
SharPer: Sharding Permissioned Blockchains Over
Network Clusters

Mohammad Javad Amiri

University of Pennsylvania

mjamiri@seas.upenn.edu

Divyakant Agrawal

University of California Santa Barbara

agrawal@cs.ucsb.edu

Amr El Abbadi

University of California Santa Barbara

amr@cs.ucsb.edu

Abstract
Scalability is one of the main roadblocks to business adoption

of blockchain systems. Despite recent intensive research on us-

ing sharding techniques to enhance the scalability of blockchain

systems, existing solutions do not efficiently address cross-shard

transactions. In this paper, we introduce SharPer, a scalable permis-

sioned blockchain system. In SharPer, nodes are clustered and each

data shard is replicated on the nodes of a cluster. SharPer supports

networks consisting of either crash-only or Byzantine nodes. In

SharPer, the blockchain ledger is formed as a directed acyclic graph

and each cluster maintains only a view of the ledger. SharPer in-

corporates decentralized flattened protocols to establish cross-shard

consensus. The decentralized nature of the cross-shard consensus

in SharPer enables parallel processing of transactions with non-

overlapping clusters. Furthermore, SharPer provides deterministic

safety guarantees. The experimental results reveal the efficiency

of SharPer in terms of performance and scalability especially in

workloads with a low percentage of cross-shard transactions.

CCS Concepts
• Networks → Network protocol design; • Information sys-
tems → Distributed database transactions; • Computer sys-
tems organization→Dependable and fault-tolerant systems
and networks.

Keywords
Blockchain, Scalability, Sharding, Consensus, Permissioned

ACM Reference Format:
Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021.

SharPer: Sharding Permissioned Blockchains Over Network Clusters. In

Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 18–27, 2021, Virtual Event , China. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3448016.3452807

1 Introduction
A blockchain is a distributed data structure for recording transac-

tions maintained by nodes without a central authority [10]. Block-

chain systems are classified into two categories: permissionless and
permissioned systems. While in a permissionless blockchain system,

e.g., Bitcoin [34], the network is public, and anyone can participate

without a specific identity, a permissioned blockchain system, e.g.,

Hyperledger Fabric [6], consists of a set of known, identified but

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’21, June 18–27, 2021, Virtual Event , China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3452807

possibly untrusted nodes which might be placed in data centers,

public clouds, or local infrastructures.

Scalability is the ability of a blockchain system to process an

increasing number of transactions by adding nodes to the system.

Partitioning the data into multiple shards that are maintained by

different subsets (i.e., clusters) of non-malicious nodes is a proven

approach to improve the scalability of distributed databases, e.g.,

Spanner [14]. In such an approach, the performance of the system

scales linearly with the number of clusters. Recently, sharding has

been utilized in both permissionless and permissioned blockchain

systems in the presence of Byzantine nodes. Sharded permissionless

blockchains, e.g., Elastico [32], OmniLedger [27], and Rapidchain

[45], ensure probabilistic safety by randomly assigning nodes to

committees resulting in a uniform distribution of faulty nodes to

the different committees. OmniLedger and Rapidchain also support

cross-shard transactions using Byzantine consensus protocols.

Sharding techniques have also been used by different permis-

sioned blockchain systems, e.g., Fabric [6], Cosmos [21], RSCoin

[22], and AHL [16]. AHL[16], similar to OmniLedger, provides a

probabilistic safety. AHL, however, employs a trusted hardware

(the technique presented in [13][43][42]) to reduce the size of each

committee from ∼600 in OmniLedger to 80 nodes. In AHL [16], con-

sensus on the order of cross-shard transactions not only requires an

extra set of nodes (called a reference committee) but also results in a

large number of inter- and intra-committee communications. Fur-

thermore, since a single reference committee processes cross-shard

transactions, AHL is not able to process cross-shard transactions

in parallel.

In general, large-scale sharded systems, such as Spanner [14],

typically partition data into shards and replicate each shard on

the nodes of a pre-determined fault-tolerant cluster, e.g., based on

physical constraints such as a data center with a majority of non-

faulty nodes, to guarantee deterministic safety. Maintaining data on

pre-determined fault-tolerant clusters for the purpose of scalability

has also been studied in permissioned blockchains ResilientDB [24]

and Blockplane [35]. However, most sharded blockchain systems,

e.g., Elastico, OmniLedger, and AHL, operate on a flat homogen-

eous network of peers and hence configure fault-tolerant units by
randomly assigning nodes to clusters and provide a probabilistic
safety guarantee. To guarantee safety with a high probability, such

systems need to uniformly distribute faulty nodes across all clusters,

resulting in large-size clusters, e.g., ∼600 nodes in OmniLedger.

In our previous work [3], we presented a model including a block-

chain ledger for sharded permissioned blockchains. In this paper,

we expand this model and develop a sharded permissioned block-

chain system, SharPer, to improve scalability with deterministic

safety guarantees. In the presence of pre-determined fault-tolerant

clusters, SharPer, similar to large-scale sharded systems, provides

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3452807

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

76

https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3448016.3452807
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448016.3452807&domain=pdf&date_stamp=2021-06-18

deterministic safety guarantees when more than a half (if nodes are

crash-only) or two-thirds (if nodes are Byzantine) of the nodes of

each cluster are non-faulty. Without such pre-determined clusters,

however, and in order to guarantee deterministic safety, SharPer
assumes that the number of available nodes is much larger than the

number of faulty nodes and assigns nodes to clusters so that ensure

more than a half (if nodes are crash-only) or two-thirds (if nodes are

Byzantine) of the nodes of each cluster are non-faulty. This assump-

tion is reasonable in sharded systems that strive for high scalability,

as such systems typically use more reliable infrastructure.

SharPer assigns data shards to the clusters where each cluster

processes the transactions that access its shard. If a transaction

accesses only a single shard, i.e., an intra-shard transaction, the cor-
responding cluster orders and executes the transaction locally. As a

result, intra-shard transactions of different clusters are independent

of each other and are processed in parallel. However, for a cross-
shard transaction, agreement among all and only involved clusters

is required. Nevertheless, if two cross-shard transactions have no

overlapping clusters, they still are processed in parallel. Since the

ordering of different transactions might be performed in parallel

and due to the existence of cross-shard transactions, the blockchain

ledger of SharPer is represented as a directed acyclic graph including
all intra- and cross-shard transactions. Nonetheless, for the sake

of performance, the entire blockchain ledger is not maintained by
any nodes, and nodes of each cluster maintain a view of the ledger

including the intra-shard transactions of the cluster and only the

cross-shard transactions involving this particular cluster. Unlike

traditional single-primary consensus protocols, e.g., PBFT [11], in

SharPer, multiple clusters each with its own primary compete with

each other to order cross-shard transactions. We believe this setting

has been encountered neither in traditional consensus protocols nor

in coordinator-based sharded systems, leading us to resolve chal-

lenges such as conflicting transactions, deadlock situations as well

as the failure of primary nodes across different replicated domains.

The main contributions of this paper are:

• SharPer, a permissioned blockchain system that supports the

concurrent processing of transactions by clustering nodes

into clusters and sharding both data and the ledger. SharPer

supports intra-shard as well as cross-shard transactions.

• Two decentralized flattened consensus protocols for ordering
cross-shard transactions among all and only the involved

clusters in networks consisting of either crash-only or Byz-

antine nodes. The protocols order cross-shard transactions

with no overlapping clusters in parallel.

The rest of this paper is organized as follows. The SharPer model

is introduced in Section 2. Sections 3 and 4 present consensus in

SharPer. Section 5 evaluates the performance of SharPer. Section 6

discusses related work, and Section 7 concludes the paper.

2 The SHARPER Model
In SharPer, the network consists of a set of clusters. The data

is partitioned into data shards and a data shard that represents

the blockchain state and a view of the blockchain ledger are rep-

licated on nodes of each cluster to provide fault tolerance. This

section presents the SharPer infrastructure, cluster formation, and

the blockchain ledger.

2.1 SharPer Infrastructure
SharPer consists of a set of nodes in an asynchronous distributed

system where nodes might be placed in data centers, public clouds,

or local infrastructures. Nodes in SharPer either follow the crash or

Byzantine failure model. Crash fault-tolerant protocols, e.g., Paxos

[31], guarantee deterministic safety in an asynchronous network

using 2f +1 crash-only nodes to overcome the simultaneous crash

failure of any f nodes while in Byzantine fault-tolerant protocols,

e.g., PBFT [11], 3f +1 nodes are needed to provide deterministic

safety in the presence of f malicious nodes [8].

SharPer uses point-to-point bi-directional communication chan-

nels to connect nodes. Network channels are pairwise authenticated,

which guarantees that a malicious node cannot forge a message

from a correct node. Furthermore, messages might contain public-

key signatures and message digests [11]. We denote a messagem
signed by replica r as ⟨m⟩σr and the digest of a messagem by D(m).

For signature verification, we assume that all nodes have access

to the public keys of all other nodes. We assume that a strong

adversary can coordinate malicious nodes and delay communica-

tion to compromise the replicated service. However, the adversary

cannot subvert standard cryptographic assumptions.

2.2 Cluster and Shard Formation
In sharded database systems, data shards are assigned to pre-

determined fault-tolerant clusters, e.g., cloud environments, to guar-

antee deterministic safety. In particular, if the system has |P | =
{p1,p2, ...} fault-tolerant clusters and each clusterpi includes 3fi+1
Byzantine nodes, the network size would be 3f + |P | where f =∑ |P |
i=1 fi is the total number of faulty nodes in the system.

Some Sharded blockchain systems, e.g., OmniLedger [27] and

AHL [16], on the other hand, configure fault-tolerant clusters (called
committees) themselves and provide probabilistic safety guarantees.

Given the lack of well-defined fault-tolerant clusters, such systems,

assign nodes randomly to the clusters in order to uniformly dis-

tribute faulty nodes. In particular, clusters are formed such that for

every cluster pi , with a high probability, |pi | ≥ 3fi + 1 where fi
is the number of faulty nodes within cluster pi . To achieve a high

probability, e.g., 1−2−20, however, the clusters need to be large-

sized, e.g., 80 nodes in AHL. Moreover, to prevent security attacks,

clusters are reconfigured periodically.

SharPer in the presence of pre-determined fault-tolerant clusters,

i.e., similar to large-scale sharded databases provides deterministic

safety guarantees with 2f + |P | crash-only or 3f + |P | Byzantine
nodes where f is the total number of faulty nodes in the system

and |P | is the number of clusters. In SharPer, the goal is to provide

deterministic safety guarantees, hence, without such pre-determined

clusters, the number of nodes, N , is assumed to be much larger

than f , thus, nodes are partitioned into clusters each large enough

to tolerate f failures. The trusted hardware technique can also be

utilized in SharPer resulting in enhanced performance.

Nodes are assigned to clusters based on their geographical dis-

tribution, i.e., nodes that are in close proximity are assigned to the

same cluster to reduce the latency of intra-cluster communication.

We denote the set of clusters by P = {p1,p2, ...,p |P |}. Since there
are |P | clusters, the data is also sharded into |P | shards, i.e., d1, ...,
d |P | , shard di is replicated on the nodes of cluster pi .

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

77

Figure 1: (a): A ledger consisting of four shards, (b), (c), (d),
and (e): The views of the ledger from different shards

To ensure high performance, an appropriate sharding needs to

beworkload-aware, i.e., have prior knowledge of the data and how it

is accessed by transactions. Workload-aware sharding increases the

probability of transactions accessing records in a single shard [15].

If sharding is not workload-aware, transactions will be processed by

multiple, possibly far apart, clusters. Establishing consensus among

all those involved clusters, although correct, will severely impact the

overall performance. Different approaches have been proposed to

minimize the number of cross-shard transactions [37], nevertheless,

there might still be a portion of transactions that accesses records

across multiple shards. As a result, SharPer supports both intra-
shard and cross-shard transactions.

2.3 Blockchain Ledger
Blockchain systems record transactions in the form of a hash

chain in an append-only data structure, called the blockchain ledger.
In SharPer, each data shard is replicated on all nodes of a cluster.

As a result, to ensure data consistency, a total order among transac-

tions (both intra- and cross-shard) that access the same data shard

is needed. Note that the total order imposed by blockchain is less

flexible than serializability, the common correctness criterion in

databases, that allows transactions to be executed in a different

order. The total order of transactions in the blockchain ledger is

captured by chaining transaction blocks, i.e., each block includes a

sequence number or the cryptographic hash of the previous transac-

tion block. For simplicity and without loss of generality, we assume

each block consists of a single transaction
1
. Since more than one

cluster is involved in each cross-shard transaction, similar to Caper

[2], the ledger is formed as a directed acyclic graph. The ledger also
includes a unique initialization block, called the genesis block.

Fig. 1(a) shows a blockchain ledger created in the SharPer model

consisting of four clusters p1 to p4 (data shards d1 to d4). In this

figure, λ is the genesis block. Intra- and cross-shard transactions are
also specified. For example, t10, t11, t13, and t14 are the intra-shard
transactions of cluster p1. Each cross-shard transaction is labeled

with to1, ..,ok where k is the number of involved clusters and oi in-

dicates the order of the transaction among the transactions of the ith

1
Each block could include multiple consecutive intra-shard or consecutive cross-shard

transactions (but no combination of both). It is indeed a performance trade-off, while in

highly loaded geo-distributed settings, batching transactions into blocks is beneficial,

in lightly loaded workloads where nodes are placed in close proximity, as demonstrated

in StreamChain [26], batching transactions into blocks reduces performance.

involved cluster. For example, t12,22 is a cross-shard transaction that
accesses data shards d1 and d2. A cross-shard transaction requires

a sequence number from every involved cluster to ensure that the

transactions are ordered correctly with respect to the intra-shard

transactions of all involved clusters. Transactions that access a data

shard form a total order e.g., t10, t11, t12,22, t13, t14, and t15,25,35,45
are chained. Intra-shard transactions of different clusters, e.g., t11,
t21, as well as non-overlapping cross-shard transactions, e.g., t12,22
and t32,42, can be appended to the ledger in parallel.

In SharPer, the entire blockchain ledger is not maintained by any
cluster and each cluster maintains only its view of the ledger. The

ledger is indeed the union of all these physical views. Fig. 1(b)-(e)

show the views of the ledger for clusters p1, p2, p3, and p4 respect-
ively. As can be seen, each cluster pi maintains only a (linear) view

of the ledger consisting of the intra-shard transactions of pi and
the cross-shard transactions that access di .

3 Consensus with Crash-Only Nodes
In a permissioned blockchain system, nodes establish consensus

on a unique order in which entries are appended to the blockchain

ledger. To establish consensus, asynchronous fault-tolerant proto-

cols have been used. Fault-tolerant protocols use the State Machine

Replication (SMR) algorithm [29] where nodes agree on an order-

ing of incoming requests. The algorithm has to satisfy four main

properties [9]: (1) agreement: every correct node must agree on the

same value, (2) Validity (integrity): if a correct node commits a value,

then the value must have been proposed by some correct node, (3)

Consistency (total order): all correct nodes commit the same value in

the same order, and (4) termination: eventually every node commits

some value. The first three properties are known as safety and the

termination property is known as liveness. Consistency is a trivial

property in consensus protocols with a single ordering routine,

however, since multiple clusters with different ordering routines

are involved in SharPer, consistency between different instances

of the consensus algorithm needs to be guaranteed. As shown by

Fischer et al. [20], in an asynchronous system, where nodes can fail,

consensus has no solution that is both safe and live. Based on that

impossibility (FLP) result, in SharPer, safety is guaranteed in an

asynchronous network, however, a synchrony assumption is needed

to ensure liveness. Due to the trust assumptions of blockchains,

most existing blockchain systems employ Byzantine fault-tolerant

protocols. Studying crash fault-tolerant protocols, however, is be-

neficial for two main reasons. First, it can be used in permissioned

blockchain systems with more federated settings, e.g., Hyperleger

Fabric [6] uses crash fault-tolerant protocol Raft [36]. Second, from

a development point of view, it is pedagogically easier to introduce

the complex concepts used in Byzantine consensus protocols. In this

section, we first show how consensus is established in SharPer for

intra-shard and cross-shard transactions in the presence of crash-

only nodes. Then, the primary failure handling routine of SharPer

is presented and finally, the correctness of SharPer is proven.

3.1 Intra-shard consensus
Crash fault-tolerant protocols, e.g., Paxos [31], guarantee safety

in an asynchronous network using 2f +1 nodes to overcome the sim-

ultaneous crash failure of any f nodes. SharPer uses multi-Paxos,

a variation of Paxos, where the primary (a pre-elected node that

initiates consensus) is relatively stable, to establish consensus on

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

78

Algorithm 1 Cross-shard Consensus with Crash-Only Nodes

1: init():
2: r := node_id
3: pi := the cluster that initiates the consensus (initiator cluster)

4: π (p) := the primary node of cluster p
5: P := set of involved clusters

6: upon receiving valid requestm and (r == π (pi))
7: multicast ⟨PROPOSE, hi , d,m⟩ to P
8: upon receiving valid ⟨PROPOSE, hi , d,m⟩ from primary π (pi)
9: if r is not waiting for commit message of requestm′

wherem andm′
intersect

in some other cluster pk
10: send ⟨ACCEPT, hi , hj , d, r ⟩ to primary π (pi)
11: upon receiving f +1 valid matching ⟨ACCEPT, hi , hj , d, r ⟩ from every cluster pj in

P and node is π (pi)
12: multicast ⟨COMMIT, [hi , hj , . . ., hk], d ⟩σπ (pi)

to P
13: append the transaction and commit message to the ledger

14: upon receiving ⟨COMMIT, [hi , hj , . . ., hk], d ⟩σπ (pi)
from π (pi)

15: append the transaction and commit message to the ledger

the order of intra-shard transactions. In SharPer, upon receiving a

signed request (i.e., transaction) from a client, the primary assigns

a sequence number to the request (to provide a total order among

requests) and multicasts a propose message (called accept in Paxos)

including the transaction to every nodewithin the cluster. Instead of

a sequence number, the primary can also include the cryptographic

hash of the previous transaction block, H (b), in the message where

H (.) denotes the hash function and b is the previous block that is

ordered by the cluster. Upon receiving a valid proposemessage from

the primary, each node sends an accept (i.e., accepted) message to

the primary. The primary waits for f accept messages from differ-

ent nodes (plus itself becomes f + 1), multicasts a signed commit
message to every node within the cluster, appends the transaction

block including the transaction and the signed commit message

(as evidence of the transaction’s validity) to the blockchain ledger,

executes the transaction, updates the blockchain state (data shard),

and sends a reply to the client. We assume that all transactions are

executed deterministically in the system. Upon receiving a commit
message from the primary, each node appends the transaction block

(i.e., the transaction and the received commit message) to its block-

chain ledger, executes the transaction and updates the state. The

client also waits for a valid reply from the primary to accept the res-

ult. Since commit messages include the digest (cryptographic hash)

of the corresponding transactions, appending valid signed commit
messages to the blockchain ledger in addition to the transactions,

provides the same level of immutability guarantee as including the

cryptographic hash of the previous transaction in the transaction

block, i.e., any attempt to alter the block data can easily be detected.

3.2 Cross-Shard Consensus
Cross-shard transactions access records from data shards which

are maintained by different clusters. This section presents how

SharPer processes cross-shard transactions on crash-only nodes.

Algorithm 1 presents the normal case operation for SharPer to

process a cross-shard transaction in the presence of crash-only

nodes. Although not explicitly mentioned, every sent and received

message is logged by the nodes. As indicated in lines 1-5 of the

algorithm, pi is the initiator cluster, i.e., the cluster that initiates
the transaction, π (p) is the primary node of cluster p, and P is the

set of involved clusters in the transaction.

A cross-shard transaction is sent by a client to the (pre-elected)

primary node of a cluster (i.e., one of the clusters that store data

records accessed by the transaction). Note that once a primary

node of a cluster is elected, it initiates all intra-shard transactions

of the cluster as well as cross-shard transactions that are sent to

the cluster by clients. As shown in lines 6-7, upon receiving a

valid signed cross-shard transactionm = ⟨REQUEST,op, tc , c⟩σc from

an authorized client c (with timestamp tc) to execute operation

op, the primary node π (pi) of cluster pi (called initiator primary)
assigns sequence number hi to the request and multicasts a propose
message ⟨PROPOSE,hi ,d,m⟩ to all nodes of all involved clusters, i.e.,
clusters that store data records accessed by the transaction, where

m is the client’s request message and d = D(m) is digest of m.

Timestamp tc is used to ensure exactly-once semantics for the

execution of requests and prevent replay attacks. The timestamps

for each client’s requests are totally ordered. The sequence number

hi represents the correct order of the transaction in cluster pi . Since
all nodes are crash-only, there is no need to sign messages.

Upon receiving a propose message, as indicated in lines 8-10,

each node r of an involved cluster pj validates the message and

its sequence number. If node r of cluster pj is currently waiting

for a commit message of some cross-shard requestm′
where the

involved clusters of two requestsm andm′
intersect in pj as well as

some other cluster pk , the node does not process the new request

m (only buffersm) before the earlier requestm′
gets committed.

This ensures that cross-shard requests are committed in the same

order on overlapping clusters (consistency), e.g., m and m′
are

committed in the same order on both pj and pk . Otherwise, the
node sends an accept message ⟨ACCEPT,hi ,hj ,d, r ⟩ to the initiator

primary node π (pi) where hj is the sequence number assigned by

r , which represents the correct order of requestm in cluster pj .
Once initiator primary π (pi) receives valid matching accept mes-

sages from f +1 nodes (out of 2f +1 nodes) of every involved cluster
pj with matching hj and also hi and d that match its sent propose
message, as presented in lines 11-13, it collects all valid sequence

numbers (e.g., hi , hj , ..., hk) from the accept messages of all in-

volved clusters (e.g., pi , pj , ..., pk) and multicasts a commit message

⟨COMMIT, [hi ,hj , ...,hk],d⟩σπ (pi)
to the nodes of all involved clusters.

The order of sequence numbers hi , hj , ..., hk in the message is in as-

cending order determined by their cluster ids. In fact, the sequence

number consists of multiple sub-sequence numbers where each

sub-sequence number presents the local order of the transaction in

one of the involved clusters. The initiator primary signs its commit
messages because they might be used later by nodes to prove the

correctness of the transaction block.

Finally, as shown in lines 14-15, once a node of some cluster pj
receives a valid signed commit message from the initiator primary

π (pi), the node considers the transaction as committed (even if the

node has not sent an accept message for that request). If all transac-

tions with lower sequence numbers than hj have been committed,

the node appends the transaction and the corresponding commit
message to the ledger, executes it, and updates the state. This en-

sures that all replicas execute requests in the same order as required

to ensure safety. The primary also sends a reply ⟨REPLY, tc , c,o⟩σπ (pi)

to client c where tc is the timestamp of the corresponding request

and o is the execution result. If the client does not receive reply soon
enough, it multicasts the request to all nodes within the cluster.

If the request has already been processed, the nodes simply send

the execution result back to the client. Otherwise, if the node is

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

79

Algorithm 2 Dealing with Conflicting ACCEPT Messages

****** The configuration is the same as Algorithm 1 ******

1: if accept messages of cluster pj not matching and r == π (pi)
2: multicast ⟨SUPER-PROPOSE,hi ,d,m⟩ to π (pj)
3: upon receiving ⟨SUPER-PROPOSE,hi ,d,m⟩ from π (pi) and r == π (pj)
4: multicast ⟨SUPER-ACCEPT, hi , hj , d, r ⟩ to π (pi) and all nodes of pj
5: upon receiving ⟨SUPER-ACCEPT,hi ,hj ,d,π (pj)⟩ from π (pj) and r ∈pj
6: send ⟨SUPER-ACCEPT, hi , hj , d, r ⟩ to π (pi)

not the primary, it relays the request to the primary. If the primary

does not multicast the request to the nodes of the cluster, it will

eventually be suspected to be faulty by the nodes.

3.3 Dealing with Conflicting Messages
In the presented consensus protocol and after multicasting a pro-

pose message, the primary might not receive a quorum of matching
accept messages from f +1 nodes of every involved cluster after a

predefined time τa because the primary nodes of different clusters

might multicast their propose messages in parallel, hence, differ-

ent nodes in an overlapping cluster might receive these conflicting
messages in different orders and assign them inconsistent sequence

numbers in their corresponding accept messages. A special case of

conflicting messages is when there is more than one cluster in the

intersection of conflicting propose messages, hence, to ensure con-

sistency, as explained earlier, nodes of overlapping clusters do not

send accept messages for later transactions before committing the

earlier ones, thus, the system might face a deadlock situation. We

propose two techniques, the first for the general case of conflicting

messages and the second to deal specifically with deadlocks.

Conflicting Messages. Algorithm 2 demonstrates an optimiza-

tion to deal with conflicting messages. In case of non-matching

accept messages, as indicated in lines 1-2 of Algorithm 2, the ini-

tiator primary π (pi) needs to re-initiate the request in only the

conflicting clusters, i.e., clusters that have not sent f + 1 matching

accept messages to the initiator primary. However, to preventing

any further conflicts, the initiator primary π (pi) multicasts a super-
propose message with the same structure as propose messages to

only the primary nodes of the conflicting clusters. Once the initiator

primary π (pi) sends a super-propose message for transactionm to

the primary node of a cluster, π (pi) does not accept any further

accept messages for transactionm from that cluster. As shown in

lines 3-4, the primary node of each conflicting cluster then assigns

a sequence number and multicasts a super-accept message (with

the same structure as accept messages) to the nodes of its cluster

and also the initiator primary π (pi). Upon receiving a super-accept
message from the primary of its cluster, as presented in lines 5-

6, each node logs the message and sends a super-accept message

with the same sequence number to π (pi). Nodes also remove the

previous sent accept messages for m from their logs. Once π (pi)
receives matching super-accept messages from f +1 nodes of every
conflicting cluster, it returns to its normal operation, as presented

in lines 11-13 of Algorithm 1, and multicasts commit messages.

Well-designed sharded systems attempt to reduce cross-shard

transactions, distribute the load on geographically distributed work-

loads, and balance heavy and light workloads. Nevertheless, SharPer

might still incur heavy workloads with a high percentage of cross-

shard transactions where the probability of receiving conflicting

accept messages is high. In such circumstances, instead of multic-

asting propose messages, waiting for probably conflicting accept

messages and then re-initiating the transaction by multicasting

super-propose messages, the initiator primary can initially multic-

ast super-propose messages to the primary nodes of the involved

clusters. In this way, since the primary of each cluster assigns all

sequence numbers for both intra-shard and cross-shard transac-

tions, no conflicts will occur. This solution, however, comes with

an extra intra-cluster message passing. Depending on the type of

workload and percentage of cross-shard transactions, SharPer can

dynamically switch between these two techniques to deal efficiently

with conflicting messages.

Deadlock Situations. If different overlapping clusters receive pro-
posemessages for concurrent cross-shard transactions in conflicting

orders, the system might face a deadlock situation. In particular,

if two clusters p1 and p2 receive propose messages for cross-shard

transactionsm andm′
in conflicting orders, e.g., p1 receivesm be-

fore m′
and p2 receives m′

before m, to ensure the consistency

property (as explained in Algorithm 1, line 9), clusters do not pro-

cess the second transaction before committing the first one, i.e., p1
waits for the commit message ofm and p2 waits for the commit mes-

sage ofm′
. However, since committing a cross-shard transaction

requires f + 1 accept messages from every involved cluster, neither

of m and m′
can be committed (i.e., deadlock situation). In such

a situation, similar to conflicting messages, the initiator primary

nodes of deadlocked transactions multicast super-propose messages

to the primary node of clusters that are involved in the deadlocked

transactions. All involved clusters must then reach a unique order

between deadlocked transactions and based on that undo their sent

accept messages if needed. Note that at that point, primary nodes

do not add any new transaction m′′
into the deadlock situation

before all existing transactions get committed to preventing any

possible starvation. We explain the technique in two cases. First, if

bothm andm′
have been initiated by the same cluster, the primary

nodes of other clusters, which are involved in bothm andm′
, can

detect the correct order by comparing the sequence numbers of

m andm′
and in case a node has already sent an accept message

for the request with the higher sequence number, it needs to undo

its sent accept message by sending a super-accept message with a

different sequence number. The primary node multicasts the super-
accept message to the nodes of its cluster, hence, they also send the

super-accept message to the initiator primary (i.e., to prevent any

further conflict the primary assign sequence numbers to deadlocked

transactions). Nodes as well as the initiator primary also remove

the previous sent accept messages from their logs. Second, whenm
andm′

have been initiated by different clusters, e.g.,m is initiated

by p3 where p1, p2, and p3 are involved inm andm′
is initiated by

p4 where p1, p2, and p4 are involved inm′
. In such a situation and

to determine a unique order, transactions m and m′
are ordered

based on the id of their initiator clusters. As a result, if a node

has already sent an accept message for the request with the higher

initiator cluster id, it sends an super-accept message to the initiator

primary with a different sequence number. Both the nodes and the

initiator primary also remove the previous sent accept messages

from their logs. Note that this deadlock resolution technique can

easily be generalized for situations with more overlapping clusters

and more conflicting messages. In particular, while in deadlocks of

length greater than two, clusters have no global knowledge of all

deadlocked transactions, the partial knowledge of each cluster does

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

80

not violate the global ordering of the deadlocked transactions, i.e.,

transactions will be processed in the same order, although some

transactions might incur more waiting time.

3.4 Primary Failure Handling

The goal of the primary failure handling routine is to improve

liveness by allowing the system to make progress when a primary

node fails. The routine is triggered by timeout. When node r of

some cluster pj receives a valid propose message from a primary

for either an intra-shard or a cross-shard transaction, it starts a

timer that expires after some predefined time τf . Time τf for cross-

shard transactions is longer than τf of intra-shard transactions

because processing cross-shard transactions usually takes more

time. Moreover, time τf for cross-shard transactions is much longer

than τa (i.e., the timeout for resolving conflicting messages) to allow

primary nodes to resolve conflicts and deal with deadlock situations.

If the timer has expired and node r has not committed the request,

the node suspects that the primary might be faulty. We need to

address three cases. First, a cross-shard transaction where node r
(of cluster pj) and the initiator primary π (pi) which is suspected

to be faulty, i.e., it has not sent super-propose (if accept messages

are conflicting) or commit messages, are in different clusters (i.e.,

i , j). Second, a cross-shard transaction where node r is not in

the initiator cluster (i.e., i , j), however, π (pj) is suspected to be

faulty, i.e., it has not sent super-accept messages (if accept messages

are conflicting or if the system uses the optimization discussed for

heavy workloads), and third, an intra- or a cross-shard transaction

where node r and the initiator primary which is suspected to be

faulty, i.e., it has not sent propose, super-propose, super-accept, or
commit messages, are in the same cluster (i.e., i = j).

In the first case, node r multicasts a ⟨COMMIT-QUERY,hi ,hj ,d, r ⟩
message to every node of the initiator cluster pi where hi and hj
are the sequence numbers assigned to the transaction by clusters

pi and pj (in the corresponding propose and accept (or super-accept)
messages). There are indeed three possible situations: (1) The re-

quest has already been committed, thus, the corresponding commit
message will be sent back to node r by the initiator primary, (2)

The initiator primary is still waiting for super-accept messages of

some involved cluster, and (3) The initiator primary itself has failed,

hence, the nodes of pi need to elect a new primary. The nodes of pi
can easily distinguish between cases 2 and 3 (waited or failed initi-

ator primary) by exchanging messages and electing a new primary

only if the primary has failed. The primary failure handling routine

is performed by the nodes of the same cluster as the faulty primary.

In the second case, when π (pj) has failed, if node r has not

detected that π (pj) is failed, similar to the first case, r multicasts

a commit-query message to every node of the initiator cluster pi
(assuming that the initiator primary has failed). Upon receiving a

commit-querymessage, the initiator primary multicasts super-propose
messages to every node of pj , hence, nodes of pj suspect that π (pj)
is faulty. Note that, this case is very unlikely to happen because, on

one hand, node r usually is able to detect that the π (pj) is faulty
(from intra-shard messages) and on the other hand, the timer τa of

π (pi) will expire much earlier than the timer τf of node r , hence,
π (pi) will send super-propose messages to nodes of cluster pj earlier
(the first time τa expires, π (pi)multicasts super-proposemessages to

the primary nodes of the conflicting clusters, the second time, it mul-

ticasts super-propose to every node. For heavy workloads, however,

it multicasts super-propose to every node from the beginning).

Third, when node r and the initiator primary are in the same

cluster, node r initiates the leader election phase of Paxos [31] to

elect the new primary, and the new primary handles all the uncom-

mitted intra- and cross-shard transactions, and takes care of new

client requests. Due to space limitation, the detailed explanation is

omitted and is provided in the extended version of the paper [5].

3.5 Correctness Arguments
Consensus protocols have to satisfy safety and liveness. Safety

means all correct nodes receive the same requests in the same order

whereas liveness means all correct requests are eventually ordered.

In this section, the safety (agreement, validity, and consistency)

and liveness (termination) properties of SharPer in the presence of

crash-only nodes are demonstrated. Since intra-shard transactions

follow Paxos, we mainly focus on cross-shard transactions.

Lemma 3.1. (Agreement) If node r commits requestm with se-

quence number h, no other correct node commits requestm′
(m ,

m′
) with the same sequence number h.

Proof. Let m and m′
(m , m′

) be two committed requests

with sequence numbers h = [hi ,hj ,hk , ...] and h
′ = [h′k ,h

′
l ,h

′
m , ..]

respectively. Committing a request requires matching accept (or
super-accept) messages from f + 1 different nodes of every involved

cluster. Therefore, if the involved clusters ofm andm′
intersect in

clusterpk , at least f +1 nodes of clusterpk have sentmatching accept
(or super-accept) messages form, and similarly, at least f + 1 nodes
of cluster pk have sent matching accept (or super-accept) messages

for m′
. Since each cluster includes 2f + 1 nodes and nodes are

non-malicious, hk , h′k . Note that the same proof logic applies

in special cases wherem orm′
is an intra-shard transaction (i.e.,

h = hk or h′ = h′k).
If the primary fails, since each committed request has been rep-

licated on a quorum Q1 of f + 1 nodes and to be elected primary,

agreement from a quorum Q2 of f + 1 nodes is needed, Q1 and Q2

must intersect in at least one node that is aware of the latest com-

mitted request. Hence, SharPer guarantees the agreement property

for both intra-shard as well as cross-shard transactions. □

Lemma 3.2. (Validity) If a correct node r commits m, then m
must have been proposed by some correct node π .

Proof. Since crash-only nodes do not send fictitious messages,

validity is ensured. □

Lemma 3.3. (Consistency) Let Pµ denote the set of involved clusters
for a request µ. For any two committed requestsm andm′

and any

two nodes r1 and r2 such that r1 ∈ pi , r2 ∈ pj , and {pi ,pj } ∈

Pm ∩ Pm′ , ifm is committed beforem′
in r1, thenm is committed

beforem′
in r2.

Proof. As shown in Section 3.2, once node r1 of some cluster pi
receives a proposemessage for some cross-shard transactionm, if the

node is involved in another uncommitted cross-shard transaction

m′
where |Pm ∩Pm′ | > 1, i.e., some other cluster pj is also involved

in both transactions, node r1 does not send an accept message for

transactionm beforem′
gets committed. Since committing request

m requires f + 1 accept messages from every involved cluster,m

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

81

cannot be committed untilm′
is committed. As a result, the order

of committing messages is the same in all involved nodes. □

Note that ensuring consistency might result in deadlock situ-

ations which can be resolved as explained in Section 3.3.

Property 3.4. (Termination) A request m issued by a correct

client eventually completes.

SharPer, as mentioned earlier and due to the FLP impossibility

result [20], guarantees liveness only during periods of synchrony.
To show that a request issued by a correct client eventually com-

pletes, we need to address three scenarios. First, if the primary is

non-faulty and acceptmessages are non-conflicting. As shown in Al-

gorithm 1, the protocol ensures that a correct client receives a reply
from the primary. Second, if a non-faulty primary has multicast a

propose message but not received matching accept messages from

f + 1 nodes of every involved cluster. As explained in Sections 3.3,

the initiator primary re-initiates the transaction by multicasting

super-propose messages to only the primary nodes of the involved

clusters. Since the primary node of each cluster assigns the se-

quence number (in its super-accept message), super-accept messages

that are received from each cluster must match, thus increasing the

chances of termination. In case of a deadlock situation, i.e., different

clusters receive transactions in conflicting orders, upon receiving a

super-propose message from the initiator primary, a unique order is

determined and nodes within different clusters might need to send

a new super-accept message. Third, if the (initiator) primary fails,

as explained in Sections 3.4, nodes involved in an uncommitted

transaction (initiated by the faulty primary) detect its failure (using

timeouts) resulting in triggering the failure handling routine.

4 Consensus with Byzantine Nodes
In this section, intra- and cross-shard consensus in the presence

of Byzantine nodes are presented followed by the primary failure

handling routine. Then, the correctness of SharPer is proven.

4.1 Intra-shard consensus
Most Byzantine fault-tolerant protocols, e.g., PBFT [11], require

3f +1 nodes to guarantee safety in the presence of at most f ma-
licious nodes. In PBFT, the replicas move through a succession

of configurations called views [18][19] where in each view, one

replica, called the primary, initiates the protocol and the others

are backups. SharPer uses PBFT to establish consensus on the or-

der of intra-shard transactions. During normal case execution, a

client c requests an intra-shard transaction by sending message

m = ⟨REQUEST,op, tc , c⟩σc to the primary where op is the reques-

ted intra-shard transaction, and tc is a timestamp used to ensure

exactly-once semantics (prevent replay attacks). When the primary

receives a valid request from an authorized client, it initiates the

consensus protocol by assigning a sequence number and multicast-

ing a signed propose (called pre-prepare in PBFT) message including

the requested transaction to all nodes within the cluster. Note that

in the presence of Byzantine nodes and to provide validity, all mes-

sages sent by all nodes are signed. Once a node receives a valid

propose message from the primary, it multicasts an accept (prepare)
message to every node within the cluster. Each node then waits for

2f valid acceptmessages from different nodes (including itself) that

match the propose message and then multicasts a commit message

to all nodes of the cluster. Once a node receives 2f valid commit

Algorithm 3 Cross-shard Consensus with Byzantine Nodes

1: init():
2: r := node_id
3: pi := the cluster that initiates the consensus

4: π (p) := the primary node of cluster p
5: P := set of involved clusters

6: upon receiving valid transactionm and (r == π (pi))
7: multicast ⟨⟨PROPOSE, hi , d ⟩σπ (pi)

,m⟩ to P
8: upon receiving valid ⟨⟨PROPOSE, hi , d ⟩σπ (pi)

,m⟩ from π (pi)
9: if r is not involved in any uncommitted requestm′

wherem andm′
intersect

in some other cluster pk
10: multicast ⟨ACCEPT, hi , hj , d, r ⟩σr to P
11: upon receiving valid matching ⟨ACCEPT, hi , hj , d, r ⟩σr from 2f +1 different nodes

of every cluster pj in P
12: multicast ⟨COMMIT, [hi , hj , . . ., hk], d, r ⟩σr to P
13: upon receiving valid ⟨COMMIT, [hi , hj , . . ., hk], d, r ⟩σr from 2f + 1 nodes of every

cluster in P
14: append the transaction and commit messages to the ledger

messages from different nodes that match its own commit message,

it appends the transaction as well as all 2f + 1 commit messages

to the ledger (to ensure immutability), executes the transaction,

updates the state, and sends a reply to the client. Finally, the client

waits for f + 1 valid matching responses from different replicas to

ensure at least one correct replica executed its request.

4.2 Byzantine Cross-shard Consensus
In the presence of malicious nodes, a Byzantine fault-tolerant

protocol is neededwhere for each cross-shard transaction, similar to

the crash-only case, agreement from all involved clusters is needed.

Unlike in the case of crash failure where the quorum size is f + 1,
in consensus with Byzantine nodes, the quorum size is 2f + 1. In
addition and due to the potential malicious behavior of the primary

node, all non-faulty nodes of every involved cluster multicast both

accept and commit messages to each other.

The normal case operation (i.e., when the primary is non-faulty)

for SharPer to process a cross-shard transaction in the presence of

Byzantine nodes is presented in Algorithm 3. Similar to Algorithm 1

and as shown in lines 1-5, pi is the initiator cluster, P is the set of

involved clusters, and π (p) indicates the primary node of cluster p.
Once the initiator primary π (pi) receives a valid signed cross-

shard request from an authorized client, as presented in lines 6-7,

π (pi) assigns sequence number hi to the request and multicasts

a propose message including sequence number hi and digest d of

the request to all nodes of every involved cluster. Requests are

piggybacked in propose messages to keep propose messages small.

Upon receiving a propose message for a requestm, node r of an
involved cluster pj , as indicated in lines 8-10, validates the request,

signature and message digest. If the node belongs to the initiator

cluster (i = j), it also checks hi to be valid, i.e., within a predefined

range to prevent a malicious primary from exhausting the space of

sequence numbers by choosing a very large value [11]. Furthermore,

if the node is currently involved in an uncommitted cross-shard

requestm′
where the involved clusters of two requestsm andm′

overlap in some other cluster as well, as explained in the crash-only

case, the node does not process the new requestm (only buffersm)

before the earlier requestm′
is processed. This is needed to ensure

concurrent requests are committed in the same order on overlap-

ping clusters (consistency property). The node then multicasts an

accept message including the corresponding sequence number hj
(that represents the order ofm in cluster pj) as well as the digest
d = D(m) to every node of all involved clusters.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

82

Each node waits for valid accept messages with matching se-

quence numbers from 2f +1 nodes of every involved cluster with

hi , and d that match the propose message which is sent by initiator

primary π (pi). If a node receives accept messages without receiv-

ing a propose message, the node contacts the primary node (or its

neighbors to reduce the load on the primary) to get the propose
message. We define the predicate accepted-localpj (m,hi ,hj , r) to
be true if and only if node r has received requestm, a propose form
with sequence number hi from the initiator cluster pi and 2f + 1
accept messages from different nodes of an involved cluster pj that
match the propose message. The predicate accepted(m,h, r) where
h = [hi ,hj , ...,hk] is then true on node r if and only if accepted-
localpj is true for every involved cluster pj in cross-shard trans-

action m. The order of sequence numbers in the predicate is an

ascending order determined by their cluster ids. Here, since nodes

might behave maliciously, each cluster includes 3f + 1 nodes and
2f + 1 matching messages from every involved cluster for each

step of the protocol are needed. The propose and accept phases of
the algorithm basically guarantee that non-faulty nodes agree on a

total order for the transactions. When accepted(m,h, r) becomes

true, as presented in lines 11-12, node r multicasts a commitmessage

⟨COMMIT,h,d, r ⟩σr to every node of all involved clusters.

Finally, as shown in lines 13-14, each node waits for valid match-

ing commit messages from 2f + 1 nodes of every involved clusters

that match its commitmessage. Predicate committed-localpj (m,h, r)
is defined to be true on node r if and only if accepted (m,h, r) is true
and node r has accepted 2f + 1 valid matching commit messages

from different nodes of cluster pj that match the propose message

for cross-shard requestm. Predicate committed(m,h, r) is then true

on node r if and only if committed-localpj is true for every involved
cluster pj in request m. The committed predicate indeed shows

that at least f + 1 nodes of each involved cluster have multicast

valid commit messages. When the committed predicate becomes

true, the node considers the transaction as committed. If the node

has executed all transactions with lower sequence numbers than

hj , it appends the transaction and 2f + 1 commit messages to the

ledger, executes the transaction, updates the state, and sends a

⟨REPLY, tc , c,o, r ⟩σr message to client c where tc is the timestamp of

the corresponding request and r is the execution result. The client

waits for f + 1 valid matching responses from different replicas to

ensure at least one correct replica executed its request. If the client

does not receive reply messages soon enough, it multicasts the re-

quest to all nodes within the cluster. If the request has already been

processed, the nodes simply re-send the reply message to the client

(nodes remember the last reply message they sent to each client).

Otherwise, if the node is not the primary, it relays the request to

the primary. If the primary does not multicast the request to the

nodes, it will eventually be suspected to be faulty by nodes to cause

a primary failure handling routine.

4.3 Dealing with Conflicting Messages
In the consensus protocol with Byzantine nodes, similar to the

crash-only case, a quorum of 2f + 1 matching accept messages

from every cluster might not be received due to conflicting propose
messages coming from different primary nodes in parallel. We first

address conflicting messages and then discuss deadlock situation,

a special case of conflicting messages where there is more than

Algorithm 4 Dealing with Conflicting ACCEPT Messages

******The configuration is the same as Algorithm 3******

1: if accept messages of cluster pj not matching and (r == π (pj))
2: multicast ⟨SUPER-ACCEPT, hi , hj , d, r ⟩σr to nodes of pj
3: upon receiving ⟨SUPER-ACCEPT, hi , hj , d, π (pj)⟩σπ (pj)

and r ∈pj
4: if (less than f accept messages have non-matching hi) and ((less than 2f +1

matching accept from pj form are logged) or (the transaction is deadlocked))

5: multicast ⟨SUPER-ACCEPT, hi , hj , d, r ⟩σr to P

one cluster in the intersection of conflicting propose messages. The

⟨ACCEPT,hi ,hj ,d, r ⟩σπ (pi)
messages might be non-matching for two

reasons. First, the initiator primary π (pi) is malicious and sends

inconsistent messages, i.e., assigns inconsistent sequence numbers,

to different nodes, hence, there is no quorum of 2f + 1 nodes

from a cluster with matching sequence number hi for the same

request. Note that a malicious initiator primary might also assign

invalid digest d or sign its message incorrectly, however, it will

be easily detected by all nodes as an invalid message. The only

malicious behavior that is not detected by nodes alone and requires

communication among them (i.e., sending acceptmessages) is when

the initiator primary assigns inconsistent sequence numbers to the

same request. Second, when different nodes of the same cluster,

similar to the crash-only case, assign inconsistent sequence number

hj . We address the first case, in the primary failure handling routine.

In the second case, as presented in lines 1-2 of Algorithm 4, the

primary node of each conflicting cluster pj , i.e., a cluster where at
least 2f + 1 of accept messages have matching hi and d (to ensure

that the initiator primary is non-faulty) but less than 2f +1 of accept
messages have matching hj , multicasts a super-acceptmessage (with

the same structure as accept messages) to the nodes of its own

cluster after a predefined time τa . Note that this is in contrast to

the crash-only case where only the initiator primary multicasts

super-accept messages. Once a node receives a super-accept message

for some cross-shard transactionm from the primary node of its

cluster, as shown in lines 3-5, it first validates the message, the

digest, and its sequence number to be within a predefined range.

Node also checks the received accept messages from nodes of its

cluster to ensure that the initiator primary is non-malicious, i.e., less

than f accept messages have non-matching hi . If (1) the node has
received less than 2f + 1 matching accept messages, i.e., messages

with matching hj , for transactionm from the nodes of its cluster or

(2) the transaction is in a deadlock situation, hence, there is a need

to undo acceptmessages by sending super-acceptmessages, the node

(including the primary node) multicasts a super-accept message to

all nodes of every involved cluster.

In heavy workloads with a high percentage of cross-shard trans-

actions where the probability of receiving conflicting accept mes-

sages is high, similar to the crash-only case, the initiator primary

initially multicasts super-propose messages to all nodes of other

involved clusters. The primary of each involved cluster then multic-

asts a super-acceptmessage (with piggybacked super-proposemessage

received from the initiator primary) to the nodes of its cluster.

To address deadlock situations, i.e., where overlapping clusters

receive propose messages in conflicting orders, similar to the crash-

only case, the initiator primary multicasts super-propose messages

to the primary nodes of the overlapping clusters. The overlapping

clusters then reach a unique order among concurrent transactions

using either the sequence number of transactions (if concurrent

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

83

transactions are initiated by the same cluster) or the id of the initi-

ator clusters (if transactions are initiated by different clusters).

4.4 Primary Failure Handling
The primary failure handling routine, similar to the crash-only

case, is triggered by timeout. If the timer of some node r of cluster
pj expires (after some predefined time τf) node r suspects that the
primary might be faulty. There are three cases. First, a cross-shard

transaction where node r and the initiator primary π (pi), which
is suspected to be faulty, i.e., it has not sent valid propose or super-
propose messages, are in different clusters (i.e., i , j). Second, a
cross-shard transaction where node r is not in initiator cluster pi ,
however, π (pj) is suspected to be faulty, i.e., it has not sent valid

super-accept messages. Third, an intra- or a cross-shard transaction

where node r and the initiator primary, which is suspected to be

faulty, i.e., it has not sent valid propose, super-propose, or super-accept
messages, are in the same cluster (i.e., i = j).

In the first case, if the propose message has an incorrect digest or

signature, node r discards it. However, if propose messages are

valid but more than f of accept messages that node r receives

from nodes of an involved cluster have non-matching hi , then
initiator primary π (pi) is malicious. Therefore, node r multicasts

an ⟨ACCEPT-QUERY,hi ,d, r ⟩σπ (r) messages to every node of initiator

cluster pi . Note that, node r still processes all intra-shard transac-

tions as well as all transactions coming from all other clusters. If

a node receives accept-query messages from 2f + 1 different nodes
of another cluster with matching d , the node suspects that the

primary of its cluster is faulty and initiates the primary failure

handling routine (explained later). Second, when primary π (pj) is
malicious and multicasts super-accept messages with (consistent

sequence number hi but) inconsistent sequence numbers hj to the

nodes of its cluster. In this case, node r will receive inconsistent
super-acceptmessages from different nodes of pj , suspects that π (pj)
is faulty and initiates the primary failure handling routine. Note

that, this case happens when either accept messages are conflicting

or the optimization presented for heavy workloads is used. Third,

when node r and the faulty primary are in the same cluster, node

r initiates the primary failure handling routine by multicasting

a failure-query message including all received valid accept, accept-
query, and commitmessages for all intra-shard as well as cross-shard

transactions to every node of the cluster. To decrease the size of

failure-query messages, SharPer uses checkpoints as PBFT [11], i.e.,

each node sends the last stable checkpoint that it knows, proof of

its correctness, and messages with a sequence number higher than

the checkpoint sequence number. An accept-query message is valid

if it is received from at least 2f +1 different nodes of a cluster. Upon
receiving 2f failure-querymessages, the next primary (determined in

a round-robin manner based on node ids) handles the uncommitted

transactions by multicasting a new-primarymessage including 2f +1
failure-query messages and a propose message for each uncommitted

request (either intra-shard or cross-shard) to every node within the

cluster. For uncommitted cross-shard requests where the cluster

has initiated the requests, the new primary multicasts a new-primary
message including 2f + 1 failure-query messages and the related

propose messages to every node of all involved clusters. If other

clusters have already accepted the request, they simply send back

their accept (or super-accept) messages. Once node r multicasts a

failure-query message, it starts a timer that expires after some time

τv . If the timer expires before it receives a valid new-primary mes-

sage, it starts the routine again. In the worst case, the system might

incur f consecutive faulty primary nodes.

4.5 Correctness Arguments
We demonstrate how SharPer satisfies the safety and liveness

properties in the presence of Byzantine nodes.

Lemma 4.1. (Agreement) If node r commits requestm with se-

quence number h, no other correct node commits requestm′
(m ,

m′
) with the same sequence number h.

Proof. The propose and accept phases of the Byzantine cross-
shard consensus protocol guarantee that correct nodes agree on

a total order of all requests. Indeed, if the accepted(m,h, r) pre-
dicate where h = [hi ,hj , ...,hk] is true, then accepted(m′,h,q) is
false for any non-faulty node q (including r = q) and anym′

such

thatm , m′
. This is true because (m,h, r) implies that accepted-

localpj (m,hi ,hj) is true for each involved cluster pj and since each

cluster include 3f + 1 nodes, at least 2f + 1 nodes within the cluster

(from which at least f + 1 nodes are non-faulty) have sent accept
(or propose) messages for requestm with sequence number hj . As a
result, for accepted(m′,h,q) to be true, at least one of those non-

faulty nodes needs to have sent two conflicting accept messages

with the same sequence number but different message digest. This

condition guarantees that first, a malicious primary cannot violate

safety and second, at most one of the concurrent conflicting trans-
actions can collect the required number of messages (2f + 1) from
each overlapping cluster.

The primary failure handling routine of SharPer guarantees

that the non-faulty nodes of any cluster pj agree on the sequence

number of requests that are committed-local at different nodes. The
committed-localpj predicate becomes correct on node r if r has

received a quorum Q1 of matching commit messages from 2f + 1
nodes of cluster pj . To change the primary node of cluster pj , a
quorum Q2 of 2f + 1 valid failure-query messages is needed. Since

there are 3f +1 nodes in each cluster,Q1 andQ2 intersect in at least

one correct replica, thus if a request is accepted by the previous

primary node, it is propagated to subsequent primary nodes. □

Lemma 4.2. (Validity) If a correct node r commits m, then m
must have been proposed by some correct node π .

Proof. In the presence of Byzantine nodes, validity is guaran-

teed mainly based on standard cryptographic assumptions about

collision-resistant hashes, encryption, and signatures which the

adversary cannot subvert (as explained in Section 2). Since the

request as well as all messages are signed and either the request

or its digest is included in each message (to prevent changes and

alterations to any part of the message), and in each step, 2f + 1

matching messages (from each cluster) are required, if a request is

committed, the same request must have been proposed earlier. □

Lemma 4.3. (Consistency) Let Pµ denote the set of involved clusters
for a request µ. For any two committed requestsm andm′

and any

two nodes r1 and r2 such that r1 ∈ pi , r2 ∈ pj , and {pi ,pj } ∈

Pm ∩ Pm′ , ifm is committed beforem′
in r1, thenm is committed

beforem′
in r2.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

84

Proof. Consistency is guaranteed similar to crash-only nodes

(lemma 3.3) except that committing request m requires 2f + 1

matching commit messages (out of 3f + 1) from each cluster. □

Property 4.4. (Termination) A request m issued by a correct

client eventually completes.

To provide termination during periods of synchrony, similar

to the crash-only case, several scenarios need to be addressed. If

the primary is non-faulty and accept messages are non-conflicting,

following Algorithm 3, requestm completes. Next, if the primary

is non-faulty, but more than f accept messages of some involved

cluster pj have inconsistent sequence number hj , as explained in

Section 4.3, π (pj) multicasts a super-accept message including a

hj to the nodes of its cluster. In case of a deadlock situation, i.e.,

where different clusters receive transactions in different orders,

a unique order is determined by the primary of each cluster and

clusters might need to send new super-accept messages. Finally,

the primary failure handling routine (Section 4.4) handles primary

failures in several cases where (1) an initiator primary multicasts

incorrect propose or super-propose messages to other clusters (2)

the primary of an involved cluster multicasts incorrect super-accept
messages for a cross-shard transaction to nodes of its cluster, and

(3) a primary node multicasts incorrect propose, super-propose, or
super-accept messages to the nodes of its cluster.

Note that in the optimization explained in Section 4.3 for heavy

workload where the initiator primary multicasts super-propose mes-

sages to the nodes of all other involved clusters, assigning an in-

consistent sequence number, hj will be detected in the accept phase.
Furthermore, if either the initiator primary does not multicast the

super-propose message to an involved primary (or cluster) or an

involved primary does not multicast the super-acceptmessage to the

nodes of its cluster, since all nodes of all involved clusters multicast

super-acceptmessages to each other, as long as nodes of one involved

cluster multicast super-accept messages, other involved clusters will

be informed (i.e. no liveness issue will happen). If a node receives

valid super-accept messages from nodes of other clusters without

receiving super-accept message from the primary of its cluster (and

super-propose message from the initiator primary), it multicasts a

query message to all nodes of the initiator cluster. The primary of

an involved cluster multicasts the query message to the nodes of

its cluster as well in case they received the message (since nodes

of a cluster are in proximity, it reduce the latency of processing a

request). If nodes of the initiator cluster receive such queries from

2f + 1 nodes of an involved cluster for a request, they suspect

that the initiator primary is faulty. If nodes of an involved cluster

do not receive the super-accept message from their primary after

some predefined time, they suspect that their primary is faulty. In

the worst case, a faulty initiator primary node might continue to

operate maliciously by not sending super-propose messages to the

primary nodes of the involved clusters. However, in this case, the

primary node of each involved cluster can obtain the actual request

probably from a node in its cluster, since these nodes are in closer

proximity, hence the safety and liveness are not affected.

5 Experimental Evaluations
In this section, we conduct several experiments to evaluate

SharPer. In our implementation of SharPer, Algorithms 1 and 3

are followed in normal workloads (and Algorithms 2 and 4 in case

0 5 10 15 20

50

100

150

Throughput [ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-C

F-Paxos

SharPer

AHL-C

(a) 20% Cross-shard

3 6 9 12

100

200

300

400

Throughput [Ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-C

F-Paxos

SharPer

AHL-C

(b) 80% Cross-shard

0 3 6 9

100

200

300

400

Throughput [Ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-C

F-Paxos

SharPer

AHL-C

(c) 100% cross-shard

Figure 2: Cross-Shard Transactions with Crash-Only Nodes
of conflicts) in the presence of crash-only and Byzantine nodes. In

heavy workloads, however, the optimization explained at the end

of sections 3.3 and 4.3 has been used. SharPer is able to dynam-

ically switch between these two different techniques depending

on the workload. We have also deployed an accounting applic-

ation on SharPer where clients initiate transactions to transfer

assets between accounts in the same or different shards. The exper-

iments were conducted on the Amazon EC2 platform. Each VM is

a c4.2xlarge instance with 8 vCPUs and 15GB RAM, Intel Xeon E5-

2666 v3 processor clocked at 3.50 GHz. When reporting throughput

measurements, we use an increasing number of clients running on

a single VM, until the end-to-end throughput is saturated, and state

the throughput (x axis) and latency (y axis) just below saturation.

5.1 Cross-Shard Transactions with Crash-Only
Nodes

In the first set of experiments, we measure the performance of

SharPer for workloads with different percentages of cross-shard

transactions where nodes are crash-only. We compare SharPer with

the two main approaches for exploiting the availability of extra

resources: the active/passive replication technique and Fast Paxos

[30]. In the active/passive replication technique, the protocol re-

lies only on 2f +1 active nodes to establish consensus and updates

the passive replicas asynchronously whereas Fast Paxos use 3f +1
replicas instead of 2f +1 to reduce one phase of communication.

We implemented two permissioned blockchain systems referred to

as APR-C and FPaxos where their consensus protocols follow the

active/passive replication and Fast Paxos designs respectively. In

addition to SharPer and these two systems, we also implemented

a modified version of the sharded permissioned blockchain sys-

tem AHL [16]. AHL has two novel aspects: first, its intra-shard

consensus protocol that uses trusted hardware to restrict the ma-

licious behavior of nodes, and second, its cross-shard consensus

protocol where a reference committee uses 2PC to order the trans-

actions. Since the emphasis of the experiments is on cross-shard

transactions, we implemented a modified version of AHL, called

AHL-C where the intra-shard transactions are processed similar

to SharPer, however, the cross-shard transactions are performed

similar to AHL [16] where the classic two-phase commit (2PC) runs

in two communication phases (prepare and commit) between the

reference committee and involved clusters.

We consider a network with 12 nodes (15 nodes in AHL-C). In

SharPer and AHL-C, the nodes are divided into four clusters where

each cluster consists of 3 nodes and uses Paxos with f = 1 to

establish consensus. AHL-C includes a reference committee of 3

crash-only nodes as well. Each cluster further maintains a data

shard of 10000 records (clients). In APR-C, 3 nodes are used as the

active replicas and the execution results are sent to the remaining 9

nodes whereas FPaxos uses 4 nodes (3f + 1) to establish consensus.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

85

We consider four different workloads with (1) no cross-shard,

(2) 20% cross-shard, (3) 80% cross-shard, and (4) 100% cross-shard

transactions. We also assume that two (randomly chosen) shards

are involved in each cross-shard transaction. Note that since APR-

C and FPaxos do not use sharding, the percentage of cross-shard

transactions does not affect their performance. The load is also

equally distributed among all the nodes.

When there are no cross-shard transactions, SharPer is able to

process 35230 transactions with 91 ms latency before the end-to-

end throughput is saturated where every 5 ms, ∼ 45 requests from

different clients are sent to each cluster. Note that in this setting,

since there are no cross-shard transactions, each cluster orders and

executes its transactions independently, thus the throughput of the

entire system will increase linearly with the increasing number of

clusters. Since for intra-shard transactions, AHL-C uses the same

technique as SharPer, its results are identical to SharPer. APR-C and

FPaxos are also able to process 8800 and 10700 transactions with 95

ms and 75 ms latency respectively (as can be seen in Figure 2(a)).

Since FPaxos establishes consensus in less number of phases, it has

better performance than APR-C. However, they both have much

lower throughput in comparison to SharPer (25% and 33% of SharPer

at 60 ms latency). The results mainly demonstrate the effectiveness

of employing the sharding technique in blockchains.

By increasing the percentage of cross-shard transactions to 20%

(Figure 2(a)), the throughput is reduced due to the overhead of cross-

shard transactions. In this setting, SharPer is still able to process

23000 transactions with 100 ms latency whereas AHL-C processes

21000 transactions at the same latency. This is expected because first,

SharPer, in contrast to AHL-C, is able to process non-overlapping

cross-shard transactions in parallel, and second, the cross-shard

protocol of SharPer involves less number of communication phases.

As mentioned before, since the sharding technique is not utilized

by APR-C and FPaxos, the percentage of cross-shard transactions

does not affect their performance.

Similarly, increasing the percentage of cross-shard transactions

to 80% (Figure 2(b)) and finally, 100% (Figure 2(c)) reduces the peak

throughput of SharPer to 12300 and 10500, respectively. Note that by

increasing the percentage of cross-shard transactions, SharPer still

shows much better performance compared to AHL-C (44% better in

their peak throughput with 100% cross-shard transactions) because

SharPer is still able to process non-overlapping cross-transactions

in parallel and also needs less number of communication phases.

In these two scenarios, since APR-C and FPaxos order the transac-

tions using only three (2f +1) and four (3f +1) nodes, their latency
is lower than SharPer. Specially FPaxos processes transactions with

significantly lower latency due to its fast consensus routine. How-

ever, since a large percentage of transactions is cross-shard, SharPer

needs the participation of all involved clusters to order transactions

and using sharding has no significant advantage. In fact, Figures 2(c)

and 2(d) demonstrate that if sharding is not workload-aware the

performance will be severely impacted.

To evaluate the impact of primary failure, we terminate the pro-

cess of a primary node in the first two scenarios (0% and 20% cross-

shard transactions). This failure and the failure handling routine

reduce the throughput to 26000 (73.8%) and 17100 (74.3%) and the

cluster was temporarily out of service for 18 and 23 ms respectively.

0 5 10 15 20

200

400

600

Throughput [ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-B

FaB

SharPer

AHL-B

(a) 20% Cross-shard

0 2 4 6 8

200

400

600

800

Throughput [Ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-B

FaB

SharPer

AHL-B

(b) 80% Cross-shard

0 2 4 6

200

400

600

800

Throughput [Ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

APR-B

FaB

SharPer

AHL-B

(c) 100% cross-shard

Figure 3: Cross-Shard Transactions with Byzantine Nodes
5.2 Cross-Shard Transactions with Byzantine

Nodes
In the second set of experiments, we repeat the previous scen-

arios on networks with Byzantine nodes. Similar to the previous

section, we implement four permissioned blockchain systems: (1)

SharPer, (2) APR-B where its consensus protocol follows the act-

ive/passive replication technique on Byzantine nodes, (3) FaB where

its consensus protocol follows Fast Byzantine consensus protocol

[33] and uses 5f +1 nodes (instead of 3f +1) to establish consensus

in two phases (instead of three as in PBFT), and (4) AHL-B where

its intra-shard transactions are processed using PBFT (similar to

SharPer) and its cross-shard transactions follow AHL [16].

We consider a network with 16 nodes. In SharPer and AHL-B, the

nodes are partitioned into 4 clusters where each cluster consists of

4 nodes and uses PBFT protocol with f =1 to establish consensus on

its transactions. In addition to these 16 nodes, in AHL-B, a reference

committee of 4 Byzantine nodes is also considered. In APR-B, 4

nodes are used as the active replicas and finally, FaB uses 6 nodes

(5f + 1) to establish consensus. Similar to the previous case, since

APR-B and FaB do not use sharding, the percentage of cross-shard

transactions does not affect their performance.

With no cross-shard transactions, SharPer is able to process

more than 25000 transactions with 200 ms latency. As before, since

for intra-shard transactions, AHL-B uses the same technique as

SharPer, the results of SharPer and AHL-B are identical. APR-B

and FaB also process 5900 and 6800 transactions (23% and 27% of

SharPer) with 220 ms and 130 ms latency respectively (as shown

in Figure 3(a)). Note that since transactions are processed in two

phases (instead of 3), FaB has lower latency in comparison to APR-B.

Increasing the percentage of cross-shard transactions to 20%, as

shown in Figure 3(a), reduces the peak throughput of SharPer to

18700 (with 240 ms latency). In this scenario compared to AHL-

B, SharPer processes 15% more transactions (at their respective

peak throughput) because of the parallel ordering of cross-shard

transactions and establishing cross-shard consensus in less number

of phases. The peak throughput of SharPer is also 320% and 270%

of the peak throughput of APR-B and FaB respectively.

With 80% cross-shard transactions, as can be seen in Figure 3(b),

the peak throughput of SharPer reduces to 8600 which is still 34%

higher than the peak throughput of AHL-B (6400) due to parallel pro-

cessing of non-overlapping cross-shard transactions. Finally, when

all transactions are cross-shard, as shown in Figure 3(c), SharPer

is able to process 7500 transactions with 700 ms latency whereas

AHL-B processes 5000 transactions (67% of SharPer) with the same

latency. In the last two scenarios (80% and 100% cross-shard transac-

tions), because of the high percentage of cross-shard transactions,

using sharding techniques has no significant advantage (which

again demonstrates the advantages of workload-aware sharding)

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

86

0 6 12 18 24 30 36

50

100

150

200

Throughput [ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

6 nodes

9 nodes

12 nodes

15 nodes

(a) Crash-Only Nodes

0 5 10 15 20 25

200

400

600

Throughput [ktrans/sec]

L
a
t
e
n
c
y
[
m
s
]

8 nodes

12 nodes

16 nodes

20 nodes

(b) Byzantine Nodes

Figure 4: Increasing the Number of Nodes
and since APR-B and FaB rely on only four (3f +1) and six (5f +1)
nodes to order transactions respectively, their latency is lower than

SharPer. However, in SharPer, simultaneous processing of non-

overlapping transactions results in improved throughput.

To evaluate the impact of primary failure, we terminate the pro-

cess of a primary node in the first two scenarios (0% and 20% cross-

shard transactions). This failure and the failure handling routine

reduce the throughput to 18900 (75.6%) and 14200 (75.9%) and the

cluster was temporarily out of service for 30 and 42 ms respectively.

5.3 Increasing the Number of Nodes
In the last set of experiments, we measure the performance of

SharPer in networks with a different number of nodes. We evaluate

SharPer in networks including 6, 9, 12, and 15 crash-only nodes

as well as 8, 12, 16 and 20 Byzantine nodes (2, 3, 4 and 5 clusters).

The workloads include 90% intra- and 10% cross-shard transactions

(typical settings in partitioned databases [41] [40]).

As can be seen in Figure 4(a), when nodes follow the crash failure

model, by increasing the number of nodes (clusters) the throughput

of the system increases almost linearly. This is expected because 90%

of transactions are intra-shard transactions and, as shown earlier,

for intra-shard transactions, the throughput of the entire systemwill

increase linearly with the increasing number of clusters. In addition,

since cross-shard transactions access two clusters, by increasing

the number of clusters, the chance of parallel processing of such

transactions increases. As shown in Figure 4(a), in the settings

with five clusters, SharPer processes 37000 transactions with 100

ms latency. When nodes follow the Byzantine failure model, as

shown in Figure 4(b), SharPer demonstrates the similar behavior

and processes more than 27000 transactions with 240 ms latency

on a network with 5 clusters. These experiments demonstrate the

scalability of SharPer as the number of clusters increases.

6 Related Work
Apermissioned blockchain system, e.g., Tendermint [28], Quorum

[12], Parblockchain [4], Fast Fabric [23], Fabric++ [39], FabricSharp

[38] ResilientDB [24], and Caper [2], consists of a set of known,

identified nodes that might not fully trust each other. Scalability is

the ability of a blockchain system to process an increasing number

of transactions by adding nodes to the system. Data sharding tech-

niques are commonly used in globally distributed databases such as

Amazon Dynamo [17] to improve scalability. In such systems, nodes

are assumed to be crash-only and a centralized approach is used

to process crash-shard transactions. SharPer, on the other hand,

supports both crash-only and Byzantine nodes and introduces a

decentralized approach to process crash-shard transactions.

Sharding techniques have been used in both permissionless, e.g.,

Elastico [32], OmniLedger [27], Monoxide [44], Ethereum 2 [1]

and Rapidchain [45], and permissioned blockchain systems, e.g.,

multi-channel Fabric [7], AHL [16], Cosmos [21], and RSCoin [22]

to improve scalability. Ethereum 2 [1], which as a permissionless

blockchain is supposed to be used for the development of permis-

sioned blockchain applications, consists of different shards (cur-

rently planned for 64 shards) where every shard block is processed

by a randomly chosen set of validators. In multi-channel Fabric

[6][7], channels (i.e., disjoint partitioned states of the full system)

are introduced to shard the system [7]. Using channels, Fabric

processes intra-shard transactions efficiently. However, processing

cross-shard transactions, in contrast to SharPer, requires either

the existence of a trusted channel among the participants or an

atomic commit protocol (inspired by two-phase commit) [7]. Sim-

ilarly, in Cosmos [21], interacting chains in any Inter-Blockchain

Communication must be aware of the state of each other which

requires establishing a bidirectional trusted channel between two

blockchains. AHL [16] employs a trusted hardware (the technique

that is presented in [13, 42, 43]) to restrict the malicious behavior

of nodes which results in committees of 2f + 1 nodes (instead of

3f + 1). The system also relies on an extra set of nodes, called

a reference committee, to process cross-shard transactions in a

centralized manner using the classic two-phase commit (2PC) and

two-phase locking (2PL) protocols. SharPer, in contrast to AHL, pro-

cesses cross-application transactions in a decentralized manner. In

addition, cross-shard transactions are ordered in only three commu-

nication phases. Furthermore, cross-shard transactions with non-

overlapping committees can be processed simultaneously. Note that

since the intra-shard consensus is pluggable, the trusted hardware

technique can be employed to reduce the cluster size. Finally, Cer-

berus [25] eliminates the reference committee of AHL by adding

one extra phase of communication across the involved clusters. Cer-

berus includes three protocols of which OCerberus is the most

similar to SharPer. OCerberus focuses on malicious failures while

SharPer supports both crash and malicious failures. Furthermore,

OCerberus detects all faulty behavior unlike SharPer where, as

discussed in Section 4.5, a faulty node might continue to operate

maliciously in a restrictive manner. However, this malicious beha-

vior has no ramifications on the correct execution and termination

of transactions, i.e., safety and liveness.

7 Conclusion
In this paper, we proposed SharPer, a permissioned blockchain

system to improve scalability. SharPer uses the sharing technique

and provides deterministic safety guarantees in networks where

more than a half (if nodes are crash-only) or two-thirds (if nodes

are Byzantine) of the nodes of each cluster are non-faulty. Two

decentralized flattened consensus protocols are introduced to order

cross-shard transactions without relying on centralized entities

or trusted participants. Furthermore, SharPer is able to process

cross-shard transactions with non-overlapping clusters in parallel.

Base on our experiments, in workloads with a low percentage of

cross-shard transactions (typical settings), SharPer demonstrates

better performance with both crash-only and Byzantine nodes in

comparison to other approaches and the throughput of SharPer

improves semi-linearly with the increasing number of clusters.

Acknowledgments
This work is funded by NSF grants CNS-1703560 and CNS-

1815733.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

87

References
[1] [n. d.]. The Beacon Chain Ethereum 2.0 explainer you need to read first.

https://ethos.dev/beacon-chain/. ([n. d.]).

[2] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:

a cross-application permissioned blockchain. Proceedings of the VLDB Endowment
12, 11 (2019), 1385–1398.

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. On

Sharding Permissioned Blockchains. In Int. Conf. on Blockchain. IEEE, 282–285.
[4] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. ParBlock-

chain: Leveraging Transaction Parallelism in Permissioned Blockchain Systems.

In Int. Conf. on Distributed Computing Systems (ICDCS). IEEE, 1337–1347.
[5] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. SharPer:

Sharding Permissioned Blockchains Over Network Clusters. arXiv preprint
arXiv:1910.00765 (2019).

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, et al. 2018.

Hyperledger Fabric: a distributed operating system for permissioned blockchains.

In European Conf. on Computer Systems (EuroSys). ACM, 30.

[7] Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-

Kogias. 2018. Channels: Horizontal scaling and confidentiality on permissioned

blockchains. In European Symposium on Research in Computer Security (ESORICS).
Springer, 111–131.

[8] Gabriel Bracha and Sam Toueg. 1985. Asynchronous consensus and broadcast

protocols. Journal of the ACM (JACM) 32, 4 (1985), 824–840.
[9] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. 2011. Introduction to

reliable and secure distributed programming. Springer Science & Business Media.

[10] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols in

the Wild. In Int. Symposium on Distributed Computing (DISC). 1–16.
[11] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.

In Symposium on Operating systems design and implementation (OSDI), Vol. 99.
USENIX Association, 173–186.

[12] JP Morgan Chase. 2016. Quorum white paper. (2016).

[13] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007.

Attested append-only memory: Making adversaries stick to their word. In Oper-
ating Systems Review (OSR), Vol. 41-6. ACM SIGOPS, 189–204.

[14] James CCorbett, JeffreyDean,Michael Epstein, Andrew Fikes, et al. 2013. Spanner:

Google’s globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 8.

[15] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: a

workload-driven approach to database replication and partitioning. Proceed-
ings of the VLDB Endowment 3, 1-2 (2010), 48–57.

[16] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,

and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In

SIGMOD Int. Conf. on Management of Data. ACM.

[17] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: amazon’s highly available key-value store.

In Operating Systems Review (OSR), Vol. 41. ACM SIGOPS, 205–220.

[18] Amr El Abbadi, Dale Skeen, and Flaviu Cristian. 1985. An efficient, fault-tolerant

protocol for replicated data management. In SIGACT-SIGMOD symposium on
Principles of database systems. ACM, 215–229.

[19] Amr El Abbadi and Sam Toueg. 1985. Availability in partitioned replicated

databases. In SIGACT-SIGMOD symposium on Principles of database systems. ACM,

240–251.

[20] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility

of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2 (1985), 374–382.

[21] Ethan Frey and Christopher Goes. [n. d.]. Cosmos Inter-Blockchain Communica-

tion (IBC) Protocol. https://cosmos.network. ([n. d.]). 2018.

[22] Danezis George and Sarah Meiklejohn. 2016. Centrally Banked Cryptocurrencies.

In Network and Distributed System Security Symposium (NDSS).
[23] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Keshav. 2019.

Fastfabric: Scaling hyperledger fabric to 20,000 transactions per second. In Int.

Conf. on Blockchain and Cryptocurrency (ICBC). IEEE, 455–463.
[24] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi.

2020. ResilientDB: Global Scale Resilient Blockchain Fabric. arXiv preprint
arXiv:2002.00160 (2020).

[25] Jelle Hellings, Daniel P Hughes, Joshua Primero, and Mohammad Sadoghi. 2020.

Cerberus: Minimalistic Multi-shard Byzantine-resilient Transaction Processing.

arXiv preprint arXiv:2008.04450 (2020).
[26] Zsolt István, Alessandro Sorniotti, and Marko Vukolić. 2018. StreamChain: Do

Blockchains Need Blocks?. In Workshop on Scalable and Resilient Infrastructures
for Distributed Ledgers (SERIAL). ACM, 1–6.

[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized ledger

via sharding. In Symposium on Security and Privacy (SP). IEEE, 583–598.
[28] Jae Kwon. 2014. Tendermint: Consensus without mining. Draft v. 0.6, fall (2014).
[29] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[30] Leslie Lamport. 2006. Fast paxos. Distributed Computing 19, 2 (2006), 79–103.

[31] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001),
18–25.

[32] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,

and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In

SIGSAC Conf. on Computer and Communications Security (CCS). ACM, 17–30.

[33] J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. Transactions on
Dependable and Secure Computing 3, 3 (2006), 202–215.

[34] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[35] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A global-scale byzant-

izing middleware. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 124–135.

[36] Diego Ongaro and John K Ousterhout. 2014. In search of an understandable

consensus algorithm.. In Annual Technical Conference (ATC). USENIX Association,

305–319.

[37] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP systems. In SIGMOD Int.
Conf. on Management of Data. ACM, 61–72.

[38] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen,

and Beng Chin Ooi. 2020. A Transactional Perspective on Execute-order-validate

Blockchains. In SIGMOD International Conference on Management of Data. ACM,

543–557.

[39] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.

2019. Blurring the lines between blockchains and database systems: the case of

hyperledger fabric. In SIGMOD International Conference on Management of Data.
ACM, 105–122.

[40] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,

Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store: Fine-

grained elastic partitioning for distributed transaction processing systems. Pro-
ceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[41] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J Abadi. 2012. Calvin: fast distributed transactions for partitioned

database systems. In SIGMOD Int. Conf. on Management of Data. ACM, 1–12.

[42] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk

Lung. 2010. EBAWA: Efficient Byzantine agreement for wide-area networks. In

Int. Symposium on High Assurance Systems Engineering (HASE). IEEE, 10–19.
[43] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk

Lung, and Paulo Verissimo. 2013. Efficient byzantine fault-tolerance. IEEE Trans.
Comput. 62, 1 (2013), 16–30.

[44] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out blockchains with

asynchronous consensus zones. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 95–112.

[45] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain:

Scaling blockchain via full sharding. In SIGSAC Conf. on Computer and Commu-
nications Security. ACM, 931–948.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

88

	Abstract
	1 Introduction
	2 The SHARPER Model
	2.1 SharPer Infrastructure
	2.2 Cluster and Shard Formation
	2.3 Blockchain Ledger

	3 Consensus with Crash-Only Nodes
	3.1 Intra-shard consensus
	3.2 Cross-Shard Consensus
	3.3 Dealing with Conflicting Messages
	3.4 Primary Failure Handling
	3.5 Correctness Arguments

	4 Consensus with Byzantine Nodes
	4.1 Intra-shard consensus
	4.2 Byzantine Cross-shard Consensus
	4.3 Dealing with Conflicting Messages
	4.4 Primary Failure Handling
	4.5 Correctness Arguments

	5 Experimental Evaluations
	5.1 Cross-Shard Transactions with Crash-Only Nodes
	5.2 Cross-Shard Transactions with Byzantine Nodes
	5.3 Increasing the Number of Nodes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 49.50, 75.51 Width 250.85 Height 84.74 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 49.4998 75.512 250.8547 84.7369

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 13
 0
 1

 1

 HistoryList_V1
 qi2base

