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ABSTRACT

Ad-hoc data models like Json simplify schema evolution and enable
multiplexing various data sources into a single stream. While useful
when writing data, this flexibility makes Json harder to validate and
query, forcing such tasks to rely on automated schema discovery
techniques. Unfortunately, ambiguity in the schema design space
forces existing schema discovery systems to make simplifying, data-
independent assumptions about schema structure. When these
assumptions are violated, most notably by APIs, the generated
schemas are imprecise, creating numerous opportunities for false
positives during validation. In this paper, we propose Jxplain, a
Json schema discovery algorithm with heuristics that mitigate
common forms of ambiguity. Although Jxplain is slightly slower
than state of the art schema extractors, we show that it produces
significantly more precise schemas.
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1 INTRODUCTION

Record-level schema formats like Json are the de-facto data rep-
resentation for rapidly evolving applications like REST APIs, data
loggers, and data portals. Json data is easy to create programmati-
cally, offers a path for flexible schema evolution, and allows easy
nesting of collections and structures. However, when each record
defines its own schema, by (self-)definition it is virtually impossible
to detect data errors or structural changes in new data. For example,
an operations engineer monitoring Json log data may want to be
warned when the structure of newly arriving events changes, as
this may signify errors, or the addition of new event types. How-
ever, detecting such changes first requires a concise description of
“typical” log data — a collection-level schema.
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{"ts":7,"event":"login","user":{"geo":[43.4,-7.2],
"name":"jbond"}}

{"ts":8,"event":"serve","files":["q.jpg","m.jpg"]}

Figure 1: Example Json Data

Repeated attempts at inferring collection-level schemas [3, 5, 7,
18] from Json records run into a common problem here: Nesting
makes it impossible (in general) to assert a single, unambiguous
schema from a set of example Json records. Such techniques, which
are typically designed to summarize Json collections for human
consumption and not for data validation, resort to overgeneralizing.
The resulting schemas are descriptive (i.e., they have high recall),
but achieve this descriptiveness by adopting the broadest, most per-
missive of the ambiguous interpretations of the input data (i.e., they
have low precision). This generality makes the resulting schemas
ill suited for use in data validation.

Example 1. Consider the two Json records in Figure 1. Production

schema discovery systems (e.g., Spark’s [3]) assume that objects in

a collection are instances of a single entity. This assumption leads

them to (correctly) assert that all records in the data must have an

integer ts feld and a string event field. However, it also leads them

to (incorrectly) assume that variation between records is exclusively

caused by optional fields. Intuitively, a record can not simultaneously

be a login and a serve event, but existing schema discovery systems

lack sufficient information to make this distinction. Thus, the proposed

schema will also admit any of the following (invalid) records:

{"ts":9,"event":"huh","user":{...},"files":[...]},
{"ts":10,"event":"wat" }

Because the user field and the files field are independently optional,
the proposed schema will accept not only the two expected record-level

schemas, but also records with both fields, or records with neither.

Existing approaches resolve ambiguity by assuming that the data
conforms to three informal conventions [7]: (i) Collections contain a
single entity type, (ii) Json arrays always encode collections, and (iii)
Json objects always encode tuples. These assumptions are sufficient
for simple, homogeneous Json collections, but break down on the
complex nesting structures appearing in more heterogenous data
sources like web service APIs or Json-formatted system logs.

In this paper, we develop a new Json schema discovery system
called Jxplain. In contrast to existing techniques (e.g., [3, 7]) that
resolve ambiguity through data-independent heuristics, Jxplain’s
heuristics resolve schema ambiguity on a per-instance basis. As we
show, the resulting schemas capture the structure of Json record
collections with negligible loss relative to existing techniques (i.e.,
recall stays high), while simultaneously admitting a far narrower
range of Json records (i.e., precision improves) when compared to
the same state-of-the-art systems.

Concretely, this paper makes the following contributions: (i) We
identify forms of schema ambiguity that cause existing Json schema
discovery techniques to produce low-precision schemas, (ii) We
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𝜏 := B | R | S | null | [ 𝜏1, . . . , 𝜏𝑁 ] | { 𝑘1 : 𝜏1, . . . , 𝑘𝑁 : 𝜏𝑁 }
Figure 2: Json’s Typesystem

present Jxplain, a general framework for heuristically resolving
this ambiguity, (iii) We show the feasibility of Jxplain by propos-
ing specific heuristics for detecting and resolving these forms of
ambiguity, (iv) We show experimentally that Jxplain with these
heuristics creates schemas with significantly higher precision than
state-of-the-art schema discovery, with negligible change in recall.

2 BACKGROUND AND NOTATION

The goal of Json schema discovery is to re-construct a hidden
ground truth schema — a description of a set of valid Json records
— from a finite collection of records sampled from this set. An ideal
algorithm produces a generated schema with high recall: all records
in the ground truth schema should be part of the generated schema,
even if they do not appear in the sample. For schema validation,
it is also critical that the algorithm produce a schema with high
precision: records not in the ground truth schema should not be part
of the generated schema. Ideally, an algorithm would also produce
a generated schema with a concise description. In this section, we
adapt the notation of Baazizi et. al. [7] to allow us to define precision
and recall more precisely.

Data values in Json are weakly typed andmay be either primitive
or complex. As summarized in Figure 2, a primitive Json value is
a boolean value (B), a numeric value (R), a string value (S), or the
value null (null). A complex Json value is any array or object. A
Json array of type [ 𝜏1, . . . , 𝜏𝑁 ] is an ordered sequence of𝑁 values
with types 𝜏1 . . . 𝜏𝑁 . A Json object of type { 𝑘1 : 𝜏1, . . . , 𝑘𝑁 : 𝜏𝑁 }
is a collection of mappings from keys 𝑘1 . . . 𝑘𝑁 to values with types
𝜏1 . . . 𝜏𝑁 . We define the kind of a type 𝜏 to be 𝜏 if it is primitive, or
the symbol O or A if 𝜏 is an object or array respectively:

kind(𝜏) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜏 if 𝜏 ∈ { B,R, S,null }
O if 𝜏 = { 𝑘1 : 𝜏1, . . . , 𝑘𝑁 : 𝜏𝑁 }
A if 𝜏 = [ 𝜏1, . . . , 𝜏𝑁 ]

Example 2. The Json object with ts 7 in Figure 1 has type:{︁
ts : R, event : S, user : { name : S, geo : [ R,R ] }

}︁
The kind of the record is O. The field event has kind S.
If 𝜏 is an object (resp., array), we write keys(𝜏) to denote the set

of keys mapped by the object (resp., the valid indices of the array;
we also refer to these as keys). We write 𝜏 .𝑘 to denote the type of
the value nested under key 𝑘 . We refer to this as a field type of 𝜏 .
Denote by p a path, a sequence of keys p1, . . . , p𝑛 .

Definition 1 (Schema). A schema S is a set of types 𝜏 ∈ S. We

say that 𝜏 is admitted by the schema if it is an element of the set.

When clear from context, we abuse notation using types (e.g., 𝜏 )
to denote singleton schemas (i.e., { 𝜏 }). We define the following
three shorthands for compactly representing nested schemas:
Optional Fields. We add a question mark to a field name to mark
it as optional; The resulting schema accepts object types with any
subset of the fields marked optional.{︂

𝑘1 : 𝜏1, . . . , 𝑘𝑛 : 𝜏𝑛, 𝑘′1
? : 𝜏 ′1, . . . , 𝑘

′
𝑚

? : 𝜏 ′𝑚
}︂ △
={︂ {︂

𝑘1 : 𝜏1, . . . , 𝑘𝑛 : 𝜏𝑛, 𝑘′ℓ1 : 𝜏′ℓ1 , . . . , 𝑘
′
ℓ𝑝

: 𝜏′ℓ𝑝
}︂ |︁|︁|︁ {︁ ℓ1, . . . , ℓ𝑝 }︁

⊆ [𝑚]
}︂

SchemaNesting.Wewrite { 𝑘 : S, . . . } (resp., [ S, . . . ]) to denote
the schema admitting like-kinded types with corresponding field

types admitted by the schema S. That is:
{ 𝑘1 : S1, . . . , 𝑘𝑁 : S𝑁 }

△
= { { 𝑘1 : 𝜏1, . . . , 𝑘𝑁 : 𝜏𝑁 } | 𝜏𝑖 ∈ S𝑖 }

[ S1, . . . , S𝑁 ]
△
= { { 𝜏1, . . . , 𝜏𝑁 } | 𝜏𝑖 ∈ S𝑖 }

Collection Types. We write { ∗ : S }∗ (resp., [ S ]∗) to denote a
collection schema that admits any object-kinded type (resp., array-
kinded) who’s field types are drawn from S.
{ ∗ : S }∗ △=

{︁
{ 𝑘1 : 𝜏1, . . . , 𝑘𝑁 : 𝜏𝑁 } | 𝑁 ∈ N0 ∧ 𝜏1, . . . , 𝜏𝑁 ∈ S

}︁
[ S ]∗ △=

{︁
[ 𝜏1, . . . , 𝜏𝑁 ] | 𝑁 ∈ N0 ∧ 𝜏1, . . . , 𝜏𝑁 ∈ S

}︁
2.1 Schema Discovery

We are given a collection of records with𝑁 typesR = { 𝜏1, . . . , 𝜏𝑁 }
drawn from some hidden ground truth schema SG . The schema
discovery problem is to “merge" these types into a new schema
definition (denoted merge (R)) that closely approximates SG . This
derived schema should have high precision, admitting only ground
truth types (i.e., |merge (R)−SG ||SG∪merge (R) | ≈ 0) and high recall, admitting all

ground truth types (i.e., |SG−merge (R) ||SG∪merge (R) | ≈ 0). We would also like the
derived schema to have a compact representation, avoiding explicit
type enumeration by using the shorthands defined above.
Naive Discovery. Naively, we might take the sample records to be
the definitive set of types admitted by SG . This is analogous to the
L-reduction of Baazizi et. al. [7]. In other words we define:

mergenaive (R)
△
= { 𝜏1, . . . , 𝜏𝑁 }

This approach guarantees high precision, but (i) rejects types miss-
ing from the input (i.e., has low recall) and (ii) is not compact.

Example 3. Applied to the two records in Figure 1, naive discovery

simply returns a set of the two distinct schemas.{︁
{ ts→ S, event→ S, user→ { geo→ [ R,R ] , name→ S } } ,

{ ts→ S, event→ S, files→ [ S, S ] }
}︁

Arrays as Collections. Json arrays are commonly used to encode
nested collections. For array-kinded records, existing algorithms
discover the schema of the nested collection by recursively applying
schema discovery to the union of the array’s elements.

mergeA (R)
△
= [ merge ( { 𝜏𝑖 | [ 𝜏1, . . . , 𝜏𝑁 ] ∈ R, 𝑖 ∈ [𝑁 ] }) ]∗

Example 4. The field files in Figure 1 would be merged into a

collection of strings: [ S ]∗, because all of its elements have kind S.
Objects as Tuples. Json objects are commonly used to encode
tuples. Accordingly, variation between objects in a collection is
assumed to be the result of optional fields. Typically, fields appear-
ing in all input objects are mandatory (with keys keys∀(R)), while
fields appearing in only some are optional (with keys keys∃ (R)).

keys∀ (R)
△
=
⋂︂
𝜏∈R

keys(𝜏) keys∃ (R)
△
=
⋃︂
𝜏∈R

keys(𝜏) − keys∀ (R)

The merge operation groups nested field types by their key and
recursively merges groups. Defining { 𝑘1, . . . , 𝑘𝑘 }

△
= keys∀(R),

{ 𝑘𝑘+1, . . . , 𝑘𝑁 }
△
= keys∃ (R), and S𝑖

△
= merge ({ 𝜏 .𝑖 | 𝜏 ∈ R }):

mergeO (R)
△
=
{︁
𝑘1 : S1 . . . 𝑘𝑘 : S𝑘 , 𝑘?

𝑘+1 : S𝑘+1 . . . 𝑘
?
𝑁 : S𝑁

}︁
Standard Discovery. The classical approach to schema discovery,
used in production systems like Spark’s Json data source [3] or
Oracle’s Json Data Guide [18], is modeled by Baazizi et. al.’s K-
reduction [5], defined formally as follows:

mergeK (R)
△
= mergenaive ({ 𝜏 | 𝜏 ∈ R − O − A })
∪ mergeA ({ 𝜏 | 𝜏 ∈ R ∩ A })
∪ mergeO ({ 𝜏 | 𝜏 ∈ R ∩ O })

This approach uses naive merge for primitive types and recursively
merges arrays and objects as collections or tuples, respectively.
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3 AMBIGUOUS SCHEMA EXTRACTION

In summary, existing schema discovery techniques decide how to
interpret a collection of records by the kind of the records in the
collection: Arrays are always collection-like, objects are always

tuple-like, and collections always contain a single entity. We now
highlight examples of Json in the wild that that violate these as-
sumptions, leading to imprecise schemas. A detailed description of
all datasets discussed can be found in Section 7.

3.1 Arrays as Tuple-Like Structures

Example 5. Consider the user.geo field of Figure 1. Although

encoded as an array, this field’s geospatial coordinates are actually

a 2-element tuple and not a collection of numbers. 2D coordinates

would be more precisely described by the schema: [ R,R ].
Many web service APIs including Twitter [32] and Yelp [35]

follow the GeoJSON standard [11] and use 2-element arrays for
coordinates. Similarly, arrays sometimes encode tuples in settings
where Json data is naively generated from CSV files [22]. In each
case, treating all arrays as collections (e.g., [ R ]∗ instead of [ R,R ])
results in unnecessarily permissive schemas.
3.2 Objects as Collections

Example 6. Consider the pharmaceutical dataset [25] described in

the experiments section, which has a collection-like object that maps

drug names to prescription counts:

{"cms_prescription_counts":
{"DOXAZOSIN MESYLATE": 26,
"MIDODRINE HCL": 12, ... }, ...}

Although encoded as an object, this field is a nested collection, where

each element maps keys (drugs) to values (prescription counts). A

better schema for this dataset would model it as a collection (i.e,

{ ∗ → R }∗). We also observed collection-style objects in many other

API datasets, including Yelp’s checkins dataset:

{"time": {"Thursday": {"15:00": 1},
"Saturday": {"23:00": 1}},

"business_id": "..."}

. . . as well as the matrix chat server event log [19]:

{"users": {"Alice": 100, "Bob": 100, ...},...}

Typical schema discovery treats all objects as tuples, always
assuming missing elements to be optional fields. In the example,
the use of optional attributes is very verbose, as in each case the
descendents share a schema. Furthermore, optional attributes can
not describe new field names (e.g., new medications or user names)
as they are added, as well reducing the schema’s recall.
3.3 Multi-Entity Collections

Log data and event-based web APIs are often composite streams of
multiple data types. For example, GitHub provides API access to a
stream of status updates, consisting of 49 event types, including:

{ "payload": {"size":1, "head":"...",
"commits":[ { "distinct":true, "sha":"...",

"message": "...", ... }, ... ], ...
"type":"PushEvent" }

{ "payload": {"action":"opened", "issue":{ ... },
"created_at":"2018 -08 -22 T16 :48:29Z", ... }
"type":"IssuesEvent" }

Multi-entity collections can also be found in nested collections, like
the New York Times article API [31], which includes a multimedia
object array containing summary metadata:
{"multimedia": [

{"legacy": [], ...},
{"legacy": { "xlarge": "03Prose1 -articleLarge.jpg",

"xlargewidth": 600,
"xlargeheight": 450}, ...},

{"legacy": { "thumbnail": "03Prose1 -thumbStandard.jpg",
"thumbnailwidth": 75,
"thumbnailheight": 75}, ...} ], ...}

Though object fields (e.g., type) are shared between all records,
multiple tuple-like structures appear. Typical schema discovery pro-
duces a single unified schema spanning all records. Such schemas
are unnecessarily permissive, admitting arbitrarymixtures of fields.
4 SYSTEM OVERVIEW

We now introduce Jxplain, a general framework for implement-
ing ambiguity-aware schema discovery. To represent generated
schemas, we use a subset of the Json Schema specification1 cap-
tured by the following grammar SJ . Primitive types are explicit:

SJ := R | S | B | null
Tuple-like arrays and objects are defined in terms of nested schemas:

| ArrayTuple(SJ ,SJ , . . .)

| ObjectTuple(𝑘 : SJ , 𝑘 : SJ , . . . , 𝑘? : SJ , 𝑘? : SJ , . . .)
Collection-like complex types are similarly defined in terms of a
single nested schema, and a union type combines alternatives:

| ArrayCollection(SJ ) | ObjectCollection(SJ )
| Union(SJ ,SJ , . . .)

This grammar mirrors the schema shorthands given in Section 2
and its semantics follow naturally. We abuse notatation and use
expressions in this grammar interchangeably with schemas.

As an example, Algorithm 1 implements K-reduction as pre-
sented in Section 2. Via helper functions (Algorithms 2 and 3),
array-kinded types are always intepreted as single-entity collec-
tions, while object-kinded types are always intepreted as tuples.
Both helper functions are parameterized by a recursive merge
heuristic, K-reduction itself in this example. The central feature
of K-reduction is its distributivity over union [7]:

merge_K(R1∪R2) = merge_K(merge_K(R1)∪merge_K(R2))
Thus, merge_K can be expressed as an associative fold operation.
Considering that the encoded representation is typically smaller
1https://json-schema.org/

Algorithm 1 merge_K(R)
In: R: A bag of types
1: returnUnion(R ∩ { R, S,B,null } ,

merge_array_coll(merge_K, R ∩ A),
merge_object_tuple(merge_K, R ∩ O))
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Algorithm 2 merge_array_coll(merge, R)
In: merge: A recursive merge function
In: R: A bag of array-kinded types
1: returnArrayCollection(merge({ 𝜏 .𝑘 | 𝑘 ∈ keys(𝜏), 𝜏 ∈ R }))

Algorithm 3 merge_object_tuple(merge, R)
In: merge: A recursive merge function
In: R: A bag of object-kinded types
1: 𝑘1, . . . , 𝑘𝑘 ← keys∀(R) 𝑘?1, . . . , 𝑘

?
ℓ
← keys∃ (R)

2: return ObjectTuple(
𝑘1 → merge({ 𝜏 .𝑘1 | 𝜏 ∈ R }), . . . ,

𝑘𝑘 → merge({ 𝜏 .𝑘𝑘 | 𝜏 ∈ R }),
𝑘?1 → merge(

{︁
𝜏 .𝑘?1

|︁|︁ 𝑘?1 ∈ keys(𝜏), 𝜏 ∈ R }︁
), . . . ,

𝑘?
ℓ
→ merge(

{︁
𝜏 .𝑘?

ℓ

|︁|︁ 𝑘?
ℓ
∈ keys(𝜏), 𝜏 ∈ R

}︁
))

Algorithm 4 Jxplain (R)
In: R: A bag of types
1: SA ← ∅ SO ← ∅ 𝐴← R ∩A 𝑂 ← R ∩ O
2: if |𝐴| > 0 then
3: if is_collection(𝐴) then
4: SA ← merge_array_coll(Jxplain, 𝐴)
5: else

6: 𝐴1, . . . , 𝐴𝑘 ← partition(𝐴)
7: SA ←Union(merge_array_tuple(Jxplain, 𝐴1), . . . ,

merge_array_tuple(Jxplain, 𝐴𝑘 ) )
8: if |𝑂 | > 0 then
9: if is_collection(𝑂) then
10: SO ← merge_object_coll(Jxplain, 𝐴)
11: else

12: 𝑂1, . . . ,𝑂𝑘 ← partition(𝑂)
13: SO ←Union(merge_object_tuple(Jxplain,𝑂1), . . . ,

merge_object_tuple(Jxplain,𝑂𝑘 ) )
14: return Union(R ∩ { R, S,B,null } ,SA ,SO)

than the size of the input type bags, it is extremely amenable to
distributed computation. Unfortunately, limiting ourselves to asso-
ciative folds limits the use of global statistics about the collection,
in turn limiting available strategies for resolving ambiguity.

4.1 Naive Implementation

Jxplain’s merge algorithm (sketched in simplified form as Algo-
rithm 4) relaxes this restriction, considering the data as a whole
when deciding how to resolve ambiguity. We first describe the
simplified algorithm, before discussing performance optimizations.
Broadly, two decisions need to be made: (i) Does a bag of array- or
object-kinded types encode a collection or a tuple?, and (ii) Given
a bag of tuples, are there multiple entities represented in the bag?
These decisions are encoded in the is_collection and partition
helper heuristics, which we discuss in greater detail below. If the
elements of the input bag are determined to be collections, nested
types are merged together to infer the collection-nested type (Al-
gorithm 2 and its object analog). If the input bag’s elements are

Schema

JSON

Entities

2

3

1

Collections EntitiesEntitiesEntities

Figure 3: Stages of Extraction in Jxplain

tuples, Jxplain partitions the bag into individual entities and infers
a schema for each individually (Algorithm 3 and its array analog).

4.2 Jxplain

We now outline the details of Jxplain implemented on Apache
Spark, and in particular how we address bottlenecks in the simpli-
fied Algorithm 4 presented above.
Parallelization.We expect the two heuristics to need to see the en-
tire input before producing an output, so the simplified Algorithm 4
is not an associative fold, and so not ammenable to distribution.
Jxplain instead decouples these heuristics into separate compu-
tation stages, each taking one pass over the data as illustrated in
Figure 3. Pass ① invokes the is_collection heuristic to determine
the set of paths at which a collection is present. Pass ② adapts the
partition heuristics to precompute a strategy for partitioning en-
tities. Finally Algorithm 4 runs as pass ③ to synthesize the schema.
Sampling. The need for multiple passes makes computing schemas
more expensive. One mitigation is to run Jxplain on only a small
sample of training data. As we show in the Section 7, entropy-based
collection detection is surprisingly robust (even a 1% sample is
often almost perfect). The notable exception is when the schema
involves a rare object field, array index, or collection-nested type.
To mitigate this problem, Jxplain can be used iteratively with the
following steps: (i) Derive a schema from a small sample of the
training data, (ii) Validate the remainder of the training data, (iii)
Add samples failing validation to the sample and repeat.
4.3 Helper Heuristics

Jxplain relies on two heuristics: is_collection and partition
in Algorithm 4. We now outline the design goals for both heuristics
before presenting two specific realizations in Sections 5 and 6.
Detecting Nested Collections. Following prior work in schema
extraction (e.g., [5, 7]), Jxplain focuses on collapsing nested struc-
tures into either tuples or collections. Tuples bound the set of al-
lowed fields (resp., positions) and allow each field to have distinct
types, creating a more precise schema when the set of fields is
stable. Collections do not restrict which fields are allowed and use
a single joint schema across all fields, creating a more compact
schema when fields share a common type. A compatible heuristic
needs to chose between these two strategies.

Concretely Jxplain expects this heuristic to be implemented as
a process that takes the full collection of Json types as input and
produces a set of paths that should be interpreted as collections.
Multi-Entity Collections.We refer to each ObjectTuple or Ar-
rayTuple element in a schema as an entity. Prior work considers
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two extremes when deciding how to extrapolate entities from col-
lections of types. Reducing all input types to a single entity (as in
K-reduction) with multiple optional fields, creates a high-recall,
low-precision schema. Conversely, constructing one entity with
no optional fields for each input type (as in L-reduction) creates a
high-precision, low-recall schema. A compatible heuristic needs to
select a point on the continuum between these two extremes.

Concretely, Jxplain expects this heuristic to be implemented as
a process that takes a bag of tuple-like types as input and outputs a
deterministic algorithm for partitioning these input types by entity.

5 DETECTING COLLECTIONS

Json objects and arrays can both encode nested collections or nested
tuple-like structures. This section describes a default heuristic for
Jxplain that distinguishes between these cases. We initially target
object-kinded types as inputs, before generalizing to arrays below.{︁

𝑘1,1 : 𝜏1,1, . . . , 𝑘1,𝑀1 : 𝜏1,𝑀1

}︁
, . . . ,{︁

𝑘𝑁,1 : 𝜏𝑁,1, . . . , 𝑘𝑁,𝑀𝑁
: 𝜏𝑁,𝑀𝑁

}︁
The goal is to mark the objects as (a) collection-like (i.e., Object-
Collection), or (b) tuple-like (i.e., ObjectTuple). Jxplain’s default
heuristic makes this decision relying on a simple observation: In a
collection, keys are more likely to vary than in a tuple, while nested
types are likely to be more self-consistent.

5.1 Key-Space Entropy

Variation between the key sets (i.e., keys(𝜏)) of the input objects
can be explained in two ways. If we believe that the input objects
are tuple-like, keys that only appear in some objects are optional.
Conversely, if we believe that the input objects are collection-like,
variation is normal, as each collection maps a different set of keys.
We would expect less variation in the former case, as any manda-
tory fields will be present in all tuples, and the number of fields
of a tuple (dozens) is, in our experimental data, smaller than the
domain of collections (hundreds or thousands). Thus, we expect
the distribution of keys in tuple-like objects to be more limited. We
quantify this variation through the corresponding entropy measure:

EK = −
∑︂
𝑘

𝑃𝑘 log𝑃𝑘 𝑃𝑘 =

|︁|︁{︁ 𝑖 | 𝑖 ∈ [𝑁 ], 𝑗 ∈ [𝑀𝑖 ], 𝑘𝑖,𝑗 = 𝑘
}︁|︁|︁

𝑁

For each key, Jxplain computes the probability that an object
selected uniformly at random contains the key (𝑃𝑘 ). The resulting
Key-Space entropy (EK ) is a numerical value that captures variation
in keys across the input objects, with higher values marking the
objects as more collection-like.

Example 7. Consider the two records of Figure 1. The ts and event

keys appear in both records (e.g., 𝑃ts = 1) and have an entropy of 0
(= −1 log 1). The user and files keys each appear in one record (e.g.,

𝑃user = 0.5) and have entropies of 0.35 (= − 1
2 log

1
2 ). Combined, the

total Key-Space entropy of the records is EK = 0.70 (= 2 · 0 + 2 · 0.35).

5.2 The Similar Types Constraint

As variation increases between the field types of an object, the
resulting collection-like schema becomes both less precise and
less concise. This suggests that we would like an entropy measure
similar to key-space entropy for types, with a higher “type entropy"
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Figure 4: Yelp nested collection key-space entropy

marking objects as more tuple-like. However, with optional fields
and multiple levels of collection nesting, the number of distinct
nested types grows exponentially and computing a type entropy
score becomes prohibitively expensive. Instead, Jxplain adopts a
constraint based on the following type similarity rule:

𝜏1 ≈ 𝜏2
△
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true if 𝜏1 = null or 𝜏2 = null

𝜏1 = 𝜏2 if kind(𝜏1) ∈ { B,R, S }
∀𝑖 : 𝜏1 .𝑖 ≈ 𝜏2 .𝑖 with 𝑖 ∈ keys(𝜏1) ∩ keys(𝜏2)

Nulls are similar to anything, while primitive types are similar only
to themselves and null. Like-kinded complex types are similar if
nested elements at matching keys or positions are also similar. For
a collection of objects to be collection-like, we require pairwise
similarity for all objects in the collection. Similarity is not transi-
tive: two objects with a dissimilar field can be similar to an object
omitting this field. However, similarity is subsumptive: If 𝜏1 ≈ 𝜏2
and (𝜏1 ∪ 𝜏2) ≈ 𝜏3, then 𝜏1, 𝜏2 ≈ 𝜏3. A linear scan can accumulate a
maximal object unioning all fields encountered, while checking for
similarity to this maximal object, and by extension its components.

5.3 Differentiating Tuples and Collections

The input objects are considered tuples if (i) two nested values have
dissimilar types, or (ii) the key-space entropy is below a threshold.
Otherwise, the objects are considered to be nested collections. This
process is summarized in Algorithm 5.
Selecting a Key-Space Entropy Threshold. While a threshold
for marking a set of types as collection-like is required, we found
that the precise value of this threshold is relatively unimportant
for two reasons: First, we found optional fields to be rare. Second,
Figure 4 shows the distribution of Key-Space entropy in the Yelp
dataset introduced in Section 7: Each point is one complex-kinded
path with self-similar nested elements. Note the multi-modal distri-
bution: Nearly all potential collections have a near-zero, or a very
high entropy. Other datasets were similar. This suggests that the
heuristic’s reliability is minimally sensitive to the precise threshold

selected. Our experiments arbitrarily use a threshold of 1.

5.4 Entropy For Arrays

Like Json objects, arrays allow nesting. Although used almost ex-
clusively to represent nested collections, specific use-cases treat
arrays more like tuples. For example, the Twitter API encodes coor-
dinates as 2-element arrays (i.e., latitude and longitude with type

Research Data Management Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1736



Algorithm 5 Collection Detection Heuristic

In: R (a bag of object-kinded record types)
Out: A designation: Collection or Tuple
1: RecordCount = 0; KeyCount = { ∗ : 0 }; ET = EK = 0
2: for all 𝜏 ∈ R do

3: RecordCount += 1; KindCount = { ∗ : 0 }
4: for all key ∈ keys(𝜏) do
5: KeyCnt[key] += 1 ; KindCount[kind(𝜏 .key)] += 1
6: for all (kind : count) ∈ KindCount do

7: ET += count
|keys(𝜏) | log

(︂
count
|keys(𝜏) |

)︂
8: if ET > 0 then return Tuple

9: for all (key : count) ∈ KeyCount do

10: EK += count
RecordCount log

(︂
count

RecordCount

)︂
11: if EK ≤ 1 then return Tuple ⊲ Threshold value
12: else return Collection

[ R,R ]), while other applications encode rows of a CSV file as fixed-
width arrays [22]. The problem of distinguishing collection-like and
tuple-like arrays is analogous to objects. The type constraint maps
naturally to arrays, while key-space entropy is computed from the
distribution of array lengths 𝑃ℓ , rather than the set of keys.

EK = −
∑︂
ℓ

𝑃ℓ log𝑃ℓ 𝑃ℓ =
| { 𝑖 | 𝑖 ∈ [𝑁 ], ℓ = 𝑀𝑖 } |

𝑁

6 MULTI-ENTITY COLLECTIONS

The GitHub events protocol defines 49 event schemas on a human-
curated documentation page2. By contrast, existing schema discov-
ery produces one big schema with fields from all events. Nearly
every field is optional, making the schema imprecise. Our aim is to
recover a set of core entities with distinct schemas. We character-
ize entity discovery as follows: Assume some “ground-truth” Json
schema SG that is a union of 𝐾 ObjectTuple elements (𝐾 > 0).
We are given sets of keys (i.e., key sets) of 𝑁 object-kinded records
sampled from these entities, with the obvious extension to arrays.{︁

𝑘1,1, . . . , 𝑘1,𝑀1

}︁
, . . . ,

{︁
𝑘𝑁,1, . . . , 𝑘𝑁,𝑀𝑁

}︁
The entity discovery problem is to find approximately 𝐾 schemas
S that union to replicate SG as closely as possible.

6.1 Entity Discovery

The primary challenge of entity discovery arises from a single
source: A field present in only one of two training objects could
be interpreted as (i) an optional field of a single entity, or (ii) a
distinguishing feature separating two distinct entities.

Example 8. Both of these schemas admit every record in Figure 1.

S1 =
{︁
{ ts : R, event : S, user : { . . . } } ,
{ ts : R, event : S, files : [ S ] }

}︁
S2 =

{︂ {︂
ts : R, event : S, user? : { . . . } , files? : [ S ]

}︂ }︂
2A limitation of manual schema curation: At time of writing, this page was out of date.

S1 encodes two distinct entities (one for each event type), while S2
uses a single entity with optional fields.

At one extremeL-reduction considers each record to be a distinct
entity (i.e., 𝐾 = 𝑁 , modulo duplicates). This approach is not only
verbose, but does not generalize beyond the specific schemas in the
training data. Taking the latter approach as a default we can assume
that all training objects are a single entity (i.e., 𝐾 = 1). This solution
is concise, but over-generalizes, admitting many more types than
the original schema would. Our challenge is to balance between
these two extremes (i.e., 1 ≤ 𝐾 ≤ 𝑁 ).

A natural solution is clustering similar records together through
a classical algorithm like k-means. However, classical clustering
presents two challenges. First, 𝐾 may not be known ahead of time.
Even if 𝐾 is known, a more subtle issue arises when the entities
of SG have different numbers of attributes. This asymmetry poses
a problem for classic measures of similarity where each field is
weighted equally (e.g., the Jaccard index between key-sets).

Example 9. For example, the Yelp photos table has 4 manda-

tory fields, while the business table has 20, most of which are op-

tional. Both photos and business share exactly one mandatory

field: business_id. While a business record missing 17 optional fields

shares only 1 field in common with a photos record. Between them

there are 6 distinct fields (1 shared, 3 photo-only, 2 business-only).

Thus, the Jaccard index considers this buisness more similar to a photo

(
1
6 = 0.167) than to a business with all 20 attributes (

3
20 = 0.15).

Bi-Clustering. Ideally, we could derive a distance measure that
accounts for entity size, for example by reducing the weights of
features in large entities. However to do this, we need to know the
entities, which rather defeats the purpose. Thus, entity detection is
an example of a bi-clustering problem [26], a problem where we
need to simultaneously group records by feature co-occurrence,
while also grouping features by co-appearance in records.

6.2 Bimax

Jxplain adopts a simple, yet surprisingly robust and commonly
used bi-clustering technique called Bimax [24]. Originally targeted
at gene expression analysis, Bimax eschews distance measures in
favor of a simpler greedy subset/superset clustering strategy. Algo-
rithm 6 summarizes the original Bimax algorithm, which greedily
selects the largest key set (𝑘𝑚𝑎𝑥 ; line 4) and partitions the remaining
records into three groups: (i) strict subsets of 𝑘𝑚𝑎𝑥 (K𝑠𝑢𝑏 ), (ii) key-
sets overlapping with 𝑘𝑚𝑎𝑥 (K𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ), and (iii) key-sets disjoint
with 𝑘𝑚𝑎𝑥 (K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 ). Preserving the original order within each
partition, partitions are rearranged as K𝑠𝑢𝑏 ,K𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ,K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 ,
and the algorithm iteratively sorts the latter two. Although we omit
field order here, it is sorted analogously.

The resulting sort order places subsets (K𝑠𝑢𝑏 ) closest, partially
overlapping sets (K𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ) slightly further away, and fully disjoint
subsets (K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 ) furthest away. The Bimax algorithm has several
compelling advantages. First, subset relationships are independent
of the size of each entity, mitigating the entity size skew problem.
Second, the algorithm does not need to know the number of entities
upfront, as it simply sorts records to put more similar records closer
to one another. However, as we need the results clustered into
entities, Bimax can not be applied directly. A naive Bimax-inspired
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Algorithm 6 Bimax

In: K : a list of sets of keys.
Out: K re-ordered with similar key-sets nearby.
1: Sort K in descending order of key-set size.
2: 𝑖 ← 1
3: while 𝑖 < |K | do
4: 𝑘𝑚𝑎𝑥 ← K[𝑖]
5: K𝑖 ← { K[ 𝑗] | 𝑖 ≤ 𝑗 ≤ |K| }
6: K𝑠𝑢𝑏 = { 𝑘 | 𝑘 ⊆ 𝑘𝑚𝑎𝑥 , 𝑘 ∈ K𝑖 }
7: K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡 = { 𝑘 | 𝑘 ∩ 𝑘𝑚𝑎𝑥 = ∅, 𝑘 ∈ K𝑖 }
8: K𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = K𝑖 − K𝑠𝑢𝑏 − K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡
9: Sort K[𝑖, . . . , |K |] on K𝑠𝑢𝑏 < K𝑜𝑣𝑒𝑟𝑙𝑎𝑝 < K𝑑𝑖𝑠 𝑗𝑜𝑖𝑛𝑡

⊲ Preserve existing order within each set
10: 𝑖 ← 𝑖 + |K𝑠𝑢𝑏 |

Algorithm 7 Bimax-Naive

In: K : an ordered list of key-sets.
Out: K𝑛𝑎𝑖𝑣𝑒 : A set of key-set clusters.
1: Sort K in descending order of key-set size.
2: 𝑖 ← 1
3: while 𝑖 < |K | do
4: Repeat Bimax lines 4-10.
5: Add the cluster K𝑠𝑢𝑏 to K𝑛𝑎𝑖𝑣𝑒

clustering algorithm (Algorithm 7) builds entities out of the K𝑠𝑢𝑏
sets constructed by the Bimax function, returning every such set
as one cluster.

Unfortunately, this naive algorithm has a limitation: optional
fields. Each cluster is seeded from a maximal record (of which every
record in the cluster must be a subset), which becomes less likely
to appear in the input data as more optional fields appear.

Example 10. Consider an entity with 𝑁 optional fields, each inde-

pendently present in any individual record with probability 𝑝 . To have

even a 50% chance of seeing a maximal record requires

(︂
1
𝑝

)︂𝑁
example

records. For example, with 10 optional fields, each with appearing

with probability 0.1, we would need to see (in expectation) 10 trillion
records to see a maximal record.

6.3 Greedy Merge

To avoid this blowup in the number of records required, we need a
way to coalesce clusters together. Simply linking entities that share
keys is insufficient, as a small number of fields (e.g., foreign keys)
may be shared by multiple entities. Jxplain adopts a simple greedy
heuristic summarized in Algorithm 8.

Proceeding in reverse insertion order (i.e., smallest-first), the
algorithm iteratively selects candidate entities 𝐾𝑐𝑎𝑛𝑑 , each with
maximal element 𝑘𝑐𝑎𝑛𝑑 . The algorithm then attempts to find a
minimal set-cover for the maximal element among the maximal
elements of the remaining entities (line 4). If such a cover exists, the
algorithm removes the covering entities from further consideration
(line 6), adds them to the candidate entity (line 7), synthesizes a
new maximal element for the resulting set (line 8), and attempts

Algorithm 8 GreedyMerge

In: K𝑛𝑎𝑖𝑣𝑒 : The output of Bimax-Naive.
Out: K𝑚𝑒𝑟𝑔𝑒 : A list of merged key-set clusters.
1: for 𝐾𝑐𝑎𝑛𝑑 ∈ K𝑛𝑎𝑖𝑣𝑒 do ⊲ In reverse order of insertion
2: 𝑘𝑐𝑎𝑛𝑑 ← the maximal element of 𝐾𝑐𝑎𝑛𝑑
3: loop

4: Find minimal K𝑐𝑜𝑣𝑒𝑟 ⊆ (𝐾𝑛𝑎𝑖𝑣𝑒 − { 𝐾𝑐𝑎𝑛𝑑 })
s.t. 𝑘𝑐𝑎𝑛𝑑 ⊆

⋃︁
𝑘∈𝐾 ;𝐾 ∈K𝑐𝑜𝑣𝑒𝑟

𝑘

5: if 𝐾𝑐𝑜𝑣𝑒𝑟 exists then
6: K𝑛𝑎𝑖𝑣𝑒 ← K𝑛𝑎𝑖𝑣𝑒 − K𝑐𝑜𝑣𝑒𝑟
7: 𝐾𝑐𝑎𝑛𝑑 ← 𝐾𝑐𝑎𝑛𝑑 ∪ (

⋃︁K𝑐𝑜𝑣𝑒𝑟 )
8: 𝑘𝑐𝑎𝑛𝑑 ← 𝑘𝑐𝑎𝑛𝑑∪ every new key in K𝑐𝑜𝑣𝑒𝑟
9: else break

10: Add 𝐾𝑐𝑎𝑛𝑑 to K𝑚𝑒𝑟𝑔𝑒
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Figure 5: Memory comparison: Yelp

to repeat the process. If no cover exists, the algorithm emits the
current entity (line 10) and continues with the next candidate.

Example 11. Consider 4 entities discovered by Bimax-Naive over
keys 𝐴, 𝐵,𝐶, 𝐷, 𝐸, with maximal elements:

K𝑛𝑎𝑖𝑣𝑒 = { 𝐸1 : {𝐴, 𝐵, 𝐸 } 𝐸2 : {𝐵,𝐶, 𝐸 } 𝐸3 : {𝐶,𝐷, 𝐸 } 𝐸4 : {𝐵,𝐷 }}

The algorithm begins with the final (and smallest) entity 𝐸4. The
union of the maximal elements of 𝐸2 and 𝐸3 is a superset of 𝐸4’s max-

imal element, so GreedyMerge links all three into a new candidate

entity with (synthesized) maximal element {𝐵,𝐶, 𝐷, 𝐸} and removes

𝐸2 and 𝐸3 from further consideration. The only remaining entity, 𝐸1,
can not form a set cover over the joint { 𝐸2, 𝐸3, 𝐸4 } entity. The final
result is thus two entities: 𝐸1 and the merged { 𝐸2, 𝐸3, 𝐸4 } entity.

As an alternative view of GreedyMerge, consider an undirected
graph with one node for each entity emitted by Bimax-Naive and
one edge for every pair of nodes that share a field. Intuitively,
optional fields manifest in this graph as regions of densely intercon-
nected nodes. GreedyMerge collapses dense regions by iteratively
identifying cycles and collapsing each into a single node. The critical
feature of the algorithm is the order in which cycles are collapsed: in
reverse order of discovery by the Bimax algorithm. This (i) ensures
that entities are linked together with more similar nodes, since
the Bimax order places similar entities together; and (ii) prioritizes
merges of smaller entities.
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6.4 Implementation

This entity discovery process needs to be run once on each tuple-
typed path appearing in the schema. Because Algorithm 7 requires
multiple passes over the data, a preprocessing step first compacts
the dataset into a feature vector encoding that encodes the set of
paths appearing in each record. Feature vector storage is flexible:
Sparse feature vectors require less computation and combine oper-
ations from Spark. Dense feature vectors can be faster and reduce
memory overhead for Json with many mandatory fields. Jxplain
defaults to a sparse encoding.

The preprocessing step iterates over each record. For the root
collection, it constructs a feature vector consisting of all paths in
the record. For all other object-kinded collections, it unnests the
collected objects and constructs feature vectors for the paths below
each. The final result of the preprocessing step is a set of feature
vectors for each object-kinded collection discovered in step 1.

We observe that nested collections significantly increase the
number of distinct feature vectors in each of their parents. As a
further optimization, we modified the preprocessing step to retain
only paths contained in an outer collection, but not in any collection
nested within. Figure 5 illustrates the memory savings of removing
nested collection features in the Yelp Dataset (see Section 7), while
in the the Pharmaceutical dataset (also see Section 7) nearly all
structural complexity arises from the nested collection, and this
optimization reduces memory requirements to nearly nothing. Al-
gorithms 7 and 8 output a set of feature-vector sets that can be used
to partition input types by entity.

7 EXPERIMENTS

We now evaluate Jxplain against the K-reduction schema dis-
covery algorithm proposed by Baazizi et. al. [5, 7]. We chose K-
reduction, because it is a close analog to industry standard tech-
niques for schema discovery like Spark’s Json data source and
Oracle’s Json Data Guides.

Our primary interest is in the utility of schemas extracted by
each system for data validation: (i) How well the discovered schema
generalizes beyond the example data from which it was derived
(i.e., recall), and (ii) How few types the discovered schema admits (a
proxy for precision, in lieu of ground truth). As a secondary concern,
we are also interested in the runtime overheads of the (admittedly
more complex) Jxplain schema discovery process. Concretely, our
experiments validate the following claims:

(i) Jxplain produces schemas that are significantly more precise
(i.e., admit fewer types) than K-reduction, . . .

(ii) . . .while not incorrectly rejecting types that are legitimately
part of the schema,

(iii) A clustering strategy based on Bimax bi-clustering is prefer-
able to a standard technique like k-means,

(iv) The merge step described in Section 6 is critical for creating
compact schemas, and

(v) The overhead of the additional steps required by Jxplain is
not prohibitive.

Experiments were run over twelve real-world datasets, and one
synthetic dataset: (i) A 3 million record sample of the GitHub

event stream [15] collected over a period of 330 days, (ii) a 240,000
record open dataset of per-doctor Pharmaceutical prescription

statistics [25], (iii) 800,000 Twitter tweets, (iv) 150,000 events taken
from a Matrix Synapse server [19], (v) an archived list of New York
Times (NYT) articles from 2019, (vi) a Json dump from Wikidata

of 1.7 million Wikipedia articles, (vii-xii) and the six individual
schemas of the 7.5 million record Yelp Open Dataset [35]. For each
dataset, we test on a 1%-, 10%-, 50%-, and 90%-uniform random
sample of the data. We reserve 10% of the data as a testing set.

We compare four algorithms: (i) K-reduce: Baazizi et. al.’s K-
reduction, representing the state-of-the-art in schema extraction,
(ii) Bimax Naive: A single pass of Jxplain (Algorithm 4) with the
naive adaptation of Bimax (Algorithm 7), (iii) Bimax-Merge: A sin-
gle pass of Jxplain with the Bimax Merge algorithm (Algorithm 8),
and (iv) L-reduce: Baazizi et. al.’s L-reduction, a trivial schema
extractor that accepts only exact types encountered in the input.

The GitHub dataset has a large number of entities of wildly
varying sizes3, and its complex nesting structure creates extremely
high memory requirements from both extractors. The Pharma-
ceutical dataset is the smallest, but also contains a collection-like
object with 2397 distinct keys. This results in the largest number
of distinct types across all of our datasets; Nearly every record
has a unique type. Our Twitter dataset is a collection of 800 thou-
sand tweet objects, containing the recursive schemas for retweets,
deleted tweets, and quoted tweets, as well as a multitude of object
arrays, and geo type tuple arrays. NYT contains all 70 thousand
2019 articles archived by the New York Times4. Wikidata is a dump
of 1.7 million Wikipedia articles. These records closely resemble
HTML and XML, with large and deeply nested arrays of objects.
Additionally each Wikidata entity participates in their “Linked
Data Interface” [36], where each entity attribute is represented as
an integer key for reference linking. Finally, the Synapse dataset
is the events table from a multi-year deployment of the Matrix
Synapse open source chat server [19]. Matrix follows a complex
state management protocol and this table is an immutable history
of all state update events, including what appear to be 36 revisions
to the protocol’s Json schema over the deployment period. The
Yelp Business dataset makes extensive use of optional fields, nested
collections, and soft functional dependency relationships, such as
hair salon attributes having extremely high positive correlation
with the by_appointment attribute. Additionally, Yelp’s checkin ta-
ble contains a multiply nested collection of checkins per hour of
the week, with an outer object containing keys for each day of
the week and inner objects containing keys for each hour of the
day. Leaf values contain checkin counts, and hours or days with
no checkins are omitted. This is analogous to a pivot table with
two indexes: day and hour, with checkins as a value. This high
variability poses a significant challenge while attempting to use
common clustering algorithms, and motivated our use of Bimax.
Finally, we create a synthetic Yelp-Merged dataset by combining
the six schemas of the Yelp open dataset. This is a useful test of the
BiMax-Merge algorithm, as (i) its 6 tables give us a well-defined
ground truth for entity clustering, (ii) it contains attributes with
common name collisions such as “name" that are not intended to

3The official documentation describes 49 event types, of which our trace contains 10,
due to some events being used internally (which is unlisted) or exceedingly rare
4NYT is provided as the payload of a small number of Json records, each nested in a
Json array. Our experiments combine the array contents into one root collection.
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K-reduce Bimax-Merge Bimax-Naive L-reduce
Dataset mean std max mean std max mean std max mean std max

N
YT

1% 0.99917 0.00103 1.00000 0.99531 0.00171 0.99817 0.99531 0.00171 0.99817 0.63161 0.01258 0.64940
10% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99974 0.00022 1.00000 0.89054 0.00167 0.89212
50% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.96839 0.00202 0.96998
90% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.98685 0.00217 0.98972

Sy
na
ps
e 1% 0.93235 0.00282 0.93515 0.98885 0.00073 0.98981 0.98649 0.00106 0.98764 0.83138 0.00291 0.83527

10% 0.97570 0.00124 0.97728 0.99727 0.00041 0.99776 0.99586 0.00035 0.99639 0.91675 0.00101 0.91817
50% 0.99230 0.00041 0.99275 0.99907 0.00033 0.99940 0.99877 0.00031 0.99900 0.94999 0.00112 0.95082
90% 0.99479 0.00060 0.99578 0.99919 0.00028 0.99950 0.99894 0.00026 0.99940 0.95559 0.00108 0.95675

Tw
itt
er

1% 0.99945 0.00026 0.99972 0.99730 0.00050 0.99804 0.99208 0.00094 0.99285 0.73395 0.00182 0.73643
10% 0.99997 0.00003 0.99999 0.99981 0.00008 0.99991 0.99892 0.00018 0.99918 0.85151 0.00028 0.85180
50% 0.99998 0.00002 1.00000 0.99996 0.00001 0.99999 0.99975 0.00007 0.99981 0.90758 0.00046 0.90819
90% 0.99999 0.00001 1.00000 0.99999 0.00002 1.00000 0.99982 0.00002 0.99986 0.92404 0.00075 0.92481

G
ith

ub

1% 0.99995 0.00003 0.99998 0.99995 0.00003 0.99998 0.99987 0.00014 0.99996 0.97486 0.00041 0.97561
10% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99119 0.00005 0.99124
50% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99629 0.00010 0.99643
90% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99745 0.00006 0.99752

Ph
ar
m
a 1% 0.92088 0.00353 0.92745 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.25698 0.00355 0.26092

10% 0.98871 0.00063 0.98973 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.31804 0.00151 0.31973
50% 0.99812 0.00033 0.99859 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.35358 0.00177 0.35608
90% 0.99882 0.00010 0.99894 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.37040 0.00141 0.37173

W
ik
id
at
a 1% 0.98521 0.00105 0.98636 0.97521 0.00117 0.97666 0.93812 0.00391 0.942391 † † †

10% 0.99769 0.00054 0.99828 0.99007 0.00079 0.99107 † † † † † †
50% 0.99870 0.00029 0.99909 0.99189 0.00039 0.99256 † † † † † †
90% 0.99940 0.00006 0.99950 0.99313 0.00037 0.99376 † † † † † †

Y e
lp
-M

er
ge
d 1% 0.99998 0.00002 1.00000 0.99987 0.00004 0.99992 0.99962 0.00006 0.99971 0.96537 0.00031 0.96573

10% 1.00000 0.00000 1.00000 0.99999 0.00001 1.00000 0.99994 0.00002 0.99998 0.97507 0.00009 0.97515
50% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99999 0.00001 1.00000 0.97930 0.00029 0.97969
90% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99999 0.00000 1.00000 0.98014 0.00019 0.98029

Y e
lp
-B
us
in
es
s 1% 0.99933 0.00067 1.00000 0.99320 0.00348 0.99787 0.98237 0.00464 0.98597 0.50905 0.00425 0.51514

10% 0.99996 0.00005 1.00000 0.99967 0.00021 1.00000 0.99677 0.00059 0.99743 0.71358 0.00135 0.71501
50% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99962 0.00018 0.99980 0.80608 0.00114 0.80741
90% 1.00000 0.00000 1.00000 1.00000 0.00000 1.00000 0.99982 0.00013 1.00000 0.83714 0.00339 0.84107

Table 1: Recall: Fraction of schemas in the 10% testing set accepted by the generated schema. (For omitted Yelp datasets K-
reduce, Bimax-Merge, and Bimax-Naive obtain 100% validation for all training sizes) († Indicates system ran out of resources)

be shared between tables, and (iii) all entities can be joined through
three foreign key fields, none of which appear in all entities.

All experiments were run using Apache Spark 2.3.4 and Scala
version 2.11.8. Runtime testing was performed on 4x20-core 2.40-
GHz Intel Xeon E7 processors with 1 TB of RAM and running on
CentOS-7 linux. All results shown are the result of 5 trials with
training/testing data uniformly sampled from the source data for
each trial. To evaluate K-reduce, we obtained a binary (JAR) im-
plementation of K-reduction from Baazizi et. al. Results shown
are for this implementation with the following two caveats. First,
during experimentation, we observed that schemas from the binary
release diverged from the reference paper [5], producing schemas
with some redundant union types. To ensure a fair performance/-
validation comparison, we added a post-processing step to reduce
redundancy in several generated schemas. Second, the binary re-
lease of K-reduction timed out while processing the Pharmaceuti-
cal dataset; we omit performance numbers and evaluate recall and
schema entropy on an equivalent, manually derived schema.

7.1 Recall

We evaluate claim (ii) by reserving a uniform 10% sample of the data
as a testing set, and generate schemas from 1%-, 10%-, 50%-, and
90%- uniformly sampled subsets of each dataset. Table 1 shows the
fraction of the records in the testing set accepted by the generated

schema. The table omits datasets where Jxplain and K-reduction
both produce perfect schemas with a 1% sample. On the remaining
datsets, even with only a 1% training set, schemas generated by Jx-
plain accept nearly every row from the testing set. False negatives
in the 1% test result are almost exclusively optional attributes that
(i) do not appear in the training set, or (ii) are present by chance
in every record of the training set making them (falsely) appear
to be mandatory. By a 10% sample the overwhelming majority of
exceptions are accounted for in the generated schema. We note
two particular outliers: Jxplain has better recall on both the Phar-
maceutical and Synapse datasets, particularly with smaller sample
sizes. As noted above, the Pharmaceutical dataset is dominated by
a large collection-like object mapping medications to prescription
counts. Even on the 1% sample, Jxplain correctly identifies this
as a collection, which in turn allows it to generalize the schema
to drugs not in the 1% sample. The Synapse dataset illustrates a
similar problem, as many event records contain a signatures field
of the following form:

"signatures": { <url >: { <key >: <signature > }}

As with the Pharmaceutical dataset, Jxplain correctly identi-
fies this structure as a two-level nested collection, allowing it to
generalize to servers and keys not present in the sample.
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K-reduce Bimax-Merge Bimax-Naive L-reduce
Dataset mean std mean std mean std mean std

N
YT

1% 21.21 0.71 14.70 1.02 14.70 1.02 8.67 0.06
10% 21.13 0.00 17.94 0.00 18.05 0.27 10.56 0.00
50% 23.00 0.93 18.74 0.40 18.59 0.17 11.58 0.01
90% 23.46 0.00 18.94 0.00 18.67 0.00 11.82 0.00

Sy
na
ps
e 1% 248.87 19.86 175.34 11.70 176.14 10.62 8.64 0.07

10% 749.22 21.56 656.24 49.99 662.60 40.62 10.80 0.01
50% 1598.62 10.01 1459.84 54.93 1490.40 8.89 12.40 0.00
90% 1974.35 16.14 1799.32 87.59 1848.00 16.65 12.99 0.00

Tw
itt
er

1% 279.63 2.64 147.01 23.82 96.21 5.00 11.37 0.01
10% 496.26 3.99 166.90 23.96 130.91 6.57 13.97 0.01
50% 518.06 5.13 212.72 22.07 154.81 1.47 15.67 0.00
90% 526.95 1.28 235.14 10.74 156.01 0.00 16.27 0.00

G
ith

ub

1% 85.78 0.63 25.88 0.11 25.84 0.15 10.48 0.02
10% 92.24 0.98 28.62 0.88 153.87 1.79 12.38 0.00
50% 93.72 0.80 29.42 0.53 155.48 1.07 13.60 0.00
90% 94.12 0.00 29.69 0.00 156.02 0.00 14.01 0.00

Ph
ar
m
a 1% 1199.20 8.28 1199.20 8.28 1199.20 8.28 10.86 0.03

10% 1801.80 15.74 1801.80 15.74 1801.80 15.74 14.03 0.01
50% 2223.60 13.60 2223.60 13.60 2223.60 13.60 16.28 0.00
90% 2369.20 3.31 2369.20 3.31 2369.20 3.31 17.11 0.00

W
ik
iD
at
a 1% 2575.55 71.57 1506.07 62.84 1220.65 28.06 † †

10% 4131.32 70.77 2214.03 97.14 † † † †
50% 5969.92 48.10 4334.19 96.76 † † † †
90% 6890.20 27.73 5037.16 65.12 † † † †

Y e
lp
-M

er
ge
d 1% 268.80 0.75 175.00 0.00 175.00 0.00 11.62 0.03

10% 269.80 0.40 175.00 0.00 175.00 0.00 14.39 0.01
50% 270.47 0.57 175.00 0.00 175.00 0.00 16.42 0.00
90% 271.17 0.00 175.00 0.00 175.00 0.00 17.18 0.00

Y e
lp
-B
us
in
es
s 1% 50.40 1.36 44.62 2.80 38.62 0.49 9.92 0.03

10% 52.20 0.98 47.21 2.04 39.89 3.17 12.49 0.01
50% 54.00 0.00 49.88 2.62 46.01 0.00 14.27 0.01
90% 53.60 0.80 49.61 0.80 45.61 0.80 14.91 0.00

Table 2: Schema Entropy: The number (log 2) of types ac-

cepted by the generated schema († ran out of resources).

7.2 Schema Entropy

In lieu of ground truth, we support claim (i) by measuring how
restrictive the generated schema is. Specifically: our next experi-
ment measures the number of possible types admitted by the output
schema, a measure we refer to as schema entropy. Schema entropy
is computed by treating each optional path as a binary decision,
taking into account mandatory and locally mandatory paths. For
collections (i.e., { ∗ → 𝜏 }∗ or [ 𝜏 ]∗) we range over the active do-
main of the matched object, or over arrays of length up to the
longest present in the data. Additionally, typing and notation are
held consistent between implementations. Intuitively, given a high
Recall, accepting fewer types indicates a more precise schema.

The results for each dataset are illustrated in Table 2; We test
schemas generated from 1%-, 10%-, 50%-, and 90%- uniform samples
taken from each dataset. Datasets with single-type schemas are
omitted. We include L-reduce — the number of distinct types in
the training set — as a lower bound. Jxplain’s tighter schemas are
largely due to partitioning entities. In the Yelp and GitHub datsets
especially, mixed entity types pose a challenge forK-reduce, which
emits only +a single entity with many optional fields. Conversely,
Jxplain detects the entities correctly and partitions schemas, greatly
reducing the number of admitted types. This detection is challeng-
ing on themerged Yelp dataset, where foreign keys like business_id
and user_id are shared across entities. On datasets with one under-
lying schema and no functional dependencies like Yelp Photos, our
output schema is identical to K-reduce. Finally, note that schema
entropy is stable across sample sizes: Even with only 10% of each
dataset, both generators produce virtually the same schema that
would be generated from the full dataset.

7.3 Entity Detection

Clustering Accuracy. We evaluate claim (iii) based on the two
datasets (Yelp-Merged and GitHub) for which ground truth in-
formation for entities is available or inferrable. The synthetic Yelp-
Merged has ground-truth by definition, while the GitHub event
trace includes a “type” attribute with 14 distinct types that we use
as a ground truth. Concretely, we compare Bimax-Merge against
K-reduce, and clustering using k-means. For k-means, we used the
ground-truth value of 𝑘 (which would not be available in practice)
and Euclidean distance. We compute the symmetric set difference
for each pair (S𝑖 ,G𝑗 ) where each S𝑖 is the schema derived for one
cluster, and each G𝑗 is the schema for one ground-truth entity:
𝐷 (S𝑗 ,G𝑗 ) = |S𝑖 − G𝑗 | + |G𝑖 ,S𝑗 |. Note that K-reduce does not
perform entity detection and so produces only one cluster.

Table 3 reports, for each ground-truth entity, the difference from
the most similar cluster (i.e., the cluster that corresponds to the
ground truth entity). Smaller values are better. Observe that for
k-means, only a handful of entities do very well: this clustering
algorithm tends to create multiple clusters for entities with many
attributes, while starving smaller ones (even with an ideal 𝑘 value).
As expected, K-reduce over-describes each entity, while not de-
scribing any single entity well. Bimax-Merge has a near perfect
description of every individual entity; A few minor errors arise in
the four GitHub entities who’s fields are a subset of another entity.

Conciseness. Table 4 illustrates the effectiveness of the BiMax-

Merge optimization of the BiMax-Naive algorithm (Algorithms 7
and 8 in Section 6, respectively). The table supports claim (iv) by
comparing the number of output entities identified by both the
optimized and unoptimized algorithms. For the purposes of this
experiment, we disable nested collection detection for the Phar-
maceutical dataset and consider only entities at the root level of
the GitHub and Yelp datasets (ignoring nested collections). The
merge heuristic has minimal impact while selecting entities for
the GitHub schema, but significantly reduces entities in both Yelp-
Merged and Pharmaceutical datasets due to optional fields. GitHub
entities have few optional fields. Conversely many fields in the Yelp
dataset are optional, as are the fields of the pharmaceutical dataset
with collection detection disabled. For an entity with optional fields,
the BiMax-Naive algorithm needs to see at least one object with
all optional fields present; BiMax-Merge lifts this requirement.
There is a small error that arises on the Yelp dataset due to a soft
functional dependency that is so rarely violated it is possible to
miss even when training on 90% of the data. As a result, Jxplain
identified multiple entities in Yelp’s business fields, separating
out hair salons, which nearly always have, and are nearly always
indicated by the presence of a by_appointment field.
7.4 Runtime

Finally we evaluate claim (v) by comparing the runtime of Jxplain
against that of K-reduce. We omit the Pharmaceutical dataset run-
time where the official binary implementation times out, as previ-
ously noted. In general, Jxplain needs to do more work to create
a more precise schema, so we do not expect it to outperform K-
reduce; We aim here simply to assess the added overhead. Table 5
shows schema discovery performance, varying the proportion of
each dataset used in order to generate the schema to show scaling
behavior. Performance scales linearly for both extractors. Jxplain
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Yelp Github
Dataset Bus Ckn Pho Rev Tip Usr Com Cre Del For Gol IsC Iss Mem Pub Pul PRR Psh Rel Wat
K-reduce 197 132 297 292 296 277 798 825 827 732 823 675 709 810 830 383 370 815 760 829

Bimax-Merge 0 0 0 0 0 0 0 0 2 0 0 0 34 0 5 0 0 0 0 6
k-means 0 0 106 109 107 124 127 126 124 115 128 4 0 139 121 0 1 136 143 120

Table 3: Minimum symmetric difference from ground-truth schema (lower is better)

L-reduce Bimax-Naive Bimax-Merge

Dataset mean std mean std mean std
Twitter 79191.0 73.7 72.8 1.6 8.4 1.6

NYT 3627.0 12.0 5.0 0.0 1.0 0.0
Synapse 8127.0 14.3 97.0 2.6 35.0 1.9
Github 16533.7 16.8 10.0 0.0 10.0 0.0
Pharma 141177.0 61.9 1.0 0.0 1.0 0.0

Wikidata † † † † 31.0 13.4
Yelp-Merged 148242.0 44.6 40.8 4.1 8.0 1.3

Yelp-Business 30809.0 56.5 33.2 1.2 2.6 0.8
Yelp-Checkin 108229.0 51.6 1.0 0.0 1.0 0.0
Yelp-Photos 1.0 0.0 1.0 0.0 1.0 0.0
Yelp-Review 1.0 0.0 1.0 0.0 1.0 0.0

Yelp-Tip 1.0 0.0 1.0 0.0 1.0 0.0
Yelp-User 9142.0 17.0 1.0 0.0 1.0 0.0

Table 4: Entity predictions with 90% training data († L-
reduce and Bimax-Naive ran out of resources on Wikidata)

for all tests was not using entropy approximation and thus required
a full second pass over the dataset, which we see reflected in the
runtimes of Yelp, Synapse, and NYT, being approximately 2-3 times
slower. We observe that Jxplain has a particularly hard time with
more complicated datasets (e.g. Twitter, Github). This is the result
of large, nested object arrays that need to be decoded, stored, and
pivoted for recursive entity extraction, something K-reduce does
not attempt. However, the value of this overhead is especially clear
in the NYT data set, as Jxplain picks-out complex nested structures.

7.5 Results

Table 2 illustrates the potential data intricacies lost from a merge
all strategy like K-reduce. Between over generalization and over
specificity, generalization is the only realistic option, as demon-
strated in Table 1 through L-reduce’s unusably low validation
scores. We demonstrate Bimax-Naive as a realistic middle ground,
based on these two metrics. However, when considering human-
schema-interaction we need to limit the number of user-facing
schema choices. Table 4 makes clear the importance of the Bimax
merge heuristic for creating compact, descriptive schemas. Jxplain
produces goldilocks schemas with the benefit of both extractor
implementations proposed in related work [5, 7]. Lastly, although
Jxplain is slower than K-reduce, the amount of data required to
create high-precision, high-recall schemas is not large — at most
10% of the original data in our experiments.

Row rejection was overwhelmingly due to missing attributes for
both K-reduce and Bimax-Merge algorithms. We devised a greedy
algorithm to obtain an upper bound of the number of schema edits
needed to achieve 100% recall across one or more entities. Using
1% training data, we find that both algorithms produce schemas
that require relatively few manual edits to achieve perfect recall
for simpler datasets, typicaly on the order of tens of edits. More
complex datasets require hundreds to thousands of edits for both
K-reduce and Bimax-Merge: Bimax-Merge does better on datsets

with collection-like objects (e.g., Synapse and Pharma), where K-
reduce struggles with new keys. The reverse is true on datasets
with rare, or rarely missing attributes that appear in multiple entity
types. For example, retweets and quoted tweets share many fields
— Bimax-Merge has to see one example of the attribute for each
entity, while K-reduce only needs one example outright. Thus, we
assert that the human intervention necessary to deal with false
positives is no less feasible for Jxplain over K-reduce in general,
while by contrast, Jxplain produces far fewer false negatives.

8 RELATEDWORK

Over the past two decades, there have been numerous attempts at
structure detection for semi-structured data. Each implementation
aims at creating a summary schema that is concise, descriptive,
prescriptive, generalizable, and interpretable. The closest work to
ours is an algebraic exploration of scalable schema extraction by
Baazizi et. al. [5, 7]. They propose a grammar for concisely de-
scribing sets [7] and bags [5] of Json types (on which we base our
grammar in Section 2), and propose fusion operators that combine
sentences in this grammar (i.e., schemas). The primary contribution
of this work is to address the issue of scalability by ensuring that
the merge operators are commutative and associative, admitting
distributed execution through typical fan-in aggregation (imple-
mented in Spark). Frozza et. al. also present a similar approach [14].
Unfortunately, requiring the merge operation to be commutative
and associative limits it to local-decision making: Schema proper-
ties like the number of entities (Section 6) or whether an object
encodes a tuple or collection (Section 5) dictate the behavior of
the fusion operator, but can not be inferred from just two types.
Instead, the Baazizi algorithm asks users to completely define the
behavior of the merge operator in a data-independent way. Jxplain
can be viewed as an extension of the Baazizi algorithm that infers
the “correct” merge operator for each path in a pre-processing step.

Entity discovery has been explored extensively in hierarchical [8–
10, 13, 16, 17, 21, 23, 28, 29, 34], graph [2], and object-exchange
model (OEM) [16] data. XML schema discovery in particular [8–
10, 17, 21] has been explored extensively. However, solutions in
this space rely heavily on the contextual signal provided by node
labels, which are not available in Json data. Additionally XML data
models have no concept of arrays, relying on sibling nodes sharing
a label. In practice this detection can be very fragile, particularly
when node identifiers are ambiguous. Overall XML schemas impose
a different set of data constraints than Json. Notably, Bex et. al.
address ambiguous node identifiers in XML [9], a problem related
to entity discovery in Jxplain. Their approach relies on the node’s
ancestors and predecessors to disambiguate entity types, inferring
a selector for each entity based on these factors, rather than based
on the entity’s attributes as in Bimax-Merge.

A range of machine-learning-based techniques have been pro-
posed for discovering such linkages [23, 28, 29, 34]. However, as we
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1% 10% 50% 90%
Dataset K-reduce Bimax-Merge K-reduce Bimax-Merge K-reduce Bimax-Merge K-reduce Bimax-Merge

NYT 3355.2 5285.4 3445.4 6939.2 4102.6 10657.6 4710.0 14214.2
Synapse 3325.6 5568.0 1823.0 8900.8 2848.4 12715.4 3867.0 20233.6
Github 17881.0 77995.2 24022.6 278932.4 37990.0 703276.8 49191.2 931849.2
Twitter 11758.6 41710.8 16111.6 195733.2 19719.8 429832.4 17604.6 550703.6
Pharma † 5816.2 † 8811.2 † 18901.0 † 29389.0

WikiData 24585.8 110090.4 62286.0 300846.6 213958.2 827083.8 422793.8 1379410.2
Yelp-Business 3485.8 6301.2 2022.2 9560.8 3309.0 19680.0 4732.8 27386.6
Yelp-Checkin 3682.6 5156.4 2777.4 7695.2 7395.8 14267.0 13234.8 20631.0
Yelp-Photos 3138.2 4338.8 1253.0 4742.4 1500.8 6222.2 1776.2 7703.8
Yelp-Review 8658.8 14789.4 9306.0 17630.8 15118.2 32696.8 21976.6 49642.4

Yelp-Tip 3497.2 4793.2 1835.2 5789.4 2518.6 9589.2 3225.4 13899.4
Yelp-User 6482.0 14355.4 5421.6 20480.8 7612.6 34600.2 10590.4 51143.2

Yelp-Merged 10179.0 22177.8 14475.4 36418.8 28217.6 92197.8 44950.8 141905.0

Table 5: Runtime (milliseconds) by discovery algorithm and training set size. (†: K-reduce times out on the Pharma dataset)

discuss in Section 6, such approaches are vulnerable to skew in en-
tity size, and the inherent ambiguity of the entity discovery problem.
Jxplain adopts a more robust approach based subset relationships
and field overlap. We note one approach [2] in particular uses a clus-
tering mechanism similar to Bimax, but relies on information loss
over data values rather than Bimax’s use of field-set-containment.
Data values make this approach more expressive, but also limit its
scalability. A related challenge that our approach does not (yet) ad-
dress is co-reference detection [30]: Identifying entities that appear
at multiple paths (e.g., Twitter’s API can include user information
for the user making a post, as well as any users tagged in the post).

Alternative approaches to schema discovery rely on functional
dependencies [13, 20, 37] between nodes in graph [20], XML [37],
or Json [13] data. These techniques attempt to discover functional
dependencies [1] between fields (out-edges, children, descendents);
Each set of fields related by a functional dependency is treated as
an independent entity5. A key limitation in these approaches is that
they still need to differentiate between tuple- and collection-like
reference/nesting structures. Like the extractor of Baazizi et. al., [13],
each scheme makes upfront assumptions about which structural
elements (e.g., Json arrays) encode collections. Adjacent recent
work has explored utilizing Human-in-the-Loop schema inference
and parameterization [4, 6]. Our system offers improvements over
this model by automating away many of these decisions through
alternate entropy and schema signals. These heuristics may often be
reliable, but present serious performance limitations on corner cases
like the pharmaceutical dataset or geographical coordinate arrays.
A further limitation is that these approaches are often designed to
operate on flattened, relational representations (with [37] a notable
exception) of the complex structure. Existing nesting structures
are removed early, losing a significant source of signal about the
intended schema structure. However, functional-dependency-based
approaches to schema discovery are orthogonal to our own entity
discovery strategies and can, in principle be integrated into Jxplain.

Our work is partially motivated by ensuring up-to-date documen-
tation for web APIs. A related, orthogonal issue is querying out-of-
date schemas. Snodgrass et. al. propose “neighborhood queries” [27]
to make XPath queries resilient to small schema changes, while
the Prism Workbench [12] encodes prior versions of a relational
schema as views. GraphQL [33] is increasingly being used as an
5These approaches are, in effect, simply normalizing their inputs

API for access to structured data resources, and addresses the same
problem by allowing API consumers-specific schemas defined as
GraphQL queries. This approach still requires a stable schema for
graph entities, but does avoid schema changes made purely for
optimization purposes or to facilitate certain API requirements.
9 CONCLUSION

When Json data evolves beyond encoding glorified csv documents,
Json’s support for tuple and collection nesting make maintaining
schemas incredibly difficult. Relying on users to create, maintain,
and publish usable documentation or precise schemas is often wish-
ful thinking [22]. This, in turn, creates opportunities for erroneous
data to sneak through systems. Existing tools for automated schema
discovery provide only coarse-grained, permissive schema sum-
maries of a dataset. We have presented Jxplain, a Json schema
discovery system that adopts a more nuanced, ambiguity-aware
approach, aiming to create tight (high-precision), descriptive (high-
recall) schemas without overwhelming users. In contrast to prior
systems for similar tasks: Jxplain avoids two assumptions about
how Json records are created: (i) Which nested structures encode
nested collections, and (ii) How many entities appear in a collection
of Json objects (nested or not). To avoid these assumptions Jxplain
adds several pre-processing passes to typical schema discovery.
Although these passes add a non-trivial overhead to the extrac-
tion process, the resulting schemas are tighter and more compact,
especially for complex Json data models, reducing the amount of
manual tuning required to refine them.
Future Work. In addition to the pre-processing stages we intro-
duced in this paper, further optimizations are possible. For example,
many orthogonal schemes [13] use data values and specifically
functional dependencies between data values to recover different
families of entity structures. Additionally, we plan to explore the
use of Jxplain in filesystem directory structures extraction. Fi-
nally, schemas extracted by Jxplain can be used to generate read-
optimized data layouts.
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