
Query-by-Sketch: Scaling Shortest Path GraphQueries
on Very Large Networks

Ye Wang

School of Computing,

Australian National

University

ye.wang2@anu.edu.au

Qing Wang

School of Computing,

Australian National

University

qing.wang@anu.edu.au

Henning Koehler

School of Fundamental

Sciences, Massey

University

h.koehler@massey.ac.nz

Yu Lin

School of Computing,

Australian National

University

yu.lin@anu.edu.au

ABSTRACT
Computing shortest paths is a fundamental operation in processing

graph data. In many real-world applications, discovering shortest

paths between two vertices empowers us to make full use of the

underlying structure to understand how vertices are related in

a graph, e.g. the strength of social ties between individuals in a

social network. In this paper, we study the shortest-path-graph

problem that aims to efficiently compute a shortest path graph

containing exactly all shortest paths between any arbitrary pair

of vertices on complex networks. Our goal is to design an exact

solution that can scale to graphs with millions or billions of vertices

and edges. To achieve high scalability, we propose a novel method,

Query-by-Sketch (QbS), which efficiently leverages offline labelling

(i.e., precomputed labels) to guide online searching through a fast

sketching process that summarizes the important structural aspects

of shortest paths in answering shortest-path-graph queries. We

theoretically prove the correctness of this method and analyze its

computational complexity. To empirically verify the efficiency of

QbS, we conduct experiments on 12 real-world datasets, among

which the largest dataset has 1.7 billion vertices and 7.8 billion edges.

The experimental results show that QbS can answer shortest-path-

graph queries in microseconds for million-scale graphs and less

than half a second for billion-scale graphs.

CCS CONCEPTS
• Theory of computation→ Shortest paths.

KEYWORDS
Shortest paths; graphs; 2-hop cover; distance labelling; pruned

landmark labelling; graph sketch; breadth-first search; algorithms

1 INTRODUCTION
Graphs are typical data structures used for representing complex

relationships among entities, such as friendships in social networks,

connections in computer networks, and links among web pages [6,

33, 35]. Computing shortest paths between vertices is a fundamental

operation in processing graph data, and has been used in many

algorithms for graph analytics [24, 29, 40]. These algorithms are

often applied to support applications that require low latency on

graphs with millions or billions of vertices and edges. Therefore, it

is highly desirable – but challenging – to compute shortest paths

efficiently on very large graphs.

Previously, the problem of point-to-point shortest path queries

has been well studied, which is to find a shortest path between two

vertices in a graph [2, 5, 14–16, 31, 32, 36, 38]. By leveraging specific

properties of road networks, such as hierarchical structures and near

planarity [3, 13], previous works have proposed various exact and

approximate methods for answering point-to-point shortest path

queries [1, 10]. Nonetheless, these methods often do not perform

well on complex networks (e.g., social networks, and web graphs)

because complex networks exhibit different properties from road

networks, such as small diameter and local clustering [3, 13, 15]. Fur-

thermore, existing methods for point-to-point shortest path queries

were designed with the guarantee of finding only one shortest path,

which limits their usability in practical applications.

(a) (b) (c)

u

v

u

v

u

v

Figure 1: An illustration of shortest paths between two ver-
tices 𝑢 and 𝑣 whose distance is 3: (a) one shortest path; (b)
three shortest paths; (c) seven shortest paths.

Given two vertices 𝑢 and 𝑣 , as depicted in Figure 1(a)-(c), they

have the same distance and cannot be distinguished from one an-

other if only one shortest path is considered. However, when con-

sidering all shortest paths, the shortest paths between these two

vertices indeed exhibit considerably different structures in Figure

1(a)-(c), which can not only distinguish vertices 𝑢 and 𝑣 in different

scenarios, but also empower us to make full use of such structures

to analyze how they are connected. Thus, in this paper, we study the

problem of finding the structure of shortest paths between vertices.

Specifically, we use the notion of “shortest path graph" to represent

the structure of shortest paths between two vertices, which is a

subgraph containing exactly all shortest paths between these two

vertices. Accordingly, we term this problem as the shortest-path-
graph problem (formally defined in Section 2).

Interestingly, shortest path graph manifests itself as a basis for

tackling various shortest path related problems, particularly when

investigating the structure of the solution space of a combinatorial

problem based on shortest paths, for example, the Shortest Path

Rerouting problem (i.e., to find a rerouting sequence from one short-

est path to another shortest path that only differs in one vertex)

[7, 22, 28], the Shortest Path Network Interdiction problem (i.e., to

find critical edges and vertices whose removal can destroy all short-

est paths between two vertices) [20, 23], and the variants such as the

Shortest Path Common Links problem (i.e., to find links common

ar
X

iv
:2

10
4.

09
73

3v
1

 [
cs

.D
B

]
 2

0
A

pr
 2

02
1

Graph

11

9

7
8

10
12

1
14

133
2

5
6

4

1

3
2

4

5

67
8

9

10

11 12 13

14

Labelling

11
1

3

2

6 1
2

2

1
1
3

Sketching Searching

11

9

7
8

10
12

1

3
2

6

4

Query answer

9

12

1

3

2

6

4

11

9

7
8

10
12

6

Offline computation Online computation for a query ∀SPQ(6,11)

Figure 2: An illustration of our method Query-by-Sketch (QbS) for answering all shortest path queries.

to all shortest paths between two vertices) [18, 26]. These shortest

path related problems are motivated by a wide range of real-world

applications arising in designing and analyzing networks. For ex-

ample, identifying a rerouting sequence for shortest paths enables

the robust design of networks with minimal cost for reconfigura-

tion, and finding critical edges and vertices helps defend critical

infrastructures against cyberattacks.

However, computing shortest path graphs is computationally

expensive since it requires to identify all shortest paths, not just one,

between two vertices. A straightforward solution for answering

shortest-path-graph queries is to compute on-the-fly all shortest

paths between two vertices using Dijkstra algorithm for weighted

graphs [11] or performing a breadth-first search (BFS) for un-

weighted graphs [9]. This is costly on graphs with millions or

billions of vertices and edges. Another solution is to precompute

all shortest paths for all pairs of vertices in a graph and then assign

precomputed labels to vertices such that certain properties hold, e.g.

2-hop distance cover [8]. However, for large graphs, storing even

just shortest path distances of all pairs of vertices is prohibitive

[3] and storing all shortest paths of all pairs is hardly feasible due

to the demand for much more space overhead. Thus, the question

we tackle in this paper is: How to construct labels for shortest-path-
graph queries that should be of reasonable size (e.g. not much larger
than the original graph), within a reasonable time (e.g. not longer
than one day), and can speed up query answering as much as possi-
ble? In answering this question, we develop an efficient solution

for shortest-path-graph queries. It is worth to note that: 1) we do

not enumerate all shortest paths to produce a shortest path graph

that contains exactly all shortest paths between two vertices; 2) our

proposed solution can answer shortest-path-graph queries very

efficiently, in microseconds for graphs with millions of edges and

in less than half a second for graphs with billions of edges.

Contributions. In the following, we summarize the contributions

of this paper with the key technical details:

(1) We observe that 2-hop distance cover is inadequate for labelling

required by shortest-path-graph queries. To alleviate this limitation

and achieve high scalability, we propose a scalable method for an-

swering shortest-path-graph queries, called Query-by-Sketch (QbS).

This method consists of three phases, as illustrated in Figure 2: (a)

labelling - constructing a labelling scheme, which is compact and

of a small size, using a small number of landmarks through pre-

computation, (b) sketching - using labelling to efficiently compute

a sketch that summarizes the important structure of shortest paths

in a query answer, and (c) searching - computing shortest paths

on a sparsified graph under the "guide" of the sketch. We develop

efficient algorithms for these phases, and combine them effectively

to handle shortest-path-graph queries on very large graphs.

(2) We theoretically prove the correctness of our method𝑄𝑏𝑆 . In ad-

dition to this, we conduct the complexity analysis for 𝑄𝑏𝑆 through

analysing the time complexities of the algorithms for constructing

a labelling scheme, computing a sketch, and performing a guided

search for answering queries. We also prove that our labelling

scheme is deterministic w.r.t. landmarks. This enables us to lever-

age the thread-level parallelism by performing BFSs from different

landmarks simultaneously without considering an order of land-

marks, which improves the efficiency of labelling construction and

thus achieves better scalability.

(3) We have conducted experiments on 12 real-world datasets,

among which the largest dataset ClueWeb09 has 1.7 billion vertices

and 7.8 billion edges. It is shown that 𝑄𝑏𝑆 has significantly better

scalability than the baseline methods. The labelling construction of

𝑄𝑏𝑆 can be parallelized, which takes 10 seconds for datasets with

millions of edges and half an hour for the largest dataset ClueWeb09.

The labelling sizes constructed by 𝑄𝑏𝑆 are generally smaller than

the original sizes of graphs. Further, 𝑄𝑏𝑆 can answer queries much

faster than the other methods. For graphs with billions of edges, it

takes only around 0.01 - 0.5 seconds to answer a query.

2 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an unweighted graph, where 𝑉 and 𝐸 represent

the set of vertices and edges in 𝐺 , respectively. Without loss of

generality, we assume that𝐺 is undirected and connected since our

work can be easily extended to directed or disconnected graphs.

We use 𝑉 (𝐺) and 𝐸 (𝐺) to refer to the set of vertices and edges in

𝐺 , respectively, 𝑃𝑢𝑣 the set of all shortest paths between 𝑢 and 𝑣 ,

and 𝑑𝐺 (𝑢, 𝑣) the shortest path distance between 𝑢 and 𝑣 in 𝐺 .

Distance labelling. Let 𝑅 ⊆ 𝑉 be a subset of special vertices in 𝐺 ,

called landmarks. For each vertex 𝑣 ∈ 𝑉 , the label of 𝑣 is a set of
labelling entries 𝐿(𝑣) = {(𝑟1, 𝛿𝑣𝑟1), . . . , (𝑟𝑛, 𝛿𝑣𝑟𝑛)}, where 𝑟𝑖 ∈ 𝑅 and

𝛿𝑣𝑟𝑖 = 𝑑𝐺 (𝑣, 𝑟𝑖). We call 𝐿 = {𝐿(𝑣)}𝑣∈𝑉 a labelling over 𝐺 . The size
of a labelling 𝐿 is defined as size(L)=Σ𝑣∈𝑉 |𝐿(𝑣) |. In viewing that

each labelling entry (𝑟𝑖 , 𝛿𝑣𝑟𝑖) corresponds to a hop from a vertex 𝑣

to a landmark 𝑟𝑖 with the distance 𝛿𝑣𝑟𝑖 , Cohen et al. [8] proposed
2-hop distance cover, which has been widely used in labelling-based

approaches for distance queries.

Definition 2.1. [2-hop distance cover] A labelling 𝐿 over a
graph 𝐺 = (𝑉 , 𝐸) is a 2-hop distance cover iff, for any two vertices

𝑢, 𝑣 ∈ 𝑉 , the following holds:

𝑑𝐺 (𝑢, 𝑣) =𝑚𝑖𝑛{𝛿𝑢𝑟 + 𝛿𝑣𝑟 | (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢), (𝑟, 𝛿𝑣𝑟) ∈ 𝐿(𝑣)}.

Informally, 2-hop distance cover requires that, for any two ver-

tices in a graph, their labels must contain at least one common

landmark 𝑟 that lies on one of their shortest paths.

Shortest-path-graph problem. In this work, we study shortest-

path-graph queries. We first define the notion of shortest path graph.

Definition 2.2. [Shortest path graph] Given any two vertices
𝑢 and 𝑣 in a graph 𝐺 , the shortest path graph (SPG) between 𝑢 and
𝑣 is a subgraph 𝐺𝑢𝑣 of 𝐺 , where (1) 𝑉 (𝐺𝑢𝑣) =

⋃
𝑝∈𝑃𝑢𝑣 𝑉 (𝑝) and (2)

𝐸 (𝐺𝑢𝑣) =
⋃

𝑝∈𝑃𝑢𝑣 𝐸 (𝑝).

A shortest path graph𝐺𝑢𝑣 is different from an induced subgraph

𝐺 [𝑉 ′] where 𝑉 ′ = ⋃
𝑝∈𝑃𝑢𝑣 𝑉 (𝑝). Every edge in 𝐺𝑢𝑣 must lie on

at least one shortest path between 𝑢 and 𝑣 , whereas 𝐺 [𝑉 ′] may

contain edges that do not lie on any shortest path between 𝑢 and 𝑣 .

Definition 2.3. [Shortest-path-graph problem] Let 𝐺 =

(𝑉 , 𝐸) and 𝑢, 𝑣 ∈ 𝑉 . Then the shortest-path-graph problem is, given
a query 𝑆𝑃𝐺 (𝑢, 𝑣), to find the shortest path graph 𝐺𝑢𝑣 over 𝐺 .

3 SHORTEST PATH LABELLING
In this section, we discuss several labelling-based methods for the

shortest-path-graph problem. The purpose is to discuss their limi-

tations and possible sources of difficulties.

3.1 2-Hop Path Cover
Originally, 2-hop distance cover was proposed for reachability and

distance queries [8]. Below, we discuss why it is insufficient for

shortest-path-graph queries.

Example 3.1. Consider a query 𝑆𝑃𝐺 (3, 7) on a graph 𝐺 depicted
in Figure 3 (a). The query answer is colored in green. In Figure 3(b),
labels of a 2-hop distance cover over 𝐺 are colored in black. Starting
from vertices 3 and 7, we can find vertex 1 because (1, 1) ∈ 𝐿(3) and
(1, 3) ∈ 𝐿(7), 𝑑𝐺 (3, 7) = 1 + 3 = 4. Then, we have to stop since the
label of vertex 1 does not contain entries to other vertices. Thus, using
the labels of the 2-hop distance cover can compute only one shortest
path between 3 and 7, failing to find vertices 2, 4 and 5 in the answer.

Finding a shortest path graph that exactly contains all shortest

paths between two vertices requires us to accurately encode every
shortest path between two vertices into labels. Thus, to answer

shortest-path-graph queries, we generalize 2-hop distance cover to

a property called 2-hop path cover.

Definition 3.2. [2-hop path cover] Let 𝐺 = (𝑉 , 𝐸) be a graph
and 𝐿 a labelling over 𝐺 . We say 𝐿 is a 2-hop path cover iff 𝐿 is a
2-hop distance cover and, for any two vertices 𝑢, 𝑣 ∈ 𝑉 and any path
𝑝 ∈ 𝑃𝐺𝑢𝑣 with 𝑝 ≠ (𝑢, 𝑣), the following holds:

𝑑𝐺 (𝑢, 𝑣) =𝑚𝑖𝑛{𝛿𝑢𝑟 + 𝛿𝑣𝑟 | (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢),
(𝑟, 𝛿𝑣𝑟) ∈ 𝐿(𝑣), 𝑟 ∈ 𝑉 (𝑝)\{𝑢, 𝑣}},

(1)

Compared with 2-hop distance cover, 2-hop path cover further

requires that, for any shortest path 𝑝 between any two vertices 𝑢

and 𝑣 that contains more than one edge, the labels of𝑢 and 𝑣 should

contain a common landmark 𝑟 that lies on 𝑝 , but not be 𝑢 or 𝑣 .

5
6

2

1 4

3

7

Label Labelling Entries
L(1) (1,0)	(2,1)	(3,1)
L(2) (1,1)	(2,0)	(3,2)	(4,1)	(5,1)	(6,1)
L(3) (1,1)	(2,2)	(3,0)	(4,1)
L(4) (1,2)	(2,1)	(3,1)	(4,0)
L(5) (1,2)	(2,1)	(5,0)	(6,1)	(7,1)
L(6) (1,2)	(2,1)	(5,1)	(6,0)
L(7) (1,3)	(2,2)	(5,1)	(7,0)

(a) (b)

Figure 3: (a) A graph 𝐺 in which the answer of ∀𝑆𝑃𝑄 (3, 7)
is colored in green; (b) Labels over 𝐺 , where labels for a 2-
hop distance cover are colored in black and additional labels
from a 2-hop path cover are colored in green.

Example 3.3. Consider Figure 3 again, in which a 2-hop path cover
contains labels colored both in black and in green. According to the
labels of vertices 1 and 7, vertex 2 can be found. Then by the labels of
2 and 7, we can further find vertex 5. Similarly, vertex 4 can be found
through the labels of 2 and 3. Thus, using the labels of the 2-hop path
cover, we can find the query answer for 𝑆𝑃𝐺 (3, 7).

3.2 Path Labelling Methods
To answer shortest-path-graph queries, a naive labelling-based

method is, for each vertex 𝑣 ∈ 𝑉 , to conduct a breadth-first search

(BFS) from 𝑣 and store the distances between 𝑣 and all other vertices

in the label of 𝑣 , i.e. 𝐿(𝑣) = {(𝑢, 𝛿𝑣𝑢) |𝑢 ∈ 𝑉 }, which is a 2-hop path

labelling. Although shortest-path-graph queries can be answered

using 𝐿, it is inefficient, particularly when a graph is large. The time

and space complexity of constructing such labels are𝑂 (|𝑉 | |𝐸 |) and
𝑂 (|𝑉 2 |) respectively. Answering one shortest-path-graph query

would cost 𝑂 (|𝑉 2 |) in the worst case. A question that naturally

arises is: can we follow the idea of Pruned Landmark Labelling (PLL)

[3], which has been shown to be successful for distance queries,

to develop a pruning strategy for shortest-path-graph queries for

improving efficiency? We will thus introduce two pruned path

labelling methods for shortest-path-graph queries in the following.

Pruned path labelling. Inspired by Pruned Landmark Labelling

(PLL) [3], we conduct pruning during the breadth-first searches, i.e.

pruned BFSs, for shortest-path-graph queries. We abbreviate this

pruned path labelling method by PPL.

PPLworks as follows. Given a pre-defined landmark order [𝑣1, 𝑣2,
. . . , 𝑣 |𝑉 |] over all vertices in𝐺 , we conduct a pruned BFS from each

vertex one by one as described in Algorithm 1. In each pruned BFS

rooted at 𝑣𝑘 , we use 𝑑𝑒𝑝𝑡ℎ[𝑣] to denote the distance between 𝑣𝑘
and 𝑣 . Further, 𝐿𝑘−1 refers to the labels that have been constructed

through the previous pruned BFSs from vertices [𝑣1, . . . , 𝑣𝑘−1], and
𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) denotes the distance between 𝑣𝑘 and 𝑢 being queried

using labels in 𝐿𝑘−1. When 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) < 𝑑𝑒𝑝𝑡ℎ[𝑢], the label

(𝑣𝑘 , 𝑑𝑒𝑝𝑡ℎ[𝑢]) is pruned (Lines 6-7) because labels in 𝐿𝑘−1 have al-
ready covered the shortest paths between 𝑣𝑘 and 𝑢. In other words,

𝑣𝑘 is only added into the labels of vertices 𝑢 when 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) ≥
𝑑𝑒𝑝𝑡ℎ[𝑢] (Line 8). Note that, unlike PLL, in the case of 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢)
= 𝑑𝑒𝑝𝑡ℎ[𝑢], the label (𝑣𝑘 , 𝑑𝑒𝑝𝑡ℎ[𝑢]) cannot be pruned in PPL; oth-

erwise, 2-hop path cover is not guaranteed, i.e., not all shortest

paths are covered by labels. When 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) ≤ 𝑑𝑒𝑝𝑡ℎ[𝑢], no fur-

ther edges are traversed from 𝑢 because paths in this expansion

have already been covered by labels in 𝐿𝑘 (Lines 6-7 and 9-10).

Algorithm 1: PrunedBFS
Input: 𝐺 = (𝑉 , 𝐸); a landmark 𝑣𝑘 ; a labelling 𝐿𝑘−1

1 𝑄 ← ∅; 𝑄.𝑝𝑢𝑠ℎ(𝑣𝑘);
2 𝑑𝑒𝑝𝑡ℎ[𝑣𝑘] ← 0, 𝑑𝑒𝑝𝑡ℎ[𝑣] ← ∞ for all 𝑣 ∈ 𝑉 \{𝑣𝑘 };
3 𝐿𝑘 (𝑣) ← 𝐿𝑘−1 (𝑣) for all 𝑣 ∈ 𝑉 ;

4 while 𝑄 is not empty do
5 dequeue 𝑢 from 𝑄 ;

6 if 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) < 𝑑𝑒𝑝𝑡ℎ[𝑢] then
7 continue;

8 𝐿𝑘 (𝑢) ← 𝐿𝑘 (𝑢) ∪ {(𝑣𝑘 , 𝑑𝑒𝑝𝑡ℎ[𝑢])};
9 if 𝑑𝐿𝑘−1 (𝑣𝑘 , 𝑢) = 𝑑𝑒𝑝𝑡ℎ[𝑢] then
10 continue;

11 for all (𝑢, 𝑣𝑖) ∈ 𝐸 s.t. 𝑑𝑒𝑝𝑡ℎ[𝑣𝑖] = ∞ do
12 𝑑𝑒𝑝𝑡ℎ[𝑣𝑖] ← 𝑑𝑒𝑝𝑡ℎ[𝑢] + 1;
13 enqueue 𝑣𝑖 to 𝑄 ;

14 return 𝐿𝑘 ;

To answer a query 𝑆𝑃𝐺 (𝑢, 𝑣), we need to compute vertices and

edges of 𝐺𝑢𝑣 from a pruned path labelling 𝐿 recursively. Assume

that𝑑𝐺 (𝑢, 𝑣) ≠ 1; otherwise we finish with𝐺𝑢𝑣 containing only one

edge (𝑢, 𝑣). We begin with 𝐸 (𝐺𝑢𝑣) = ∅. We find the common land-

marks in their labels that are on the shortest paths, e.g., computing

a set 𝑉𝑢𝑣 = {𝑟 |𝑟 = 𝑚𝑖𝑛(𝛿𝑢𝑟 + 𝛿𝑣𝑟), (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢), (𝑟, 𝛿𝑣𝑟) ∈ 𝐿(𝑣)}.
Then we query the shortest paths between u, v and these com-

mon landmarks, i.e., (𝑢, 𝑟) and (𝑣, 𝑟) for each 𝑟 ∈ 𝑉𝑢𝑣 . The query
∀𝑆𝑃𝑄 (𝑢, 𝑣) is computed by combining the shortest paths between

u, v and the landmarks, i.e., 𝐸 (𝐺𝑢𝑣) =
⋃

𝑟 ∈𝑉𝑢𝑣 (𝐸 (𝐺𝑢𝑟) ∪ 𝐸 (𝐺𝑣𝑟)).

Example 3.4. When using PPL to answer the query ∀𝑆𝑃𝑄 (3, 7)
on the graph 𝐺 in Figure 3(a), we start with (3, 7) and obtain 𝑉3,7 =
{1, 2}. This leads to four new queries (3, 1), (7, 1), (3, 2) and (7, 2). The
distance between 3 and 1 is 1. Thus, 𝐸 (𝐺3,7) = {(1, 3)} ∪ 𝐸 (𝐺7,1) ∪
𝐸 (𝐺3,2) ∪ 𝐸 (𝐺7,2). For the new query (7, 1), we obtain 𝑉7,1 = {2},
leading to another queries (7, 2) and (1, 2). Similarly, for (3, 2) and
(7, 2) we obtain queries (1, 2), (2, 3), (2, 5) and (2, 7). Note that the
labels of vertex 3 are visited more than once, i.e. when querying (3, 7)
and (3, 2). Further, because 3 and 7 have multiple shortest paths
between them, more than one common vertex on their shortest paths
are found from their labels, i.e. {1, 2}. As a result, edges (2, 5) and
(5, 7) are handled multiple times, i.e., when querying (2, 7) and (1, 7).

PPL has the same time and space complexity for constructing la-

bels as the naive labelling-based method. However, due to pruning

in BFSs, PPL can construct labels more efficiently with a signifi-

cantly reduced labelling size. Nonetheless, the query time of PPL is

still slow because all shortest paths between two vertices can only

be found through searching vertices and edges using labels in a re-

cursive manner. When more than one shortest path exists between

query vertices, labels of some vertices are searched repeatedly and

edges are found repeatedly, leading to unnecessary computational

cost, e.g., vertex 3 and edges {(2, 5) (5, 7)} as in Example 3.4.

Path labelling with parents. One common technique to acceler-

ate query time for shortest-path-graph queries is to keep additional

parent information in labels so as to provide a clearer direction

towards shortest paths. For example, Akiba et al. [3] extended the

label of each vertex 𝑣 ∈ 𝑉 to a set of triples (𝑟, 𝛿𝑣𝑟 ,𝑤𝑣𝑟) where𝑤𝑣𝑟

is the “parent" vertex of 𝑟 on a shortest path from 𝑣 to 𝑟 . To find

all shortest paths, this requires us to store all parent vertices of a

vertex, rather than just one parent vertex as in the previous work

for finding one shortest path. To be precise, we store a set of triples

{(𝑟𝑖 , 𝛿𝑣𝑟𝑖 ,𝑊𝑣𝑟𝑖)}1≤𝑖≤ |𝑉 | where𝑊𝑣𝑟𝑖 is a set of “parent" vertices of

𝑣 on a shortest path from 𝑣 to a landmark 𝑟𝑖 . To reduce space over-

head, for each of such shortest paths, we store the “parent" vertices

of 𝑣 , rather than the “child" vertices of 𝑟𝑖 , because landmarks often

have a high degree [3]. To distinguish from PPL, we abbreviate this

method with additional parent information by ParentPPL.

The time complexity of ParentPPL for constructing labels re-

mains to be𝑂 (|𝑉 | |𝐸 |) but the space complexity becomes𝑂 (|𝑉 | |𝐸 |).
In practice, additional parent information only helps speed up query

time on small graphs. Even for a graph with millions of vertices

and edges, ParentPPL would run out of time (same as PPL) or space,

failing to construct labels. We will discuss this further in Section 6.

3.3 Discussion
For 2-hop labelling-based methods such as PPL and ParentPPL,

the structure (i.e. shortest paths) of a graph is encoded into dis-

tance information of labels under the guarantee of 2-hop path cover.

Although shortest paths can be recovered through computing dis-

tances between pairs of vertices, these methods are inefficient. This

is because they recursively split each path into two sub-paths and

compute vertices on sub-paths via distance information in labels,

which leads to redundant or unnecessary searches. Although stor-

ing parent information can often accelerate query time, it makes

labelling size larger and does not scale over large networks. There-

fore, we need to find a method for which (1) the labelling size is

small, (2) the structure of shortest paths can be recovered in an effi-

cient way, i.e., reducing redundant and unnecessary computation,

and (3) it can scale over large networks.

4 QUERY-BY-SKETCH
In this section, we present an efficient and scalable method for solv-

ing the shortest-path-graph problem, called Query-by-Sketch (QbS).

Conceptually, this method consists of three key components: la-
belling, sketching and searching, which will be discussed in Sections

4.1, 4.2 and 4.3, respectively. The main idea behind this method is

to construct a labelling scheme through precomputation, and then

answer shortest-path-graph queries by performing online computa-

tion that involves two steps: fast sketching and guided searching.

4.1 Labelling Scheme
Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝑅 ⊆ 𝑉 be a set of landmarks, and |𝑅 | <<
|𝑉 | (i.e., |𝑅 | is sufficiently smaller than |𝑉 |). We first preprocess the

graph 𝐺 to obtain a compact representation of the shortest paths

among landmarks, called a meta-graph of𝐺 . Then, based on such a

meta-graph, we define a labelling scheme to assign a label to each

vertex in 𝐺 such that, given any pair of vertices 𝑢, 𝑣 ∈ 𝑉 , we can
efficiently compute a sketch for answering 𝑆𝑃𝐺 (𝑢, 𝑣).

11

9

7
8

10
12

1
14

133
2

5
6

4

(a)

1

32

1 2

1

(b)

Label Labelling Entries
L(4) (1,1)(3,1)
L(5) (1,1)(3,3)
L(6) (1,1)
L(7) (1,2)(2,2)
L(8) (2,1)
L(9) (2,1)
L(10) (2,2)(3,3)
L(11) (2,3)(3,2)
L(12) (3,1)
L(13) (1,3)(3,1)
L(14) (1,2)(3,2)

(c)

Figure 4: (a) A graph with three landmarks {1, 2, 3} (high-
lighted in green), (b) a meta-graph, and (c) a path labelling.

Definition 4.1. [Meta-graph] A meta-graph is𝑀 = (𝑅, 𝐸𝑅, 𝜎)
where 𝑅 is a set of landmarks, 𝐸𝑅 ⊆ 𝑅 × 𝑅 is a set of edges s.t.
(𝑟, 𝑟 ′) ∈ 𝐸𝑅 iff at least one shortest path between 𝑟 and 𝑟 ′ does not go
through any other landmarks, and 𝜎 : 𝐸𝑅 ↦→ N assigns each edge in
𝐸𝑅 a weight, i.e. 𝜎 (𝑟, 𝑟 ′) = 𝑑𝐺 (𝑟, 𝑟 ′).

Conceptually, a meta-graph represents how landmarks are con-

nected through their shortest paths in a graph 𝐺 .

Definition 4.2. [Labelling scheme] A labelling scheme L =

(𝑀, 𝐿) consists of a meta-graph𝑀 and a path labelling 𝐿 that assigns
to each vertex 𝑢 ∈ 𝑉 \𝑅 a label 𝐿(𝑢) s.t.

𝐿(𝑢) = {(𝑟, 𝛿𝑢𝑟) |𝑟 ∈ 𝑅, 𝛿𝑢𝑟 = 𝑑𝐺 (𝑢, 𝑟),
∃𝑝 ∈ 𝑃𝑢𝑟 (𝑉 (𝑝) ∩ 𝑅 = {𝑟 })}. (2)

Note that, to accurately present how vertices are linked to land-

marks, we only allow that (𝑟, 𝛿𝑢𝑟) is in the label 𝐿(𝑢) iff there exists

at least one shortest path between 𝑢 and 𝑟 that does not contain

other landmarks.

Example 4.3. Figure 4 depicts a graph (a) and the meta-graph
(b) and the path labelling (c) of this graph. The edge (1, 3) in the
meta-graph is assigned with a weight 2, i.e. 𝜎 (1, 3) = 2, since there is
one shortest path between 1 and 3 which goes through 4. The label of
4 in the path labelling contains (1, 1) and (3, 1). The labelling entry
(2, 2) is not included in the label of 4 because every shortest path
between 4 and 2 goes through another landmark, i.e. 1 or 3.

Algorithm 2 describes the pseudo-code of our algorithm for

constructing a labelling scheme. Given a graph 𝐺 and a set of

landmarks 𝑅, we conduct a BFS from each landmark 𝑟𝑖 ∈ 𝑅. We

use two queues 𝑄𝐿 and 𝑄𝑁 to keep track of visited vertices, which

respectively need to be labeled and not to be labeled. All vertices,

except for 𝑟𝑖 , are initialized as being unvisited (Line 5). For each

vertex 𝑢 ∈ 𝑄𝐿 at the 𝑛-th level of the BFS, we set its unvisited

neighbors 𝑣 being visited (Line 10). If 𝑣 is a landmark, we push 𝑣

into 𝑄𝑁 and add an edge into 𝐸𝑅 and store the distance between

𝑟𝑖 and 𝑣 to the edge in 𝜎 . Otherwise, we push 𝑣 into 𝑄𝐿 and add a

label in 𝐿 for 𝑣 (Lines 11-17). Then, We check unvisited neighbors

of each vertex𝑢 ∈ 𝑄𝑁 at the 𝑛-th level, and push 𝑣 into𝑄𝑁 without

adding a label in 𝐿 or an edge in 𝑀 (Lines 18-21). This process is

conducted level-by-level on the BFS (Line 22).

Example 4.4. Figure 5 shows how our algorithm conducts BFSs to
construct labels. The BFS from landmark 1 is depicted in Figure 5(a), in
which vertices {4, 5, 6, 7, 13, 14} are labelled because the other vertices

Algorithm 2: Constructing a labelling scheme L
Input: 𝐺 = (𝑉 , 𝐸); a set of landmarks 𝑅 ⊆ 𝑉
Output: A labelling scheme L = (𝑀, 𝐿) with

𝑀 = (𝑅, 𝐸𝑅, 𝜎).
1 𝐸𝑅 ← ∅; 𝐿(𝑣) ← ∅ for all 𝑣 ∈ 𝑉
2 for all 𝑟𝑖 ∈ 𝑅 do
3 𝑄𝐿 ← ∅; 𝑄𝑁 ← ∅;
4 𝑄𝐿 .push(𝑟𝑖);

5 𝑑𝑒𝑝𝑡ℎ[𝑟𝑖] ← 0; 𝑑𝑒𝑝𝑡ℎ[𝑣] ← ∞ for all 𝑣 ∈ 𝑉 \{𝑟𝑖 };
6 n = 0;

7 while 𝑄𝐿 and 𝑄𝑁 are not empty do
8 for all 𝑢 ∈ 𝑄𝐿 at depth n do
9 for all unvisited neighbors 𝑣 of 𝑢 do
10 𝑑𝑒𝑝𝑡ℎ[𝑣] ← 𝑛 + 1;
11 if 𝑣 is a landmark then
12 𝑄𝑁 .push(𝑣);

13 𝐸𝑅 ← 𝐸𝑅 ∪ {(𝑟𝑖 , 𝑣)};
14 𝜎 (𝑟𝑖 , 𝑣) ← 𝑑𝑒𝑝𝑡ℎ[𝑣];
15 else
16 𝑄𝐿 .push(𝑣);

17 𝐿(𝑣) ← 𝐿(𝑣) ∪ {(𝑟𝑖 , 𝑑𝑒𝑝𝑡ℎ[𝑣])};

18 for all 𝑢 ∈ 𝑄𝑁 at depth n do
19 for all unvisited neighbors 𝑣 of 𝑢 do
20 𝑑𝑒𝑝𝑡ℎ[𝑣] ← 𝑛 + 1;
21 𝑄𝑁 .push(𝑣);

22 𝑛 ← 𝑛 + 1;

11

9

7
8

10
12

1
14

133

2

5
6

4

(a)

11

9

7
8

10
12

1
14

133

2

5
6

4

(b)

11

9

7
8

10
12

1
14

133

2

5
6

4

(c)

Figure 5: An illustration of labelling: (a), (b) and (c) describe
the BFSs rooted at the landmarks 1, 2 and 3, respectively,
where light and dark green vertices denote the landmarks,
and yellow vertices denote those being labelled.

are either landmarks or have landmarks in all their shortest paths
to landmark 1. We add edges (1, 2) and (1, 3) into the meta-graph.
In the BFS from landmark 2 in Figure 5(b), vertices {7, 8, 9, 10, 11}
are labelled because the shortest paths between 2 and vertices in
{4, 5, 6, 12, 13, 14} all go through landmark 1 or 3. The BFS from
landmark 3 is depicted in Figure 5(c), which works in a similar manner.

4.2 Fast Sketching
Let L = (𝑀, 𝐿) be a labelling scheme on a graph 𝐺 . For a given

query 𝑆𝑃𝐺 (𝑢, 𝑣), we proceed to answer 𝑆𝑃𝐺 (𝑢, 𝑣) in two steps;

(1) computing a sketch for two vertices 𝑢 and 𝑣 from the labelling

schemeL efficiently; (2) computing the exact answer by conducting

(a)

11

9

7
8

10
12

14

13

5
6

4 11
1

3

2

6 1
2

2

1
1
3

(b) (c)

11

9

7
8

10
12

14

5
6

(d) (e)

9

12

1

3

2

6

11

9

7
8

10
12

6

11

9

7
8

10
12

1

3
2

6

4

(f)

4

Figure 6: An illustration of sketching and searching: (a) the sparsified graph 𝐺− of the graph 𝐺 shown in Figure 4(a); (b) the
sketch for SPG(6,11) on the graph 𝐺 ; (c) the bi-directional BFS on 𝐺−, (d) the recover search based on L, (e) the reverse search
based on 𝐺−, and (f) shows the query answer of SPG(6,11).

a guided search based on the sketch for two vertices 𝑢 and 𝑣 . Hence,

the purpose of such a sketch is to provide an efficient and principled

way of searching the answer of 𝑆𝑃𝐺 (𝑢, 𝑣), which is particularly

important on very large networks.

Definition 4.5. [Sketch] A sketch for 𝑆𝑃𝐺 (𝑢, 𝑣) on L is 𝑆𝑢𝑣 =
(𝑉𝑆 , 𝐸𝑆 , 𝜎𝑆) where 𝑉𝑆 = {𝑢, 𝑣} ∪ 𝑅 is a set of vertices, 𝐸𝑆 is a set of
edges, and 𝜎𝑆 : 𝐸𝑆 ↦→ N with 𝜎𝑆 (𝑢 ′, 𝑣 ′) = 𝑑𝐺 (𝑢 ′, 𝑣 ′), satisfying the
condition that 𝐸𝑆 contains only edges lying on the paths between 𝑢
and 𝑣 with the minimal length as defined below:

𝑑⊤𝑢𝑣 = min

(𝑟,𝑟 ′)
{𝛿𝑟𝑢 + 𝑑𝑀 (𝑟, 𝑟 ′) + 𝛿𝑟 ′𝑣 | (𝑟, 𝛿𝑟𝑢) ∈ 𝐿(𝑢),

(𝑟 ′, 𝛿𝑟 ′𝑣) ∈ 𝐿(𝑣)};
(3)

Accordingly, we have the following corollary.

Corollary 4.6. 𝑑⊤𝑢𝑣 ≥ 𝑑𝐺 (𝑢, 𝑣) holds.
Algorithm 3 describes how to construct a sketch. Let 𝑢 and 𝑣 be

a pair of vertices. We start with 𝑉𝑆 = ∅ and 𝐸𝑆 = ∅. Then, for each
pair of landmarks {𝑟, 𝑟 ′}, we compute the minimum length 𝜋𝑟𝑟 ′ of

paths between 𝑢 and 𝑣 that go through 𝑟 and 𝑟 ′ using the labels

in 𝐿 and the meta graph 𝑀 (Lines 2-5). After that, we obtain the

minimum length of paths between 𝑢 and 𝑣 that go through at least

one landmark, i.e., 𝑑⊤𝑢𝑣 (Line 6), and add the edges in these paths

into 𝐸𝑆 , the vertices in these paths into 𝑉𝑆 , and the corresponding

distances are associated with the edges (Lines 7-13).

Example 4.7. Figure 6(b) shows the sketch between two vertices 6
and 11. The sketch has the edges (1, 6), (1, 3), (3, 11), (2, 3) (1, 2) and
(2, 11) because we have the following shortest paths between 6 and
11 with 𝛿6,1 +𝑑𝑀 (1, 3) + 𝛿11,3 = 5 and 𝛿6,1 +𝑑𝑀 (1, 2) + 𝛿11,2 = 5. We
thus have 𝑑⊤

6,11
= 5, and 𝑑⊤

6,11
= 𝑑𝐺 (6, 11).

4.3 Guided Searching
Guided by 𝑆𝑢𝑣 , we conduct a search to compute the exact answer

of 𝑆𝑃𝐺 (𝑢, 𝑣), based on the following observations:

• Such a search can be conducted on a sparsified graph𝐺 [𝑉 \𝑅]
by removing all landmarks in𝑅 and all edges incident to these

landmarks from𝐺 . 𝑑𝐺 [𝑉 \𝑅] (𝑢, 𝑣) may potentially be greater

than 𝑑𝐺 (𝑢, 𝑣); however, the number of search steps in this

sparsified graph can be upper bounded by 𝑑⊤𝑢𝑣 due to the fact
that 𝑑𝐺 (𝑢, 𝑣) =𝑚𝑖𝑛(𝑑𝐺 [𝑉 \𝑅] (𝑢, 𝑣), 𝑑⊤𝑢𝑣).
• 𝑆𝑢𝑣 can guide how to conduct a bi-directional search on the

sparsified graph𝐺 [𝑉 \𝑅]. Specifically, for 𝑡 ∈ {𝑢, 𝑣}, we have
𝑑∗𝑡 = max

(𝑟,𝑡) ∈𝐸𝑆
𝜎𝑆 (𝑟, 𝑡) − 1, (4)

Algorithm 3: Computing a sketch 𝑆𝑢𝑣

Input: L = (𝑀, 𝐿), two vertices 𝑢 and 𝑣 .

Output: A sketch 𝑆𝑢𝑣 = (𝑉𝑆 , 𝐸𝑆 , 𝜎𝑆)
1 𝑉𝑆 ← ∅, 𝐸𝑆 ← ∅;
2 for all {𝑟, 𝑟 ′} ⊆ 𝑅 do
3 𝜋𝑟𝑟 ′ ← +∞;
4 if (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢) and (𝑟 ′, 𝛿𝑣𝑟 ′) ∈ 𝐿(𝑣) then
5 𝜋𝑟𝑟 ′ ← 𝛿𝑢𝑟 + 𝑑𝑀 (𝑟, 𝑟 ′) + 𝛿𝑣𝑟 ′ ;

6 𝑑⊤𝑢𝑣 ← min{𝜋𝑟𝑟 ′ |{𝑟, 𝑟 ′} ⊆ 𝑅};

7 for all {𝑟, 𝑟 ′} ⊆ 𝑅 and 𝜋𝑟𝑟 ′ = 𝑑⊤𝑢𝑣 do
8 𝐸𝑆 ← 𝐸𝑆 ∪ {(𝑢, 𝑟), (𝑣, 𝑟 ′)};
9 𝜎𝑆 (𝑢, 𝑟) ← 𝛿𝑢𝑟 , 𝜎𝑆 (𝑣, 𝑟 ′) ← 𝛿𝑣𝑟 ′ ;

10 for all (𝑟𝑖 , 𝑟 𝑗) in the shortest path graph of (𝑟, 𝑟 ′) in𝑀 do
11 𝐸𝑆 ← 𝐸𝑆 ∪ {(𝑟𝑖 , 𝑟 𝑗)};
12 𝜎𝑆 (𝑟𝑖 , 𝑟 𝑗) ← 𝜎 (𝑟𝑖 , 𝑟 𝑗);
13 𝑉𝑆 ← 𝑉 (𝐸𝑆);

which suggests the number of search steps from the 𝑢 and

𝑣 sides, respectively. Here, we subtract 1 because 𝑟 can be

found via labels of vertices in at most 𝜎𝑆 (𝑟, 𝑡) − 1 steps.
Given a query 𝑆𝑃𝐺 (𝑢, 𝑣) on a graph𝐺 , the answer𝐺𝑢𝑣 can thus

be computed by searching over the sparsified graph𝐺− = 𝐺 [𝑉 \𝑅]
and the labelling scheme L, guided by the sketch 𝑆𝑢𝑣 , as follows:

𝐺𝑢𝑣 =

𝐺L𝑢𝑣 if 𝑑𝐺− (𝑢, 𝑣) > 𝑑⊤𝑢𝑣 ;

𝐺−𝑢𝑣 ∪𝐺L𝑢𝑣 if 𝑑𝐺− (𝑢, 𝑣) = 𝑑⊤𝑢𝑣 ;

𝐺−𝑢𝑣 otherwise.

(5)

We use 𝐺L𝑢𝑣 to refer to shortest paths between 𝑢 and 𝑣 that go

through at least one landmark in 𝑅.

Generally, a guided search has three stages: (1) Bi-directional
search, which has a forward search from the 𝑢 side and a backward
search from the 𝑣 side [15], under the guide of 𝑆𝑢𝑣 w.r.t. Eq. 4. This

search terminates when common vertices are found or the upper

bound𝑑⊤𝑢𝑣 is reached. (2) Reverse search, which reverses the previous
bi-directional search back to 𝑢 and 𝑣 in order to compute short-

est paths in 𝐺−𝑢𝑣 . (3) Recover search, which recovers the relevant

labelling information under the guide of 𝑆𝑢𝑣 in order to compute

shortest paths in 𝐺L𝑢𝑣 . As we do not know initially which of the

Algorithm 4: Searching on 𝐺 [𝑉 \𝑅]
Input: 𝐺− = 𝐺 [𝑉 \𝑅], 𝑆𝑢𝑣 , L = (𝑀, 𝐿)
Output: A shortest path graph 𝐺𝑢𝑣

1 𝑑⊤𝑢𝑣, 𝑑
∗
𝑢 , 𝑑
∗
𝑣 ← 𝑔𝑒𝑡_𝑏𝑜𝑢𝑛𝑑 (𝑆𝑢𝑣);

2 𝑃𝑢 ← ∅, 𝑃𝑣 ← ∅, 𝑑𝑢 ← 0, 𝑑𝑣 ← 0;

3 Enqueue 𝑢 to 𝑄𝑢 and 𝑣 to 𝑄𝑣 ;

4 𝑑𝑒𝑝𝑡ℎ𝑢 [𝑤] ← ∞, 𝑑𝑒𝑝𝑡ℎ𝑣 [𝑤] ← ∞ for all𝑤 ∈ 𝑉 \𝑅;
5 𝑑𝑒𝑝𝑡ℎ𝑢 [𝑢] ← 0, 𝑑𝑒𝑝𝑡ℎ𝑣 [𝑣] ← 0;

6 while 𝑑𝑢 + 𝑑𝑣 < 𝑑⊤𝑢𝑣 do
7 𝑡 ← 𝑝𝑖𝑐𝑘_𝑠𝑒𝑎𝑟𝑐ℎ(𝑃𝑢 , 𝑃𝑣, 𝑑∗𝑢 , 𝑑∗𝑣 , 𝑑𝑢 , 𝑑𝑣);
8 if 𝑡 = 𝑢 then
9 𝑄𝑢 ← 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑_𝑠𝑒𝑎𝑟𝑐ℎ(𝑄𝑢);

10 if 𝑡 = 𝑣 then
11 𝑄𝑣 ← 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑠𝑒𝑎𝑟𝑐ℎ(𝑄𝑣);

12 𝑃𝑡 ← 𝑃𝑡 ∪𝑄𝑡 ; 𝑑𝑡 ← 𝑑𝑡 + 1;
13 𝑑𝑒𝑝𝑡ℎ𝑡 [𝑤] ← 𝑑𝑡 for𝑤 ∈ 𝑄𝑡 ;

14 if 𝑃𝑢 ∩ 𝑃𝑣 is not empty then
15 break;

16 if 𝑃𝑢 ∩ 𝑃𝑣 ≠ ∅ then
17 𝐺−𝑢𝑣 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑠𝑒𝑎𝑟𝑐ℎ(𝑃𝑢 ∩ 𝑃𝑣,𝐺−, 𝑑𝑒𝑝𝑡ℎ𝑢 , 𝑑𝑒𝑝𝑡ℎ𝑣);
18 if 𝑑𝑢 + 𝑑𝑣 = 𝑑⊤𝑢𝑣 then
19 𝑍 ← ∅;
20 for all (𝑟, 𝑡) ∈ 𝐸𝑆 with 𝑡 ∈ {𝑢, 𝑣} do
21 𝑑𝑚 ← min{𝜎𝑆 (𝑟, 𝑡) − 1, 𝑑𝑡 };
22 for all𝑤 with 𝑑𝑒𝑝𝑡ℎ𝑡 [𝑤] = 𝑑𝑚 , (𝑟, 𝛿𝑤𝑟) ∈ 𝐿(𝑤),

𝛿𝑤𝑟 + 𝑑𝑚 = 𝜎𝑆 (𝑟, 𝑡) do
23 𝑍 ← 𝑍 ∪ {(𝑤, 𝑟)};

24 𝐺L𝑢𝑣 ← 𝑟𝑒𝑐𝑜𝑣𝑒𝑟_𝑠𝑒𝑎𝑟𝑐ℎ(𝑆𝑢𝑣,L, 𝑍,𝐺−, 𝑑𝑒𝑝𝑡ℎ𝑢 , 𝑑𝑒𝑝𝑡ℎ𝑣);
25 𝐺𝑢𝑣 ← 𝐺−𝑢𝑣 ∪𝐺L𝑢𝑣 ;

three cases of Eq. 5 holds, a bi-directional search is always per-

formed. This search provides us with 𝑑𝐺− (𝑢, 𝑣), though we abort

once 𝑑𝐺− (𝑢, 𝑣) > 𝑑⊤𝑢𝑣 can be guaranteed. Then depending on the

values of 𝑑𝐺− (𝑢, 𝑣) and 𝑑⊤𝑢𝑣 , a reverse search, a recover search, or
both of them are performed to compute 𝐺−𝑢𝑣 and 𝐺

L
𝑢𝑣 as in Eq. 5.

Algorithm 4 presents our guided search algorithm. We maintain

two queues 𝑃𝑢 and 𝑃𝑣 which contain the set of all vertices traversed

from 𝑢 and 𝑣 , respectively. 𝑑𝑢 and 𝑑𝑣 indicate the levels of traversal

being conducted in the BFSs rooted at 𝑢 and 𝑣 , respectively. Two

queues𝑄𝑢 and𝑄𝑣 keep vertices being searched from 𝑢 and 𝑣 at the

𝑑𝑢 and 𝑑𝑣 level, respectively. Initially 𝑃𝑢 and 𝑃𝑣 are empty, and 𝑢

and 𝑣 are enqueued into𝑄𝑢 and𝑄𝑣 respectively. 𝑑𝑒𝑝𝑡ℎ𝑢 and 𝑑𝑒𝑝𝑡ℎ𝑣
denote the depths of all vertices in the BFSs rooted at 𝑢 and 𝑣 .

A bi-directional search is first conducted (Lines 6-15). In each

iteration, the bi-directional search is guided by 𝑑∗𝑢 and 𝑑∗𝑣 as well
as the relative sizes of 𝑃𝑢 and 𝑃𝑣 to decide the next step (Line 7).

We choose 𝑡 where 𝑑∗𝑡 > 𝑑𝑡 and 𝑡 ∈ {𝑢, 𝑣}. If both 𝑢 and 𝑣 satisfy

this condition, or none of them satisfy this condition, then the

choice of a forward search (𝑡 = 𝑢) and a backward search (𝑡 = 𝑣)

is determined by the sizes of 𝑃𝑢 and 𝑃𝑣 . Accordingly, 𝑃𝑢 or 𝑃𝑣 are

expanded (Line 12). The bi-directional search terminates either

when 𝑑𝑢 + 𝑑𝑣 reaches the upper bound 𝑑⊤𝑢𝑣 or 𝑃𝑢 ∩ 𝑃𝑣 is not empty.

This approach extends the Optimized Bidirectional BFS algorithm
of [19] by incorporating bounds obtained from our sketch.

If 𝑃𝑢 ∩ 𝑃𝑣 is not empty, we have 𝑑𝐺− (𝑢, 𝑣) ≤ 𝑑⊤𝑢𝑣 and thus start

a reverse search (Lines 16-17). For each vertex 𝑥 ∈ 𝑃𝑢 ∩ 𝑃𝑣 , we

compute the shortest paths between 𝑢 and 𝑥 and between 𝑣 and 𝑥

according to the depths of vertices in 𝑑𝑒𝑝𝑡ℎ𝑢 and 𝑑𝑒𝑝𝑡ℎ𝑣 , respec-

tively. For example, a neighbour 𝑥 ′ of 𝑥 in 𝐺− is on the shortest

path between 𝑥 and 𝑢 if 𝑑𝑒𝑝𝑡ℎ𝑢 [𝑥] − 1 = 𝑑𝑒𝑝𝑡ℎ𝑢 [𝑥 ′], and thus

we find such 𝑥 ′ and compute shortest paths between 𝑥 ′ and 𝑢

in the same manner. If 𝑑𝑢 + 𝑑𝑣 = 𝑑⊤𝑢𝑣 , we have 𝑑𝐺− (𝑢, 𝑣) ≥ 𝑑⊤𝑢𝑣
and start a recover search (Lines 18-24). For each edge (𝑟, 𝑡) in
the sketch 𝑆𝑢𝑣 and 𝑡 ∈ {𝑢, 𝑣}, we search for all vertices 𝑤 with

𝑑𝑒𝑝𝑡ℎ𝑡 [𝑤] = min{𝜎𝑆 (𝑟, 𝑡) − 1, 𝑑𝑡 } and 𝜎𝑆 (𝑟, 𝑡) = 𝛿𝑤𝑟 + 𝑑𝑒𝑝𝑡ℎ𝑡 [𝑤]
(Lines 19-23). Each 𝑤 is a vertex closest to landmark 𝑟 among all

vertices on at least one shortest path between 𝑟 and 𝑡 in our previ-

ous bi-directional search. 𝑍 stores (𝑤, 𝑟) pairs to guide the recover

searches. In the recover search (Line 24), for each edge (𝑟, 𝑟 ′) in
𝑆𝑢𝑣 where 𝑟, 𝑟

′ ∈ 𝑅, we recover the shortest paths between 𝑟 and 𝑟 ′
according toL. For each (𝑤, 𝑟) ∈ 𝑍 , we find shortest paths between
𝑤 and 𝑟 according to𝐺− and labelling information L. For example,

for a neighbour𝑤 ′ of𝑤 in 𝐺−,𝑤 ′ is on the shortest path between

𝑤 and 𝑟 if (𝑟, 𝛿𝑤′𝑟) ∈ 𝐿(𝑤 ′) and 𝛿𝑤′𝑟 + 1 = 𝛿𝑤𝑟 . The shortest paths

between𝑤 and 𝑢 (resp. 𝑣) is computed according to 𝑑𝑒𝑝𝑡ℎ𝑢 [] (resp.
𝑑𝑒𝑝𝑡ℎ𝑣 []), but the search for parts of shortest paths that have al-

ready been found in the reversed search can be skipped. We also

compute the shortest paths between relevant landmarks.

Example 4.8. Figure 6(c)-(e) illustrates how our guided searching
finds the answer for a query SPG(6,11). The sparsified graph 𝐺− is
depicted in Figure 6(a) and the sketch is depicted in Figure 6(b). The
sketch provides the upper bound 𝑑⊤

6,11
= 5, 𝑑∗

6
= 0 and 𝑑∗

11
= 2 because

𝜎𝑆 (1, 6) = 1 and 𝜎𝑆 (2, 11) = 3, respectively. The bi-directional BFS
is depicted in Figure 6(c), in which 𝑑6 = 2, 𝑑11 = 3, 𝑃6 = {5, 7, 8, 14},
and 𝑃11 = {10, 12, 9, 8}. The queues 𝑃6 and 𝑃11 meet at vertex 8,
and thus 𝑑𝐺− (6, 11) = 5. The reverse search is depicted in Figure
6(e), which goes back to 6 and 11 from 𝑃6 ∩ 𝑃11 = {8}. The recover
search is depicted in Figure 6(d), which finds shortest paths going
through the landmarks {1, 2, 3} with 𝑍 = {(12, 3), (9, 2), (6, 1)} and
recovers shortest paths between landmarks in the sketch. The final
query answer is depicted in Figure 6(f).

5 THEORETICAL DISCUSSION
We prove the correctness of QbS and analyze its complexity. We

also discuss how to parallelize the labelling construction process.

5.1 Proof of Correctness
In the following, we prove the theorem for the correctness of QbS.

Theorem 5.1. Given any query SPG(u,v) on a graph𝐺 , the answer
𝐺𝑢𝑣 can be computed using QbS.

Proof sketch. Wefirst prove that a labelling scheme constructed

by Algorithm 2 satisfies Definition 4.2. Suppose that we conduct

a BFS rooted from 𝑟 ∈ 𝑅. Given a landmark 𝑟 ′ ∈ 𝑅\{𝑟 }, if ∃𝑝 ∈
𝑃𝑟𝑟 ′ (𝑉 (𝑝) ∩ 𝑅 = {𝑟, 𝑟 ′}) holds, there must exist 𝑤 ∈ 𝑄𝐿 with

𝑑𝑒𝑝𝑡ℎ[𝑤] + 1 = 𝑑𝑒𝑝𝑡ℎ[𝑟 ′] and (𝑤, 𝑟 ′) ∈ 𝐸 (Lines 8-9, 11), and ac-

cordingly an edge (𝑟, 𝑟 ′) is added into𝑀 (Lines 13-14). Otherwise,

Dataset Network Type |𝑉 | |𝐸 | |𝐸𝑢𝑛 | max. deg avg. deg avg. dist |𝐺 |
Douban (DO) social undirected 0.2M 0.3M 0.3M 287 4.2 5.2 2.5MB

DBLP (DB) co-authorship undirected 0.3M 1.1M 1.1M 343 6.6 6.8 8.0MB

Youtube (YT) social undirected 1.1M 3.0M 3.0M 28,754 5.27 5.3 23MB

WikiTalk(WK) communication directed 2.4M 5.0M 4.7M 100,029 3.89 3.9 36MB

Skitter (SK) computer undirected 1.7M 11.1M 11.1M 35,455 13.08 5.1 85MB

Baidu (BA) web directed 2.1M 17.8M 17.0M 97,848 15.89 4.1 130MB

LiveJournal (LJ) social directed 4.8M 68.5M 43.1M 20,334 17.79 5.5 329MB

Orkut (OR) social undirected 3.1M 117M 117M 33,313 76.28 4.2 894MB

Twitter (TW) social directed 41.7M 1.5B 1.2B 2,997,487 57.74 3.6 9.0GB

Friendster (FR) social undirected 65.6M 1.8B 1.8B 5,214 55.06 4.8 13.0GB

uk2007 (UK) web directed 106M 3.7B 3.3B 979,738 62.77 5.6 24.8GB

ClueWeb09 (CW) computer directed 1.7B 7.8B 7.8B 6,444,720 9.27 7.5 58.2GB

Table 1: Datasets, where |𝐸𝑢𝑛 | is the number of edges in a graph being treated as undirected, and |𝐺 | denotes the size of a graph
𝐺 with each edge appearing in the adjacency lists and being represented by 8 bytes.

𝑟 ′ is directly pushed into 𝑄𝑁 (Lines 19-21). Given a vertex 𝑣 ∈ 𝑉 \𝑅
that is not a landmark, if ∃𝑝 ∈ 𝑃𝑟 𝑣 (𝑉 (𝑝) ∩ 𝑅 = {𝑟 }) holds, there
must exist 𝑤 ∈ 𝑄𝐿 with 𝑑𝑒𝑝𝑡ℎ[𝑤] + 1 = 𝑑𝑒𝑝𝑡ℎ[𝑣] and (𝑤, 𝑣) ∈ 𝐸
(Lines 8-9, 15), and accordingly a label (𝑟, 𝑑𝑒𝑝𝑡ℎ[𝑣]) is added into 𝐿
(Lines 16-17). Otherwise, 𝑣 is directly pushed into𝑄𝑁 (Lines 19-21).

Now we prove that a sketch constructed by Algorithm 3 satisfies

Definition 4.5. First, Algorithm 3 (Lines 2-7) finds pairs of landmarks

(𝑟, 𝑟 ′) that minimise {𝛿𝑢𝑟 + 𝑑𝑀 (𝑟, 𝑟 ′) + 𝛿𝑟 ′𝑣 | (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢) and
(𝑟 ′, 𝛿𝑟 ′𝑣) ∈ 𝐿(𝑣)} (i.e., satisfying Eq. (3) in Definition 4.5). Then

it adds (𝑢, 𝑟), (𝑟 ′, 𝑣) and all edges on the shortest paths between

(𝑟, 𝑟 ′) on a meta-graph into the sketch (Lines 8-12).

Finally, we prove that 𝐺𝑢𝑣 can be constructed by Algorithm 4.

Each shortest path between 𝑢 and 𝑣 that does not go through any

landmark can be constructed from 𝐺− using a bi-directional BFS

and its reverse search (Lines 6-15 and 16-17). For each shortest path

between 𝑢 and 𝑣 that goes through at least one landmark, all such

landmarks must be included in 𝑆𝑢𝑣 and such shortest paths are

computed using the recover search (Lines 18-24). □

5.2 Complexity Analysis
The time complexity of constructing a BFS from one landmark in

Algorithm 2 is𝑂 (|𝐸 |) and the overall time complexity of Algorithm

2 is𝑂 (|𝑅 | |𝐸 |). The time complexity of constructing a sketch in Algo-

rithm 3 is 𝑂 (|𝑅 |4) and can be reduced to 𝑂 (|𝑅 |2) by precomputing

shortest path distances and shortest paths between landmarks on a

meta-graph constructed by Algorithm 3, i.e., computation on Lines

10-12 is saved. The time complexity of conducting a guided search

in Algorithm 4 is 𝑂 (|𝐸 | + |𝑅 | |𝑉 |).
Note that, in our work, the number of landmarks is small, i.e.,

|𝑅 | = 20 by default, which is much smaller than the number of

vertices or edges in the original graph. Thus, we can see that, con-

structing a labelling scheme by Algorithm 2 is indeed 𝑂 (|𝐸 |), com-

puting a sketch is constant time, and performing a guided search

becomes 𝑂 (|𝐸∗ | + |𝑉 |) where |𝐸∗ | denotes the number of edges in

the sparsified graph after removing edges incident to landmarks

from 𝐺 .

5.3 Parallelization
Given a graph 𝐺 and a set of landmarks 𝑅 in 𝐺 , a nice property

of our labelling scheme L is that there is only one such labelling

scheme. Formally, we prove the lemma below.

Lemma 5.2. Let L be a labelling scheme on a graph 𝐺 w.r.t. a set
of landmarks 𝑅. L is deterministic.

Proof sketch. A labelling scheme L consists of a meta-graph

𝑀 = (𝑅, 𝐸𝑅, 𝜎) and a path labelling 𝐿. From Definition 4.1, an edge

(𝑟, 𝑟 ′) ∈ 𝐸𝑅 if and only if there exists at least one shortest path

between 𝑟 and 𝑟 ′ that does not go through any other landmarks in

𝑅\{𝑟, 𝑟 ′}. From Definition 4.2, a label (𝑟, 𝛿𝑢𝑟) ∈ 𝐿(𝑢) if and only if

there exists at least one shortest path between 𝑢 and 𝑟 that does

not go through any other landmarks in 𝑅\{𝑟 }. Therefore, L is

deterministic w.r.t 𝐺 and 𝑅. □

For a fixed set of landmarks, the labelling construction in Algo-

rithm 2 yields the same labelling scheme, regardless of the ordering

of landmarks. This deterministic nature of labelling scheme enables

us to speed up the construction of labelling scheme by parallel-

ing Algorithm 2. If we use one thread for constructing labels from

one landmark, then we can leverage the thread-level parallelism to

perform BFSs from different landmarks simultaneously.

6 EXPERIMENTS
We evaluated our method 𝑄𝑏𝑆 to answer the following questions:

(Q1) How efficiently can our proposed method answer shortest-

path-graph queries, while still achieving construction time

efficiency and low labelling space overhead?

(Q2) How well can sketching help improve the performance of

answering shortest-path-graph queries?

(Q3) How does the number of landmarks affect the performance

such as construction time, labelling size and query time?

6.1 Experimental Setup
We implemented our proposed methods in C++ 11 and compiled

using g++. We performed all experiments on a Linux server which

has Intel Xeon W-2175 with 2.5GHz and 512GB of main memory.

0 2 4 6 8 10 12
Distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n
of

P
ai

rs

(a)

DO

DB

YT

WK

SK

BA

0 2 4 6 8 10 12 14 16 18
Distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

ct
io

n
of

P
ai

rs

(b)

LJ

OR

TW

FR

UK

CW

Figure 7: Distance distribution of 10,000 randomly selected
pairs of vertices on all the datasets.

Datasets.We conducted experiments on 12 real-world graph datasets

from various types of complex large networks, including social

networks, computer networks, web networks, co-authorship net-

works and communication networks. Table 1 presents the details

of these datasets, among which the largest one has 1.7 billion ver-

tices and 7.8 billion edges. We treated graphs in these datasets

as being undirected. All the datasets used in our experiments are

publicly available from Koblenz Network Collection [25], Stanford

Networks Analysis Project [27], Dynamically Evolving Large-scale

Information Systems Project
1
and the Lemur Project

2
.

Queries. We randomly sampled 10,000 pairs of vertices from all

pairs of vertices in each graph to evaluate the average query time.

Figure 7 shows the distance distribution of these 10,000 randomly

sampled pairs of vertices in each graph dataset. We can see that the

distances of these pairs of vertices mostly fall into the range of 2-9.

Baselines. We considered the following baselines:

(1) Labelling-basedmethods. Pruned landmark labelling (PLL)

is the state-of-the-art method for computing exact distance

queries [3]. We thus use the methods Pruned Path Labelling
(PPL) and Pruned Path Labelling with Parent information (Par-
entPPL) as discussed in Section 3 as our baselines.

(2) Search-based methods. We use bi-directional BFS as the

baseline which conducts search from the directions of two

vertices alternatively [15]. We denote it as Bi-BFS.

To evaluate the parallel speed-up of construction time, we use QbS

to refer to our method with a sequential labelling construction and

QbS-P to refer to our method with a parallel labelling construction,

with up to 12 threads in our experiments. In PPL and ParentPPL, we

use 32 bits and 8 bits to represent a landmark and a distance in their

1
See http://law.di.unimi.it/datasets.php for datasets

2
See https://lemurproject.org/clueweb09/index.php

labels, respectively, and 32 bits to store each parent in ParentPPL.

In QbS and QbS-P, we use |𝑅 |*8 bits to store the label of each vertex.

Landmarks. In PPL and ParentPPL, landmarks are ordered in de-

scending order of degrees. In QbS, we choose vertices with the

largest degrees as landmarks for two reasons: (1) removing high-

degree vertices sparsifies a graph much more than low-degree ver-

tices; (2) computing distances from two vertices to high-degree

landmarks provides a good estimation of the shortest distance be-

tween these two vertices [30]. We set |𝑅 | = 20 in QbS by default.

6.2 Performance Comparison
We conducted experiments to compare construction time, labelling

size and query time of our method against the baselines.

6.2.1 Construction Time. Table 2 shows that our method QbS can

efficiently construct a labelling scheme on all the datasets, scaling

over large networks with billions of vertices and edges. Compared

with PPL and ParentPPL, our method QbS uses a significantly less

amount of time (i.e., 2-4 orders of magnitude faster) to construct

labelling information. Moreover, PPL failed to construct labels for

7 out of 12 datasets and ParentPPL failed for 10 out of 12 datasets.

This is because these methods need to meet the 2-hop path cover

property. The reason why ParentPPL is much slower than PPL

is because a vertex often has more than one parent and finding

all parents takes more time though the time complexity remains

unchanged. We can also see that, compared with QbS, QbS-P can

further improve construction time (i.e., 6-12 times faster), leading

to much better scalability than QbS.

6.2.2 Labelling Size . Table 3 presents the comparison results for

the labelling sizes of QbS, PPL and ParentPPL on all the datasets.

We use 𝑠𝑖𝑧𝑒 (Δ) to denote the size of precomputed shortest path

graphs between landmarks as discussed in Section 5.2. We observe

that: 1) the labelling sizes of QbS are hundreds of times smaller than

the labelling sizes of PPL and ParentPPL; 2) the labelling sizes of

ParentPPL are about twice as the labelling sizes of PPL. For dense

graphs, such as Twitter, the sizes of precomputed shortest paths

in QbS are relatively larger than the ones in sparse graphs. This is

due to the existence of many shortest paths between landmarks in

dense graphs. Nonetheless, it is important to notice that, the sizes

of precomputed shortest paths between landmarks (i.e. 𝑠𝑖𝑧𝑒 (Δ) in
Table 3) are small in QbS, compared with the sizes of labelling

(i.e. 𝑠𝑖𝑧𝑒 (L) in Table 3). For meta-graphs, since each meta-graph

contains at most |𝑅 |2 edges, the space overhead for storing edges

and weights of a meta-graph is very small. Indeed, even when we

have |𝑅 |=100, the size of a meta-graph would still be smaller than

0.01MB. In summary, these results show that QbS can scale well

over very large networks in terms of the labelling size.

6.2.3 Query Time . Table 2 presents the comparison results of

our method with the baselines in terms of query time. Compared

with the search-based method Bi-BFS, our method QbS can answer

queries much more efficiently, i.e., 10-300 times faster than Bi-BFS.

Particularly, QbS is able to answer queries within milliseconds for

8 out of 12 datasets, and less than 0.5 seconds for the other datasets

which have up to 1.7 billion vertices and 7.8 billion edges. We notice

that, Twitter has significantly higher query time than Friendster and

uk2007. This is because, compared with the other graphs, Twitter

Dataset

Construction Time (sec.) Average Query Time (ms.)

QbS-P QbS PPL ParentPPL QbS PPL ParentPPL Bi-BFS

Douban 0.05 0.3 154 2,736 0.037 1.414 0.038 0.585

DBLP 0.12 1.1 2,610 11,049 0.097 1.782 0.052 2.995

Youtube 0.47 4.4 22,601 DNF 0.218 5.314 - 23.809

WikiTalk 0.61 4.9 8,662 DNF 0.693 3.536 - 6.984

Skitter 1.51 12.7 86,326 DNF 0.951 16.978 - 44.685

Baidu 2.04 18.9 DNF OOE 0.845 - - 174.412

LiveJournal 6.48 52.2 DNF OOE 1.095 - - 84.967

Orkut 10.85 73.2 DNF OOE 4.237 - - 207.541

Twitter 199.8 1,345 DNF OOE 164.333 - - 4,817.774

Friendster 416.5 2,354 DNF OOE 11.972 - - 3,600.362

uk2007 178.5 1,485 OOE OOE 77.830 - - 5,264.101

ClueWeb09 1,819 17,060 OOE OOE 480.443 - - DNF

Table 2: Comparison of construction time and query time. DNF and OOE refer to running out of time (>24 hours) and running
out of memory, respectively.

DO DB YT WK SK BA LJ OR TW FR UK CW
0.0

0.2

0.4

0.6

0.8

1.0

P
ai

r
C

ov
er

ag
e

20 40 60 80 100

Figure 8: Pair coverage ratios using our method QbS under 20-100 landmarks where light color denotes the ratio of all the
shortest paths between a vertex pair go through landmarks and grey color denoted the ratio of some but not all shortest paths
between a vertex pair go through landmarks.

DO DB YT WK SK BA LJ OR TW FR UK CW09
100

101

102

103

104

105

L
ab

el
lin

g
S

iz
e

(M
B

)

20 40 60 80 100

Figure 9: Labelling sizes using QbS under 20-100 landmarks on all the datasets.

has larger shortest path graphs as shown by 𝑠𝑖𝑧𝑒 (Δ) in Table 3 due

to densely connected vertices with very high degrees. For labelled-

based methods, the query times of both PPL and ParentPPL are

much faster than Bi-BFS. However, neither PPL nor ParentPPL is

scalable. PPL can only answer queries for the first 5 datasets, while

ParenetPPL can only answer queries for the first 2 datasets which

have less than 1 million vertices. This is because that constructing

labelling information required by these methods is computationally

expensive for very large graphs.

6.3 Effects of Sketching
We conducted an experiment to understand how sketching im-

proves the performance of query answering in our method.

Figure 8 presents the pair coverage ratios of our method QbS

using 20-100 landmarks. Here, pair coverage ratio refers to the

proportion of queries in which the shortest paths between two

vertices go through at least one landmark, among 10,000 queries

used in our experiments. We distinguish two cases: (i) Queries

in which all shortest paths between two vertices go through at

least one landmark; (ii) Queries in which some but not all shortest
paths between two vertices go through at least one landmark. Pair

coverage ratios reflect the effectiveness of sketching used in our

method QbS since a sketch cannot guide queries in which none of

shortest paths between two vertices go through landmarks.

From Figure 8, we can see that: (1) When the number of land-

marks increases, the pair coverage ratios go up for both Case (i) and

Case (ii); nonetheless, the increasing rate generally slows down. (2)

For datasets in which graphs have high degree vertices compared

with their other vertices, such as Youtube, WikiTalk, Baidu, Twitter,

and ClueWeb09, their pair coverage ratios are generally higher than

the other datasets. This is because these high degree vertices are

Dataset

QbS

PPL ParentPPL

𝑠𝑖𝑧𝑒 (L) 𝑠𝑖𝑧𝑒 (Δ)
Douban 2.95MB 0.03MB 0.4GB 0.8GB

DBLP 6.05MB 0.03MB 1.2GB 2.4GB

Youtube 21.6MB 0.6MB 1.7GB −
WikiTalk 45.7MB 0.7MB 2.1GB −
Skitter 32.4MB 20.3MB 9.2GB −
Baidu 40.8MB 4.8MB − −
LiveJournal 92.5MB 1.1MB − −
Orkut 58.6MB 3.5MB − −
Twitter 0.78GB 0.76GB − −
Friendster 1.22GB 0.01GB − −
uk2007 1.98GB 0.08GB − −
ClueWeb09 31.4GB 0.48GB − −

Table 3: Comparison of labelling sizes. 𝑠𝑖𝑧𝑒 (L) denotes the
size of a labelling scheme L and 𝑠𝑖𝑧𝑒 (Δ) the size of precom-
puted shortest-path graphs between landmarks in QbS.

more likely on the shortest paths of the other vertices. For Friend-

ster, as it does not have high degree vertices, the pair coverage

ratios are quite low. (3) For datasets in which graphs are sparse

after removing landmarks that are vertices of high degrees, such as

Youtube, WikiTalk, Baidu and ClueWeb09, the percentage of pair

coverage ratio for Case (i) among pair coverage ratios for both cases

is higher than the other datasets. In Friendster, the degrees of ver-

tices are more evenly distributed; hence, landmarks hardly capture

all shortest paths between two vertices and the pair coverage ratios

for Case (i) are extremely low. However, the reasons why query

time on Friendster is still fast are twofold: (1) QbS does not store

parent information for reverse search since most parent vertices

do not lead to shortest paths being recovered, and (2) QbS uses

sketches to guide which side to expand for bi-directional searches.

6.4 Performance with Varying Landmarks
We also conducted experiments to evaluate how the number of

landmarks may affect the performance of our method.

6.4.1 Construction Time. The construction times of our method

QbS against different numbers of landmarks (from 20 to 100) are

shown in Figure 10. Generally, the construction time grows linearly.

In Figure 10(a)-(b), for datasets with millions of edges, QbS can

construct labels under 100 landmarks within at most a few minutes.

In Figure 10 (c), for datasets with billions of edges, QbS can construct

labels within a few hours. It can be seen that the construction time

is almost linear in the number of landmarks on each dataset, which

confirms the scalability of QbS.

6.4.2 Labelling Size. We compared the labelling sizes of QbS against

different numbers of landmarks in Figure 9. For a labelling scheme

L = (𝑀, 𝐿), we use |𝑅 |*8 bits to store labels of each vertex. For𝑀 , as

discussed in Section 6.2.2, the labelling size of a meta-graph is very

small, compared with the labelling size of Δ and 𝐿. It increases when

the number of landmarks becomes larger. Nonetheless, even when

|𝑅 |=100, the labelling size of a meta-graph would still be smaller

than 0.01MB. For Δ, since we store the shortest paths between |𝑅 |2
pairs, it grows fast when the number of landmarks increases. How-

ever, compared with the size of labels in 𝐿 as shown in Table 3, Δ

is small. The sizes of shortest paths between vertices with lower

degrees are smaller than the ones between vertices with higher

degrees. Thus, the labelling size of Δ does not increase quadratically

in the number of landmarks. The sizes of path labelling 𝐿 are linear

in terms of the number of landmarks.

6.4.3 Query Time. The impact of varying landmarks on query time

is shown in Figure 11. When the number of landmarks increases,

there are generally three cases: 1) the query times increase, e.g.,

Douban, DBLP and Orkut; 2) the query times decrease, e.g., Wik-

iTalk, Twitter and ClueWeb09; 3) the query times have no significant

changes, e.g., LiveJournal and uk2007. If a graph has very high de-

gree vertices, selecting more landmarks often decreases query times

because removing more landmarks can further sparsify the graph

significantly. For example, in Twitter, 38 million edges are incident

to 20 landmarks, while 100 landmarks have around 123 million

edges; accordingly, the query time under 100 landmarks is half as

the query time under 20 landmarks. If degrees of vertices in a graph

are evenly distributed such as Orkut, more landmarks do not neces-

sarily improve query time; instead, due to increased computational

cost for computing a sketch, query time often increases.

6.5 Remarks
In general, QbS has three sources of efficiency gains when answer-

ing shortest-path-graph queries: (1) QbS enables queries to traverse

on a graph whose parts with high centrality are sparsified. Thus,

although removing a small number of landmarks alone does not

significantly reduce the number of edges in a whole graph (e.g., 3.2%

of edges are removed with 20 landmarks in Twitter), the number

of edges traversed by queries is significantly reduced (e.g., around

30% less of edges being traversed by queries in QbS against Bi-BFS).

(2) QbS uses a sketch to guide the search for each query, further

reducing the number of edges being traversed. Take Twitter for ex-

ample, after adding the guide of sketches on a sparsified graph, 66%

less of edges are traversed in QbS against Bi-BFS. (3) QbS can avoid

the computation of shortest paths between high-degree landmarks

when two or more landmarks appear on one shortest path, since

these shortest paths can be precomputed as discussed in Section

5.2. In our experiments, the performance of QbS varies in datasets,

depending on how the characteristics of datasets support these

sources of gains to speed up query efficiency.

7 RELATEDWORK
Exact algorithms. One of the most classical methods for shortest

path computation is Dijkstra’s algorithm [11]. It computes a single-

source shortest path tree on a weighted graph in time complexity

𝑂 (|𝐸 | + |𝑉 |𝑙𝑜𝑔|𝑉 |). For unweighted graphs, breadth-first search

(BFS) computes a single-source shortest path tree in 𝑂 (|𝐸 |). How-
ever, these methods are very inefficient on large networks. A simple

strategy for reducing search space is to employ bi-directional BFS

which performs two searches from two given vertices, respectively,

based on certain heuristic assumptions [15, 21]. To further accel-

erate shortest path computation, a number of methods have been

proposed to pre-compute a labelling so as to answer point-to-point

shortest path queries online in a shorter time [2, 5, 14–16, 31, 32, 36–

39]. For example, Xiao et al. [39] exploited graph symmetry to label

0 5 10 15 20 40 60 80 100

of landmarks

0

5

10

15

20

25

30

C
on

st
ru

ct
io

n
T

im
e

(s
)

(a)

0 5 10 15 20 40 60 80 100

of landmarks

0

50

100

150

200

250

300

350

400

450
(b)

0 5 10 15 20 40 60 80 100

of landmarks

0

101

102

103

104

105

(c)
DO

DB

YT

WK

SK

BA

LJ

OR

TW

FR

UK

CW

Figure 10: Construction times using QbS under 0-100 landmarks on all the datasets.

0 5 10 15 20 40 60 80 100

of landmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q
ue

ry
T

im
e

(m
s)

(a)

0 5 10 15 20 40 60 80 100

of landmarks

0

1

2

3

4

5

(b)

0 5 10 15 20 40 60 80 100

of landmarks

0

100

200

300

400

500

600

700

(c)
DO

DB

YT

WK

SK

BA

LJ

OR

TW

FR

UK

CW

Figure 11: Average query times using our method QbS under 0-100 landmarks on all the datasets.

shortest paths. Though the size of labels has been compressed de-

pending on the symmetric property, the space cost is still high.

Later, Wei [37] introduced a method based on tree decomposition

for point-to-point shortest path queries. However, most of complex

networks have a large component in which vertices are densely

connected, making it hard to be decomposed into tree-like struc-

tures. Several methods have been proposed for finding shortest

path distances on complex networks (e.g., [3, 4, 12, 13, 19]). Some

of them considered answering point-to-point shortest path queries

as an extension of answering distance queries, although they did

not provide any experiments. For example, Akiba et al. [3] pro-

posed pruned landmark labelling (PLL) which constructs a 2-hop

labelling for distance queries by conducting pruned BFSs. Fu et al.

[13] proposed IS-label, a labelling for distance queries on weighted

graphs based on an independent set of vertices. Both of these meth-

ods discussed labellings for point-to-point shortest path queries by

extending labellings for distance queries with parent information,

which however require a high space overhead and do not scale

to large graphs. In this work, we study the shortest-path-graph

problem, which is computationally more difficult than the point-to-

point shortest path problem, and little attention has previously been

given. Our method pre-computes a small-sized distance labelling

and can handle complex networks with up to billions of vertices.

Approximate algorithms. Due to the high computational costs

of computing shortest paths, a number of approximate methods

for point-to-point shortest path queries have been proposed in

the past, including landmark-based methods with acceptable ac-

curacy [17, 34, 41]. Specifically, Gubichev et al. [17] proposed to

pre-compute shortest paths from each vertex to each landmark,

and then concatenate shortest paths from two vertices to the same

landmarks to approximate shortest paths. They also proposed cycle

elimination and tree-based sketch to boost accuracy. Zhao et al.

[41] proposed a method, called Rigel, to estimate shortest path dis-

tances. They also extended Rigel for approximating shortest paths.

Tretyakov et al. [34] used shortest path trees rooted at landmarks

to approximate shortest path distances and search for one shortest

path. Unlike these approximate algorithms, our work here aims

to develop an exact method to accurately compute a shortest path

graph that contains all shortest paths between two given vertices.

8 CONCLUSIONS
We have proposed a novel method QbS to answer shortest-path-

graph queries on large graphs. QbS constructs a labelling scheme

through pre-computation, and then answers queries by perform-

ing online computation that involves fast sketching and guided

searching. We have analyzed the complexity and correctness of

our method. Our labelling scheme is deterministic and can be con-

structed through a parallelized process. We have conducted ex-

periments on 12 large real-world graphs to empirically verify the

scalability and efficiency of QbS. For future work, we plan to extend

QbS on road networks by leveraging their specific properties and

study landmark selection strategies to improve the performance.

REFERENCES
[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.

2012. Hierarchical hub labelings for shortest paths. In European Symposium on
Algorithms. 24–35.

[2] Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. 2010.

Highway dimension, shortest paths, and provably efficient algorithms. In Pro-
ceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms.
782–793.

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data. 349–360.

[4] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. 2012. Shortest-

path queries for complex networks: exploiting low tree-width outside the core. In

Proceedings of the 15th International Conference on Extending Database Technology.
144–155.

[5] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik

Schultes. 2007. In transit to constant time shortest-path queries in road networks.

In Proceedings of the Meeting on Algorithm Engineering & Expermiments. 46–59.
[6] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang.

2006. Complex networks: Structure and dynamics. Physics reports 424, 4-5 (2006),
175–308.

[7] Paul Bonsma. 2013. The complexity of rerouting shortest paths. Theoretical
computer science 510 (2013), 1–12.

[8] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press.

[10] Lenore J Cowen and Christopher G Wagner. 2004. Compact roundtrip routing in

directed networks. Journal of Algorithms 50, 1 (2004), 79–95.
[11] Edsger W Dijkstra et al. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[12] Muhammad Farhan, Qing Wang, Yu Lin, and Brendan Mckay. 2019. A Highly

Scalable Labelling Approach for Exact Distance Queries in Complex Networks. In

Proceedings of the 22th International Conference on Extending Database Technology.
[13] Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing Wong.

2013. Is-label: an independent-set based labeling scheme for point-to-point

distance querying. Proceedings of the VLDB Endowment 6, 6 (2013), 457–468.
[14] Andrew V Goldberg. 2007. Point-to-point shortest path algorithms with prepro-

cessing. In International Conference on Current Trends in Theory and Practice of
Computer Science. 88–102.

[15] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path:

A search meets graph theory. In Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms. 156–165.

[16] Andrew V Goldberg, Haim Kaplan, and Renato F Werneck. 2006. Reach for A*:

Efficient point-to-point shortest path algorithms. In 2006 Proceedings of the Eighth
Workshop on Algorithm Engineering and Experiments. 129–143.

[17] Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and GerhardWeikum. 2010.

Fast and accurate estimation of shortest paths in large graphs. In Proceedings of
the 19th ACM international conference on Information and knowledge management.
499–508.

[18] Pierre Hansen, Jacques-Françols Thisse, and Richard E Wendell. 1986. Efficient

points on a network. Networks 16, 4 (1986), 357–368.
[19] Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. 2016. Fully

Dynamic Shortest-Path Distance Query Acceleration on Massive Networks. In

Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1533–1542.

[20] Eitan Israeli and R Kevin Wood. 2002. Shortest-path network interdiction. Net-
works: An International Journal 40, 2 (2002), 97–111.

[21] Ruoming Jin, Ning Ruan, Bo You, and Haixun Wang. 2013. Hub-accelerator: Fast

and exact shortest path computation in large social networks. arXiv preprint
arXiv:1305.0507 (2013).

[22] Marcin Kamiński, Paul Medvedev, and Martin Milanič. 2011. Shortest paths

between shortest paths. Theoretical Computer Science 412, 39 (2011), 5205–5210.
[23] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gur-

vich, Gabor Rudolf, and Jihui Zhao. 2008. On short paths interdiction problems:

Total and node-wise limited interdiction. Theory of Computing Systems 43, 2
(2008), 204–233.

[24] Eric D Kolaczyk, David B Chua, and Marc Barthélemy. 2009. Group betweenness

and co-betweenness: Inter-related notions of coalition centrality. Social Networks
31, 3 (2009), 190–203.

[25] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. 1343–1350.

[26] Martine Labbé, Dominique Peeters, and Jacques-François Thisse. 1995. Location

on networks. Handbooks in operations research and management science 8 (1995),
551–624.

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network

dataset collection.

[28] Naomi Nishimura. 2018. Introduction to reconfiguration. Algorithms 11, 4 (2018),
52.

[29] Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node centrality in

weighted networks: Generalizing degree and shortest paths. Social networks 32,
3 (2010), 245–251.

[30] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. 2009.

Fast shortest path distance estimation in large networks. In Proceedings of the
18th ACM conference on Information and knowledge management. 867–876.

[31] Peter Sanders and Dominik Schultes. 2005. Highway hierarchies hasten exact

shortest path queries. In European Symposium on Algorithms. 568–579.
[32] Jagan Sankaranarayanan, Hanan Samet, and Houman Alborzi. 2009. Path oracles

for spatial networks. Proceedings of the VLDB Endowment 2, 1 (2009), 1210–1221.
[33] John Scott. 1988. Social network analysis. Sociology 22, 1 (1988), 109–127.

[34] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano García-Bañuelos, Jaak

Vilo, and Marlon Dumas. 2011. Fast fully dynamic landmark-based estimation

of shortest path distances in very large graphs. In Proceedings of the 20th ACM
international conference on Information and knowledge management. 1785–1794.

[35] Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. 2008.

Searching the wikipedia with contextual information. In Proceedings of the 17th
ACM conference on Information and knowledge management. 1351–1352.

[36] Dorothea Wagner and Thomas Willhalm. 2007. Speed-up techniques for shortest-

path computations. In Annual Symposium on Theoretical Aspects of Computer
Science. 23–36.

[37] Fang Wei. 2010. TEDI: efficient shortest path query answering on graphs. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data. 99–110.

[38] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu, and

Shuigeng Zhou. 2012. Shortest path and distance queries on road networks:

An experimental evaluation. Proceedings of the VLDB Endowment 5, 5 (2012),

406–417.

[39] YanghuaXiao,WentaoWu, Jian Pei,WeiWang, and ZhenyingHe. 2009. Efficiently

indexing shortest paths by exploiting symmetry in graphs. In Proceedings of the
12th International Conference on Extending Database Technology: Advances in
Database Technology. 493–504.

[40] Bin Yao, Feifei Li, and Xiaokui Xiao. 2013. Secure nearest neighbor revisited. In

2013 IEEE 29th International Conference on Data Engineering. 733–744.
[41] Xiaohan Zhao, Alessandra Sala, Haitao Zheng, and Ben Y Zhao. 2011. Efficient

shortest paths on massive social graphs. In 7th International Conference on Col-
laborative Computing: Networking, Applications and Worksharing. 77–86.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Shortest Path Labelling
	3.1 2-Hop Path Cover
	3.2 Path Labelling Methods
	3.3 Discussion

	4 Query-by-Sketch
	4.1 Labelling Scheme
	4.2 Fast Sketching
	4.3 Guided Searching

	5 Theoretical Discussion
	5.1 Proof of Correctness
	5.2 Complexity Analysis
	5.3 Parallelization

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance Comparison
	6.3 Effects of Sketching
	6.4 Performance with Varying Landmarks
	6.5 Remarks

	7 Related Work
	8 Conclusions
	References

