 3);

• employ conformal prediction and anomaly detection to detect

data drift (Section 3);

• combine incremental and ensemble learning and anomaly detec-

tion to improve sensing performance (Section 3.4).

2 BACKGROUND AND MOTIVATION
2.1 Problem Scope
Our work focuses on improving the robustness of wireless sens-

ing techniques that rely on a machine-learning classifier during

deployment. Many of such solutions rely on wireless signal char-

acteristics that are inherently sensitive to environmental changes.

We note that there are sensing systems build on techniques like the

frequency-modulated continuous-wave (FMCW) [3, 52, 79, 92]

or physiological data [17, 89]. Those approaches are robust to

changes in the spatial domain. Our work does not target those

environmental-agnostic sensing techniques.

2.2 Impact of Environmental Changes
To illustrate the impact of environmental changes, we consider

WiFi-based gesture recognition as a representative task. Later in the

paper, we extend our experiments to other types of wireless sensing

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

tasks. We consider two learning-based gesture recognition methods,

WiG [33] and WiAG [71] which use different predictive modeling

techniques and wireless channel characteristics. The latter method

is also a data augmentation approach that uses virtual samples to

improve the generalization ability of the sensing mode. We apply

each method to six representative gestures, including łpush and

pullž, łdraw a circlež, łthrowž, łslidež, łsweepž and łdraw zigzagž.

The gestures were performed in a controlled environment within

a radio frequency anechoic chamber to minimize the impact of

other parameters. We consider the five wireless settings depicted

in Figure 1a. Here, a dot represents a location where the gestures

were performed (denoted as S1, S2, S3). We also placed a chair at

two locations S4 and S5 to mimic multipath due to environmental

changes. To ensure the gestures were done consistently, we use a

programmable robotic arm to perform the target gestures. More

details of the experimental setup are given in Sections 4 and 5.4.1.

Even though the experiments were conducted in a highly restricted

environment, a change in the environment can lead to frequent

misclassification of a sensing model.

Figure 1b shows what happens if we first train the model using

data collected from S1 and apply the learned model to samples

obtained in each setting.We also used the location-angle translation

function of WiAG to generate virtual samples for S2 and S3. Since

we use a robotic arm to perform gestures, there is little variance

between activities of the same gesture. Therefore, both models

achieve 100% accuracy when the test data is collected from S1.

However, the accuracy of WiG and WiAG drops to less than 40%

when they are tested on samples collected from other settings,

showing that the environmental changes can have a severe impact

on the sensing performance.

As we will show later, while using training data collected from

multiple environments can improve the model reliability, the per-

formance of a deployed model can still suffer from small changes

that were hard to anticipate ahead during the design phase.

2.3 Evaluating Model Credibility
To identify unreliable sensing outcomes, a naïve solution would be

to consider the probability given by a classifier. For example, a high

prediction probability of a chosen label can suggest that the model

is more certain about its prediction. While the probability indicates

the model’s confidence in making a prediction, it is insufficient for

measuring the model’s credibility due to the way supervised learn-

ing works. Machine learning classifiers compute the probability of

a sample fitting into a class for predictions, but a drifting sample

can lead to a skewed probability distribution.

As an intuitive example, consider a binary classification problem

where the sensing model needs to predict if the test input belongs to

one of the two activities (e.g., gestures or human subjects) or classes

- 𝑐1 and 𝑐2. When making a prediction, the model estimates the

probability of the input belonging to each class. Let 𝑟1 and 𝑟2 denote

the probability that the input belongs to 𝑐1 and 𝑐2 respectively. If

the input pattern is not seen during the training phase, the model

could give a low probability score, 𝑟1 for 𝑐1, such that, 𝑟
1 ∼ 0.0. This

would artificially push the probability of another class, 𝑟2, towards

1.0 as the sum of the probabilities must be 1.0 [10]. To estimate the

model’s credibility, we need a way to assess if the input is likely

to be compatible with the knowledge the model learned from its

Test sample

...
Probability vector

Training
samples

nonconformity Statistical vector

 Anomaly Detector

Approve

Reject

Computing ...

 Underlying sensing model

Figure 2: We feed the probability vector given by the underly-

ingmodel and the statistical vector given by a nonconformity

function to an anomaly detector to approve or reject a sens-

ing outcome.

training data. For this specific example, we wish to assign a low

credibility score to both classes if the input sample is highly distinct

from those seen at the training stage.

2.4 Terminologies
In this work, wemeasure the model confidence by implicitly comput-

ing the significance of the probability given by a machine-learning

classifier. This metric is computed from a probability vector de-

scribed in Section 3.1. We note that our definition of confidence is

different from the statistical confidence interval that estimates the

range where the true value of a parameter may lie in. Furthermore,

we use a statistical vector, described in Section 3.2, to measure the

credibility of a model prediction. Our credibility metric is different

from the classical credibility definition in the CP theory where a

single scalar value is used as the credibility measurement. Unless

state otherwise, we use our definitions in the rest of the paper.

3 OUR APPROACH
Figure 2 gives a high-level view of Rise that works for any probability-
based machine-learning classifier ś a dominating approach for wire-

less sensing [11, 12, 23, 40, 43, 45, 49, 62, 64, 71, 78, 82, 83, 90, 91,

97, 100]. At the core of Rise is a mechanism for quantifying both

the confidence (Section 3.1) and credibility (Section 3.2) of a classi-

fication outcome. This evaluation is fed into an anomaly detector

(Section 3.3) to determine if we should accept a sensing outcome.

We stress that Rise does not require changing the underlying sens-

ing model - the input and output of a sensing model will be in

the same format as when the model is used alone. Instead, Rise
only takes as input the intermediate results (e.g., the probabilities

produced by the sensing model).

3.1 Probabilistic Assessment
To evaluate how confident a classification-based sensing model pre-

dicts a given input, we examine the probability distribution of the

prediction. Our insight is that the more significant the probability

the chosen class is with respect to others, the higher confidence the

classifier will be (ignoring the credibility for now). If several labels

have more or less the same prediction probabilities, the model will

struggle in choosing from these candidate classes.

To elaborate on our observation, consider a learning-based sens-

ing system that uses a classifier to attribute the wireless signal to

one of the five targeting activities (or prediction classes), 𝑐1, 𝑐2,

𝑐3, 𝑐4, and 𝑐5. Suppose the probability distribution for samples 𝑎

and 𝑏 is {0.51, 0.48, 0.003, 0.003, 0.004} and {0.51, 0.12, 0.12, 0.12,

0.13}, respectively. Both probability distributions sum to 1.0. In

this example, the two test samples will be attributed to class 𝑐1,

because this class label has the highest probability of 0.51 in the

relevant prediction. Existing learning-based method would simply

Conference’17, July 2017, Washington, DC, USA Zhai et al.

Table 1: Nonconformity measures supported by Rise

ML algorithm NCM Description

𝑘 Near Neigh-
bor (KNN)

∑𝑘
𝑗=1 𝐷

𝑦
𝑠 𝑗

∑𝑘
𝑗=1 𝐷

−𝑦
𝑠 𝑗

The ratio of the sum of the distances of 𝑘 nearest neighbors in the same class as the predicted label 𝑦 of sample 𝑠 to the sum of the
distances of 𝑘 nearest neighbors in all other classes [72].

Support Vector
Machine (SVM)

Lagrange Multipliers
Extract Lagrange multipliers by maximizing

∑𝑙+1
𝑖=1 𝛼𝑖 −

1
2
∑𝑙+1
𝑖,𝑗=1 𝛼𝑖𝛼 𝑗 𝑦𝑖𝑦 𝑗𝐾

(

𝑥𝑖 , 𝑥 𝑗
)

, where, 𝐾 refers to the kernel function.

Lagrange multipliers can reflect the łstrangenessž of a sample, and so can be interpreted as the NCM [7].
Random
Forest (RF)

−
|𝑖∈{1,··· ,𝑛},𝑇𝑖 (𝑥𝑠)=𝑦 |

𝑛 The percentage of predicted label 𝑦 for sample 𝑠 given by decision trees.𝑇𝑖 is the 𝑖 − 𝑡ℎ decision tree in the RF [20].

Logistics
Regression (LR)

(−1)𝑦 (𝜃 − 𝑥𝑠 · 𝜔)
This applies mainly to binary classification, if 𝑥𝑠 · 𝜔 < 𝜃 , 𝑦 = 1, otherwise 𝑦 = 0. Here, 𝜃 refers to a parameter and𝜔 refers to a
weighting vector of attributes [8].

Any probabilistic model 1 −

{

𝑝𝑟𝑜𝑏
𝑦
𝑠 −𝑚𝑎𝑥

(

𝑝𝑟𝑜𝑏
−𝑦
𝑠

)

2

}

Here, 𝑝𝑟𝑜𝑏
𝑦
𝑠 is the probability of sample 𝑠 being classified as class 𝑦, and 𝑝𝑟𝑜𝑏

−𝑦
𝑠 is the probability of sample 𝑠 being classified

as all other classes [61]. This is a generic NCM that works for any probabilistic ML model.

use 𝑐1 as the sensing outcome. If we look closely at the probability

distribution, we can see that the model is less certain in predicting

sample 𝑎 than 𝑏, because the probability difference between 𝑐1 and

𝑐2 is less significant in the first prediction (0.51 vs 0.48) than the

second one (0.51 vs 0.12).

In light of this observation, we use the probability distribution to

estimate the model’s confidence in making a prediction. To this end,

we feed the probability vector given by the underlying classifier to

an anomaly detector to correlate the probability distribution with

the prediction confidence.

3.2 Statistical Assessment
To evaluate the model’s credibility, we leverage the conformal pre-

diction (CP) theory [61]. This method computes the level of credi-

bility for a prediction by using past experience to account for data

drift. CP works like the statistical confidence interval. Given an

underlying classifier, 𝑔, and a significance level, 𝜀, CP produces a

prediction region: a candidate label set that is guaranteed to contain

the correct label with probability no more than 1 − 𝜀. Essentially,

𝜀 defines the sensitivity of prediction region. The larger 𝜀 is, the

smaller prediction region will be. To generate the label set, CP uses

a nonconformity measure derived from 𝑔 to quantify how dissimilar

the input sample is compared to a history of past examples (e.g.,

training examples). Intuitively, the more the model input deviates

from the training examples, the lower credibility the model’s pre-

diction is likely to be. Thus, a low credibility suggests that there

is a high chance that the corresponding example is drifting with

respect to training examples. Such an example is at risk of being

misclassified due to limited knowledge of the underlying model.

Nonconformity measures.We use a nonconformity function, 𝑓 ,

to score how different a sample 𝑠 is from a set of previous exam-

ples, 𝐵 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, 𝑎𝑠 = 𝑓 (𝐵, 𝑠). The greater the value of the

nonconformity measure (NCM), 𝑎𝑠 , the less similar 𝑠 is to the ele-

ments of B. In this work, 𝐵 is referred to as the calibration set and it

contains the samples seen by the underlying sensing model during

the training phase. Rise provides a range of ready-to-use functions
to compute the NCM, listed in Table 1. Some of the functions are

specific to the machine-learning technique used, by utilizing the in-

ternal algorithmic information. By default, we use a model-specific

nonconformity function if it is available. However, we also pro-

vide a general nonconformity function to be used by any other

probabilistic-based classifier. Note that the nonconformity function

only depends on the underlying classifier and not on the sensing

task, the model features or the signal representation that is used.

Compute the p-value. We construct a conformal evaluator to

approve or reject a null hypothesis asserting that the input sample

𝑠 does not belong in the prediction region formed by elements of

𝐵. To test the hypothesis, we compute a p-value using the chosen

nonconformity function to measure how similar the new sample

to all data points in the calibration set. We first use the noncon-

formity function 𝑓 to compute, offline, the nonconformity score,

𝑎
𝑦
1 , 𝑎

𝑦
2 , ..., 𝑎

𝑦
𝑛 , for each of the 𝑛 instances in the calibration set, 𝐵,

to each of the supported class labels, 𝑦 (e.g., a target activity type)

using the underlying sensing model. After deploying the sensing

model, we calculate the nonconformity score, 𝑎
𝑦𝑝

𝑛+1, for a new test

sample, 𝑠 , belongs to a target label𝑦𝑝 . We then compute the p-value,

𝑝𝑠 , for test sample 𝑠 as:

𝑃𝑠 =

COUNT
{

𝑖 ∈ {1, ..., 𝑛 + 1} : 𝑦𝑖 = 𝑦
𝑝 and 𝛼

𝑦𝑝

𝑖 ≥ 𝛼
𝑦𝑝

𝑛+1

}

COUNT {𝑖 ∈ {1, ..., 𝑛 + 1} : 𝑦𝑖 = 𝑦𝑝 }
(1)

Essentially, we count the proportion of calibration samples for label

𝑦𝑝 with a nonconformity score greater or equal to the nonconfor-

mity score of sample 𝑠 belongs to class 𝑦𝑝 . If the p-value is small

(close to its lower bound 1/(𝑛 + 1)), the prediction is very noncon-

forming, meaning the nonconformity score for most of the examples

in the 𝑛-element calibration set is smaller than 𝑎𝑛+1. In other words,

the test sample is very dissimilar to the past samples seen during

training. If the p-value is large (close to its upper bound 1), then
the prediction is very conforming, suggesting the input sample is

similar to most of the training samples of label 𝑦𝑝 .

Applications of CP in other domains [39, 55] use a single p-value

for decision making - if 𝑝𝑠 falls above a given significance level, 𝜀,

the model’s prediction 𝑦 is accepted as a valid prediction. We take

a different approach. Instead of setting a fixed threshold for 𝜀, we

use a statistical, unsupervised method to build an anomaly detector

to approve or reject the sensing model’s prediction (Section 3.3).

Calibration datasets. To set aside a calibration dataset to com-

pute the p-value, we partition the training set into 𝑘 folds of equal

size. We leave one fold as the calibration set for computing the

nonconformity score on the calibration samples (by training an

underlying sensing classifier on the remaining 𝑘 − 1 folds). We

repeat this process 𝑘 times until all folds have been used as the

calibration set once. This results in 𝑘 underlying classifiers (used by

CP only). During deployment, we use the 𝑘 underlying classifiers

and their corresponding calibration sets to compute 𝑘 p-values. We

then take the average p-value as the final output. In this work, we

empirically set 𝑘 to 10. Note that this process is automated and the

developer of the wireless sensing solution simply needs to call the

API of Rise; see Section 3.5.

The statistical vector. For a given sample, 𝑠 , we compute the p-

value when attributing it to each of the supported class labels. The

resulting p-values then form a statistical vector, where each element

of the vector is a p-value for a class label. The statistical vector is

used to measure the łstrangenessž of the sample to those seen at

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

the training stage for each supported class. Like the probability

vector, using a statistical vector rather than a single p-value allows

us to capture the certainty of CP in evaluating the credibility.

3.3 Detect Drifting Samples
We concatenate the probability and the statistical vectors as one

input to an anomaly detector to approve or reject a sensing outcome.

Our anomaly detector is a one-class (or one-vs-all) support vector

machine (SVM) constructed from the ‘normal’ data - the sensing

model’s training samples in our case. It learns the boundaries of

the training samples and can classify points that lie outside the

boundary, i.e., the outliers. We choose this algorithm as it is shown

to be effective in identifying a skewed data distribution [60, 67].

The key idea of abnormal detection is to detect rarely seen events.

This is achieved by finding a closeness boundary in a feature space

such that a data point outsides the boundary is considered an outlier.

In our case, the feature space is defined by the probabilistic and

statistical vectors described in Sections 3.1 and 3.2. In the context

of the one-class SVM, the boundary is a hyperplane for separating

the normal (i.e., sensing model training samples) data points from

the origin in the feature space - such that the hyperplane border is

as close to the normal data points as possible. During deployment,

our abnormal detector checks if the input test sample is within the

boundary constructed from sensing model training samples. If not,

the test sample is considered an outlier (i.e., a drifting sample). For

more information about abnormal detection, we refer to [34].

For a sensing model that supports 𝑛 targets, 𝑐1, 𝑐2, · · · , 𝑐𝑛 , its

underlying classifier will give a probability vector of 𝑛 elements

of probabilistic values
{

𝑟1, 𝑟2, · · · , 𝑟𝑛
}

. Similarly, our conformal

evaluator will produce a statistical vector of 𝑛 elements for the 𝑛

target activities
{

𝑝1, 𝑝2, · · · , 𝑝𝑛
}

. This will result in a 2𝑛 input vec-

tor,
{

𝑟1, 𝑟2, · · · , 𝑟𝑛, 𝑝1, 𝑝2, · · · , 𝑝𝑛
}

, given to the anomaly detector

which outputs a binary value for approving or rejecting a sensing

model prediction. Rise automatically constructs a one-class SVM

for each of the supported class labels. Specifically, the probability

vector and statistical vector of each training sample are calculated

using 𝑘-fold cross-validation, and then the one-class SVM is trained

by using the probability vector and statistical vector of the training

sample of the same label. For a sensing system that supports 𝑛 activ-

ities, we thus will have 𝑛 one-class SVM models𝑀𝑐1 , 𝑀𝑐2 , · · · , 𝑀𝑐𝑛 .

During deployment, for a test sample 𝑠𝑡 , we use the sensing

model’s prediction 𝑐𝑠𝑡 to choose the appropriate SVM model 𝑀𝑐𝑠𝑡 ,

which takes in the joint probability-statistical vector, {𝑟1𝑠𝑡 , 𝑟
2
𝑠𝑡 , · · · ,

𝑟𝑛𝑠𝑡 , 𝑝
1
𝑠𝑡 , 𝑝

2
𝑠𝑡 , · · · , 𝑝

𝑛
𝑠𝑡 }, to approve or reject the sensing outcome.

Rejected sensing outcomes can be quarantined and dealt with sepa-

rately, either warranting manual inspection or checking through

other means. Although handling drifting samples raises several

other challenges (e.g., how to correct the sensing outcomes through

user feedback), we note that such remediation is only possible once

drifting samples are detected - the main focus of this paper.

3.4 Improve Sensing Robustness
Rise can be used during deployment with incremental learning

to improve a sensing model’s performance or with ensembling

learning to enhance a model’s robustness.
Incremental learning. Rise can improve the performance of a

sensing system in the deployed environment. This can be achieved

through incremental learning [2, 26], where we isolate the data

Table 2: Sensing methods evaluated in this work.
Sensing Method Features ML Model

WiG [33] Statistical measures SVM

WiAG [71] Discrete Wavelet Transform (DWT) K-nearest neighbor

TACT [80] Dynamic Time Warping (DTW) measures Random forests (RF)

AllSee [40] Amplitude K-nearest neighbor

EI [83] Neural network representations
Convolutional Neural

network (CNN)

WiWho [93] Statistical measures Decision Tree (DT)

WifiU [81] Spectrogram SVM

VibWrite [48] Mel Frequency Cepstral Coefficents (MFCC) SVM

Taprint [84] Fast Fourier Transform (FFT) K-nearest neighbor

UDO-Free [69] Statistical measures K-nearest neighbor

M-Touch [64] Physiological characteristics K-nearest neighbor

samples filtered out by Rise for further inspection. By manually

labeling the drifting samples and adding them to the existing train-

ing dataset, we can then retrain the underlying model and update

the Rise anomaly detector on the new samples. Note that we also

update the calibration dataset and the anomaly detector when new

training samples are added. This allows the Rise decision process

to adapt to the change of the underlying model. Such an approach

minimizes user interruption by only asking for user feedback when

the data drift is likely to happen. This feature is vital for minimizing

the impact of user experience and reducing the associated mainte-

nance cost. Later in Section 5, we show that Rise can effectively

support incremental learning.

Ensemble learning. Another option is to train a set of classifiers

and aggregate the credible predictions given by different classifiers

as the outcome. Such a strategy is also known as mixture-of-experts

(or stacking based ensemble learning) [53, 96], where several hetero-

geneous models are trained to collectively solve the same problem.

The key challenge here is that different algorithms have different ca-

pabilities in learning and modeling, and some may only be effective

in certain types of samples. To minimize the impact of poor advice

given by an ineffective model, we can use the Rise anomaly detector

to filter out low-quality predictions. To this end, our SVM produces

a distance metric, measuring how likely each prediction deviates

from the normal distribution. We can then choose the 𝑡𝑜𝑝 − 𝑛 pre-

dictions with the smallest distance and apply majority voting to

produce a final classification. In Section 5.3.1, we show that Rise
can effectively improve performance of ensemble learning.

3.5 Implementation
We developed an open-source prototype of Rise using Python and

the scikit-learn package [65]. To use Rise, the developer needs to
choose a nonconformity measure and use the Rise APIs to automat-

ically construct the calibration dataset and the anomaly detector

from the sensing model’s training samples (see Section 3.2). We

note that using Rise does not require making any changes to the

wireless sensing model and Rise can simply be used as an addi-

tional support tool. During deployment, for a given test sample,

the sensing system will pass the model’s underlying algorithm and

its prediction as arguments to a dedicated Rise API. The API will
then compute the probability and statistical vector to feed into the

anomaly detector to approve or reject the sensing outcome.

4 EXPERIMENTAL SETUP
4.1 Case Studies
Weperform a large-scale study by applyingRise to 11 representative
learning-based sensing methods [33, 40, 48, 64, 69, 71, 80, 81, 83,

Conference’17, July 2017, Washington, DC, USA Zhai et al.

Table 3: Case studies and their setups

Case Studies Sensing Tasks Signal Sensing Method Evaluation Site Participants Config. Labels Activity (#types) #Samples Accuracy (%)

WiG 100↑8

WiAG
Controlled environment Robotic Arm S1, S2, S3, S4, S5 Gestures (6) 900

100↑8.6

WiAG-C Controlled environment 6 volunteers L1, L2, L3, L4, L5 Gestures (6) 5,400 99.9↑8.5
WiFi

WiAG-O Office 6 volunteers L1, L2, L3, L4, L5 Gestures (6) 5,400 93.9↑2.5

TACT 98.4↑4.9
RFID

AllSee
Controlled environment Robotic Arm S1, S2, S3, S4, S5 Gestures (6) 900

98.8↑1.8

Case study 1
Gesture

recognition

Ultrasound EI Controlled environment Robotic Arm S1, S2, S3, S4, S5 Gestures (6) 900 99.8↑20

WiWho 95↑3
Case study 2

Gait

recognition
WiFi

WifiU
Controlled environment 15 volunteers S1, S2, S3, S4, S5 Gaits (15) 2,250

97.6↑4.55

VibWrite-R 15 volunteers N, 1, 2, 3, 4 Finger Inputs (10) 15,000 99.5↓0.5

VibWrite-A
Office

15 volunteers N, 1, 2, 3, 4 User identification (15) 15,000 98.7↑3.7

Taprint-R Outdoor 15 volunteers M Text Inputs (12) 9,000 99.4↑3.4
Vibration

Taprint-A Office 15 volunteers S, D, W User identification (15) 27,000 99.1↑1.5

Outdoor 15 volunteers RP, LP, DC, DB Activities (3) 18,000
UDO-Free

Office 15 volunteers RP, LP, DC, DB Activities (2) 12,000
98.8↑0.68

Outdoor 15 volunteers M User identification (15) 450

Case study 3
Activity

recognition

IMU Sensors

M-Touch
Office 15 volunteers S, DP, T User identification (15) 1,350

97.9↑1.08

Robot Arm

Sender Receiver
2.5m

3.5m

2m

(a) WiFi (robotic arm)

Robot ArmAntenna Tags

(b) RFID (robotic arm)

Robot ArmSpeaker Micro
phone

(c) Ultrasound (robotic arm)

L4
(60,84) L3

(96,84)

L2
(132,84)

Sender
(0,0)

Receiver
(156 ,0)

L1
(178,36)

L5
(12,108)

16°

15°44°
55°60°

(d) Five locations of WiAG

Sender

Receiver

(e) WiFi (human gestures)

Figure 3: Controlled environment setup for gesture recognition using various signals.

Sender

Receiver

(a) WiFi sensing (office)

Piezoelectric
sensor

Vibration
motor

Grid points 21

3 Finger input 4

(b) Vibwrite (office)

Smartwatch

Finger tap

1 2 3
4 5 6

7 8
*

9
0 #

(c) Taprint (outdoor & office)

Smartphone

(d) UDO-Free (outdoor & office)

Multi-touch gesture

(e) M-Touch (outdoor & office)

Figure 4: Other evaluation setups when replicating the source publications.

84, 93]. As summarized in Table 2, we organize the tests around

three case studies. These methods include contact and non-contact

sensing applications, covering a wide range of wireless signals,

sensing tasks, machine learning algorithms and features. Our test

methods also include a representative data augmentation approach

[71] that uses virtual samples to improve sensing performance, as

well as methods that use environment-agnostic features like [81].

We reproduced the test methods by faithfully following the

methodology described in their source publications, and use the

relevant open-source code implementation when available. Table 3

gives the accuracy obtained by our reproduction in a static envi-

ronment, with a comparison to the results reported in the source

publication. Here, the performance improvement or degradation is

marked by a ↑ or ↓ symbol respectively. As can be seen from the

table, our reproduction gives comparable (and often better) results

compared to the numbers reported in source publications.

We also note that the quality of the underlying machine-learning

model of a sensing system can greatly impact the performance of

Rise. However, we expect the developers make efforts to build a

reasonably good model from the initial training dataset.

4.2 Testing Environments
We collect the rawwireless signals in both a controlled environment

and day-to-day scenarios. As shown in Figure 3, our controlled

environment is a radio frequency (RF) anechoic chamber of 3.5𝑚 ×

2.5𝑚 × 2𝑚. The chamber is designed to reduce multi-path within

the room because the vast majority of the reflected signal will

be absorbed when the signal bounces to the wall, ceiling, and the

ground [5, 32]. We use the RF chamber to control the environmental

parameters to ensure the reproducibility of experimental runs by

cancelling uncontrolled multi-paths that can have an impact on

activity recognition [81]. In addition to this, we also conducted

experiments in an office and outdoor settings as depicted in Figure 4.

4.3 Sensing Tasks and Notations
Table 3 summarizes how we test for different sensing tasks.

Gesture recognition. For this case study, we consider six represen-

tative gestures, including łpush and pullž, łdraw a circlež, łthrowž,

łslidež, łsweepž and łdraw zigzagž that are commonly supported

by prior methods [33, 57, 71, 91]. From the controlled environment

(Figure 3), we collected WiFi, RFID and Ultrasound signals. For

reproducibility, we use a programmable robotic arm to perform

the gestures. We have five settings in the controlled environment,

marked as S1 to S5 in Figure 1a. For WiAG (a data augmentation

method), we collected WiFi signals from the controlled environ-

ment (Figure 3e) and the office (Figure 4a). In addition to evaluating

WiAG under the S1 to S5 settings in the controlled environment,

we also create two evaluation variants, WiAG-C and WiAG-O. We

follow the experimental setup of WiAG’s source publication, us-

ing gestures data from five settings (L1 to L5 in Figure 3d), where

we give the coordination and angle to the sender (0,0). We denote

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

Table 4: Summary of changes introduced in our evaluation

Sensing

Tasks

Sensing

Method
Config. Labels Description

WiG

WiAG
S1, S2, S3, S4, S5

We changed the location where the gestures were performed (𝑆1, 𝑆2, 𝑆3) and added chairs in different positions to mimic multi-path

(𝑆4, 𝑆5) when the gestures were performed at location 𝑆1. See also Figure 1a and Section 5.4.1.

WiAG-C

WiAG-O
L1, L2, L3, L4, L5

Gestures were performed in five different locations (𝐿1− 𝐿5) per the evaluation settings used in the source publication of WiAG [71].

See also Figure 3d and Section 5.4.1.

TACT

AllSee

Gesture

recognition

EI

S1, S2, S3, S4, S5
We changed the location where the gestures were performed (𝑆1, 𝑆2, 𝑆3) and added chairs in different positions to mimic multi-path

(𝑆4, 𝑆5) when the gestures were performed at location 𝑆1. See also Figure 1a and Section 5.4.1.

WiWhoGait

recognition WifiU
S1, S2, S3, S4, S5

We asked participants to walk along different paths (𝑆1, 𝑆2, 𝑆3) and added chairs in different positions to mimic multi-path (𝑆4, 𝑆5)

when participants were walking along path 𝑆1. See also Figure 1a and Section 5.4.2.

VibWrite N, 1, 2, 3, 4 We ensured that the sensing area was free of obstacles (𝑁) or placing a glass of water at four different locations (1, 2, 3, 4). See also
Figure 4b and Section 5.4.3.

Taprint S, D, M, W

This case study involves multiple indoor and outdoor settings with dry and wet hands. For the indoor setting, we asked participants

to tap the 12 knuckles (Figure 4c) on their hands with standard force (𝑆) and a different force (𝐷) when the hand is dry or wet (𝑊).

Then, we asked participants to tap the 12 knuckles with standard force during the outdoor setting when walking with a dry hand

(𝑀). See also Section 5.4.3.

UDO-Free RP, LP, DC, DB
We asked participants to put the mobile phone in their right and left pockets (𝑅𝑃, 𝐿𝑃) to perform the set of actions supported by

UDO-Free [69]. Then, we asked participants to place the phone in the right pocket to perform the łSittingž and łBikingž actions

using different chairs (𝐷𝐶) and bicycles (𝐷𝐵). See also Figure 4d and Section 5.4.3.

Activity

recognition

M-Touch S, DP, T, M

We first asked participants to hold the smartphone in their hands and perform an action in different postures, including sitting (𝑆),

standing (𝐷𝑃), and walking (𝑀). Then, we asked our participants to perform the action in a sitting posture while the phone was

placed on the table (𝑇) as illustrated in Figure 4e. See also Section 5.4.3.

the evaluation from the controlled environment and the office as

WiAG-C and WiAG-O for L1 to L5, respectively.

Gait recognition. For this task, we collected gait data from 15

volunteers (8 females) under the S1 to S5 settings from the controlled

environment using WiFi signals.

Activity recognition. For this task, we replicated the setup of the

tested methods (Figure 4 b-e). We use VibWrite-R and Taprint-R

to denote input recognition of VibWrite and Taprint, respectively

and VibWrite-A and Taprint-A to denote user identification of Vib-

Write and Taprint, respectively. The user identification method of

VibWrite and Taprint predicts which of the target users entered

the texts. UDO-Free detects five human activities of łRunningž,

łWalkingž, łBikingž, łStandingž and łSittingž, using data collected

from inertial measurement unit (IMU) sensors of a smartphone.

M-Touch also targets user identification using data collected from

the IMU sensors. Our participants are the same 15 users for gait

recognition.

4.4 Device Setup

WiFi. We use two mini PCs, each has an Intel 5300 network inter-

face card (NIC), as the sender and receiver to collect WiFi signals

(Figure 3a). We use an open-source channel state information (CSI)

measurement tool [31] to collect the CSI measurement. Following

the common practice of prior work [91, 96], we configure the sender

to send 1,000 packets per second to the receiver.

RFID.We use the H47 RFID tag and a directional antenna powered

by an Impinj R420 RFID reader to transmit and receive signals (Fig-

ure 3b). We use the same number of tags as the source publications

of the relevant methods, 4 for TACT [80] and 3 for AllSee [40].

Ultrasound.We use a commercial speaker (JBL Jembe) to transmit

a modulated 19 kHz ultrasound and a microphone (SAMSON Me-

teorMic) to collect the ultrasound signals (Figure 3c). The speaker

and microphone are connected to a laptop for data processing.

Vibration.We replicate the setup of Vibwrite [48] by connecting a

vibration motor and a piezoelectric sensor to a laptop to send and

receive vibration signals (Figure 4b).

Sensor data. For finger inputs (Figure 4c), we asked our 15 volun-

teers to wear an LR G smartwatch on their left hand and tap each

of the 12 knuckles (on the left hand) 50 times with their right hand.

We use the IMU of the smartwatch to collect sensor data. We also

use a Xiaomi smartphone that runs a customized Android app to

collect IMU sensor data for other tasks (Figures 4d and 4e).

4.5 Environmental Changes
As summarized in Table 4, we added various changes to the training-

testing setups by either changing the locations and ways an activity

is performed or adding furniture to introduce additional multi-path.

To visualize the impact of environmental changes to signal data,

we apply t-SNE [70] to project the data samples collected from

each setup to a two-dimensional space for each tested method. As

can be seen from Figure 5, data points collected from the same

environment sit nearby in the projected area, and samples from

different settings tend to group as separate clusters. This suggests

that the environmental changes introduced indeed impact the data

distribution of the wireless samples.

4.6 Evaluation Methodology
Our evaluation is designed to answer two questions. The first is

whether Rise can effectively filter out drifting samples (Section 5.2).

The second is if Rise can be used to improve the robustness of the

deployed sensing model (Section 5.3).
4.6.1 Model evaluation. We consider two training-testing scenar-

ios: static and dynamic. In a static environment, the training and

testing samples come from the same setup. In a dynamic setting,

we mix data samples from different settings, including the ones

used to collect the sensing model training data and those from

other environmental settings. To mix the data from the training

environment, we apply 5-fold cross-validation to the data obtained

from the training environment. This means we partition the data

into 5 sets; we train the sensing model on four sets and then test

the trained model on the remaining set (together with data from

the dynamic setting). This is a standard evaluation methodology,

providing an estimate of the generalization ability of a machine-

learning model in predicting unseen data. We introduce the changes

Conference’17, July 2017, Washington, DC, USA Zhai et al.

(a) WiG &WiAG (b) WiAG-C

-10 0 10 20-10

-5

0

5

10

L1
L2
L3
L4
L5

(c) WiAG-O

-10 -5 0 5 10 15-15

-10

-5

0

5
10

S1
S2
S3
S4
S5

(d) TACT & AllSee (e) EI

-5 0 5 10 15

-5

0

5

10 L1
L2
L3
L4
L5

(f) WiWho &WifiU (g) VibWrite (h) Taprint (i) UDO-Free (j) M-Touch

Figure 5: Visualization of data samples collected from different evaluation settings per method using t-SNE [70]. Data samples

collected from different setups tend to lie in separate data clusters, suggesting that the environmental changes impact the

wireless sample distribution.

50
60
70
80
90

100

Dynamic Setting Static Setting RISE on Dynamic

Case 1 Case 2 Case 3

A
cc

ur
ac

y
(%

)

Figure 6: Sensing accuracy across evaluation setups. Rise

can help filter out drifting samples and retain the sensing

performance with incremental learning.

in the dynamic setting by simulating the commonly seen changes

in a real-life deployment, such as adding or removing objects and

changing the position where an activity is performed. Note that

we apply cross-validation [13] to ensure each setup is used both as

training and testing. We then report the average performance and

variants across cross-validation setups.
4.6.2 Metrics. We consider the following łhigher-is-betterž metrics

for detecting drifting samples:

Accuracy. The ratio of the number of correctly predicted samples

to the total number of testing samples.

Precision (P). The ratio of correctly predicted samples to the total

number of samples that are predicted to have a label. This metric an-

swers questions like łOf all detected drifting samples, how many are

correct?ž. High precision indicates a low false-positive rate, meaning

Rise rarely mis-classifies normal samples as drifting.

Recall (R). The ratio of correctly predicted samples to the total

number of test samples that belong to a class. This metric answers

questions like łOf all drifting samples, how many are actually de-

tected by Rise?ž. High recall suggests a low false-negative rate, indi-

cating Rise can identify most of the samples that a sensing model

will mis-predict.

F1-score. The harmonic mean of Precision and Recall, calculated

as 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

. A high F1-score means Rise can detect most

drifting samples while rarely mis-classifying normal samples.

5 EXPERIMENTAL RESULTS
Our evaluation shows that all tested approaches (including data

augmentation [71] and feature engineering [81] methods) suffer

50
60
70
80
90

100

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Case 1 Case 2 Case 3

Figure 7: Rise performance in detecting drifting samples.

from dynamic changes during deployment (Section 5.1). Rise can
identify 92.3% of the drifting samples (Section 5.2). When using

with incremental learning, Rise improves the performance of a

deployed model by 21% on average, using at most three identified

drifting samples to update a deployed sensing model (Section 5.3.1).

5.1 Overall Results
Figure 6 shows the sensing accuracy in the static and dynamic envi-

ronment. Here, the min-max bar shows the variances across cross-

validations (Section 4.6.1). The implementation variants (WiAG-

C/O, Vibwrite-R/A and Taprint-R/A) were defined in Section 4.3.

In a static environment, all sensing methods achieve a prediction

accuracy of over 93%. However, their performance can suffer in a

dynamic setting3, where we observe an average decrease of 22%

in the prediction accuracy. The impact of drifting samples is also

noticeable for wireless signals like WiFi and Ultrasound, where

we see a drop in the prediction accuracy of over 40%. This is not

surprising as these signals are known to be sensitive to changes

[51, 71, 83, 91]. By applying Rise to filter out drifting samples and

use a handful of labeled drifting samples to update the sensing

model, one can retain the accuracy of the relevant method to a

level close to its performance in a static environment. We also see

that the performance of Rise is stable, regardless of the underlying
machine learning or wireless signals.

3Since we apply cross-validation to include data collected from different environment
settings in a dynamic evaluation setup, we provide a diverse set of training data to
train the underlying sensing model to avoid over-fitting.

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

0
5

10
15
20

w/ RISE Random

#
N

ew
Sa

m
pl

es

Case 1 Case 2 Case 3

Figure 8: Thenumber of newly labeled samples needed froma

dynamic environment to retain 95% of the static performance

of the underlying model.

50
60
70
80
90

100

w/o RISE w/ RISE

Case 1 Case 2 Case 3

Figure 9: Using Rise with ensemble learning to choose pre-

dictions from a bag of machine learning models.

5.2 Detecting Drifting Samples
Figure 7 shows the performance of Rise for predicting drifting sam-

ples. For most (80%) of the sensing methods, Rise gives an average

precision of 92% (at least 89%), with an average accuracy of 96% (at

least 94%) for a given method. This means it rarely filters out correct

sensing predictions. For a few sensing methods, like Taprint-R, Rise
gives an average precision of 89%. This translates to a false-positive

rate (i.e., mis-labelling a normal sample to be drifting) of 3.7%4,

meaning Rise can sometimes reject correct sensing predictions.

We found that this is limited by the underlying model’s capability

in a dynamic environment. When the underlying model performs

poorly in a dynamic environment, its prediction probability vector

becomes noisy, which in turn affects Rise in filtering out drifting

samples. We also observe a similar trend for Recall and the F1-score,

where Rise is effective for most of the sensing methods with a

Recall or F1-score greater than 90%, except for WiAG-O, WifiU,

Taprint and M-Touch, where Rise can miss some drifting samples.

Overall, Rise gives a precision of 94.5% and a Recall of 92.3%, av-

eraged across case studies. The results translate to a false-positive

rate of 1.8% and a false-negative rate (i.e., missing a mis-prediction)

of 7.7%.

We note that the severity of the drift is a subjective matter. For

critical applications, even a few misclassifications can cause major

issues. For this reason, Rise allows the developer to configure the

significant level, 𝜀, of our CPmodel to control the number of samples

to be manually inspected. As confidence is computed as 1 − 𝜀, a

smaller 𝜀 will lead to more frequent false-positive, but this can

reduce the impact of a misprediction. In this work, we empirically

set 𝜀 to 0.1 by applying cross-validation to the calibration dataset.

5.3 Improving Sensing Methods
We have shown that Rise is effective in detecting drifting samples.

We now demonstrate two ways of using Rise to improve sensing

performance and robustness.

5.3.1 Incremental learning. Figure 8 shows how many new sam-

ples are needed from the deployment environment to update the

4The standard formula for computing the false positive rate is 𝐹𝑃/(𝐹𝑃 +𝑇𝑁) , where
𝐹𝑃 and𝑇𝑁 are the number of false-positive and true-negative samples. This is different
from how precision is computed.

model to achieve 95% of its performance in a static environment.

For fairness, we make sure that all approaches are tested on the

same number and set of unseen drifting samples. Without Rise, one
would have to first randomly choose test samples to label and then

add the labeled samples to the existing training dataset to update a

deployed model. Such a random strategy has poor user experience

or high maintenance cost by asking the user or the system devel-

opers to confirm or label activities where the underlying model

can successfully process. Rise avoids this pitfall by only asking for

user intervention when it thinks this is necessary. To improve the

underlying model’s performance, Rise on average only requires

labeling 1.12 (often just one) of the samples that are predicted to be

drifting. This represents a reduction of 89% of test samples required

user intervention. We remark that a critical benefit of Rise is it can
automatically detect when a model update is needed. This capa-

bility reduces the human effort by only seeking user involvement

only when data drifting incurs.

5.3.2 Ensemble learning. In this experiment, we apply Rise to the

ensemble learning strategy described in Section 3.4. Our ensemble

classifier committee includes 11 representative linear and non-linear

classifiers: SVM, RF, KNN, LR, DT, CNN, Gradient Boosting De-

cision Tree (GBDT), Adaptive Boosting (Adaboost), GaussianNB

(GNB), Linear Discriminant Analysis (LDA) and Quadratic Discrim-

inant Analysis (QDA), where the first six algorithms were used by

the testing methods listed in Table 3. In this experiment, we train

the individual classification models using the same training dataset

and then use our anomaly detector to select the top-5 predictions

(Section 3.4) to vote for the outcome. As can be seen from Figure 9,

an ensemble learning-based approach can improve the sensing per-

formance by using a single monolithic model. This observation is in

line with prior studies [96]. However, a simple ensemble approach

is inadequate for addressing the challenges in a dynamic environ-

ment as poor model predictions can mislead the ensemble outcomes.

By filtering out poor model predictions, Rise further boosts the

ensemble performance by on average 13%. This shows that Rise and
ensemble learning can be combined together to improve sensing

robustness.

5.4 Individual Case Studies
5.4.1 Case study 1 . In this experiment, we test twoWiFi-based sys-

tems:WiG [33] andWiAG [71], two RFID-based systems: TACT [80],

AllSee [40], and one Ultrasound-based system: EI [83]. The experi-

mentswere conducted in the controlled environment using a robotic

arm (Figure 3a). We change where the gesture is performed and

adding a chair to the sensing area to mimic environmental changes.

This results in five scenes (𝑆1 − 𝑆5) as depicted earlier in Figure 1a.

WiAG is a data augmentation approach that uses transfer functions

to generate virtual samples across different gesture locations (but

cannot deal with the scenarios of placing a chair - S4 and S5). For

this method, we also follow the evaluation setup described in [71] by

performing the gesture in five other locations (𝐿1−𝐿5 in Figure 3d)

in addition to 𝑆1 − 𝑆5. This additional experiment was conducted

in both the controlled (Figure 3e) and the office (Figure 4a) environ-

ments, involving 6 volunteers. We train the sensing model using

leave-one-out cross-validation by training the model using data

collected from 4 scenes and then test the trained model by mixing

data collected from the remaining scene (see also Section 4.6.1).

Conference’17, July 2017, Washington, DC, USA Zhai et al.

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
■ Drifting ■✔

▲
23
0

58
4

42
0

38
0

30
0

35
1

34
0

26
0

81
2

25
0

25
2

17
0

7
1

16
0

40
1

41
5

37
1

41
3

53
9

60
3

30
1

68
4

26
3

23
3

33
7

58
0

18
0

36
0

38
6

46
4

23
1

81
4

29
2

28
2

68
7

▲ Normal ■
▲✔

4
153

12
106

1
137

2
140

0
150

0
144

0
146

1
153

0
97

1
154

6
138

0
157

1
165

0
158

0
133

5
120

2
134

5
125

10
102

6
105

1
148

2
106

3
208

3
151

1
139

12
110

0
162

0
144

5
131

6
124

0
156

2
93

0
149

1
149

2
103

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 N 1 2 3 4 N 1 2 3 4 S D M W S D M W RP LP DC DB S DP T M
■ Drifting ■✔

▲
153
4
128
3
123
12

147
7
120
7
110
1

85
12

53
6

66
8

56
6

22
2

84
19

73
0

23
0

18
0

36
6

58
0

63
1

61
1

67
11

72
7

77
13

88
12

79
6

40
3

34
1

41
3

32
2

44
0
113
6
106
9

36
3

31
4

28
2

37
1

36
3

▲ Normal ■
▲✔

9
164

5
194

7
188

9
167

2
201

7
212

14
219

10
261

9
247

10
258

4
172

8
89

0
127

0
177

0
182

0
262

7
220

5
235

11
247

8
234

1
386

14
424

19
411

12
411

4
297

6
318

6
290

4
303

0
621

13
387

6
396

8
470

5
203

4
213

5
196

5
210

UDO-Free M-TouchWiWho WifiU VibWrite-R VibWrite-A Taprint-R Taprint-A

Case Study 2 Case Study 3
True
label

RISE Predictions RISE Predictions

WiG WiAG WiAG-C WiAG-O TACT AllSee

Case Study 1
True
label

RISE Predictions
EI

Figure 10: Confusion matrices for predicting if a sample is drifting. Each row shows the number of samples of the true label

and each column shows the predictions given by Rise for each evaluation setting.

40
60
80

100

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
w/o RISE w/ RISEA

cc
ur

ac
y

(%
) WiG WiAG

(a) 𝑆1 − 𝑆5

40
60
80

100

L1L2L3L4L5L1L2L3L4L5
w/o RISE w/ RISEA

cc
ur

ac
y

(%
) WiAG-C WiAG-O

(b) 𝐿1 − 𝐿5

Figure 11: WiG and WiAG in case study 1.

40
60
80

100

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
w/o RISE w/ RISEA

cc
ur

ac
y

(%
) TACT AllSee

(a) Case study 1

40
60
80

100

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
w/o RISE w/ RISE

WiWho WifiU

(b) Case study 2

Figure 12: TACT and AllSee in case study 1 (a) and WiWho

and WifiU in case study 2 (b).

Figures 11a - 13a show that minor changes in the environment

can have a detrimental effect on the sensing performance. For ex-

ample, WiAG gives an accuracy of around 55% when testing in S4

when its transfer function fails, and WiG gives an accuracy of 61%

when testing in S2. We also observe a similar trend for RFID and

Ultrasound based methods. Rise identifies at least 83% (Recall) of

mispredictions. By using up to 3 labeled drifting samples to update

the underlying model, Rise boosts the performance of the deployed

model at least 98% of its static performance. As can be seen from

the confusion matrix in Figure 10, Rise rarely miss-predicts the test

samples, giving an average precision of 95%.

Compared to data augmentation techniques. Figure 11b shows

while WiAG’s data augmentation strategy works well in specific

settings (e.g., L3) within the controlled environment, it can still

suffer from significant performance degradation in many other

settings. For example, its accuracy drops to 62% when testing in L5

in the office environment. In this experiment, Rise can identify at

least 81% of the drifting samples (Recall), improving the robustness

of WiAG in both the controlled and office environments. Using

3 labelled drifting samples to update the underlying model, Rise
further boosts WiAG’s performance to over 92%. From Figure 10,

we see that Rise is also accurate in detecting drifting and normal

samples, giving an average precision of 94%.

5.4.2 Case study 2. This experiment applies Rise to WiWho [93]

and WifiU [81] for gait recognition. The experiment was conducted

in the controlled environment to allow a better control of eval-

uation parameters. To introduce changes, we asked each of the

15 volunteers to walk along different paths, and placed a chair to

the sensing area to simulate the change of the multi-path. This

results in five scenes (𝑆1 − 𝑆5). Figure 12b shows the performance

of both systems decreases with environmental changes. WifiU ex-

hibits more reliable performance than WiWho because it largely

relies on environment-agnostic features like walking speed and

step duration, showing that feature design is also important. As

can be seen from the confusion matrix in Figure 10, Rise is effective
in detecting drifting samples for this case study, giving an aver-

age precision of 93%. By labeling at most 3 drifting samples with

incremental learning, Rise increases the sensing accuracy of both

systems to above 97%.

5.4.3 Case study 3. WeapplyRise to VibWrite [48] and Taprint [84]

for finger input recognition and user identification, UDO-Free [69]

for activity recognition, and M-Touch [64] for user identification.

For VibWrite, we place a glass of water at four different locations

while participants tapped on nine grid points (i.e., 1−4 in Figure 4b).

We also use symbol 𝑁 to denote the experimental setting where

nothing was placed. For Taprint, we asked the participant to tap

their 12 knuckles with a dry hand using (i) a standard force and

speed (S) and (ii) different forces (D), and a wet hand (W) with a

steady force and speed. Also, we asked the participant to tap their

knuckles with a dry hand using a steady force and speed while

walking in an outdoor setting (marked as M). For UDO-Free, we

asked each volunteer to place the mobile phone in their right pocket

(RP) and left pocket (LP) to perform a set of actions supported by

UDO-Free. In addition to changing the location of the smartphone,

we asked the participants to place the phone in the right pocket

to (i) sit on chairs (DC) with heights between 20𝑐𝑚 and 40𝑐𝑚 (to

perform the łSittingž action), and (ii) ride a mountain and a road

bike (DB) to perform the łBikingž action. For M-Touch, we asked

each volunteer to perform the action in sitting (marked as S), stand-

ing (marked as DP), and walking (marked as M) postures while

holding the smartphone in hands. Also, each volunteer was asked to

perform the action in a sitting posture while the phone was placed

on the table (marked as T). Like case study 1 (Section 5.4.1), we

train the sensing model using leave-one-out cross-validation.

Figures 13b to 13e give the result of this experiment. For finger

input recognition, putting a glass of water in positions 1 and 2 of

Figure 4b cause the accuracy of VibWrite to drop to around 60%. By

contrast, the tapping force and hand conditions have less impact on

the accuracy of Taprint because the changes introduce negligible

changes to the model inputs. However, Taprint’s performance also

drops from 99% (Table 3) in a static environment to 78% when

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

40
60
80

100

S1 S2 S3 S4 S5
w/o RISE w/ RISE

A
cc

ur
ac

y
(%

) EI

(a) Case study 1

40
60
80

100

N 1 2 3 4 N 1 2 3 4
w/o RISE w/ RISEA

cc
ur

ac
y

(%
) VibWrite-R VibWrite-A

(b) Case study 3

40
60
80

100

S D M W S D M W
w/o RISE w/ RISEA

cc
ur

ac
y

(%
) Taprint-R Taprint-A

(c) Case study 3

40
60
80

100

RP LP DC DB
w/o RISE w/ RISE

A
cc

ur
ac

y
(%

) UDO-Free

(d) Case study 3

40
60
80

100

S DP T M
w/o RISE w/ RISE

A
cc

ur
ac

y
(%

) M-Touch

(e) Case study 3

Figure 13: Sensing performance for EI in case study 1 (a) and methods in case study 3 (b, c, d, e).

0
20
40
60
80

100

Probabilistic
Assessments

Statistical
Assessments

p-value RISE

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Figure 14: Detecting drifting samples when using different

measures for anomaly detection.

20
40
60
80

100
Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Figure 15: Performance of various anomaly detectors.

the input conditions changed. From Figures 13d and 13e, we see

UDO-Free and M-Touch are also sensitive to environmental change,

where the accuracy of UDO-Free can drop from 98.8% (Table 3) to

be less than 80% when it is tested in the LP and DC setting. For

this case study, Rise successfully detects an average of 90% (Recall)

of the drifting samples. Like other case studies, by using up to

3 drifting samples to retrain the sensing model, we can bring its

performance back to above 96%.

5.5 Model Analysis
5.5.1 Measures for anomaly detection. Figure 14 shows perfor-

mance for detecting drifting samples when only using the probabil-

ity (Section 3.1) or statistical vector (Section 3.2) over Rise. We also

consider using the p-value of the sensing model output, which is a

standard approach for using CP in detecting drifting samples [39].

The results are averaged across our case studies and evaluation

setups, where the min-max bar shows the variance across settings.

By using both the probability and the statistical vectors for anom-

aly detection, Rise gives the best overall results across the metrics.

While using the p-value alone gives a high Recall (i.e., CP identifies

most of the drifting samples), this strategy gives a low precision,

meaning that a large number of normal samples are mislabeled

as drifting. Using only the probability vector leads to a low Re-

call, indicating this strategy often miss drifting samples. Similarly,

using only the statistical vector gives a low precision because it

frequently mislabels normal samples. By combining probabilistic

and statistical assessments, Rise gives the best overall performance

by achieving 92% or above for the three evaluation metrics. We note

that Rise is the first work in combining probabilistic and statistical

assessments and anomaly detection.

5.5.2 Choices of anomaly detectors. Figure 15 shows the perfor-

mance for using different models for anomaly detection (by taking

the probability and statistical vector as the model input). All the

models were built from the same training dataset used by the un-

derlying sensing model. Here, we report the average performance

across our case studies and evaluation setups and show the variance

as the min-max bar. This diagram shows that the one-class SVM

used by Rise gives the best performance across evaluation metrics.

5.5.3 Runtime overhead. The runtime overhead of Rise mainly

comes from computing the nonconformity score and performing

anomaly detection. Since the nonconformity score of the calibra-

tion set was computed off-line, it is a one-off cost. The time for

measuring the confidence and credibility score of the test sample is

small, less than 20 milliseconds (ms), using an unoptimized, single-

threaded Python script running on a laptop CPU. The overhead of

the anomaly detection is also negligible, less than 5 ms during our

evaluation. The runtime overhead of Rise can be further reduced

by using a statically compiled language with parallelization.

6 DISCUSSIONS

Generalization. Rise can be applied to any probability-based clas-

sifier using the generic nonconformity function presented in Table

1. Rise aims to retain the performance of a learning-based system

in the presence of environmental changes. We have shown that an

effective model in the original training-test dataset can still suffer

from changes where Rise will be helpful. CP also supports regres-

sion methods, so Rise can be extended to regression-based models.

Rise currently does not work with model-based sensing because it

uses the probability distribution given by the target model to com-

pute confidence and credibility. We see it as an exciting challenge

to evaluate and validate the assumptions an analytic method builds

upon. Can we have a generic approach to test if the assumptions a

model-based approach relies on are still valid?

Combining with other methods. Rise is not designed to replace

existing techniques on improving sensing robustness at the design

phase [71, 83, 91, 96]. Instead, Rise provides a way to detect ageing

models during deployment and hence is orthogonal to existing

efforts in the area. For example, Rise can use to detect if adding

additional training samples can offer new information to improve

the sensing model performance. This allows us to reduce the cost

of data labeling when learning a transfer function [96]. It can also

be used to detect if the performance of a deployed model starts to

deteriorate and additional remediation should be used.

Human verification. Rise is also not designed to completely elim-

inate human intervention during a deployment. Instead, it offers a

newway to detect data drift and ageing sensingmodels after deploy-

ment. Our work is useful because it only asks for user verification

when data drifting is likely to occur. The user intervention can be

of different forms, such as asking for the target user to confirm if

the system’s prediction is correct or to the correct label or using

a second verification method (such as entering a pin or switching

to a vision-based method [15]) to verify the user identity. The user

feedback can then be added back to the training dataset to retrain

Conference’17, July 2017, Washington, DC, USA Zhai et al.

the sensing model using our training APIs. We would like to remark

that user intervention and verification are only possible once data

drift is detected, which is the focus of this research.

Rise robustness.We believe Rise is robust when it is used with

incremental learning. Our anomaly detector is an unsupervised

learning method that does not rely on the iid assumption. Our CP

model is updated whenever drifting samples are used to retrain

the underlying model. Therefore, Rise not only helps to adapt the

wireless sensing, but can also adapt its own performance to changes

in the underlying signal environment.

Model interpretability. One way for gaining insight into the root

cause of a misprediction is to train an interpretable, surrogate model

to approximate the predictions of the underlying model [58]. A key

challenge to do so for wireless sensing is that, unlike image and text

inputs, the original wireless signals are not explicitly correlated

with high-level semantics. Given the wide use of machine-learning

models in wireless sensing, how to link the signals with suitable

semantics is an interesting research challenge.

7 RELATED WORK
Machine learning is widely used to support wireless sensing tasks.

This technique learns how to map the wireless signal characteristics

to the target activity based on empirical observations. A learning-

based approach has the advantage of being portable across appli-

cation domains as machine learning has no a priori assumption

about the sensing task [11, 12, 23, 40, 43, 45, 49, 62, 64, 71, 78, 82,

83, 90, 91, 97, 100]. Unfortunately, machine learning is known to

be brittle to changes. Studies show that changes like moving or

adding furniture can have a significantly negative impact on the

performance of a learning-based system [64, 71, 74, 81]. This issue

also manifests across wireless signals and sensing tasks [38, 59].

An alternative approach is to develop environment-agnostic

methods ś often with the help of parametric models or the special-

ized hardware ś to cancel the changes in the spatial domain of the

environment. Examples of such systems include sensing systems

build on FMCW [3, 52, 79, 92] and physiological data [17, 89]. These

approaches can generalize to different environments and handle

multi-path. However, these solutions often require expert involve-

ment to construct a sensing model for each application domain and

do not scale to a diverse set of tasks.

Efforts have been made to improve the robustness of a learning-

based sensing system. One solution is to produce virtual samples to

improve the coverage of the training data [71, 96]. Others leverage

the common knowledge extracted from multiple sensing tasks to

enhance the generalization ability of the sensing model [28], or de-

signing wireless signal features that are intrinsically more resilient

to environment changes [83, 91]. Some most recent works sug-

gested that neural networks could be more resilient to changes as

the latent feature space better generalizes to new variants [42, 75].

All of these attempts focus on the design and training stage of

a sensing system, but do not address the challenge of adapting

to changes after model deployment. Often, many of the changes

during a deployment are hard to anticipate at the design time.

Rise offers a complementary approach to enhance learning-based

methods during deployment time. It achieves this by identifying

test inputs that are likely to be mispredicted by a sensing model.

Providing this capability allows the deployed system to adapt to

changes by updating the model using incremental retraining or on-

line learning [4, 25]. It also improves sensing robustness by rejecting

mispredictions. As we have shown in the paper, Rise can be easily

integrated with incremental and ensemble learning [18, 29, 35, 96]

to improve sensing performance, while minimizing human involve-

ment and the associated cost.

Rise is the first work in employing CP for wireless sensing and

showing how CP can be combined with incremental and ensemble

learning to improve sensing performance. Our work is inspired by

recent studies for using CP in malware detection [39, 55], anomaly

detection [87], and drug discovery [19]. Unlike Rise, all these recent
works use a single scalar value ś the p-value ś for decision making.

Our novel combination of probabilistic and statistical assessment

vectors and anomaly detection gives better performance.

Some most recent works in deep neural networks estimate the

prediction uncertainties by applying a distance metric to the net-

work activation [30] or using a kernel function to measure the

probability density of each network layer [86]. While promising,

these techniques are specific to predictive models built upon artifi-

cial neural networks.

8 CONCLUSIONS
We have presented Rise, a generic framework for identifying and

mitigating performance degradation issueswhen deploying a learning-

based wireless sensing system in a changing environment. We have

empirically demonstrated that a machine-learning model that is

highly effective in the original training-test dataset can still suf-

fer from small environmental changes during deployment. To re-

tain the performance of a learning-based system in the presence

of environmental changes, Rise uses probabilistic and statistical

assessments to filter out unreliable predictions and support the

continuous improvement of a deployed model.

We evaluate Rise by applying it to 11 representative sensing

systems. Our extensive evaluation shows that Rise is effective in
detecting unreliable classification decisions by successfully identi-

fying on average 92.3% of the mispredictions. The diversity of case

studies and the promising experimental results provide compelling

evidence in favor of Rise being generalizable. We demonstrate that

Rise can be used together with incremental and ensemble learning

to continuously improve the performance of a deployed sensing

model. The result is a new way for improving wireless sensing

robustness and performance during a deployment.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science

Foundation of China (NSFC) under grant agreements 61972314,

61872294 and 62061146001, the International Cooperation Project of

Shaanxi Province under grant agreements 2020KWZ-013, 2021KW-

15, and 2021KW-04.

REFERENCES
[1] Adams, N. Dataset shift in machine learning. Journal of the Royal Statistical

Society (2010).
[2] Ade, R., and Deshmukh, P. Methods for incremental learning: a survey. Inter-

national Journal of Data Mining & Knowledge Management Process (2013).
[3] Adib, F., Kabelac, Z., and Katabi, D. Multi-person localization via {RF} body

reflections. In NSDI (2015).
[4] Anderson, T. The theory and practice of online learning. Athabasca University

Press, 2008.

RISE: Robust Wireless Sensing using Probabilistic and Statistical Assessments Conference’17, July 2017, Washington, DC, USA

[5] Appel-Hansen, and J. Reflectivity level of radio anechoic chambers. IEEE
Transactions on Antennas & Propagation (2003).

[6] Ayyalasomayajula, R. S., Arun, A., Wu, C., Sharma, S., Sethi, A. R., Vasisht,
D., and Bharadia, D. Deep learning based wireless localization for indoor
navigation. In MobiCom (2020).

[7] Balasubramanian, V., Ho, S.-S., and Vovk, V. Conformal prediction for reliable
machine learning: theory, adaptations and applications. Newnes, 2014.

[8] Balasubramanian, V. N., Baker, A., Yanez, M., Chakraborty, S., and Pan-
chanathan, S. Pycp: an open-source conformal predictions toolkit. In IFIPAICT
(2013).

[9] Barbero, F., Pendlebury, F., Pierazzi, F., and Cavallaro, L. Transcending
transcend: Revisiting malware classification with conformal evaluation. arXiv
(2020).

[10] Bishop, C. M. Pattern recognition and machine learning. Springer, 2006.
[11] Bo, C., Qian, Z., Zhao, R., Dong, L., and Dong, W. Sgrs: A sequential gesture

recognition system using cots rfid. In WCNC (2018).
[12] Bo, W., Wen, H., Yang, M., and Chou, C. T. From real to complex: Enhancing

radio-based activity recognition using complex-valued csi. ACM Transactions
on Sensor Networks (2018).

[13] Browne, M. W. Cross-validation methods. Journal of mathematical psychology
(2000).

[14] Bui, N., Pham, N., Barnitz, J. J., Zou, Z., Nguyen, P., Truong, H., Kim, T.,
Farrow, N., Nguyen, A., Xiao, J., et al. ebp: A wearable system for frequent
and comfortable blood pressure monitoring from user’s ear. In MobiCom (2019).

[15] Cai, H., Korany, B., Karanam, C. R., and Mostofi, Y. Teaching rf to sense
without rf training measurements. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (2020).

[16] Chen, B., Li, H., Li, Z., Chen, X., Xu, C., and Xu, W. Thermowave: a new
paradigm of wireless passive temperature monitoring via mmwave sensing. In
MobiCom (2020).

[17] Chen, Y., Yang, Z., Abbou, R., Lopes, P., Zhao, B. Y., and Zheng, H. User
authentication via electrical muscle stimulation. In CHI (2021).

[18] Chen, Z., Jiang, C., and Xie, L. A novel ensemble elm for human activity recog-
nition using smartphone sensors. IEEE Transactions on Industrial Informatics
(2018).

[19] Cortés-Ciriano, I., and Bender, A. Deep confidence: a computationally
efficient framework for calculating reliable prediction errors for deep neural
networks. Journal of chemical information and modeling (2018).

[20] Devetyarov, D., and Nouretdinov, I. Prediction with confidence based on a
random forest classifier. In IFIPAICT (2010).

[21] Ding, J., and Chandra, R. Strobe ś towards low cost soil sensing using wi-fi.
In MobiCom (2019).

[22] Doost-Mohammady, R., Bejarano, O., and Sabharwal, A. Good times for
wireless research. In WiNTECH (2020).

[23] Fan, X., Wei, G., and Jiangchuan, L. Tagfree activity identification with rfids.
IMWUT (2018).

[24] Farrukh, H., Aburas, R. M., Cao, S., and Wang, H. Facerevelio: a face liveness
detection system for smartphones with a single front camera. In MobiCom
(2020).

[25] Förster, K., Biasiucci, A., Chavarriaga, R., Millán, J. d. R., Roggen, D., and
Tröster, G. On the use of brain decoded signals for online user adaptive gesture
recognition systems. In Pervasive (2010).

[26] Gepperth, A., and Hammer, B. Incremental learning algorithms and applica-
tions. In ESANN (2016).

[27] Gong, T., Cho, H., Lee, B., and Lee, S.-J. Knocker: Vibroacoustic-based object
recognition with smartphones. IMWUT (2019).

[28] Gong, T., Kim, Y., Shin, J., and Lee, S.-J. Metasense: Few-shot adaptation to
untrained conditions in deep mobile sensing. In SenSys (2019).

[29] Guan, Y., Li, C.-T., and Roli, F. On reducing the effect of covariate factors
in gait recognition: a classifier ensemble method. IEEE transactions on pattern
analysis and machine intelligence (2014).

[30] Guerriero, A., Pietrantuono, R., and Russo, S. Operation is the hardest
teacher: estimating dnn accuracy looking for mispredictions. In ICSE (2021),
IEEE.

[31] Halperin, D., Hu, W., Sheth, A., and Wetherall, D. Tool release: Gathering
802.11n traces with channel state information. In SIGCOMM (2011).

[32] Han, C., Wu, K., Wang, Y., and Ni, L. M. Wifall: Device-free fall detection by
wireless networks. In INFOCOM (2014).

[33] He, W., Wu, K., Zou, Y., and Zhong, M. Wig: Wifi-based gesture recognition
system. In ICCCN (2015).

[34] Hodge, V., and Austin, J. A survey of outlier detection methodologies. Artificial
intelligence review (2004).

[35] Hu, C., Chen, Y., Hu, L., and Peng, X. A novel random forests based class
incremental learning method for activity recognition. Pattern Recognition (2018).

[36] Huang, H., and Lin, S. Met: a magneto-inductive sensing based electric tooth-
brushing monitoring system. In MobiCom (2020).

[37] Jiang, W., Xue, H., Miao, C., Wang, S., Lin, S., Tian, C., Murali, S., Hu, H., Sun,
Z., and Su, L. Towards 3d human pose construction using wifi. In MobiCom

(2020).
[38] Jie, W., Gao, Q., Miao, P., and Fang, Y. Device-free wireless sensing: Challenges,

opportunities, and applications. IEEE Network (2018).
[39] Jordaney, R., Sharad, K., Santanu, K. D., Wang, Z., Papini, D., Nouretdi-

nov, I., and Cavallaro, L. Transcend: Detecting concept drift in malware
classification models. In USENIX Security (2017).

[40] Kellogg, B., Talla, V., and Gollakota, S. Bringing gesture recognition to all
devices. In NSDI (2014).

[41] Korany, B., Karanam, C. R., Cai, H., and Mostofi, Y. XModal-ID: Using WiFi
for Through-Wall Person sIdentification from Candidate Video Footage. In
MobiCom (2019).

[42] Lee, W., Kim, M., and Cho, D.-H. Deep cooperative sensing: Cooperative
spectrum sensing based on convolutional neural networks. IEEE Transactions
on Vehicular Technology (2019).

[43] Li, S., Ashok, A., Zhang, Y., Xu, C., and Gruteser, M. Whose move is it
anyway? authenticating smart wearable devices using unique head movement
patterns. In PerCom (2016).

[44] Li, T., Bai, D., Prioleau, T., Bui, N., Vu, T., and Zhou, X. Noninvasive glucose
monitoring using polarized light. In SenSys (2020).

[45] Liu, C., Xiong, J., Cai, L., Feng, L., Chen, X., and Fang, D. Beyond respiration:
Contactless sleep sound-activity recognition using RF signals. IMWUT (2019).

[46] Liu, J., Liu, H., Chen, Y., Wang, Y., and Wang, C. Wireless sensing for human
activity: A survey. IEEE Communications Surveys & Tutorials (2019).

[47] Liu, J., Shi, C., Chen, Y., Liu, H., and Gruteser, M. Cardiocam: Leveraging
camera on mobile devices to verify users while their heart is pumping. In
MobiSys (2019).

[48] Liu, J., Wang, C., Chen, Y., and Saxena, N. Vibwrite: Towards finger-input
authentication on ubiquitous surfaces via physical vibration. In CCS (2017).

[49] Lu, L., Yu, J., Chen, Y., Liu, H., Zhu, Y., Kong, L., and Li, M. Lip reading-
based user authentication through acoustic sensing on smartphones. IEEE/ACM
Transactions on Networking (2019).

[50] Ma, D., Lan, G., Hassan, M., Hu, W., Upama, M. B., Uddin, A., and Youssef,
M. Solargest: Ubiquitous and battery-free gesture recognition using solar cells.
In MobiCom (2019).

[51] Ma, Y., Zhou, G., and Wang, S. Wifi sensing with channel state information: A
survey. ACM Computing Surveys (2019).

[52] Mao, W., He, J., and Qiu, L. Cat: high-precision acoustic motion tracking. In
MobiCom (2016).

[53] Marco, V. S., Taylor, B., Porter, B., andWang, Z. Improving spark application
throughput via memory aware task co-location: A mixture of experts approach.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference (2017).

[54] Mascolo, C. Mobile health diagnostics through audio signals. In HealthDL
(2020).

[55] Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and Cavallaro, L.
Tesseract: Eliminating experimental bias in malware classification across space
and time. In USENIX Security (2019).

[56] Pradhan, S., Baig, G., Mao, W., Qiu, L., Chen, G., and Yang, B. Smartphone-
based acoustic indoor space mapping. IMWUT (2018).

[57] Pu, Q., Jiang, S., and Gollakota, S. Whole-home gesture recognition using
wireless signals. In SIGCOMM (2013).

[58] Ribeiro, M. T., Singh, S., and Guestrin, C. "why should i trust you?" explaining
the predictions of any classifier. In KDD (2016).

[59] Savazzi, S., Sigg, S., Nicoli, M., Rampa, V., Kianoush, S., and Spagnolini, U.
Wireless sensing for device-free recognition of human motion. Radar for Indoor
Monitoring: Detection, Classification, and Assessment (2017).

[60] Schölkopf, B., Platt, J. C., et al. Support vector method for novelty detection.
In NIPS (1999).

[61] Shafer, G., and Vovk, V. A tutorial on conformal prediction. Journal of Machine
Learning Research (2007).

[62] Shangguan, L., Zhou, Z., and Jamieson, K. Enabling gesture-based interactions
with objects. In MobiSys (2017).

[63] Song, X., Yang, B., Yang, G., Chen, R., Forno, E., Chen, W., and Gao, W.
Spirosonic: monitoring human lung function via acoustic sensing on commodity
smartphones. In MobiCom (2020).

[64] Song, Y., Cai, Z., and Zhang, Z. L. Multi-touch authentication using hand
geometry and behavioral information. In S&P (2017).

[65] Swami, A., and Jain, R. Scikit-learn: Machine learning in python. Journal of
Machine Learning Research (2012).

[66] Tang, W., and Sazonov, E. S. Highly accurate recognition of human postures
and activities through classification with rejection. IEEE journal of biomedical
and health informatics (2014).

[67] Tax, D. M. J. One-class classification: Concept learning in the absence of counter-
examples. Delft University of Technology (2001).

[68] Tsymbal, A. The problem of concept drift: definitions and related work. Com-
puter Science Department, Trinity College Dublin (2004).

[69] Ustev, Y. E., Incel, O. D., and Ersoy, C. User, device and orientation indepen-
dent human activity recognition on mobile phones: Challenges and a proposal.
In UbiComp (2013).

Conference’17, July 2017, Washington, DC, USA Zhai et al.

[70] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal of
machine learning research (2008).

[71] Virmani, A., and Shahzad, M. Position and orientation agnostic gesture
recognition using wifi. In MobiSys (2017).

[72] Vovk, V., Gammerman, A., and Shafer, G. Algorithmic learning in a random
world. Springer Science & Business Media, 2005.

[73] Wang, A., Sunshine, J. E., and Gollakota, S. Contactless infant monitoring
using white noise. In MobiCom (2019).

[74] Wang, J., Chang, L., Abari, O., and Keshav, S. Are rfid sensing systems ready
for the real world? In MobiSys (2019).

[75] Wang, J., Gao, Q., Ma, X., Zhao, Y., and Fang, Y. Learning to sense: Deep learn-
ing for wireless sensing with less training efforts. IEEEWireless Communications
(2020).

[76] Wang, J., Gao, Q., Pan, M., and Fang, Y. Device-free wireless sensing: Chal-
lenges, opportunities, and applications. IEEE Network (2018).

[77] Wang, J., Li, J., Mazaheri, M. H., Katsuragawa, K., Vogel, D., and Abari, O.
Sensing finger input using an rfid transmission line. In SenSys (2020).

[78] Wang, J., Xiong, J., Chen, X., Jiang, H., and Fang, D. Tagscan: Simultaneous
target imaging and material identification with commodity rfid devices. In
MobiCom (2017).

[79] Wang, T., Zhang, D., Zheng, Y., Gu, T., Zhou, X., and Dorizzi, B. C-fmcw
based contactless respiration detection using acoustic signal. IMWUT (2018).

[80] Wang, Y., and Zheng, Y. Modeling rfid signal reflection for contact-free activity
recognition. IMWUT (2019).

[81] Wei, W., Liu, A. X., and Shahzad, M. Gait recognition using wifi signals. In
UbiComp (2016).

[82] Wei, W., Liu, A. X., Shahzad, M., Kang, L., and Lu, S. Understanding and
modeling of wifi signal based human activity recognition. In MobiCom (2015).

[83] Wenjun, J., Chenglin, M., Fenglong, M., Shuochao, Y., Yaqing, W., Ye, Y.,
Hongfei, X., Chen, S., Xin, M., Dimitrios, K., Wenyao, X., and Lu, S. Towards
environment independent device free human activity recognition. In MobiCom
(2018).

[84] Wenqiang, C., Lin, C., Yandao, H., Xinyu, Z., Lu, W., and Kaishun, W. Taprint:
Secure text input for commodity smart wristbands. In MobiCom (2019).

[85] Xiao, C., Han, D., Ma, Y., and Qin, Z. Csigan: Robust channel state information-
based activity recognition with gans. IEEE Internet of Things Journal (2019).

[86] Xiao, Y., Beschastnikh, I., Rosenblum, D. S., Sun, C., Elbaum, S., Lin, Y., and
Dong, J. S. Self-checking deep neural networks in deployment. In ICSE (2021),
IEEE.

[87] Xie, X., Jin, Z., Wang, J., Yang, L., Lu, Y., and Li, T. Confidence guided anomaly
detection model for anti-concept drift in dynamic logs. Journal of Network and
Computer Applications (2020).

[88] Xie, Y., Xiong, J., and Jamieson, K. md-track: Leveraging multi-dimensionality
for passive indoor wi-fi tracking. In MobiCom (2019).

[89] Xu, X., Yu, J., Chen, Y., Hua, Q., Zhu, Y., Chen, Y.-C., and Li, M. Touch-
pass: towards behavior-irrelevant on-touch user authentication on smartphones
leveraging vibrations. In MobiCom (2020).

[90] Yu, Y., Wang, D., Zhao, R., and Zhang, Q. Rfid based real-time recognition of
ongoing gesture with adversarial learning. In SenSys (2019).

[91] Yue, Z., Yi, Z., Kun, Q., Guidong, Z., Yunhao, L., Chenshu, W., and Zheng, Y.
Zero-effort cross-domain gesture recognition with wi-fi. In MobiSys (2019).

[92] Yun, S., Chen, Y.-C., and Qiu, L. Turning a mobile device into a mouse in the
air. In MobiSys (2015).

[93] Zeng, Y., Pathak, P. H., and Mohapatra, P. Wiwho: Wifi-based person identi-
fication in smart spaces. In IPSN (2016).

[94] Zhang, D., Wang, J., Jang, J., Zhang, J., and Kumar, S. On the feasibility of
wi-fi based material sensing. In MobiCom (2019).

[95] Zhang, F., Niu, K., Xiong, J., Jin, B., Gu, T., Jiang, Y., and Zhang, D. Towards
a diffraction-based sensing approach on human activity recognition. IMWUT
(2019).

[96] Zhang, J., Tang, Z., Li, M., Fang, D., Nurmi, P., and Wang, Z. Crosssense:
Towards cross-site and large-scale wifi sensing. In MobiCom (2018).

[97] Zhang, O., and Srinivasan, K. Mudra: User-friendly fine-grained gesture
recognition using wifi signals. In CoNEXT (2016).

[98] Zhang, X., Li, W., Chen, X., and Lu, S. Moodexplorer: Towards compound
emotion detection via smartphone sensing. IMWUT (2018).

[99] Zhao, M., Adib, F., and Katabi, D. Emotion recognition using wireless signals.
In MobiCom (2016).

[100] Zhao, M., Tian, Y., Zhao, H., Alsheikh, M., Li, T., Hristov, R., Kabelac, Z.,
Katabi, D., and Torralba, A. Rf-based 3d skeletons. In SIGCOMM (2018).

[101] Žliobaité, I. Learning under concept drift: an overview. Computer Science
(2010).

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Scope
	2.2 Impact of Environmental Changes
	2.3 Evaluating Model Credibility
	2.4 Terminologies

	3 Our Approach
	3.1 Probabilistic Assessment
	3.2 Statistical Assessment
	3.3 Detect Drifting Samples
	3.4 Improve Sensing Robustness
	3.5 Implementation

	4 Experimental Setup
	4.1 Case Studies
	4.2 Testing Environments
	4.3 Sensing Tasks and Notations
	4.4 Device Setup
	4.5 Environmental Changes
	4.6 Evaluation Methodology

	5 Experimental Results
	5.1 Overall Results
	5.2 Detecting Drifting Samples
	5.3 Improving Sensing Methods
	5.4 Individual Case Studies
	5.5 Model Analysis

	6 Discussions
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

