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ABSTRACT

The growing demand for data-intensive decision support and the
migration to multi-tenant infrastructures put databases under the
stress of high analytical query load. The requirement for high
throughput contradicts the traditional design of query-at-a-time
databases that optimize queries for efficient serial execution. Shar-
ing work across queries presents an opportunity to reduce the total
cost of processing and therefore improve throughput with increas-
ing query load. Systems can share work either by assessing all
opportunities and restructuring batches of queries ahead of execu-
tion, or by inspecting opportunities in individual incoming queries
at runtime: the former strategy scales poorly to large query counts,
as it requires expensive sharing-aware optimization, whereas the
latter detects only a subset of the opportunities. Both strategies fail
to minimize the cost of processing for large and ad-hoc workloads.

This paper presents RouLette, a specialized intelligent engine for
multi-query execution that addresses, through runtime adaptation,
the shortcomings of existing work-sharing strategies. RouLette
scales by replacing sharing-aware optimization with adaptive query
processing, and it chooses opportunities to explore and exploit by
using reinforcement learning. RouLette also includes optimizations
that reduce the adaptation overhead. RouLette increases throughput
by 1.6-28.3x, compared to a state-of-the-art query-at-a-time engine,
and up to 6.5x, compared to sharing-enabled prototypes, for multi-
query workloads based on the schema of TPC-DS.
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1 INTRODUCTION

The growing need for data-driven decision-making and the in-
creasing prevalence of multi-tenant infrastructures significantly in-
creases the analytical query load [8, 17]. Traditionally, state-of-the-
art analytical engines follow a query-at-a-time execution model and
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are a poor fit for high query-load scenarios. Throughput-oriented
DBMS [7, 13, 16, 17] handle multi-query processing more efficiently
by taking advantage of shared data and work across queries to re-
duce the amount of work to perform. Still, there is no silver bullet for
finding the sharing decisions that minimize the cost of processing.

Work-sharing is either online [2, 7, 16] or offline [14, 33, 43]. On-
line sharing detects opportunities, such as common sub-expressions,
between incoming and ongoing queries at runtime. Although the
detection overhead is low (e.g., matching sub-expressions), online
sharing finds only a subset of the opportunities in the workload.
Figure 1 demonstrates this limitation. To minimize the cost of pro-
cessing individual queries, query optimization produces query plans
(1) and (3). The plans share the first join, R > S. However, there
exist equivalent plans (2) and (4) with permuted join orders that
can share R »< S > U, thus reducing the total cost. The permuta-
tion constitutes a missed opportunity for online sharing. Offline
sharing optimizes batches of queries, by using sharing-aware op-
timization, to form a global query plan that minimizes the total
cost of query processing. Offline sharing discovers opportunities
that online sharing misses. However, sharing-aware optimization
is a high complexity problem that takes several seconds to process
batches as small as few tens of queries [14]. As it lies in the critical
path of execution, it obstructs offline sharing to scale to hundreds
of queries, especially in ad-hoc workloads. Therefore, depending on
the use or absence of sharing-aware optimization, existing systems
either forfeit support for large-scale workloads or miss substantial
sharing opportunities.

We preserve scalability and maximize exploited opportunities.
Scalability requires avoiding the cost of sharing-aware optimization
being paid in full. This requirement contradicts the optimize-then-
execute paradigm that most DBMS adopt. A continuously adaptive
paradigm that, by using heuristics, re-optimizes queries at runtime
is a better fit for large workloads, as it moves optimization out
of the critical path by permitting execution to proceed alongside
plan refinement. To maximize the benefit of sharing, intelligent
heuristics can steer exploratory decisions toward efficient global
query plans, by monitoring execution outcomes.

In this paper, we present RouLette, a novel intelligent engine
that exposes and exploits shareable work among Select-Project-Join
(SPJ) sub-queries, through runtime adaptation. RouLette operates
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Figure 2: Global Query Plan Figure 3: Shared Operators Figure 4: Sharing-Scalability tradeoff
in fine-grained episodes. During each episode, it performs work share sub-expressions with the same join order and different selec-
for all of the ongoing queries, monitors the cardinalities of inter- tions. The model expresses tuples as a = (aj,az, . . ., ap, aq) where
mediate results, and adjusts the plan by using a learned heuristic. ay, as, . . ., a are attributes and ag is the set of queries a b_elongs to.

The learned heuristic estimates, by using reinforcement learning,
which planning decisions minimize the total cost, hence steering
adaptation toward more efficient plans compared to online shar-
ing mechanisms. By continuously adapting the global query plan,
RouLette minimizes work while preserving scalability.

Contributions: We make the following contributions:
o We present a work-sharing paradigm that both minimizes the

total cost and overcomes the scalability limitation of sharing-
aware optimization. By using adaptive processing, RouLette
explores and exploits opportunities at runtime hence ad-
dresses the drawbacks of online and offline sharing.

e We design a sharing-aware heuristic that overcomes, by us-
ing reinforcement learning, the limitations of existing heuris-
tics [4, 38] for runtime planning and produces efficient global
plans. For batches of Join Order Benchmark queries, it pro-
duces, on average, 3.2x fewer intermediate tuples than a
greedy selectivity-based heuristic and 1.4x fewer intermedi-
ate tuples than sharing-oblivious learned heuristics.

o We identify performance bottlenecks inherited by (i) adap-
tive processing, that is materializing join state and intermedi-
ate tuples, and (ii) shared operators, that is filter comparisons
and routing. We propose novel optimizations, i.e., symmet-
ric join pruning, adaptive projections, range-based grouped
filters and locality-conscious routers, that improve hardware
utilization and scalability. With optimizations, RouLette in-
creases throughput, compared to state-of-the-art DBMS, by
1.6-28.3x and, compared to online sharing, by up to 6.5x.

2 BACKGROUND & RELATED WORK

We first provide an overview of the areas RouLette builds upon.

2.1 Work-Sharing

In this section, we present the two core concepts of work-sharing,
global query plans and the Data-Query model, and provide an
overview of existing online and offline sharing systems.

Global Query Plan: Work-sharing exploits matching sub-expressions
across queries. By overlapping plans, shared operators form a DAG,
called the global query plan, that processes multiple queries at once.
Shared operators route their output to one or more parent operators
that are often shared. Figure 2 shows the DAG for queries (1) and (3)
from Figure 1. A shared operator processes R > S for both queries,
then routes results to a different parent for each query.
Data-Query Model: Exact sub-expression matching limits oppor-
tunities due to diverse selections. By augmenting tuples with query
sets, the Data-Query model (2, 7, 13, 19, 24] enables queries to

Data-Query operators form global plans that process augmented
tuples. We present shared selections and joins, depicted in Figure 3.
Shared Selection: It evaluates at least one predicate (or a TRUE
predicate, if there is none) per query. An input tuple a satisfies the
selection’s predicates for queries Qsq¢(a). To exclude queries with
false predicates, selection updates ag to ag N Qsq:(a).

Shared Join: It matches Data-Query model tuples from its inputs.
For each match, the join produces a new shared tuple that belongs
to the intersection of the query-sets of the matching tuples.
Taxonomy of Sharing: We classify shared-work systems based
on the mechanism used for detecting opportunities: online shar-
ing, which detects opportunities at runtime, and offline sharing,
which uses sharing-aware optimization. Figure 4 evaluates existing
systems on their ability to (i) exploit opportunities and (ii) scale
with the number of ad-hoc queries. Systems using online sharing
can scale to large ad-hoc workloads, whereas systems using offline
sharing maximize exploitation.

Online sharing makes only locally-optimal sharing decisions.
QPipe [16] and DataPath [2] detect opportunities at query-level.
QPipe shares only common sub-plans. DataPath extends a global
query plan to incorporate incoming queries with minimum addi-
tional cost hence it is sensitive to the admission order. CJOIN [7]
and CACQ [19, 24] detect opportunities at operator-level. They
both reorder operators at runtime based on selectivity, hence they
miss operator correlations and the long-term effects of planning.
In all cases, online sharing misses opportunities.

Offline sharing uses sharing-aware optimization to find a minimum-
cost global plan. Early Multi-query Optimization (MQO) algorithms
[30, 34, 35] exhaustively explore a doubly exponential space in the
batch size hence are expensive. More recent algorithms [33, 43]
can optimize tens of queries at once. Shared-workload Optimizers,
such as SWO [14], produce plans made of Data-Query operators.
Sharing-aware optimization targets recurring workloads with few
queries and is a poor fit for large and ad-hoc workloads.

Shared-work systems need to execute global plans efficiently.
Materialized views [33, 43] and pipelining [9] are two options.
SharedDB [13] introduces the batched execution model that maxi-
mizes sharing for a wider range of operators and queries. MQJoin
[25] enhances the batched model with a high-throughput join. Both
SharedDB and MQJoin depend on using SWO to produce a global
query plan and hence cannot scale to large workloads.

Online sharing misses opportunities, whereas offline sharing
depends on sharing-aware optimization, which has very high com-
plexity and restricts scalability. RouLette overcomes the scalabil-
ity limitation by replacing optimization with adaptation. Also, by



reordering operators using a learned heuristic, it overcomes the
limitations of query-local and selectivity-based decisions. Hence,
RouLette can maximize throughput for large ad-hoc workloads.

2.2 Adaptive Query Processing

Adaptive processing targets use cases where the optimize-then-
execute paradigm performs poorly e.g. unpredictable environments
with limited statistics and highly correlated data. It adapts planning
during execution by exploiting information collected at runtime.
In this section, we present the adaptive techniques that RouLette
uses: symmetric hash joins, eddies, and State Modules.
Symmetric Hash-join (SHJ): Hash-joins limit opportunities for
runtime adaptation, as the choice of build relations and the execu-
tion order is static. By treating inputs equally, SHF [15, 40] processes
tuples from both inputs in any interleaved order. SHJ builds hashta-
bles on both inputs. It inserts every input tuple in the respective
hashtable, then probes the other relation’s hashtable for matches.
SHJ produces each result tuple when the matching tuples from
both sides have been consumed. Figure 5a shows an example for
matching two tuples. SHJ processes R’s tuple with key 4, inserts it in
R’s hashtable, and, without matches, probes S. Next, SH] processes
S’s tuple, also with key 4, inserts it in S’s hashtable, and, to match
with R’s preceding tuple, probes R. Thus, SHJ enables out-of-order
processing but increases materialization cost and footprint.

SHJ generalizes to n-ary joins. It probes n-1 hashtables, deciding

the order at runtime. N-ary SHJ is popular in stream processing
[11, 37] and robust query processing [6, 21].
Eddies: An eddy operator [3] reorders operators in plans at runtime.
Specifically, it controls how tuples flow through operators. By ob-
serving the input and output of operators, it optimizes the operator
order. Thus, the eddy replaces the optimizer with adaptation.

Eddies can adapt plans with commutative and symmetric op-
erators, such as SHJ. However, accumulated operator state limits
adaptability e.g. inserted tuples in SHJ cannot include more joins
until they are probed. State makes routing history-dependent [10].
State Modules (STeMs): STeMs [32] enhance the adaptability of
eddies. A STeM is an index that stores tuples for each base relation.
It exposes two operations, insert(a) and probe(a). Insert stores tuple
a in the STeM and probe joins, based on a key, with previously
inserted tuples. STeMs store tuples at endpoints and avoid material-
izing intermediate tuples, hence guarantee history-independence.

STeMs can implement n-ary SHJ [32]. Figure 5b shows a 3-way
SHJ. STeMs serve as hashtables, whereas the eddy dynamically
reorders probes. The eddy first inserts each tuple to its relation’s
STeM, e.g., R, producing an insertion timestamp. Then, it atomically
probes other STeMs e.g. STeMg then STeMr, using the timestamp
to ensure atomicity. Probe sequences produce the output tuples.

RoulLette replaces sharing-aware optimization with STeM-based
adaptation. As the eddy produces global plans using fast decisions,
its cost is linear to the plans’ size hence scalable. RouLette enhances
adaptive processing with efficient planning and reduces overhead.

2.3 Reinforcement Learning

To emulate query optimization, adaptive processing requires ef-
ficient operator orders. Existing selectivity-based techniques are
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Figure 5: (a) SHJ (b) 3-way SHJ with STeMs

greedy hence often sub-optimal. To refine ordering and to increase
sharing benefits, RouLette uses reinforcement learning [36].
Reinforcement learning applies to problems that are expressed
as Markov Decision Processes (MDPs). An MDP models problems
as multi-step processes. At each step, the actor observes the current
state s and chooses an action a € A(s). The action’s result is a reward
R(s, a) and a change of state to s’. The state space, each state’s set
of actions, the reward, and state transitions define the MDP. Even-
tually, the actor observes a terminal state and the process finishes.
Reinforcement learning algorithms find a decision-making policy
that maximizes the cumulative reward that the agent observes.
Q-learning [39] is a reinforcement learning algorithm for finding
optimal policies. RouLette uses Q-learning because it has multiple
desirable properties: (1) it learns the optimal policy instead of the
currently used policy, i.e. a randomized policy that explores oppor-
tunities. (2) the only convergence requirement is that all state-action
pairs are updated, which is guaranteed with randomized decisions.
Q-learning approximates a function Q : SXA — R that evaluates
the quality of decision a at state s. During decision-making, the
policy chooses, with probability 1-¢, the action a that maximizes
Q(s, a) and a random action otherwise. Q-learning later uses the
observed rewards to refine the approximation of Q. Given two
hyper-parameters, learning rate y and discount rate y, it updates:

005, Q(s.a) + e +y _max, O'.) = 005, )

Recent work uses reinforcement learning to build query-at-a-
time learned query optimizers [20, 26, 27, 42]. Learned optimizers
are trained offline and improve planning throughout a sequence of
queries. By contrast, RouLette learns the ordering heuristic through-
out the lifetime of queries. Learning is completely online and dis-
cards information after queries finish processing. We make this
design choice for two reasons: (i) predictions for a batch do not gen-
eralize for seemingly similar future batches, because they depend
on the batch’s predicates, which are rarely the same, and (ii) the
exact same batch recurs less often than the exact same sub-query.

2.4 Learned Cardinality Estimation

Cardinality and selectivity estimates are often inaccurate [22] and
cause query optimizers to choose suboptimal plans. To achieve
low-error estimates within tight latency and storage constraints,
recent work proposes novel machine learning techniques, such
as cost-guided cardinality estimation [29], progressive sampling
over autoregressive models [41], MSCNs [18], and domain-specific
feature and label engineering [12]. Similar to learned optimizers,
learned cardinality estimation is trained offline. RouLette sidesteps
cardinality estimation, as it can measure cardinalities at runtime.
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Figure 6: RouLette operates as a special engine alongside a DBMS. We present the architecture through a three-query example.

3 ROULETTE ARCHITECTURE

We introduce RouLette, a specialized intelligent engine for effi-
ciently executing multiple SPJ sub-queries at once. By continuously
adapting the global plan to sharing opportunities, it maximizes sub-
query processing throughput. Thus, RouLette optimizes the global
operator order, without expensive sharing-aware optimization.
Figure 6 shows RouLette’s architecture. A host DBMS processes
concurrent queries from different users and applications. The host
delegates SPJ sub-queries to RouLette for high-throughput process-
ing and, then, collects the results for further processing. RouLette
works separately alongside the host because (i) it uses a different
processing paradigm (adaptive instead of optimize-then-execute),
(i) it processes work across and beyond the lifetime of queries using
a global instance, and (iii) it controls its input, state, and execution.
RoulLette splits sub-query processing into episodes. In each episode,
RouLette plans then processes the operators of ongoing sub-queries
for an input vector and analyzes execution to refine planning in fu-
ture episodes. Episodes are the quantum of planning; plans change
only across episodes. They process shared work for all ongoing sub-
queries and map 1-1 to vectors (1024 input tuples in our prototype).
Sub-queries finish after RouLette processes all their input.
Numbered dotted lines in Figure 6 show the data flow between
RouLette’s components in each episode. (1) Ingestion pulls a vector
from the host’s storage into RouLette. (2) An eddy within RouLette
chooses the episode’s plans for selections and joins using a learned
policy. (3) The executor carries out, by processing the episode’s plans
for the vector, the eddy’s decisions and produces SPJ results. (4)
The executor pipelines results to host-side operators (e.g., GROUP
BY, outer queries) for further processing. (5) The eddy uses execu-
tion metadata to refine the learned policy. We present RouLette’s
components using the example of the three queries in Figure 6.

Query Optimizer: The optimizer processes incoming queries and
produces plans. Then, it delegates one or more SPJ sub-queries (blue
boxes), which naturally occur at the bottom of plans, to RouLette. In
the host, by replacing sub-queries with RouLette sources, delegation
transforms the original plans and assigns the transformed plans
to the host’s executor. RouLette sources represent intra-RouLette
processing and pipeline SPJ results to their consumer (i.e., parent)
operator (red boxes). As RouLette does not preserve interesting
orders, the optimizer, during transformation, also adds any required
sort as a consumer. In RouLette, delegated sub-queries are sched-
uled, either online or in batches. Scheduling updates the predicate
list and the join list, and notifies ingestion about new queries. Af-
ter scheduling, RouLette starts processing the sub-queries. In the
example, the host delegates Q1, Q2 and Q3 one after the other.
Ingestion: Ingestion provides RouLette with vectors from the
host’s storage. It is designed for two desirable properties: (i) to
ensure that all ongoing queries make progress, and (ii) to enable
sharing between incoming and ongoing queries in dynamic work-
loads. To satisfy (i) it scans relations in round-robin order, whereas
to satisfy (ii) it uses circular scans [16, 44].

In each episode, ingestion chooses (i) a relation to access and
(ii) the relation’s vector to access. Hence, ingestion uses a relation
iterator and a vector iterator for each relation. In the example, it
chooses R, then R’s 4% h vector, and finally advances the two iterators.
As scans are circular, retrieving the last vector of a relation (e.g.,
R’s 6”’) will move the iterator back to the start (e.g., R’s 15¢).

Ingestion also transforms input to Data-Query model. By record-
ing the position of scans during each query’s scheduling, ingestion
tracks each scan’s active queries i.e., queries that have not com-
pleted the circular scan. To translate the input to Data-Query model,
it annotates tuples with the bitset of active queries. A set ith bit
means that the tuple belongs to Q; e.g. if Q1, Q2 and Q3 are active,



the tuple is annotated with 111. Figure 6a shows the resulting vector.
When a query’s circular scans are all finished, it becomes inactive,
and hence ingestion signals the consumer with end-of-input.
STeMs: RouLette uses STeMs to enable operator reordering and
out-of-order scans. They store and index tuples, making them ac-
cessible across episodes, without limiting future operator orders.
Thus, RouLette implements a history-independent multi-query n-
ary symmetric join. To address performance and parallelization
bottlenecks in STeMs, RouLette introduces novel optimizations, i.e.,
symmetric join pruning, scalable versioning, and adaptive projec-
tions. We discuss STeM implementation in Sections 5.1 and 5.2.
Eddy & Learned Policy: The eddy handles planning within each
episode and adaptation across episodes. It produces global plans
that process all sub-queries for one episode each, and analyzes the
plans’ execution to produce more efficient plans in future episodes.
Unlike prior work, RouLette uses adaptation for scaling sharing-
aware optimization rather than for robustness. Also, it produces
more efficient plans than existing adaptation techniques, as it uses
novel learned policies that can accurately model costs.

RouLette uses selection push-down. As joins are much more
costly, to reduce their input, plans first process the selections and
then the joins. Hence, each episode has two separate plans, the
selection-phase that processes shared selections and the join-phase
that comprises STeM probes, routing selections and output routers.
Figure 6 shows the two plans inside the executor.

To produce each phase’s plan, the eddy chooses an operator
order using a multi-step optimization algorithm. Multi-step opti-
mization uses learned policies and ordering constraints (Figures 6b
and 6c¢, presented in Section 4.1) to incrementally build the plan
from unordered operators. We discuss optimization in Section 4.1.

The eddy continuously refines learned policies using reinforce-
ment learning. By monitoring the input and output of operators, it
collects an execution log that records the processed operator and
queries, the operator history, and the size of input and output (Fig-
ure 6d). At the end of the episode, to update the policies and thus
improve planning in future episodes, it processes the log using a
tailor-made novel variant of Q-learning that reduces the problem’s
state space. We discuss learning in Sections 4.2 and 4.3.
Executor: The executor contains a pool of RouLette workers. Each
worker concurrently undertakes a different episode and synchro-
nizes with other workers through shared STeMs. It processes the
episode’s plans for the ingested vector mapped to the episode as
follows. First, it processes the selection-phase, thus filtering the
tuples’ query-sets. Second, it inserts the selection phase’s results to
the base relation’s STeM (e.g. STeMR) to make the join symmetric.
Third, it processes the join-phase for the selection-phase’s results,
to produce SPJ results. Fourth, using routers, it sends SPJ results to
respective RouLette sources, which pipeline tuples to host operators.
Each processed episode contributes to completing the sub-queries.

In all steps, RouLette’s operators use the Data-Query model and
serve one or more queries. RouLette introduces novel algorithms
for efficiently processing selections and routing at scale, and, to
maximize sharing, adopts MQJoin for STeM operations. We defer
discussing operator implementation until Section 5.

The worker processes phases using vectorized execution. It pro-
cesses each operator for an input vector and sends the output vector
to one (og 4’s case) or two operators (STeMs’s case). When one
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Figure 7: Multi-step optimization for join-phase

operator follows, the worker executes it next. When two operators
follow, to bound pending vector footprint, it executes all operators
in the probe sub-plan first, then all operators in the selection sub-
plan, e.g. after STeMg probe, data flow is (i) STeMs — STeMr, (ii)
STeMr — Q1’s Roulette source, (iii) STeMs — 002,03, et.c. In
Figure 6, numbers next to operators show the execution order.
Our prototype targets in-memory analytics by using columnar
data and late materialization. Vectors consist of virtual ID (vID)
tuples in PAX-layout [1], and operators reconstruct mini-columns
for required attributes on demand. The design reduces the footprint
of vectors and STeMs. As STeMs are in-memory, their footprint im-
poses an upper bound to the dataset size that RouLette can process.

4 LEARNED ADAPTATION POLICY

We examine planning in RouLette. We present how a policy pro-
duces global plans in Section 4.1, express planning as an MDP in
Section 4.2, and propose a novel learning algorithm in Section 4.3.

4.1 Policy-based Planning

The eddy optimizes plans using policy decisions. Starting from the
plan’s input, each decision chooses the operators that process an
intermediate vector. One or two chosen operators produce equally
many vectors. Eventually, the plan contains all operators for all
queries. The decision sequence is a multi-step optimization. It runs
at each episode’s start, and plans operators until the episode’s end.
In this section, we present multi-step optimization. We follow
the algorithm’s first four steps for the running example in Figure 7.
Terminology: We first define the terms dependency graph, lineage,
operator query set, virtual vector, and candidate operator,.
Definition 1. The dependency graph of a set of operators, O, is
defined as the complete graph K|, if O comprises selections and
as G = (V,E) with (e1, e2) € E iff e1 > €3 € O if O comprises joins.
Definition 2. Let O a set of operators with dependency graph
G(O). A subset L c O is defined as a lineage iff the induced
subgraph G(O) [ L] is connected. The set of lineages is £*.
Definition 3. The query-set Q, of an operator o is defined as the
set of queries that contain o.
Definition 4. A virtual vector is defined as a pair (£, Q).
Definition 5. Candidate operators for virtual vector (£, Q) are
defined as cand(L, Q) = {0 € O—L|{o}UL € LHNQNQ, # 0)}.
Definition 6. A policy decision for virtual vector (£, Q) is a
function (L, Q) = o with 0 € cand(L, Q) if cand(L, Q) # 0, and
o = null otherwise.



Algorithm 1 Multi-step Optimization

1: procedure MULTI_STEP_REC(node, £, Q)

2 next = NEXT_OPERATOR(Z, Q)

3 if next # null then

4: main = node.addOperator(next, Q N Quext)

5: MULTI_STEP_REC(main, L U {next}, Q N Qnext)
6

7

8

9

if Q — Quext # 0 then
div = node.addRoutingSelection(Q — Qnext)
MULTI_STEP REC(div, £, Q — Quext)
node.addRouter(Q)
10: procedure MULTI_STEP(relation, Q)
11: input = InputNode(relation, Q)
12: MULTI_STEP_REC(input, {relation}, Q)
13: return input

Figures 6b and 6¢ show graphs for R’s selections and joins. De-
pendency graphs express ordering constraints between operators:
selections can execute in any order, whereas probes often need
attributes from other relations to join without cross-products e.g.
for S.e = U.e, R’s tuples need to join with S before joining with U.

Virtual vectors (bold text Figure 7) represent shared sub-expressions
that the eddy needs to expand, by adding operators, until they match
one or more sub-queries. They contain a lineage, i.e., a set of op-
erators that can compose a plan that respects constraints, and a
query-set. {R, S} is a lineage, while {R, U} is a not lineage.

Candidates are operators that can extend the virtual vector’s
sub-expression. They need to respect constraints and the new sub-
expression needs to be part of a query. Adding the operator to the
lineage results in a new lineage. Dotted outlines (or @) highlight
each step’s candidates. In step (1), S and T are the only candidates
because they are adjacent to R in the graph.

Policy decisions choose one of the candidates (blue outline), if
any, as in steps (1), (2) and (4). If there are no candidates, as in step
(3), the vector stands for Q’s output and the policy returns null.

Next, we define the effects of decisions to partial global plans.
Sharing: Sharing occurs when all queries of virtual vector (£, Q)
contain the operator o chosen by the policy, as in the example’s step
(1). The eddy shares o across Q and a new virtual vector (LU{o}, Q)
stands for the new shared sub-expression.

Divergence: Divergence occurs when only a subset of Q contains
0. Then, the eddy shares o only across that subset, Q N Q,. Also,
it shares a selection across the other queries, Q — Q,, to drop
redundant tuples. Hence, the decision results in two shared sub-
expressions with virtual vectors (£ U {0}, QN Qo) and (£, Q — Q).
o shares work eagerly, as it processes all queries that contain Q.
Step (2)’s decision causes divergence. As only Q1 contains R »< T,
the decision creates different sub-expressions for Q1 and Q2-Q3.
Step (3) shows the resulting virtual vectors. Divergence routes sub-
expressions to two outputs. To model more than two outputs, the
eddy can make decisions that cause divergence consecutively.

Multi-step Optimization: To build a complete and correct global
plan (i.e., implements delegated sub-queries), the eddy composes a
sequence of inter-dependent policy decisions. We design multi-step
optimization, the eddy’s logic, which uses the policy to build the
plan operator by operator and to identify the next decisions to

make. Multi-step optimization is applied independently for the two
phases, selection and join, to produce the two plans.

Algorithm 1 presents pseudocode for multi-step optimization.
The algorithm recursively builds the global plan. At each recursive
step, starting from the plan’s input (lines 11-12), it chooses operators
to add after the last operator of a shared sub-expression’s plan. By
using the policy, it first chooses a candidate of the sub-expression’s
virtual vector, o (line 2) and appends it to the plan for Q N Q, (line
4). Also, in case of divergence, it appends a selection for Q —Q, (line
7). The new operators’ output corresponds to new sub-expressions.
Multi-step optimization uses recursion to complete the plans of
new sub-expressions for Q N Q, (line 5) and Q — Q, (line 8). Finally,
null decisions indicate that the sub-expression is its query-set’s
output and a router to the host is added (line 9) When recursion
finishes, the plan is complete.

We discuss Algorithm 1’s correctness, complexity and optimality.
Correctness: MULTI_STEP_REC (node, L, Q) produces a null de-
cision, hence the query’s output, for each g € Q exactly once.

Let Og = {0 € O|Q, N Q # 0}. We use induction on |Og — L.
Base step: As L C Oq, |Oq — L] = 0 entails £ = Ogq. Then,
cand(L, Q) = 0 hence the policy decides null once for each g € Q.
Induction step: If the proposition holds for |Og — L] < n, it also
holds for [Og — L] =n+1.

Leto = 7(L,Q).0 € Ognq, and Oq € Ognq, hence |Ognq, -
(LU{o})| < n.Recursion for (LU{o}, QN Q,) decides null exactly
once for each g € (Q N Q).

If there is divergence, 0 ¢ Og_q, hence |Og_q,| < Oq and
|Oq-q, — £L| < n. Recursion for (£, Q — Q,) decides null exactly
once for each g € (Q — Qo). The two recursions produce null for
(Q - Q) U(QNQAy) = Q and their query-sets do not overlap.
Complexity: The number of decisions is the global plan’s size,
which has at most Q, instances of each operator o. Each decision
inspects the candidates which are at most |O|. Hence, the worst-
case complexity of Algorithm 1 is O(|O| * X e |Qol)-
Optimality: Algorithm 1 is optimal iff, at each step, the policy
chooses the candidate that leads to the best possible plan given the
decisions already made. Given an accurate estimate of each best
possible plan’s response time, it suffices to choose the candidate
with the minimum estimate. The next section focuses on estimation.

4.2 Learning Policy Decisions

The response time of global plans depends on decision quality. To
improve decision quality, the eddy adapts the policy using the ex-
ecution log. RouLette’s reinforcement learning-based adaptation
approximates the policy that minimizes response time. In this sec-
tion, we present (i) the requirements for accurately estimating the
runtime of global plans thus approximating optimality, and (ii) a
reinforcement learning formulation that satisfies the requirements.
Cost estimation: The eddy optimizes the global plan’s response
time. However, it can observe only intermediate cardinalities in
each episode’s plans. It estimates time from cardinalities using
a cost model. We refer to the estimate as cost. The cost model
computes operator a’s cost as a function of input and output sizes,
ca(nin, Nour). The total cost is the sum of all operator costs in a plan.
Requirements: Policies minimize the total cost, which includes the
cost of operators later in the plan. Hence, they need to estimate the



long-term effects of decisions, which are caused by the cascading
effect of operator selectivity across the plan. For example, in Figure
6’s join-phase, the input size for probing STeMr is 6, whereas, if
STeMr had been probed before STeMs, the input size would have
been 5. With 20% larger input, the probe’s cost is likely to be higher.

Another long-term effect of decisions is on data distribution
due to attribute and join-crossing correlations. Data distribution
affects operator selectivity. Assume that in Figure 6’s example, only
the first 60% of R’s vector has matches in STeMs, and only the
last 40% has matches in STeMr. Join selectivity is 120% for R »< S,
60% for R »« T, and 0% for both (R >« S) >« T and (R >« T) b« T.
Selectivity depends on the predicates of all queries for the input
sub-expression, which the virtual vector summarizes.

Also, the eddy optimizes tree-shaped global plans and hence
policies affect costs across multiple branches. Long-term cost esti-
mation counts shared operators once for their whole query-set and
aggregates cascading costs across all branches e.g. long-term costs
for probing S in Figure 6 include the cost of probing S, U, V, T and
W, and the cost of routing selections. Then, the policy can choose
candidates that minimize the global cost by exploiting sharing, even
when they are sub-optimal for individual queries.

Thus, to accurately estimate the best candidate, the policy pre-
dicts cascading cardinalities and correlations across all branches.
Existing selectivity-based approaches fail the requirements and,
as experiments show in Section 6.2, produce sub-optimal and ex-
pensive plans. RouLette’s policy satisfies all three requirements, by
using reinforcement learning on the following MDP.
Formulation: We model multi-step optimization as an MDP. The
eddy is an agent that composes plans by choosing one of the candi-
dates at each step. In the following paragraphs, we define the four
components of an MDP that optimizes the global plan.

States: States contain the information required to model multi-step
optimization. Decisions process states to choose the best candidate.

To express actions, transitions and rewards, the MDP requires
the virtual vector and the input size of the current recursive step.
The virtual vector determines candidates and the recursive steps
that follow. The input size determines the output size given the
chosen operator’s selectivity, which the virtual vector also affects,
and both determine cost estimation when computing rewards. The
input size and the virtual vector form an extended vector (n, £, Q).
Later, we show that the specialization can omit input size.

To express recursion, the MDP models all pending recursive steps
as a stack of extended vectors, with the current step at the top. The
state is the stack and the state space is the set of stacks with elements
from R x £* x 22. Our notation represents a stack as top : tail and
an empty stack as €. In Figure 7, the state is (5, {R}, {01, 02,Q3}) : €
for step 1 and (0, {R, S, T}, {Q1}) : (5, {R, S}, {Q2, Q3}) : € for step 3.
Actions: An action chooses a candidate for the current vector i.e.
the top of the state’s stack. Hence, a state’s actions are:

A((n, £, Q) : stqi1) = Al(n, £,Q) : €) = cand(L, Q)

Transitions: Choosing a candidate invokes one or two recursive
steps, changing the state. Transitions replace the top of the stack
with vectors for the new recursive step(s). For example, (5, {R},
{01, 02, 03}): e transitions to (0, {R, S, T}, {Q1}): (5, {R, S}, {02, 03})
: €. Operators affect the sizes of new vectors. To express output
sizes, we use conditional selectivity p , q(0), which models the

output to input ratio for operator o and sub-expression results with
virtual vector (£, Q). Candidate o’s output is p y o(0) * n, whereas
the routing selection’s is p r q(0q-q,) * 1, if any. Sharing pushes
one new vector and transitions from (n, £, Q) : s;4;; to:

(0r.Q0) *n {0} UL Q): 514

Divergence pushes two vectors and transitions to:

(p£.@0)*n, {0}UL,QNQ) : (P £,@l0q-@,)*n L. Q=) : Stail)

If there are no more candidates, a null action pops the top of the
stack, and the state transitions to s,

Rewards: An action’s reward represents the operator’s cost. As re-
inforcement learning maximizes rewards, operators incur negative
rewards. Using the cost model, the reward when sharing is:

R((n, £, Q) : 5¢4i1,0) = —co(n, p £,q(0) * n)

Divergence also includes the selection’s cost, hence the reward is:

R((n, £, Q) : 514i1,0) = —co(n, p £,Q(0)51)—Coq_q, (0. p £.Q(0Q-@,)*M)

4.3 Specialized Q-learning Implementation

The formulation satisfies requirements for modelling the cost of
global plans but is difficult to use in practice. The state space is large
due to the input-size parameter and the stack representation. In this
section, we present the design and implementation of a specialized
Q-learning that, by exploiting two properties of cumulative rewards,
independence and proportionality, reduces the state space.
Independence: Vectors in the stack have disjoint query-sets hence
incur future costs independently across different branches of the
plan. The cumulative cost of the state is the sum of cumulative
costs for each vector in the stack. To minimize cumulative cost, the
eddy separately minimizes the cost of each vector e.g. in step 3,
to optimize (0,{R, S, T}, {Q1}) : (5, {R, S}, {Q2, Q3}) : €, it optimizes
(0,{R,S,T},{Q1}): e and (5, {R, S}, {Q2, Q3}) : €. Also, each vector’s
future costs include only cumulative costs of vectors created by
that step’s decision. We rewrite decisions and update rules to use
only popped and pushed vectors, thus hiding the stack’s tail.
Proportionality: Intuitively, operator cost is linear to input size i.e.
doubling the input size will roughly double the required computa-
tions. Hence, we define the cost model as a linear function:

ca(Nin, Nout) = Ka * Nin + Aq * Nout

By definition noy: = p r @(0p) * nin, so the output size, the cost and
hence a vector’s cumulative cost is linear to input size. Then, all
decisions and updates can be reduced to singleton states (1, £, Q) : €.
Normalizing the Q-values of candidates by input size results in the
same decisions e.g. the optimal decision for (5, {R}, {Q1, 02, Q3}) :
eis the same as for (1, {R}, {Q1, 02, Q3}) : €. Also, to express future
costs, updates scale Q-values by operator selectivity e.g. for probing
STeMg, the future cost is 1.2 = Q((1, {R, S}, {01, 02, Q3}) : €).

By exploiting independence and proportionality, Q-learning in-
teracts only with (1, £, Q) : € states, or simply (£, Q). We discuss
the implementation and integration of the algorithm in RouLette.
Q-table: Q-learning learns Q((£, Q), 0), which is the best-case cu-
mulative cost at (£, Q) if the policy decides o. The algorithm needs
amethod for inferring and updating Q((£L, Q), 0). We use traditional
map-based Q-learning. Deep learning is unsuitable for adaptive
processing, as training and inference is prohibitively expensive.



Algorithm 2 Policy implementation

1: procedure NEXT_OPERATOR(ZL, Q)
2: cand = cand(L, Q)
3 if choose — random() == true then return random(cand)

4 return argmaxgccand{Q(L, Q, a)}

5. procedure UPDATE(L, Q, 0, nin, Nout, Ngiy)

6: r=20

7. q=max{Q(LU{0},QNQ,a) | a € cand(LU{0},QNQy)}
8: r=r+ (=Ko * Nin — Ao * Nour + ¥ * Nour * q)/Nin

9 if ng;, # null then

10: q=max{Q(L,Q - Qp,a) | a € cand(L,Q — Q,)}

11: r=r+ (—Ko- * Nip — Ag * Ngiv +Y * Ngiy * q)/ni"

1z QLQo)=(1-p)*QLQo)+puxr

Map-based Q-learning stores the current Q((£, Q), 0) estimates
in a hash map indexed by (£, Q), 0) triplets. As both £ and Q are sets
with small domains, we store them as bitsets. Then, concatenating
the bytes of £, Q and o forms a unique key for each state. Decisions
and update rules use the unique triplets to access the map.

To encourage exploration in early episodes and exploitation in
later episodes, we use optimistic initialization [36]. As rewards and
Q-table values are negative, we initialize values to zero. The triplet
space is partially explored hence Q-table is sparse. We set the map
to store only non-zero values and return 0 for failed lookups.
Decisions: Decisions choose one of the candidates. Algorithm 2’s
NEXT_OPERATOR presents decision-making. As —Q((£, Q), 0) is
expected cumulative cost, deterministic decisions choose the candi-
date with the maximum Q-value (line 4). This requires one Q-table
access per candidate. Sporadically, with probability e, decisions
choose at random to guarantee eventual convergence (line 3).
Updates: By monitoring execution, the eddy generates a log entry
for each processed operator o in the following format:

(£, Q, 0,nin, nout, ngiy)

Nin, Nout, Ndjy Stand for the size of input, o’s output and 0g_q,’s
output , if any (otherwise null). By invoking the update rule for
each entry, the eddy adapts the policy.

Algorithm 2’s UPDATE presents the update rule. The update rule
propagates cumulative costs from operators that were added by
recursion at (£, Q). Due to independence, it estimates cumulative
rewards for each branch separately (lines 7-8 for Q N Qy, lines
10-11 for Q — Q). Estimation for Q N Q, works as follows: Line 7
estimates, by comparing all Q((£L U {0}, Q N Qy), a), a € cand(L U
{0}, @ N Qy), the best cumulative cost q that recursion can create at
(L U{o0},& N Q). Line 8 adds the cost of o to the estimate in three
steps: (i) it multiplies g by nyy; to undo normalization. (ii) it adds
the direct costs of o, and (iii) it normalizes the estimate again by n;,.
The same estimation method is applied for Q — Q,. r aggregates
the total estimate. Thus, Q-learning bootstraps from the current
Q-value estimates for state (L U {0}, Q N Qo) and, if required, state
(£, Q — Q). In the end, the Q-table value is updated to a weighted
average of its previous value and the total estimate. After several
episodes, Q-learning learns Q((£, Q), 0).

Tuning: Q-learning depends on three hyper-parameters that rep-
resents different trade-offs: lowering y trades off learning speed for

smoothing noise due to local data distribution, lowering € trades
off exploration for Q-table exploitation, and lowering y reduces the
relative weight of future rewards. As future rewards are equally
important, we set y = 1. We tune p and € by using grid search.

We also tune the cost model to emulate execution time. We
assume that all operators of the same type, e.g. all joins, have the
same k and A. To tune the parameters, for each operator type,
we measure execution time in nanoseconds for various input and
output sizes and apply linear regression to estimate x and A. We get:
(i) for selections k = 9.32 and A = 4.62, (ii) for routing selections
k =3.60 and A = 0.92, and (iii) for joins x = 38.57 and A = 43.29.

5 ADAPTIVE MULTI-QUERY EXECUTOR

On top of learned policies, RouLette owes its high throughput
to efficient shared operators and low-overhead adaptation. In this
section, we describe (i) the implementation of shared operators, and
(ii) optimizations that eliminate adaptive processing’s bottlenecks.

5.1 Efficient Shared Operators

RoulLette’s selection and join-phases comprise shared operators. In
this section, we present operator design and follow the running
example’s selection-phase in Figure 8 and join-phase in Figure 9.
Selections: Each selection-phase operator filters the query-sets of
its input tuples by evaluating one or more predicates. For each input
tuple, it computes a predicate result bitset, shown below Figure 8’s
operators — a set it bit means that Q;’s predicates in the selection
are satisfied. Filtering removes queries with zero bits from the
tuple’s query-set by computing the bitwise AND of the bitsets. The
new bitset, which stands for query-set intersection, is the output’s
query-set. Selection drops tuples with empty query-sets.

To reduce shared selection costs, RouLette batches predicate
evaluation on each attribute using grouped filters e.g. oy 4 evaluates
Q1’s and Q3’s predicates (and true for Q2) at once. Prior work [24]
prunes comparisons by indexing predicates using structures such
as search trees. In that case comparisons are still linear to satisfied
queries and hence to all queries. RouLette uses a novel evaluation
method, whose cost is logarithmic to query count, for arithmetic or
dictionary comparisons. It constructs lookup tables, depicted above
operators in Figure 8, that store precomputed predicate results for
ranges or values. Predicate evaluation requires a binary search.
STeMs: RouLette uses a shared STeM for each relation across all
queries and joins. The STeM stores selection-phase result tuples
and, on each join key, builds indices for joins e.g. hash-index for
equi-joins. To reduce footprint, we use unified STeM entries:

(index-vector, vID, timestamp, query-set)

STeMs stores entries as a contiguous memory block. The inserted
tuple consists of vID and query-set. Each of STeM’s index uses one
element of index-vector to build a self-referential data structure
e.g. list-based hash bucket for hash-indices. The index-vector also
stores the join key to avoid late materialization for STeM tuples’
attributes. Finally, STeM uses timestamp to ensure insert-probe
atomicity. Figure 9 shows STeMs above each probe. In our example,
S has equi-joins on S.a, S.e and S.f and builds hash-indices.
Probes search the STeM for matching tuples, inserted in previous
episodes, and produce concatenated probe-match pairs. Vector 2
in Figure 9 is the result of probing STeMs for R’s vector. Probes
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Figure 8: Execution of selection-phase

use STeM indices to efficiently find matches. Then, they compare
timestamps to enforce insert-probe atomicity — only matches with
older timestamps are considered. Finally, they compute query-sets
of probe-match pairs by intersecting the query-sets of the probing
and the probed tuples, i.e., bitwise AND of the bitsets, and discard
pairs with empty query-sets, such as R’s tuple 19 with S’s tuple 9.
Routing selections: Selections in the join-phase permit tuples of
specified queries to pass, e.g. in Figure 9, it retains tuples from Q2
and Q3. A bitwise AND with a filter mask clears other queries from
the bitset. Such selections reduce downstream processing.
Router: Routers send shared output to the host, by multicasting
tuples to their query-set’s RouLette sources. To increase output
locality and reduce cache and TLB misses, they adapt the design
of two-pass partitioning to multicasting. Hence, routers increase
cache hits.

5.2 Optimizations for Adaptive Processing

Adaptive processing suffers from overhead due to STeM material-
ization and versioning, and lack of projectivity. To match optimize-
then-execute performance, RouLette uses novel optimizations.
Symmetric Join Pruning: Symmetric joins require that all rela-
tions be materialized and hence incur materialization overhead. To
reduce the overhead, RouLette materializes only tuples that can
form output tuples for their query-set. We call this symmetric join
pruning. Figure 10 shows pruning for the symmetric join of Figure
6. In the example’s episode, the symmetric join processes R’s vector.
Tuple 18 has no matching entry in S. As all queries contain R »< §
and the STeMs is final, pruning infers that 18 cannot form any out-
put tuple and drops 18 before insertion. Also, it infers that 19 cannot
form output tuples for Q1 and Q2, hence it adjusts the query-set.
As the new query-set is empty, pruning drops 19. Pruning cannot
use STeMr, because T’s scan is ongoing; future inserts can yield
matches for 15-17. To drop tuples and modify query-sets, prun-
ing uses semi-joins with fully-ingested joinable STeMs. RouLette
integrates semi-joins into the selection phase as filters.

Pruning emulates filtering in non-left deep plans that use join re-
sults as inner relations. STeMs store semi-join results hence probes
and semi-joins with pruned STeMs return even fewer matches. Fil-
tering propagates across the plan, beyond direct joins and STeMs
store the results of semi-join trees. Still, symmetric joins require
extra probes to construct results. Caching intermediate results [5]
eliminates extra probes and is complementary to RouLette.

As pruning requires fully-ingested relations, to increase pruning
opportunities, RouLette controls the order in which ingestion ini-
tiates circular scans. It chooses the order based on three insights:
(i) Small relations that are on the build-side in all joins should be

Figure 9: Execution of join-phase

Figure 10: Symmetric Join Pruning

ingested first. (ii) Ingesting large relations should be postponed, as
they are the targets of pruning. (iii) M:N semi-joins are avoided, as
they are expensive. The insights apply to common schemas that
use dimension tables (e.g., star, snowflake, snowstorm).

To choose the order, RouLette ranks relations using a heuristic.
The heuristic, starting from rank 1, works as follows: (i) it marks
unranked relations that are smaller than all other joinable unranked
relations. (ii) it assigns the current rank to marked relations and
increments the current rank. (iii) it adjusts cardinality estimates,
based on pruning, and repeats the steps. Ranking produces a partial
order of scans for each scheduled batch. Except for having its left-
most relation fixed, join order is orthogonal to scan order.
Scalable versioning: RouLette parallelizes episode execution. Crit-
ical sections, such as ingestion and policy updates, are rare, and
hence are lock-based. The main point of contention are STeMs.

To reduce contention and scale up, RouLette’s STeMs use wait-
free indexing and batch versioning. First, wait-free indices use
atomics and hence reduce insert/probe contention. Second, batch
versioning reduces contention on version counter, as it requires
only two atomics per vector. For batch versioning, STeMs use both
local and global versions. Inserts use the same STeM-local version
for each vector’s tuples. Then, they map the STeM-local version,
by default globally invalid, to a global version. To check atomicity
conditions, each probe translates STeM-local to global timestamps.
Adaptive projections: As adaptive processing lacks projections,
probe results grow increasingly wide hence materializing interme-
diate vectors becomes more expensive. To drop redundant columns
and reduce materialization, RouLette introduces adaptive projec-
tions. By identifying columns used by downstream operators in the
episode’s plans, it keeps a minimal set of vIDs and sheds the rest.

6 EVALUATION

We evaluate a prototype of RouLette. The experiments show (i)
RoulLette’s ability to scale throughput, (ii) RouLette’s performance
gains over online sharing and query-at-a-time DBMS, (iii) the bene-
fit of learned policies over selectivity-based policies, (iv) the impact
of timing dependencies to sharing and learning, (v) the sensitivity of
learning rate to workload characteristics, (vi) the effect of executor
optimizations, and (vii) RouLette’s scalability in multi-core CPUs.

The experiments run on a two-socket server with 12-core Intel
Xeon E5-2650L v3 CPUs running at 1.8 GHz and 256 GB of DRAM.
The server uses Ubuntu 18.04 LTS and GCC 7.4.0. RouLette affini-
tizes threads and memory to one NUMA node. With the exception
of Section 6.4, experiments use one worker. In all experiments,
reported numbers are the average of five runs.
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Figure 11: Sensitivity analysis: varying (a) concurrency (b) selectivity (c) number of joins (d) schema type

The experiments use data from TPC-DS [31] (scale factor 10, 8.65
GB in-memory) and Join Order Benchmark, or JOB, [22] (1.79 GB
in-memory). To evaluate RouLette for a wide range of workloads,
we generate a pool of thousands of queries on TPC-DS schema, with
different joins and predicates. To assess learned policies, we use
JOB as it uses real data that violates assumptions that oversimplify
optimization. JOB comprises 113 SPJ queries with 3-16 joins.

We assess RouLette’s ability to optimize any workload it is given.
Thus, we use workload-agnostic scheduling. By sampling queries,
we produce a query stream on which RouLette uses FIFO batching.

All experiments use the same Q-learning hyper-parameters. To
tune p and y, we use grid search to minimize the total response time
for five batches of 64 JOB queries. We get p = 0.21 and € = 0.014.

6.1 Throughput Evaluation

Methodology: This section shows RouLette’s performance im-
provement. We compare RouLette against two query-at-a-time sys-
tems, a vectorized DBMS (DBMS-V) and MonetDB. We also compare
against two online sharing techniques, Stitch& Share and Match&
Share. Stitch& Share composes global plans by sharing common
sub-trees between individual plans produced by PostgreSQL. It is
used in QPipe [16], SharedDB [13]. Match& Share adds each query
to the global plan with minimum additional cost. It is used in Data-
Path [2]. To execute global plans in a common shared engine, we
implement a prototype that uses the batched execution model [13]
and adopts all useful optimizations and operators from RouLette.

To assess RouLette, the performance comparison unfolds in two
steps: (i) a sensitivity analysis spanning large diverse multi-query
workloads, (ii) JOB workloads. Shared-work systems execute each
workload’s queries as a single batch, whereas query-at-a-time sys-
tems execute queries one after the other. The compared metric is
throughput, i.e. number of queries over total execution time.

We omit a comparison against offline sharing, as it cannot scale
to a meaningful batch size. SWO [14], a state-of-the-art algorithm,
takes 137 seconds to optimize a batch of 11 queries, with 4 joins each.
The 11-query batch is the largest SWO could optimize with an one-
hour timeout. For this small batch, RouLette’s throughput is only
4% lower than SWO’s, whereas, for online approaches, throughput
is at least 7% lower. As this Section’s experiments show, for larger
batches, the gap between RouLette and online sharing widens.
Sensitivity Analysis: The experiment examines RouLette’s batch
execution performance under varying workload conditions. The
varying conditions are the batch size, the selectivity and the number
of joins of individual queries, and the schema type. To generate
required workloads, we implement a query generator that takes
the conditions as parameters.

The query generator uses a two-step process: (1) it chooses a
subgraph of the schema as a join graph. It does not join fact tables
of different channels [28]; this occurs only in query 78 of TPC-DS.

(2) it produces predicates to match a target selectivity. To precisely
control selectivity, we extend each TPC-DS table with a uniformly
distributed column with values from 0 to 999 and produce BE-
TWEEN predicates. The predicates are applied to 3 of the query’s
relations, chosen randomly, and have unequal selectivity.

Figures 11a-11d show the throughput. In each Figure, three pa-
rameters are constant and the fourth varies. The default values
are 10% selectivity, 4 joins, Store snowflake sub-schema (similar
to Star Schema and TPC-H), and 512 queries. The query genera-
tor produces 4096 queries per configuration and forms batches by
sampling the queries without replacement.

Varying concurrency: Figure 11a shows that RouLette’s through-
put scales with increasing batch sizes. The available memory re-
stricts the maximum batch size per system. Shared approaches im-
prove their throughput as a function of the batch size because shar-
ing opportunities are increased. RouLette’s throughput grows faster,
as it discovers more opportunities, and, despite adaptation overhead,
overtakes Stitch& Share and Match& Share after 16 and 32-query
batches respectively. RouLette’s maximum speedup is 10.70 over
DBMS-V, the faster of the two DBMS, whereas online sharing’s
maximum speedup is 3.65. Thereupon, RouLette’s throughput hits
a plateau when query-set operations dominate execution time. As
the cost of query-set operations grows linearly to batch size, the
plateau is a bottleneck of the Data-Query model. To further scale
throughput, future work needs to revise the Data-Query model.

Varying selectivity: Figure 11b shows higher throughput for all
selectivities. Response time is increased as a function of selectivity,
hence throughput is decreased. RouLette exploits more opportuni-
ties compared to online sharing approaches; Stitch& Share misses
opportunities as predicates produce different plans for the same
join set, whereas for low selectivity Match& Share fails to exploit
sub-expressions in the existing global plan when planning each
query. For queries without filters (100% selectivity), their opportu-
nity detection limitation is lifted. Out of the query-at-a-time DBMS,
MonetDB performs better for low selectivity, but suffers from in-
termediate materializations for higher selectivity, unlike DBMS-V.

Varying number of joins: Figure 11c shows that sharing is sensi-
tive to join-set diversity. The number of distinct join-sets is max-
imum for 3-4 joins, whereas including few or almost all joins in-
creases homogeneity (all 6-join queries have the same join set).
Each system’s throughput depends on whether sharing can offset
increasing join processing costs. RouLette’s throughput reflects
the effect of homogeneity, decreasing until 3-4 joins and then in-
creasing. It outperforms online sharing when heterogeneity is high,
because it reorders joins to discover opportunities, and benefits as
homogeneity is again increased. However, increasing homogeneity
benefits Match & Share as well, as it can also reorder joins to a
smaller extent. Match & Share retakes the lead for 6-join queries.

Varying the schema: Figure 11d shows that RouLette works best
for homogeneous workloads, but is still effective for diverse queries.
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Figure 13: Policy - batches

The five workloads comprise queries whose join-set is: (i) store_sales
> date_dim < hdemo > item > customer (template), (ii) subgraph
of Store snowflake sub-schema (snowflake-store), (iii) subgraph of
any channel’s snowflake sub-schema (snowflake-all), (iv) subgraph
of Store snowstorm sub-schema (snowstorm-store), and (v) sub-
graph of any channel’s snowstorm sub-schema (snowstorm-all).
RouLette’s speedup decreases with high join-set diversity, as queries
have little work in common. For snowstorm-all, the most diverse
case, RouLette overtakes DBMS-V after 32-query batches. However,
batch size compensates for diversity. RouLette increases throughput
by 3.15x for snowstorm-store and by 1.57x for snowstorm-all, and
it outperforms online sharing, despite materializing fact tables.
Large Queries with Correlated Data Figure 12 shows that RouLette
improves performance, even for queries with many joins and data
correlations that are challenging for optimizers. The workload com-
prises 64-query batches produced by sampling JOB. RouLette out-
performs both DBMS and online sharing. Speedup echoes the re-
sults of snowstorm-all. The experiment excludes Match& Share, as
its custom optimizer supports only uniform data, for which it can
estimate the intermediate result overlap between different queries.
Summary RouLette outperforms query-at-a-time DBMS in all
cases and online sharing when the optimal plan is non-trivial. In
workloads with diverse join sets and schemas, it exposes more
opportunities that online sharing misses. Still, diversity reduces
opportunities for all sharing techniques; increasing homogeneity
using workload-aware batching is a promising optimization. Finally,
it achieves scalability, as it increases throughput with increasing
query counts until Data-Query model dominates execution.

6.2 Quality of Learned Planning

Methodology: The experiment evaluates the ability of policies to
exploit opportunities in both static workloads, processed in batches,
and dynamic workloads, with runtime query admissions. It focuses
on stand-alone policies hence measures the number of intermediate
tuples in joins, which is an implementation-independent metric
for cost. To compute the metric, we add up the log’s output vector
sizes. As joins dominate execution time, we exclude selections.
Static Opportunities: The experiment compares the behavior of
different policies. RouLette processes workloads in batches. It sched-
ules all queries at once hence fully sharing all scans and common
intermediate tuples. We generate 5 batches for each of sizes 1, 2, 4,
8, 16, 32, 64, and 113 by sampling JOB queries without replacement.
Figure 13 shows the cost for varying batch sizes. Each batch cor-
responds to a sequence number based on the size. Size 1 maps to the
range [1,5], size 2 to [6, 10], ..., size 113 to [36,40]. Batches 36-40
are identical to each other. The figure includes 4 different configura-
tions. RouLette is the learned policy. Greedy is the selectivity-based
policy from CACQ and CJOIN. By choosing plans independently
for each query using the learned policy and then sharing common
sub-expressions, Stitch&Share - Sim simulates Stitch&Share. Finally,

Join tuples (mi
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Figure 15: Synthetic schema

RouLette QaaT is the cumulative cost of executing queries one af-
ter the other. RouLette reduces the cost in all cases compared to
RouLette QaaT.

Learning vs Selectivity: The results show that learned policies
choose superior plans. The Greedy policy incurs comparable cost
to the learned policy for small batches, but suffers from high-cost
outliers. Outliers include ~ 7% of single JOB queries. As the batch
size is increased, optimization hazards are increasingly likely to oc-
cur hence penalize most batches. For 64-query batches, the learned
policy produces 3.24x fewer intermediate tuples on average.

Learning scope: Results also show that a global learned policy
(RouLette) outperforms a query-local policy (Stitch&Share — Sim), as
it considers sharing during planning and is preferable to individual
decisions. While the cost is similar up to 8-query batches, RouLette
produces 1.71x fewer tuples for 113 queries.

Dynamic Opportunities: Figure 14 shows the interplay between
sharing and learning. RouLette admits instances of JOB query 17a
one-at-a-time or in batches. We measure the percentage of overlap-
ping input between back-to-back admissions: 0% is query-at-a-time
execution, whereas 100% is single batch execution. The interme-
diate tuples are decreased as a function of the overlap. For small
overlaps, the cost is increased because sharing does not compensate
for restarting learning. An overlap of 10% increases cost by 8% for
single-query admissions. Batching reduces the cost of processing,
as it reduces interference and guarantees opportunities. Admitting
four-query batches for every 40% of the input produces 1.4x fewer
tuples, compared to admitting single queries for every 10%.
Learning Rate: The next experiment evaluates the ability of the
policy to learn plans for workloads with varying complexity. To
vary complexity, we modify TPC-DS. Queries join store_sales with
chains of synthetic relations. At each step, the policy considers one
candidate per chain. We generate synthetic relations by sampling
date_dim with replacement at varying rates. To ensure a large
difference between each query’s best and worst plan, rates are
0.4-0.6 for half of the chains and 1.7-2.5 for the other half. Each
query spans half of the join graph and includes an equal number of
high and low-selectivity joins. We generate workloads with varying
number of chains and relations. Figure 15 shows the schema for
workload "Chains=4,Relations=9".

Figures 16a-16h show the policy’s convergence across the episode
sequence for 64-query batches from various workloads. Plots in-
clude each workload’s parameters. For each episode, it plots the
measured cost and the policy’s estimate of the minimum cost. As
execution progresses and future costs are propagated, the policy’s
estimate is increased and measured cost is decreased; when they
converge, the policy is optimal. The experiment shows that conver-
gence is slower when the state space is broader (more candidates)
and deeper (join size). Figures 16a-16¢ show that, when candidates
are few, the policy converges fast even for large joins. By contrast,
Figures 16d-16h show that, when candidates are many, the policy
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converges only for small joins. Figure 16i plots the intermediate join
tuple ratio for RouLette over the Greedy policy. As joins have no
data correlations, Greedy is near-optimal. The comparison shows
that, when convergence is slow, learned policies suffer from ex-
ploratory decisions. To mitigate the effects of slow convergence
and to learn plans for large schemas, we aim to extend the policy
with mechanisms, such as heuristics.

Summary: Sharing-aware learned policies substantially improve

adaptive processing. They produce fewer tuples compared to selectivity-

based policies and to sharing-oblivious learned policies. Learned
policies permit query admissions at runtime but suffer from in-
terference when the overlap is low. Batching admissions reduces
interference and increase sharing. Finally, learned policies typi-
cally converge within few thousands episodes, but suffer from slow
convergence for workloads on large schemas.

6.3 Effect of Optimizations

Figures 17 and 18 show the benefit from individual optimizations,
applied incrementally, and the breakdown of the execution time
after applying the optimizations. The experiment analyzes two
batches, a 64-query batch of JOB queries and a 512-query batch of
generated queries (default parameters). Joins dominate execution
for both batches. For the JOB batch, pruning is the most impor-
tant optimization, giving 2.05 speedup. For the synthetic batch,
RoulLette’s novel router and grouped filter algorithms are the most
important optimizations: together they result in 1.85 speedup.

6.4 Multi-core Execution

In this section, we evaluate RouLete’s performance when using
multi-core CPUs. RouLette scales up in one NUMA socket.

Figure 19 shows RouLette’s speedup as the number of workers
is increased from 1 to 12. The experiment uses the five batches of
64 JOB queries from Figure 12. Speedup is increased monotonically
for all batches and reaches 8.63-9.04 (71.9-75.3% efficiency).

Figure 20 shows that, for concurrent execution, DBMS-V’s through-
put suffers due to inter-query interference, whereas RouLette’s
benefits. DBMS-V receives and processes queries from 1 to 1024
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clients. When using one client, DBMS-V uses data-parallelism. For
more clients it shares resources across queries. Clients run iso-
lated in the remote NUMA node. Concurrent execution initially
improves throughput up to 2.06x. However, after 64 clients, through-
put is gradually decreased due to interference. DBMS-V runs out of
memory after 1024 queries. RouLette uses all cores for processing
query batches; each batch contains one query per client. RouLette’s
speedup over DBMS-V is increased as a function of concurrency.
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8 CONCLUSION

We have presented RouLette, an adaptive multi-query multi-way
join operator that tackles the limitations of online and offline
sharing. Rather than follow an optimize-then-execute approach,
RoulLette uses runtime adaptation to move sharing-aware optimiza-
tion out of the critical path, restoring scalability. It progressively
explores sharing opportunities using a heuristic based on reinforce-
ment learning. RouLette also proposes optimizations that reduce the
adaptation overhead. The experiments show that RouLette scales to
hundreds of complex queries, unlike offline sharing, and improves
throughput compared to query-at-a-time and online sharing sys-
tems. Hence, it makes inroads on the long-standing problem of
building scalable high-throughput analytical systems.
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