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Abstract
Classical approaches for OLAP assume that the data of all tables
is complete. However, in case of incomplete tables with missing
tuples, classical approaches fail since the result of a SQL aggregate
query might significantly differ from the results computed on the
full dataset. Today, the only way to deal with missing data is to
manually complete the dataset which causes not only high efforts
but also requires good statistical skills to determine when a dataset
is actually complete. In this paper, we propose an automated ap-
proach for relational data completion called ReStore1 using a new
class of (neural) schema-structured completion models that are able
to synthesize data which resembles the missing tuples. As we show
in our evaluation, this efficiently helps to reduce the relative error
of aggregate queries by up to 390% on real-world data compared
to using the incomplete data directly for query answering.

1 Introduction
Motivation. OLAP and data warehousing play a significant role

today for many organizations and enterprises for decision making.
This is evident since many new scalable OLAP services are becom-
ing available in the cloud such as AWS Redshift [1], Snowflake [3],
or Azure data warehousing [2] that allow customers to analyze
large datasets using aggregate queries. A critical assumption for
OLAP, however, is that the data itself has to be complete before
it can be used for decision making, i.e., data in tables is complete
and no tuples are missing. Traditionally, this was achieved by load-
ing data only from well curated (internal) data sources into a data
warehouse. In enterprises, these are typically OLTP systems that
store data about customers, products, orders, etc. However, while
data in this context might still require data integration and clean-
ing [8, 11, 15, 36] since it comes from multiple sources, the data is
typically considered complete and all relevant tuples were expected
to be present in the data warehouse.

However, this assumption does not hold anymore for many of
the more modern analytics scenarios. Instead of using only well
curated (internal) data sources in a data warehouse, more and more
external data sources are being used in OLAP scenarios. A problem
of these external data sources is that the data might be incomplete.
For example, to extend our warehouse we might want to use a
CSV file from an open data platform containing information about
cities where customers come from — however, data for some cities
is missing. Moreover, in addition to external data sources there
are many more applications where tables can be incomplete such
as scenarios where data needs to be collected manually and thus
collecting a complete dataset is too expensive or even impossible.

In case of incomplete tables, classical databases fail since the
result of a SQL aggregate query might significantly differ from the

1This is a technical report of the paper published in SIGMOD 2021.

results computed on the full dataset which in turn leads to erro-
neous conclusions in data analysis and decision making. Moreover,
existing techniques that can produce approximate aggregate query
answers [5, 6] on samples might also fail since data is often missing
systematically (e.g., samples for some groups in the data are missing
completely). Even worse, the missing data might introduce a bias
and hence the data can not be seen as a uniform (random) sample.

For example, suppose we want to create a housing database of
rental apartments and their neighborhoods (covering all cities in the
US).While we have a complete neighborhoods table, the apartments
data is incomplete since not all states provide this information
(i.e., apartments of individual states might be missing completely).
However, this missing data might introduce a bias in the available
data, e.g., since most data comes from states with high population
densities where rents are higher. If we now use a SQL aggregate
query on the incomplete apartment table to determine the average
rental price of apartments across all states, we could obtain (highly)
inaccurate results due to the missing apartment tuples.
Contributions. The onlyway to deal withmissing tuples in databases

for OLAP today is to manually add the missing tuples before using
the database for decision making. The manual completion of an
incomplete database, however, causes an enormous effort in data
acquisition and in checking the completeness of the acquired data.
Moreover, in many situations it might not even be possible to com-
plete a database manually at all. In this paper, we thus propose a
new learned approach called ReStore for automatic data completion
for incomplete relational databases. While there has been already
significant work to impute missing values (e.g., replace a missing
attribute) including learned approaches [28, 38, 41], to the best of
our knowledge there is no work to synthesize data for incomplete
tables in a relational schema where tuples are missing and might
introduce a bias.

The main idea of our approach is that we use the complete tables
in a database as evidence to synthesize the missing data even if the
missing data introduces a bias in the incomplete table. For instance,
in the example above, we could use the complete neighborhoods
table to synthesize the apartment tuples for the missing states. One
might now wonder how the bias from the missing data can be
removed. The intuition is that our neural completion models learn
from the available data how typical apartments look like based
on information from the neighborhood table (e.g., rents will be
higher in neighborhoods with higher population density). During
completion, we take this information from neighborhoods into
account to synthesize the missing tuples.

To enable data completion our approach works in two steps (cf.
Figure 1): (1) in a first step, the user has to annotate the schema
and provide minimal information about the relational dataset once
for all queries (such as if a table is complete or incomplete). (2)
Once annotated, we learn so called completion models over the
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Landlord [Complete]

id age TFApartments

1 50 1

2 60 ?

...

Apartment [Incomplete]

neighborhood_id landlord_id rent

1 1 2000$

1 2 3000$

Systematically missing: All
apartments available for NYC

Neighborhood [Complete]

id state pop_density TFApartments

1 NYC 27,000 2

2 CA 254 ?

...

(a) Annotated Example Schema.

Output: Missing Tuple

Input: Evidence Tuple Output: Missing Tuple

Landlord Tuple

id age TFApartments

2 60 3

Completion Model (Neighborhood→Apartment)

Completion Model (Landlord→Apartment)

Input: Evidence Tuple

Neighborhood Tuple

id state pop_density TFApartments

2 CA 254 3

Apartment Tuple

neighborhood_id rent

2 3200$

Apartment Tuple

landlord_id rent

2 2000$

(b) Models Synthesize Missing Tuples.

SELECT AVG(rent) FROM neighborhood  
  NATURAL JOIN apartment  
  GROUP BY state;

Query on completed Join:

Neighborhood ⋈ Apartment [Completed]

neighborhood_id state pop_density apartment_id rent

1 NYC 27,000 1 2000$

1 NYC 27,000 2 3000$

2 CA 254 3 3200$

2 CA 254 4 2000$

2 CA 254 5 1000$

(c) Incompleteness Join.
Figure 1: Overview of ReStore to synthesize missing data (green) from existing data (blue and red). (a) Based on the annotated
schema and the available data, the completion models are learned. (b) The learned schema-structured model can be used to
synthesize a missing apartment tuple using a complete neighborhood tuple as input. (c) The model generates missing data for
a given user query at runtime to answer queries over incomplete tables. The generated tuple factors (TFs) allow us to estimate
the number of missing tuples.
incomplete dataset to capture the complex correlations and depen-
dencies across complete and incomplete tables. Using these models,
we are then able to synthesize data to complete the missing data
for executing aggregate queries. As we show in our evaluation, this
efficiently helps to reduce the relative error of aggregate queries by
up to 390% on real-world data compared to using the incomplete
data directly for decision making.
Outline. The remainder of the paper is structured as follows. In

Section 2, we provide a more formal definition of the problem and
present an overview of ReStore to tackle this problem. Afterwards,
in Section 3 we present the details of the neural completion mod-
els before we then discuss in Section 4 how these models can be
used to generate the missing data for answering aggregate queries.
Furthermore, Section 5 provides further important details on au-
tomatic selection of completion models given a user query before
we discuss a technique to estimate the confidence of a completion
in Section 6. In Section 7, we discuss the results of our evaluation
using synthetic and real-world datasets. Finally, we present related
work in Section 8 and then conclude in Section 9.

2 Overview
In this section, we introduce the problem statement before we give
an overview of our approach and discuss potential applications and
the general assumptions.

2.1 Problem Statement
In brief, the problem that we solve in this paper can be described

as follows. We are given an incomplete database 𝐷𝑖 that consists of
complete tables 𝑇1,𝑇2, . . . and incomplete tables 𝑇𝑗 ,𝑇𝑗+1, . . . . The
goal is to generate data for the incomplete tables𝑇𝑗 ,𝑇𝑗+1, . . . based
on the available data that allows us to answer a query workload
𝑄1, 𝑄2, . . . , 𝑄𝑛 of aggregate queries such that query results on the
completed database 𝑄𝑖 (𝐷𝑐 ) are close to the query results on the
true (complete) database 𝑄𝑖 (𝐷). Note that this formulation allows
us to generate missing data individually for each query to answer
the given query as accurately as possible. However, we can still
cache generated data such that we do not need to generate new
data for every query individually as we discuss later.

An important question for this problem is how to measure suc-
cess. Based on our problem definition, a natural metric is howmuch
the relative error of a query result on the incomplete database can

be reduced by completing the data; i.e., howmuchmore accurate the
query results are after the completion. The relative error reduction
for a given query 𝑄𝑖 can thus be defined as follows:
Rel .Error Reduction = 𝐸𝑟 (𝑄𝑖 (𝐷𝑖 ),𝑄𝑖 (𝐷))−𝐸𝑟 (𝑄𝑖 (𝐷𝑐 ),𝑄𝑖 (𝐷)) (1)
where the relative error 𝐸𝑟 is the difference of the two query results
normalized by the true query result. While for aggregate queries
without a group-by, the relative error is trivial, for group-by queries
we use the average relative error over all result tuples [17].

A limitation of the relative error reduction metric is that it does
not show how well the bias of the incomplete database can be
reduced independent of a given workload. We thus use a second
metric called bias reduction to measure the success of data comple-
tion. This metric shows how well the true data distribution of a
given attribute could be restored. For continuous attributes 𝑋, the
bias reduction is defined as follows:

Bias Reduction = 1 − |AVGc (𝑋 ) −AVG (𝑋 ) |
|AVG (𝑋 ) −AVGi (𝑋 ) |

(2)

whereAVGc (𝑋 ),AVGi (𝑋 ),AVG (𝑋 ) are the averages of attribute
𝑋 on 𝐷𝑐 , 𝐷𝑖 and 𝐷 , respectively. Hence, the bias reduction is nor-
malized in the interval [0, 1] where larger values are preferable. For
categorical attributes, we use the fraction of the biased attribute
value since an average cannot be computed.

2.2 Our Approach
As mentioned before, our approach called ReStore to tackle this

problem consists of the two steps depicted in Figure 1: First, a user
has to (once) annotate a database schema before we train neural
completion models that can be used to generate the missing data
required to execute aggregate queries over the completed database.
Schema Annotation. In the annotation step, a user must indicate

for a given incomplete database which tables are complete and
which ones are incomplete. An example for an annotated schema
is depicted in Figure 1a which consists of three tables of a housing
database where two tables are marked as complete (landlord and
neighborhood) and one table (apartment) is marked as incomplete.

In addition, information about the relationships between tables
needs to be annotated. Here, the user has to provide information
whether there are any complete foreign-key relationships between
tuples from a complete table and an incomplete table. For example,
in Figure 1a all apartments of neighborhoods in NYC are available
but not those for CA. In many of the application scenarios, the



information which relationships are complete is known a priori
and thus does not cause additional manual annotation overhead.
For example, often a complete subset of data (e.g., apartments of a
certain state) is available.

Based on the annotation, so called tuple factors (TF) [17] can now
be automatically computed step to capture information about the
relationships across complete and incomplete tables as shown in
in Figure 1a (e.g., how many apartments a complete neighborhood
has). Based on the available data and the computed tuple factors,
we then learn our completion models as discussed next.

The usermight also have other additional information, which can
help to further enhance the quality of the synthesized data. Among
these are table sizes for incomplete tables or aggregate statistics
(e.g., average rental prices in certain states). Using techniques like
iterative proportional fitting [25], this information can be used to
improve our generated data. These techniques are orthogonal to
our approach and we thus exclude them in the remainder.
Model Training and Data Completion. Given an annotated schema,

we can now learn the completion models. As depicted in Figures 1b,
two completion models have been learned that can either take data
from the complete neighborhood table or the complete landlord
table to synthesize missing apartment tuples. By taking complete
tables as evidence our models synthesize missing tuples even if
there is a bias in the missing data since we capture correlations
across tables (e.g., which types of apartments are expected based
on the characteristics of the neighborhoods).

These completion models can now be used at runtime to com-
plete the missing data for a given user query. For instance, if a user
wants to know the average rent per state, we first compute the
completed join neighborhood ⊲⊳ apartment. More precisely, we
introduce a new operator called incompleteness join to join complete
and incomplete tables that generates the missing tuples needed to
make the join complete. In our example, the incompleteness join
would generate apartments for neighborhoods where the data is
missing using the appropriate completion model of Figure 1b. Once
the missing tuples for the join are generated (i.e., the incomplete-
ness join produced its output), we can compute the aggregated
result using a normal aggregation operator.

We decided to complete data on a per-query basis at runtime
since completing the full database might be too expensive (and
actually not needed) for large datasets. However, it is important to
note that the models are not query-dependent and only have to be
learned once for an incomplete schema and can be reused across
queries. Moreover, the generated data can still be materialized or
even generated a priori as we will discuss in Section 4.
Supported Schema and Queries. In general, our approach supports

any relational schema where tables are connected via foreign-key
relationships. For the workload, we currently limit ourselves to
acyclic Select-Project-Aggregate-Join (SPJA) queries where joins
are equi-joins along foreign-key relationships which are typical
queries for decision making. An important aspect is that we can
support arbitrary filter predicates or aggregate functions as well as
any number of group-by attributes. The reason is that once data
is completed for a join, we use normal query operators (e.g., filter
or aggregate operators) to compute the query results. Supporting
other types of queries, however, is indeed possible. For example,

other join types (e.g., non-equi joins) could be added by deriving
tuple factors that represent these join conditions.

2.3 Application Scenarios
Systematically Missing Data. The fact that tuples in databases are

missing is often caused by systematic reasons. In other words, the
available tuples in a dataset are often not a uniform sample of the
full dataset. There are many potential reasons for systematically
missing data. For instance, in our housing database, information
about apartments might depend on the neighborhood; e.g., in rich
neighborhoods landlords are less interested to make the data pub-
licly available. This induces a bias since the availability of data
correlates with properties of the tuples which might lead to wrong
conclusions if queries are issued over the incomplete data; e.g., the
average rental prices might be underestimated if the missing data
is not taken into account.
Integration of Independent Databases. Another application scenario

where our techniques might help is in the integration of data com-
ing from independent sources. While the individual sources might
be complete for the individual purposes they are curated for, incom-
pleteness can still arise when bringing these data sources together.
For example, think of two housing databases, one for the US (West)
and one for the US (East). While the US (West) database might
contain three tables with complete data (landlord, neighborhood
and apartment), the US (East) database might only contain two
tables with complete data (landlord and neighborhood but no
apartments). Hence, in a merged databases for the complete US
(West and East), all apartment tuples for US (East) are missing.
With our approach, we could now use the available data from US
(West) as evidence to synthesize the missing apartment data for US
(East) to get a rough understanding of the housing market based
on the information about neighborhoods and landlords.
Expensive Data Collection. Even in the absence of systematic rea-

sons for missing data it can be a tremendous effort to collect a
complete dataset. This is especially true in many data science sce-
narios. For instance, gathering the data might require extensive
surveys or expensive experimental infrastructure for data collec-
tion which is especially true for many engineering disciplines or
medical use cases. In these cases, our approach also helps to reduce
the efforts for data collection since often a small sample is sufficient
to synthesize the rest of the data.

2.4 Discussion
The central assumption of our approach is that both missing and

available tuples have consistent correlations; i.e., while there can be
a bias in the available tuples, it is required that the missing tuples
have the same correlations between attributes as the remaining
tuples. This is not a requirement specifically for ReStore but for
any system that uses machine learning to complete a dataset since
otherwise the available tuples cannot be used as evidence to predict
the missing tuples. More technically, the conditional distributions
of missing tuples 𝑡𝑚 given an evidence tuple 𝑡𝑒 should be equivalent
for remaining and missing tuple distributions, i.e., 𝑃𝑚 (𝑡𝑚 | 𝑡𝑒 ) ≈
𝑃𝑟 (𝑡𝑚 | 𝑡𝑒 ). If this assumption holds, the main factor determining
how accurately the original query result can be restored is the
predictability of the query attributes as we will later show in our



experimental evaluation. If the attributes are not predictable given
the evidence tuples, our models will complete the data with lower
confidence (cf. Section 6).

3 Learned Completion Models
A natural fit for the completion task of ReStore are so called deep
autoregressive (AR) models [14, 23, 26]. In the following, we first
discuss the relevant background on AR models and then present
a first class of simple completion models based on AR models.
Afterwards, we present schema-structured autoregressive (SSAR)
models which are more expressive than the simple completion
models since they can capture the structural information in complex
relational schemas that can be used as evidence for generating
missing tuples.

3.1 Background on Autoregressive Models
Autoregressive models learn a probability distribution by ap-

proximating the density of observed variables 𝑝 (𝑥1, . . . , 𝑥𝑛). These
models exploit that any density can be decomposed into a product of
conditional densities 𝑝 (𝑥) = ∏𝑛

𝑖=1 𝑝 (𝑥𝑖 | 𝑥<𝑖 ) . The factors express
the conditional density of the 𝑖-th variable given its predecessors.

The popular MADE [14] models realize an autoregressive ar-
chitecture using deep learning techniques. The network obtains
a vector (𝑥1, . . . , 𝑥𝑛) as input and is trained to output the condi-
tional densities (𝑝 (𝑥1), 𝑝 (𝑥2 |𝑥1), . . . , 𝑝 (𝑥𝑛 |𝑥<𝑛)). It is ensured that
the i-th output 𝑝 (𝑥𝑖 | 𝑥<𝑖 ) only depends on inputs with an index
< 𝑖 using masked layers that prevent the flow of information from
subsequent inputs.

Conditional sampling (and hence generating new data) can now
easily be implemented using iterative forward sampling. Assume
that we are given a partial vector (𝑥1, . . . , 𝑥𝑖 ) and want to sample
the remaining entries (𝑥𝑖+1, . . . , 𝑥𝑛) of the vector, i.e., sample from
the conditional distribution 𝑝 (𝑥≥𝑖 |𝑥<𝑖 ). By making use of the au-
toregressive model, we can first predict the distribution 𝑝 (𝑥𝑖+1 |𝑥≤𝑖 )
and sample the next variable 𝑥𝑖+1. We can now repeat the proce-
dure by feeding the vector (𝑥1, . . . , 𝑥𝑖 , 𝑥𝑖+1) into the network to
predict 𝑝 (𝑥𝑖+2 |𝑥≤𝑖+1) and so forth until we have finally computed
a conditional sample for all missing variables of the input vector.

3.2 Simple Completion Models
As a first contribution, we present a simple class of completion

models based on AR models. The general idea of these models is
to use tuples of a complete table 𝑡𝑒 ∈ 𝑇1 (or of a join of complete
tables 𝑡𝑒 ∈ 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛) as evidence to synthesize a missing tuple
of one incomplete table 𝑇𝑚 . In other words, the completion models
take a tuple 𝑡𝑒 as input and synthesize a missing tuple 𝑡𝑚 for the
incomplete table 𝑇𝑚 .

To capture distributions and correlations present in the dataset
and eventually generate the missing𝑇𝑚 tuples, a completion model
for one incomplete table 𝑇𝑚 is learned over the join of 𝑇1 ⊲⊳ . . . ⊲⊳

𝑇𝑛 ⊲⊳ 𝑇𝑚 (based on the available data). Clearly, for complex schemata
with potentially multiple incomplete tables we need to learn multi-
ple completion models. An efficient learning procedure for complex
schemata is presented at the end of this Section. In the following,
we focus on the question how a single completion model for one

incomplete table is derived. We first consider the case of using a sin-
gle complete table as evidence to generate tuples of an incomplete
table and later show how joins of tables can be used as evidence.
Single Evidence Table. Let us first consider the case of a single com-

plete table 𝑇1 which is connected via a foreign-key relationship to
the incomplete table𝑇𝑚 . Our goal is to synthesize the missing tuples
in𝑇𝑚 . To this end, a deep AR model is trained over the join𝑇1 ⊲⊳ 𝑇𝑚
(more precisely, all join attributes 𝑎1, . . . , 𝑎𝑛 including tuple fac-
tors as depicted in Figure 2b) using the available data. Afterwards,
for every tuple 𝑡1 of the complete table 𝑇1 we can synthesize an
appropriate tuple for the incomplete table 𝑇𝑚 by sampling from
the conditional distribution 𝑡𝑚 ∼ 𝑃 (𝑡𝑚 |𝑡1). For instance, in our
example in Figure 1 we can synthesize an apartment tuple, given
a neighborhood tuple.

Intuitively, a given neighborhood tuple tells us what a typical
apartment in that neighborhood looks like. Moreover, we can syn-
thesize tuple factors for a given neighborhood tuple if it is not
already available. This tells us in addition how many apartments a
neighborhood (given its characteristics) has. Using the tuple factor,
we can now synthesize as many tuples as are missing; e.g., for a
neighborhood that should have three apartments but the dataset
contains only one, two new apartment tuples need to be synthe-
sized. This also allows to debias a dataset. For instance, the model
might predict more missing tuples for neighborhoods in areas with
higher population density and since population density and rental
prices could be correlated, it will synthesize more expensive apart-
ments resulting in an overall higher average rent. More details on
how more complex queries can be handled an debiased is given in
Section 4. For now, we simply focus on the data generation process
for generating one missing tuple 𝑡𝑚 from a given evidence tuple 𝑡𝑒 .
Additional Evidence Tables. Instead of using only a tuple of table

𝑇1 as evidence, we can also use information from additional tables
𝑇2, . . . ,𝑇𝑛 as evidence. The condition for more than one complete
table to be used as evidence is that they are connected via foreign-
key relationships directly or indirectly to 𝑇1. This is necessary
because otherwise it is not clear which tuples of complete tables
should be combined to generate a tuple in the incomplete table.

For instance, in Figure 1, we cannot use the landlord and the
neighborhood tables as evidence in one model to synthesize an
apartment tuple. While this is technically possible, we do not know
a priori in which neighborhoods a landlord has apartments. Trying
out all possible combinations is computationally infeasible. Hence,
in this particular case, we have to decide whether to use a comple-
tion model that uses neighborhoods as evidence or one that uses
landlords as input for the completion. This decision is discussed in
Section 5 where we present an algorithm for automatically selecting
which data to use as evidence. However, as mentioned before, we
can still use additional evidence tables 𝑇2, . . . ,𝑇𝑛 as long as they
are connected via foreign-key relationships to 𝑇1 (which itself is
connected to the incomplete table 𝑇𝑚). The idea is that we can use
a tuple from the join 𝑡𝑒 ∈ 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 as evidence to gener-
ate a tuple for 𝑇𝑚 by sampling from 𝑃 (𝑡𝑚 |𝑡𝑒 ). For instance, if the
state information of a neighborhood would be represented in a
separate table that was connected to the neighborhood table via
a foreign-key reference, we could use the joined tuple 𝑡𝑠 ⊲⊳ 𝑡𝑛 of
the neighborhood and state tables as input to more accurately
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Synthesize Missing
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(b) Simple Completion Model.

Deep AR
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te∈T1 ⋈ ... ⋈Tn

Tj

Tk

Ti

te∈T1 ⋈ ... ⋈Tn

Conditional 
Column
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(c) Schema-Structured Completion Model.

Figure 2: Learned Completion Models in ReStore. (a) The goal is to complete a table𝑇𝑚 using the join𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 of complete
tables 𝑇1, . . . ,𝑇𝑛 as evidence. (b) Simple completion models are based on autoregressive models and learn conditional distri-
butions 𝑃 (𝑎𝑖 |𝑎<𝑖 ) over all attributes in 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 ⊲⊳ 𝑇𝑚 (including the incomplete table 𝑇𝑚). After learning, we can use
conditional sampling to synthesize missing tuples 𝑡𝑚 given an evidence tuple 𝑡𝑒 ∈ 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 . (c) Schema−structured models
incorporate additional (so called fan-out) evidence of a tuple 𝑡𝑒 using tree embeddings.

predict a missing apartment tuple 𝑡𝑎 . The attributes of the state
table in this case serve as additional features for the deep AR model.
Fan-Out Evidence. However, even in the case that all additional evi-

dence tables𝑇2, . . . ,𝑇𝑛 are connected to𝑇1 there are limits to which
evidence tables can be used. In case one of the tables in 𝑇2, . . . ,𝑇𝑛
introduces a fan-out (i.e., the evidence tuple 𝑡1 is connected to more
than one tuple directly or indirectly in the additional table) the table
cannot be used as additional evidence. We call this fan-out evidence.
The reason is that if a tuple 𝑡1 in 𝑇1 has several matching tuples
(say in 𝑇2), it is not clear which of these tuples should be provided
as additional input for the AR model to synthesize a tuple 𝑡𝑚 ∈ 𝑇𝑚 .
For instance, if we had an additional school table in our example
which is connected to the neighborhood table, one tuple could
have multiple school tuples. To address this issue, we introduce
Schema-Structured Completion Models.

3.3 Schema-Structured Completion Models
Asmentioned before, simple AR completion models cannot lever-

age evidence of an additional complete table if it introduces a
fan-out. This motivates Schema-Structured Autoregressive (SSAR)
models which are capable of incorporating this information in the
completion process.
Supporting Fan-out Evidence. Similar to AR models, SSAR models

are learned over the join of evidence tables 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 (which
do not introduce any fan-out evidence) and the incomplete table𝑇𝑚
as shown in Figure 2c. In order to take the additional tables which
introduce a fan-out evidence into account, we perform an acyclic
walk on the schema graph. That means for a given evidence tuple
𝑡𝑒 ∈ 𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛, for which wewant to generate the missing tuple
𝑡𝑚, we first additionally join tuples from fan-out tables (e.g., 𝑇𝑖 and
𝑇𝑗 in Figure 2c). This can be done recursively for tables which have
an additional fan-out relationship to tables that are not directly
connected to 𝑡𝑒 (such as 𝑇𝑘 in Figure 2c). This results in a tree
structure of tuples representing the fan-out evidence, which is then
encoded and fed into the neural network in addition to the evidence
tuple 𝑡𝑒 to predict appropriate tuples 𝑡𝑚 of the incomplete table𝑇𝑚 .
For instance, for a given neighborhood tuple 𝑡𝑛 we would feed the
tree with 𝑡𝑛 as root and all schools in this neighborhood as children
into the model. To use this tree structure as input to our SSAR
models, we encode the tree using a tree embedding architecture. In
particular, we use sum-pooling for the child embeddings which are
fed into an additional feed-forward network. This architecture was
shown to be a universal function approximator for permutation

invariant functions [42]. We additionally use weight sharing for
tuples of the same table to reduce the number of parameters.
Self-Evident Data Completion. In addition to using tree-structured

models to incorporate evidence from additional fan-out tables, we
can use tree models also for incorporating the already available
data of the incomplete table itself. For instance, let us again con-
sider the case that the apartment table is incomplete and we wish
to complete the join of neighborhood ⊲⊳ apartment using a com-
plete neighborhood table. Given a neighborhood tuple, the SSAR
model has to predict an appropriate missing apartment tuple. As
mentioned before, some apartments of a given neighborhood might
already be available (but not all). Using tree embeddings, these
apartment tuples could also be fed into the SSAR model as ad-
ditional (self-)evidence. The intuition is that, if there are typical
constellations of apartments in a neighborhood (e.g., typically they
have comparable prices), this will be learned by the SSAR model
and taken into account during the completion further refining the
synthesized data.

3.4 Learning on Complex Schemata
So far, we have focused on the question how one individual

completion model works. However, given an annotated schema of a
complex database, we have to learn multiple models to potentially
synthesize the data for arbitrary joins containing incomplete tables.
More precisely, unless otherwise specified by the user, we want to
be able generate tuples for any table 𝑇𝑥 using any connected table
𝑇𝑦 as evidence. Naively, we would have to learn a single SSAR (or
AR) model for every every pair of tables 𝑇𝑥 ,𝑇𝑦 that are connected
via a foreign-key to complete 𝑇𝑥 using 𝑇𝑦 and potentially all other
(non fan-out and fan-out) tables connected to𝑇𝑦 that can be used as
additional evidence. However, this would lead to a high number of
models and consequently high training times. Instead, as we show
next models can be merged (before learning them) to reduce the
number of models and overall training time significantly.
Merging Example. For instance, if we want to complete𝑇2 using𝑇3

and𝑇1 using𝑇2 ⊲⊳ 𝑇3 both completions can be done using the same
model. We only have to make sure that attributes from 𝑇3 are first
and that the ones of 𝑇2 and 𝑇1 are second and third, respectively.
This is possible since the model provides both 𝑝 (𝑇1 |𝑇2,𝑇3) and
𝑝 (𝑇2 |𝑇3) . However, because AR models require a fixed ordering
of variables, merging is not always possible. For instance, a model
that has to learn 𝑝 (𝑇2 |𝑇1) cannot be merged because we cannot



find an ordering of variables that allows to predict both 𝑝 (𝑇2 |𝑇1)
and 𝑝 (𝑇1 |𝑇2,𝑇3) .
Model Merging. In our approach, we first require for two models

𝑀1 and𝑀2 to be merged that the set of tables of𝑀1 is a subset of
the tables of𝑀2 or vice versa. In addition, we have to check whether
there exists a consistent variable ordering. To this end, we construct
a directed graph that contains a node for every involved table. For
every table that should be completed, we add an arc from every
evidence table to this table. Only if the resulting graph is cycle-free
a valid ordering of tables can be derived and we merge the models.
In particular, we use the topological sorting as ordering. We merge
models until no more non-conflicting merges are available.

4 Query-Driven Data Completion
In this Section, we show how the completion models (AR and SSAR)
can be used to complete data for a given user query that might
contain joins over complete and incomplete tables.

4.1 Overview of Query Processing
Data completion using ReStore happens on a per-query basis

at runtime during query processing. We decided to do the comple-
tion on a per-query basis because an offline completion of the full
database especially for larger databases is costly and might actually
not be required. As queries, we support SPJA-queries such as the
one shown in Figure 1c) that are typical for OLAP with acyclic
equi-joins along foreign-keys and arbitrary filters and aggregations
(with and without group-by).

In order to answer such a query, we first compute the join 𝐽 =

𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛 over all tables (complete and incomplete) contained
in the user query. During the join computation, we complete the
join using our completion models such that 𝐽 contains all data as if
the join would be executed on a complete database. Afterwards, we
then apply filter predicates, aggregations and groupings to answer
the user query over the completed join.

For efficiency, we push down filter predicates and generate only
missing data for the requested subset of tuples in the join of the
query. However, for simplicity of explanation, we assume in the
following that filters are executed after the join. Moreover, as we
describe Section 4.5, this also enables optimizations to reuse the
generated data for subsequent queries.

4.2 Single Incomplete Table in a Query
We now first consider the case where a single table 𝑇𝑚 in the

join 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛 of the user query is incomplete (as it is the
case in Figure 1c) and discuss the case where multiple tables in the
user query are incomplete later. In principle, different models could
be available to synthesize data for the incomplete table𝑇𝑚 . We now
discuss how a completion works if a model𝑀 is already selected
and discuss in Section 5 how to select a completion model.

Moreover, we initially assume that the tables that are used as
evidence for generatingmissing data for𝑇𝑚 are among the complete
tables in the join 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛−1 ⊲⊳ 𝑇𝑢𝑛 . To differentiate in the
sequel between the tables𝑇1 ⊲⊳ . . . ⊲⊳ 𝑇𝑛 needed as evidence for the
completion model𝑀 and the user join 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛 , we use the
terms completion path and query path, respectively.

In the following, without loss of generality, we assume that𝑇𝑚 =

𝑇𝑢𝑛 is the incomplete table and 𝑇𝑚 is connected to the complete

Neighborhood ⋈ Apartment ⋈ Landlord [Completed]

state pop_density apartment_id rent landlord_id landlord_age

NYC 27,000 1 2000$ 1 50

NYC 27,000 2 3000$ 2 60

CA 254 3 3200$ 59

CA 254 4 2000$ 59

CA 254 5 1000$ 59

Neighborhood ⋈ Apartment ⋈ Landlord [Completed]

state pop_density apartment_id rent landlord_id landlord_age

NYC 27,000 1 2000$ 1 50

NYC 27,000 2 3000$ 2 60

CA 254 3 3200$ 2 60

CA 254 4 2000$ 2 60

CA 254 5 1000$ 2 60

Figure 3: Nearest Neighbor Replacement. Foreign-keys are
not synthesized for the apartment table and thus the tu-
ples cannot be joined with the complete landlord table.
Hence, landlord tuples are first synthesized and afterwards
replaced with “similar” landlord tuples

(evidence) table 𝑇𝑢1 via a foreign key or vice versa. The step of
extending a join of complete tables 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛−1 with an
incomplete table 𝑇𝑢𝑛 to 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛−1 ⊲⊳ 𝑇𝑢𝑛 while generating
the missing tuples is called incompleteness join.
Completion Path equals Query Path. The simplest case for an incom-

pleteness join is where the query path is equal to the completion
path. Imagine, there is one more state table in our example of
Figure 1 which has a reference to the neighborhood table and a
user requests a join of the complete state and neighborhood ta-
bles with the incomplete apartment table. In this case, we could
use a completion model that uses states and neighborhoods as ev-
idence to synthesize apartments, the query path and completion
path would be both state ⊲⊳ neighborhood ⊲⊳ apartment.

For executing an incompleteness join in this case, we first join
the complete evidence tables 𝑇𝑒 = 𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛−1 (state and
neighborhood in our example). Afterwards, we iterate over all
evidence tuples 𝑡𝑒 ∈ 𝑇𝑒 and synthesize the missing data for the user
join. In case of SSARmodels additional fan-out evidence tables need
to be joined separately to construct the query tree for each evidence
tuple 𝑡𝑒 which is fed into the SSAR model. For generating the
missing data using the completion model, we have to differentiate
whether the relationship of 𝑡𝑒 and tuples of the incomplete table
𝑇𝑚 is a 1:n or n:1 relationship (i.e., if one evidence tuple 𝑡𝑒 has
multiple join partners or one join partner in the incomplete table).

In case of a 1:n relationship, we first have to determine how
many 𝑡𝑚 tuples have to be generated per 𝑡𝑒 tuple which can be
estimated using the tuple factors which are learned by the corre-
sponding AR or SSAR completion model. Moreover, we have to
determine how many 𝑡𝑚-tuples already exist (since some might
already be available but not all) and synthesize only the missing
number of tuples. This can be done efficiently during joining by first
creating a hash-map on the incomplete table (which is needed for
joining anyway) that additionally counts the occurrences of tuples
with the same foreign-key in the 𝑇𝑚 table. For instance, if we want
to synthesize apartments given the join neighborhood ⊲⊳ states,
we first have to predict how many apartments we expect to see per
neighborhood, i.e., the tuple factor per neighborhood. Afterwards,
we synthesize the appropriate number of apartments using the
join of state and neighborhood as evidence. For the output of
the incompleteness join, we then join 𝑡𝑒 with all the existing and
synthesized tuples.

In case of a n:1 relationship, we can disregard tuple factors and
only need to generate one missing tuple 𝑡𝑚 per evidence tuple
𝑡𝑒 if needed. For example, for a join of the landlord table with
the incomplete apartment table, we synthesize a landlord only for
apartments where the landlord tuple is missing.



Completion Path contained in Query Path.We now consider the
case that the completion path is contained in the query path (i.e.,
the query path contains more tables than the completion path).

In this case, we use a similar approach as before and use the
completion path tables as evidence for the model to generate the
missing tuples in 𝑇𝑚 but then need to join the remaining complete
tables of the user query (not in the completion path). For instance,
assume a user wants to join all three tables in the example in
Figure 1 (neighborhood, apartment, and landlord). To process
such as query, we could use a completion model which allows us to
generate apartment tuples from neighborhood tuples to produce
a “completed” join for those two tables. Afterwards, we then need
to join this output with the complete landlord table. However, our
completion models do not generate foreign keys (to the landlords)
for the synthesized apartment tuples since AR and SSAR models
are not suited for generating such type of information.

Hence, we cannot use a normal join operator for joining the
output of an incompleteness join with the next complete table (e.g.,
with landlord in our example) but have to process this join in a
different manner. In this case, we again use a completion model
that allows us to generate a new landlord tuple using apartments
and a neighborhood as evidence as depicted in Figure 3 (left). Since
the landlord table, however, is a complete table we then replace
the synthesized tuple with an existing tuple that has the highest
similarity (i.e., lowest euclidean distance) with the synthesized tuple.
For instance in Figure 3, the last three synthesized landlord tuples
are replaced with the second landlord from the complete table since
they are very similar.

However, an exact nearest neighbor replacement of the gener-
ated landlord tuple would come at a high cost of computing the
pairwise distances of all synthesized tuples and tuples of the com-
plete table during query processing. Hence, we employ approximate
nearest neighbor approaches and batching for the replacement. This
is crucial to achieve a competitive performance. In general, this
join procedure has to be used if foreign keys in an intermediate
result are missing but required for a join with a complete table.
Otherwise, normal joins can be used. Although the synthesized
data is of high-quality the replacement is required to fully comply
with the user annotations - it is unexpected to see new synthesized
tuples for complete tables.

4.3 Multiple Incomplete Tables in a Query
Wehave now discussed all techniques required to complete a user

query where the query path includes only a single incomplete table.
The case of several incomplete tables can now easily be derived. In
particular, we again assume that the completion path is given and
repeatedly apply incompleteness joins as before and use the nearest
neighbor replacement where appropriate. The order which table to
complete first is determined using the techniques in Section 5 to
automatically select the best completion model.

There is only one difference compared to the single incomplete
table case since we have to apply the nearest neighbor replacement
also for incomplete tables. In particular, if we synthesize tuples for
an incomplete table, we might still synthesize too many tuples since
foreign-keys of previous tables might not be generated and thus
even though the tuples are still in the database, they would still not
appear in the resulting join. Hence, we have to estimate how often

Algorithm 1 Single Table Completion
Input: Requested Join Tables Jreq = 𝑇𝑢1, . . . ,𝑇𝑢𝑛
Input: 𝑇1, . . . ,𝑇𝑛 (Path from complete Table𝑇1 to Jreq )
Output: Approximated Complete Join𝑇𝑢1 ⊲⊳ . . . ⊲⊳ 𝑇𝑢𝑛
1: J← 𝑇1
2: for𝑇𝑖 in𝑇1, . . . ,𝑇𝑛−1 do
3: // Incompleteness Join
4: Jincomplete ← 𝐽 ⊲⊳ 𝑇𝑖
5: if 𝑇𝑖 ⊲⊳ 𝑇𝑖+1 is Fan-Out then
6: Predict Tuple Factor F𝑇𝑖+1←𝑇𝑖

for every 𝑡 ∈ J

7: F𝑇𝑖+1←𝑇𝑖
← F𝑇𝑖+1←𝑇𝑖

- Current No of Join Partners in𝑇𝑖+1
8: Jsyn ← Duplicate each 𝑡 ∈ 𝐽 F𝑇𝑖+1←𝑇𝑖

times
9: else
10: Jsyn Tuples in J without Join Partner in𝑇𝑖+1
11:
12: // AR or SSAR Tuple Synthesis
13: M← Completion Model for𝑇𝑖 → 𝑇𝑖+1
14: Jsyn ← Synthesize Columns of𝑇𝑛+1 in Jsyn usingM
15:
16: // Euclidean Replacement
17: if Last Join or Next Join Fan-Out then
18: Jsyn ← euclidean_replace(Jsyn ,𝑇𝑖+1)
19: J← Jsyn ∪ Jincomplete

20: return J

a tuple of the incomplete table should appear in the full join and
complete accordingly.

The pseudocode for the general case which summarizes the
discussions in Sections 4.2 and 4.3 is shown in Algorithm 1.

4.4 Additional Cases for Data Completion
Completion with Additional Tables.We have now considered the

case of incomplete tables in a user query under the condition that
the completion path is a subset of the requested query path. How-
ever, this is not necessarily the case since the completion path can
also contain additional tables: for instance, if the user queries the
landlord and the apartment table but for the completion of the
apartment table the lower model in Figure 1b is chosen which
uses neighborhoods as evidence. The high-level idea for query pro-
cessing in such a case is that we first use the join over all tables
in the completion path to synthesize the missing data for the in-
complete table (e.g., the apartment table is completed using the
neighborhood table) and afterwards potentially have to reweight
tuples according to the introduced fan-out similar to [17].
Multi-Path Completion. Another interesting case is that using only

a single path for the completion of one incomplete table can be
insufficient. For instance, let us consider a slightly modified schema
of a complete apartment table , an incomplete neighborhood table
and an additional complete school table which has a foreign-key
relationship to the neighborhoods. If a user now simply queries the
neighborhood table and we complete the neighborhoods via the
school table, neighborhoods that do not have any schools will be
missing (since we never generate them if we use a completion path
from school to neighborhood). In these cases, we use all paths to
synthesize data and combine data based on tuple factors.

4.5 Further Optimizations
While our data completion process synthesizes data at query

runtime, data which is synthesized for one query can be reused for
related queries. This allows for (i) caching of data synthesized at
runtime or (ii) an offline completion independently of the workload.



We first discuss how data for completed joins can be reused. In
particular, since aggregations and filters are applied after complet-
ing a join to approximate a query 𝑄 in ReStore, the completed data
of 𝑄 can be reused for a query 𝑄 ′ if they use the same join path 𝐽 .
Moreover, if a query 𝑄 ′ requires additional tables not covered in 𝐽 ,
we can start from 𝐽 and generate additional data incrementally for
further incomplete tables. Finally, if 𝑄 ′ only requires a sub-path of
𝐽 , we can reuse the data by projecting 𝐽 to the tables required by𝑄 .

Second, as mentioned before we can also generate missing data
prior to the query runtime. One way is to predict which queries will
occur at runtime and thus optimize which incompleteness joins to
create. However, if there is no knowledge about potential queries,
simple heuristics-driven strategies can be used. In particular, we
can create data for every pair of a joinable incomplete and complete
table. This would allow us to answer any query on a single incom-
plete table or a join of a complete and incomplete table without the
need to generate data.

5 Model and Path Selection
In the approach discussed so far there are some degrees of freedom.
In particular, whether we should rather learn AR or SSAR models
and which complete tables (i.e., which completion path) should
be used for the completion. Both decisions can have a significant
impact on the quality of the completion. Intuitively, while the first
aspect determines whether we learn a model that is fitting the data
well, the second aspect is important because different completion
tables have a varying significance for the join we want to complete.
Basic Selection. To decide whether a model should be used for

completion of an incomplete table (or not), it is important to check
the accuracy (i.e., test loss) of the models prior to using the model
for completion. If the accuracy is too low this means that the true
attribute values can hardly be reconstructed since they are not
predictable and the bias is likely not reduced significantly.
Advanced Selection. For the remaining models we have to estimate

the quality of each completion model. To this end, we derive ad-
ditional incomplete scenarios with the given incomplete dataset
as ground truth to assess model and path quality. The underlying
assumption is that if the models and paths are able to reconstruct
our incomplete dataset they are also able to perform the actual
completion with high accuracy.

In practice, the user often suspects a bias in the data but the
extent of it is unclear. This information can additionally be provided
by the user and used for the model selection. For instance, an
incomplete table might cover more high-population neighborhoods
and thus the user expects an overestimation of the average rent. As
we will show in our experiments, this additional information can
significantly improve the quality of the synthesized data.

6 Completion Confidence
It is crucial for practitioners to be aware of the confidence of query
results after the data completion. For this, we provide confidence
interval estimations of the query results for how certain our models
are when synthesizing missing data. In the following, we start with
the simple case that involves only a single incomplete table and
then explain the more general case.

6.1 Simple Case
For the simple case, we assume that we have a similar housing

database as before but with only two tables: an incomplete apart-
ments table where apartments can have two types (large and small)
and a complete neighborhoods table. Furthermore, assume that a
user issues a count-query that joins these two tables to compute the
frequency of the two apartment types for which we want to com-
pute confidence intervals. Intuitively, if the neighborhood tuples do
not provide strong evidence about the types of missing apartments
(i.e., if there is a low correlation), the completion models will pre-
dict both apartment types with equal probabilities for each missing
tuple. In this case, we should have a low confidence and predict
wide confidence intervals. In contrast, if the model predicts the
apartment type with high certainty, the confidence interval should
be more tight.

In order to compute confidence intervals for a query over an
incomplete table, we use the following two-step procedure: (1) We
first compute the certainty 𝐶 (𝑡𝑒 ) of a prediction for an attribute
of a missing tuple given an evidence tuple 𝑡𝑒 in ReStore. For this,
we compare the probability distribution of the predicted attribute
value 𝑃model for one synthesized tuple with the distribution of the
attribute values in the training data 𝑃incomplete . If the model is
uncertain when synthesizing an attribute value for one missing
tuple 𝑡𝑚 , given the evidence tuple 𝑡𝑒 , it will simply predict the dis-
tribution of values in the training data (i.e., 𝑃model ≈ 𝑃incomplete ).
However, if the model is certain given an evidence tuple, it will
predict a particular attribute value (e.g., a large or a small apart-
ment type) with higher probability. Hence, for computing the cer-
tainty of a prediction, we compute the similarity of the distribu-
tion 𝑃model with 𝑃incomplete using the KL-divergence and nor-
malize it to [0, 1] by 1 − exp (−𝐷KL). (2) Second, we compute
confidence intervals for each synthesized tuple as follows. For this,
we introduce a lower and upper bound distribution (𝑃lower and
𝑃upper ). In our example, we use a distribution for the upper bound
𝑃upper where one particular apartment type (e.g., the small apart-
ments) occurs in 95% of the cases (for a 95% confidence). The upper
bound of our confidence intervals can then be computed using
𝐶 (𝑡𝑒 )𝑃model (𝑡𝑒 ) + (1 − 𝐶 (𝑡𝑒 ))𝑃upper . For the lower confidence
interval, we simply replace 𝑃upper by 𝑃lower where 𝑃lower repre-
sents the distribution where apartments only occur in 5%.

6.2 General Case
The procedure above can be generalized to queries that (1) in-

volve multiple incomplete tables and (2) other aggregate functions.
In order to support (1), we generate the missing tuples using the
completion models similar to the the normal completion process.
However, for every query attribute that has to be synthesized we
define an individual distribution 𝑃lower and 𝑃upper (based on the
given confidence) and compute the model confidence intervals as
described before. Again, instead of using 𝑃model directly, we use
𝐶 (𝑡𝑒 )𝑃model (𝑡𝑒 ) + (1−𝐶 (𝑡𝑒 ))𝑃lower for the synthesized attributes
when computing the lower bound and similarly 𝑃upper for the
upper bound. For this process, we assume that attribute values of
different tables are correlated to generate conservative (i.e., worst
case) confidence bounds. (2) As mentioned before we can also sup-
port other aggregate functions. For example, to support average
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(a) Housing Schema.

Company
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(b) Movie Schema.

Tuple Factor Keep Rates
Setup Biased Attribute Keep Rate landlord apartment neighborhood

𝐻1 apartment.price 30% 100% 20-80% 100%
𝐻2 apartment.room_type 30% 100% 20-80% 100%
𝐻3 apartment.property_type 30% 100% 20-80% 100%
𝐻4 landlord.landlord_since 30% 20-80% 100% 100%
𝐻5 landlord.response_rate 30% 20-80% 100% 100%

Setup Biased Attribute movie director actor company

𝑀1 movie.production_year 20% 20-80% 100% 100% 100%
𝑀2 movie.genre 20% 20-80% 100% 100% 100%
𝑀3 movie.country 20% 20-80% 100% 100% 100%
𝑀4 director.birth_year 20% 80% 20-80% 100% 100%
𝑀5 company.country_code 20% 80% 100% 100% 20-80%

(c) Completion Setups.
Figure 4: Datasets and Completion Setups.

in addition to count aggregates we define 𝑃lower and 𝑃upper for
continuous attributes. Moreover, sum aggregates can be treated as
a combination of average and count. Note that we currently only
support completion confidence intervals for query attributes used
in an aggregation (i.e., count, avg, sum). For other query types, we
can resort to per-query statistics that we show a user such as the
ratio of synthesized vs. existing tuples.
7 Experimental Evaluation
In this Section, we evaluate both the quality of the completed rela-
tional datasets as well as several performance aspects of ReStore:2
(Exp. 1 & 2) Data Completion:We first evaluate how well our models
can correct incomplete datasets given certain data characteristics.
(Exp. 3) Query Processing: In addition, we demonstrate the end-to-
end accuracy of our approach using aggregate queries on real-world
datasets. (Exp. 4) Accuracy and Performance: We finally discuss the
accuracies of the different models and the model selection as well
as the time required for model training and data completion.

7.1 Datasets and Implementation
Datasets.We first evaluate our approach on a synthetic dataset to

investigate which factors determine the quality of our completion
in isolation. However, restricting ourselves to synthetic datasets
is insufficient since they do not exhibit as complex distributions
and correlations as real-world datasets. We thus also evaluate our
approach on two real-world relational datasets with different com-
plexity. The first schema is a housing dataset derived from the
Airbnb data3 which we normalized to obtain different relations for
landlords, neighborhoods and apartments (Figure 4a). The movies
schema is derived from the popular IMDB4 dataset but with two
important differentiations. We first merged the movie_info table
information into the movie table to obtain more interesting at-
tributes, i.e., genre and rating. Moreover, we explicitly divided the
person relation into actors and directors exhibiting a more interest-
ing relational structure as depicted in Figure 4b. For both datasets
we create incomplete versions by removing a varying ratio of tuples
to simulate different degrees of incompleteness. Details on how we
removed data will be given in our experiments.
Implementation. All models were implemented with PyTorch [27].

For the AR models, we used the model in [40] as a starting point.5
Similar to [40], we use learned embeddings to represent attribute
2Code and data is available online: https://github.com/DataManagementLab/restore
3https://public.opendatasoft.com/explore/dataset/airbnb-listings
4http://homepages.cwi.nl/~boncz/job/imdb.tgz
5https://github.com/naru-project/naru

values in the AR and SSAR completion models. In particular, we
use the MADE [14] architecture for AR models with residual con-
nections and ReLU activation functions. For the neural tree archi-
tectures in the SSAR models we use a deep sets architecture [42].

7.2 Exp. 1: Data Completion on Synthetic Data
In this experiment, we first study the factors that determine the

quality of our completions. For this, we generate different synthetic
datasets where we vary different data characteristics that might
influence how well the data is reconstructable. As an additional
sanity check, we want to investigate if our automatic model and
path selection strategies are able to identify cases that prevent the
data completion. We first introduce the metrics and setup before
we discuss our results on synthetic data.
Completion Setups. For this experiment we use a simple synthetic

dataset with only two tables: a complete table 𝑇𝐴 with a single
attribute 𝐴 and an incomplete table 𝑇𝐵 with a single attribute 𝐵
where 𝑇𝐵 has a foreign-key relationship to 𝑇𝐴 . As main parameters
which might have an influence on how well a dataset is recon-
structable we vary the predictability (i.e., how well an attribute can
be estimated) and the skew. In particular, the categorical attribute
𝐵 is generated such that 𝐵 can be perfectly predicted given 𝐴 (i.e.,
𝐵 is functional dependent on 𝐴) and we then incrementally add
more noise to reduce the predictability. Moreover, the attribute 𝐴 is
generated either using a uniform or skewed distribution where the
Zipf factor is varied (for a fixed predictability of 80%). In addition,
we not only vary the predictability of 𝐵 given𝐴 but also the fan-out
predictability (i.e., how well a missing tuple in 𝑇𝐴 can be predicted
given other 𝑇𝐴 tuples).

In order to derive an incomplete dataset from the synthetic
dataset, we systematically remove tuples using two parameters:
removal correlation and keep rate. The keep rate determines the
percentage of tuples which are not removed from table𝑇𝐵 . In order
to introduce a bias, we correlate the probability of a tuple being
removed with the value of the attribute 𝐵. The corresponding pa-
rameter controls the strength of this correlation. In particular, we
correlate the removal probability with the appearance of one at-
tribute value of 𝑏 ∈ 𝐵.
Metrics and Baselines.We use the metrics defined in Section 2.1.

For evaluating the quality of data completion (Exp. 1 and Exp 2), we
show the bias reduction since it is independent of a given workload.
For experiments (Exp. 3) which involve a workload, we additionally

https://github.com/DataManagementLab/restore
https://public.opendatasoft.com/explore/dataset/airbnb-listings
http://homepages.cwi.nl/~boncz/job/imdb.tgz
https://github.com/naru-project/naru
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Figure 5: Bias Reductions for the Synthetic Datasets. (a) Predictability affects reconstructability. Skewness has no effect on
data completion. (b) The test loss is an effective criterion for model selection as discussed in Section 5. (c) SSAR models are
superior over AR models since they can capture fan-out evidence (called fan-out predictability in the Figure).

show the relative error. Unless otherwise stated, we report the met-
rics for an optimal model and path selection.We provide a dedicated
analysis of the model and path selection in Exp. 4. Both metrics
show how well we can reconstruct the complete (true) dataset com-
pared to using the incomplete dataset. We do not compare to other
baselines, since to the best of our knowledge no approach exists
that is capable of completing relational datasets across tables.
Results. As we see from Figure 5a (upper row) the predictability is

the key factor determining the success of the debiasing. Intuitively,
a high predictability allows our model to accurately estimate the
missing values of the attribute 𝐵 for the missing tuples. However,
in cases where the attribute 𝐵 cannot accurately be predicted given
attribute 𝐴, the test loss of the model is also higher as shown in
Figure 5b. This confirms that checking the model accuracy is an
effective criterion for model selection as discussed in Section 5.
In those cases, no automated approach could successfully debias
the dataset. As we will see in the subsequent experiments, while
predictability is a prerequisite for an accurate completion we can
largely reduce the bias for a wide set of real-world datasets. This is
the case since real-world data is often largely correlated which can
be exploited when predicting missing tuples.

Moreover, attribute skew as shown in Figure 5a (lower row)
does not seem to have a large influence on the performance of our
approach. The reason is that the model can still accurately predict
the value of attribute 𝐵 as long as there is a sufficient amount of
training data. Finally, as we can see in Figure 5c SSAR models are
superior over AR models since they can capture fan-out evidence.
For showing this, we feed the tuples in 𝑇𝐵 that share the same
tuple in 𝑇𝐴 as self-evidence into the SSAR models (which is a type
of fan-out evidence as described in Section 3.3). As we see, if the
coherence within the group of tuples in𝑇𝐵 that share a reference to
the same tuple in𝑇𝐴 is higher (which we call fan-out predictability)
the bias reduction of SSAR compared to AR models improves.
Confidence Intervals. In addition to bias reduction, we next evaluate

the quality of our confidence intervals using synthetic data. Similar
as before, we use a setup with two tables: a complete table𝑇𝐴 with a
single attribute𝐴 and an incomplete table𝑇𝐵 with a single attribute
𝐵 where𝑇𝐵 has a foreign-key relationship to𝑇𝐴 . Moreover, we vary
the predictability as noted in the setup of this experiment. Note that
due to a bias, a certain attribute value 𝑏 of 𝐵 can appear less/more
frequently in the incomplete table compared to the complete table.

We now compute the confidence intervals for a count-query
over 𝐵 that reports how often a particular attribute value 𝑏 occurs.
We have chosen the attribute value 𝑏 with the highest deviation
between incomplete and complete data which is a challenging task
for ReStore. Hence, confidence intervals are particularly of interest.
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Figure 6: Predicted Confidence Intervals on the Synthetic
Data for a Removal Correlation of 40%. The bounds always
capture the true fraction of the attribute value and an in-
creased predictability results in tighter confidence intervals.
In Figure 6, we report the fraction of the attribute value 𝑏 in the true
(i.e., original) and the completed database using 95% confidence
intervals for the setup described before.

As we can see, the true fraction of the selected attribute value 𝑏
on the complete dataset is always within the predicted confidence
bounds and a larger keep rate results in tighter confidence bounds.
Moreover, as expected an increased predictability (x-axis) results
in more confident completions and thus tighter confidence bounds.
In addition to the predicted confidence bounds, in Figure 6 we also
plot the theoretical minimum and maximum of the bounds. The
theoretical minimum and maximum of the bounds can be computed
by replacing all respectively none of the missing values with the
given attribute value𝑏. As a sanity check, we see that our confidence
bounds also fall into the theoretical bounds. In the appendix A we
present additional results on confidence intervals for the real-world
datasets.

7.3 Exp. 2: Data Completion on Real Data
In this experiment, we analyze how well our approach can com-

plete the two real-world datasets. This is more challenging since
the underlying schemas are significantly more complex as depicted
in Figures 4a and 4b. Additionally, the data distributions exhibit
more interesting correlations.
Completion Setups. Per dataset we have defined five setups as de-

picted in Table 4c (denoted as 𝐻𝑖 and𝑀𝑖 for the housing and movie
data, respectively). In each setup, we create an incomplete rela-
tional dataset by systematically removing tuples using a particular
attribute resembling different data types (categorical and contin-
uous) and data distributions. Similar to the synthetic dataset, we
vary the following parameters: keep rate and removal correlation
which are varied from 20% to 80% for all setups. For categorical
attributes, we again correlate the removal with the appearance of
an attribute value whereas for continuous attributes we correlate it
with the normalized attribute value (i.e., to obtain a specific Pearson
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Figure 7: Completion Results for Real-World Data using the Setups of the Housing (𝐻𝑖 ) and Movies (𝑀𝑖 ) Datasets.

correlation coefficient). Moreover, we only keep a small share of all
tuple factors - 20% for the movie dataset and 30% for the housing
dataset to compensate for an overall smaller dataset. In addition, to
include some even more challenging setups for the movies dataset
we additionally remove all tuples in the𝑚 : 𝑛 relationship tables
(i.e., movie_company etc.) which do not have a matching tuple after
the removal. For the setups 𝑀4 and 𝑀5 we additionally remove
20% of the movie tuples.
Results. As discussed before, an interesting metric is how well

we could debias the incomplete data using our completion models
under the different setups. The results are shown Figure 7a for all
five setups given a variety of keep rates (between 20% and 80%)
and removal correlations. As we see, the bias can significantly be
reduced for all setups indicating the high quality of our completion
models. This especially holds for the setups of the movies dataset
where up to 100% of the bias can be removed. In general, a lower
removal correlation is beneficial for our approach. The reason is
that the lower the correlation, the more examples of high attribute
values (for continuous attributes) remain in the training set and
thus the model can learn more precisely what leads to those higher
values. During the completion it can then predict more accurately
whether larger values are likely to occur. The keep rates do not
seem to have a significant impact. The reason is that there are
two opposing effects. On the one hand, a larger keep rate leads
to a larger training dataset and the model can thus learn the dis-
tribution more accurately. On the other hand, the absolute error
|AVGcomplete (𝑋 )−AVGincomplete (𝑋 ) | becomes smaller and the
model has to predict more extreme values to correct the bias. Con-
sequently, we do not see more accurate completions for larger keep
rates.

However, the quality of the completion varies for the different
setups. The reason is that the remaining evidence, i.e., the complete
tables in the schema are not equally useful. Some attributes of
available data are in general less predictable and if those are used for
a biased removal, it becomes harder to correct the bias. Interestingly,
we do not see the general trend that the completions become less
accurate for longer completion paths. Recall that for setups𝑀4 and
𝑀5, all single completion paths span at least five tables. However,
the completions are significantly more accurate than those of𝑀2.
This highlights that the predictability of the biased attribute has the
most significant impact on the bias reduction. In general, for setups
such as 𝐻2 and𝑀2 where the evidence of the complete tables does
not allow an accurate prediction of the biased attribute, the models
cannot correct the bias. This is consistent with our findings on
synthetic data.
Count Correction.We are also interested in how accurately the

table sizes are estimated using different ratios of available tuple

factors. Similarly to the bias reduction we define the cardinality
correction as 1− |Completed Tuples |− |Complete Tuples |

|Incomplete Tuples |− |Complete Tuples | . As we can
see in Figure 7, the cardinalities of the complete tables can relatively
accurately be predicted even though only 20 − 30% of all tuple
factors are kept in the incomplete datasets.

7.4 Exp. 3: Query Processing
Completion Setups.We now investigate the end-to-end perfor-

mance of our approach for query processing. To this end, we use a
workload of both single table and join queries with aggregates and
various filter predicates (cf. Table 1). We then derive incomplete
datasets similar to Exp. 1. and compare the relative error of the
queries computed on the incomplete dataset and our completed
dataset (using the original complete datasets as ground truth). We
show the absolute improvement for the relative error for the queries.
Results. As we can see in Figure 8, we can achieve significant

improvements motivating the use of our approach for practical
applications. We can see that COUNT and SUM queries are in general
largely improved while the improvements for the AVG queries are
smaller. The reason is that for AVG queries the improvement depends
on the scaling and translation of the attribute as well as the absolute
error introduced by the biased removal. This varies largely for the
different attributes in our datasets. This emphasizes the importance
of the bias reduction metric in the first experiment.

In addition, we noticed that for join queries on the smaller hous-
ing dataset and low keep rates the predictions of our models tend to
be inferior to the incomplete dataset. In this case, the AR and SSAR
models cannot observe sufficient training data to make accurate
predictions. We thus recommend not to use our approach if the
number of available tuples is very low. However, for larger datasets
it is also more time-consuming to complete them manually and
in these cases our approach achieves significantly more accurate
query results as we can see from Figure 8.

7.5 Exp. 4: Accuracy and Performance Aspects
Model and Path Selection.We next investigate how reliable our

model and path selection works. To this end, we plot all bias re-
ductions and the performance of the model selection strategies in
Figure 10. If we provide the information which bias is suspected in
the data (red dots in Figure 10), we often pick the optimal path and
model. However, even if this information is not available (orange
dots in Figure 10), we select models that can effectively reduce bias.
Training Time. In Figure 11 we depict the average training time of

the AR and SSAR models for the different completion setups. As
we can see in general AR models require less training time (< 2
minutes for housing and < 6 minutes for the movies dataset). The
reason is twofold. First, the models do not require acyclic walks on



Table 1: Queries used for Figure 8 with both Joins and complex Filter Predicates, Aggregations and Groupings.

Dataset Setup Query SQL

Housing 𝐻1 𝑄1 SELECT SUM(price) FROM apartment WHERE room_type=’Entire home/apt’;
Housing 𝐻2 𝑄2 SELECT COUNT(*) FROM apartment WHERE room_type=’Entire home/apt’ AND property_type=’House’ GROUP BY property_type;
Housing 𝐻3 𝑄3 SELECT COUNT(*) FROM apartment WHERE property_type=’House’;
Housing 𝐻4 𝑄4 SELECT COUNT(*) FROM landlord WHERE landlord_since≥2011;
Housing 𝐻5 𝑄5 SELECT AVG(landlord_response_rate) FROM landlord WHERE landlord_response_time≥2;
Housing 𝐻1 𝑄6 SELECT AVG(price) FROM landlord NATURAL JOIN apartment WHERE room_type=’Entire home/apt’ GROUP BY landlord_since;
Housing 𝐻2 𝑄7 SELECT COUNT(*) FROM landlord NATURAL JOIN apartment WHERE accommodates≥3 GROUP BY landlord_since;
Housing 𝐻3 𝑄8 SELECT COUNT(*) FROM landlord NATURAL JOIN apartment WHERE landlord_since≥2013 GROUP BY landlord_since;
Housing 𝐻4 𝑄9 SELECT SUM(landlord_since) FROM landlord NATURAL JOIN apartment WHERE room_type=’Entire home/apt’ AND landlord_response_time≥2;
Housing 𝐻5 𝑄10 SELECT AVG(landlord_response_rate) FROM landlord NATURAL JOIN apartment WHERE room_type=’Entire home/apt’ AND landlord_response_time≥2;
Movies 𝑀1 𝑄1 SELECT COUNT(*) GROUP BY production_year;
Movies 𝑀2 𝑄2 SELECT COUNT(*) FROM movie WHERE genre=’Drama’ GROUP BY production_year;
Movies 𝑀3 𝑄3 SELECT COUNT(*) FROM movie WHERE genre=’Drama’ GROUP BY country;
Movies 𝑀4 𝑄4 SELECT AVG(birth_year) FROM director WHERE gender=’m’;
Movies 𝑀5 𝑄5 SELECT COUNT(*) FROM company WHERE country_code=’[us]’;
Movies 𝑀1 𝑄6 SELECT SUM(production_year) FROM movie NATURAL JOIN movie_director NATURAL JOIN director WHERE birth_country=’USA’ GROUP BY production_year;
Movies 𝑀2 𝑄7 SELECT COUNT(*) GROUP BY country_code;
Movies 𝑀3 𝑄8 SELECT COUNT(*) FROM movie NATURAL JOIN company NATURAL JOIN movie_companies WHERE country_code=’[us]’ GROUP BY production_year;
Movies 𝑀4 𝑄9 SELECT COUNT(*) FROM movie NATURAL JOIN movie_director NATURAL JOIN director WHERE gender=’m’;
Movies 𝑀5 𝑄10 SELECT COUNT(*) FROM movie NATURAL JOIN company NATURAL JOIN movie_companies WHERE country_code=’[us]’ GROUP BY country;
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Figure 8: Improvement of Average Relative Error due the Completion (i.e., higher is better). Improvements for individual
COUNT, AVG and SUM queries are shown as separate plots.
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Figure 12: Time required for completing one Path.

the schema which have to be performed to gather training data for
the SSAR models. Moreover, the models are not as complex since
the tree models for the schema walks are not required. While SSAR
models require a longer training time, this can be justified with a
better performance for some completion setups.
Completion Time. Finally, we discuss the time needed for data

completion. As we can see in Figure 12 the completion via one path
takes less than 30 seconds for all setups of the housing dataset.
For the larger movies dataset, however, the completion took less
than two minutes for the completion setups𝑀1 −𝑀3. For the more
challenging setups with long-distance completion paths (distance
of four) the completion takes around 16 minutes. However, here
millions of tuples have to be synthesized. Moreover, we can see
that the nearest neighbor replacement increases the runtime of
the completion. As mentioned before, for those scenarios we can
alternatively generate the data offline.
SSAR vs. AR Model. First, we want to compare the performances

of AR and SSAR completion models. Recall that the SSAR models
obtain additional fan-out evidence. We have depicted the distribu-
tions of all bias reductions in Figure 9. As we can see neither AR nor
SSAR models always outperform the other class of models. Instead,
it again depends on the concrete setup we are considering. This
motivates the model and path selection algorithm which aims at
identifying such cases and chooses alternative models.
8 Related Work
Missing Data in OLAP. Closest to our approach is probably the

recent Themis [25] system. Different from ReStore, Themis is re-
stricted to work for a single table and requires aggregate informa-
tion. Themis either reweights existing tuples or learns probabilistic
models for missing groups. The techniques for leveraging aggregate
knowledge such as iterative proportional fitting could seamlessly be
integrated in our approach. Chung et al. [9] estimate the impact of
missing tuples on aggregate queries when several data sources are
integrated by observing reoccurring tuples. While ReStore similarly
helps for the case of different data sources with varying quality
again only the single table case is discussed here. There has also
been work on determining when incomplete data still leads to com-
plete query results [20, 22] or which parts of the result are complete
[19] which is orthogonal to our work.
Data Generation. In order to compensate missing tuples, we syn-

thesize missing data using AR and SSAR models. This is related to
approaches that synthesize tuples [7, 12, 33, 39] using deep models
such as GANs [16, 30]. A main motivation is to synthesize data
satisfying data privacy. In contrast to ReStore, the models typically
only support individual tables instead of complex schemas.

Uncertain and Probabilistic Databases. Another line of work [13,
34] uses the possible world semantics [4] to handle uncertain data,
i.e., either tuple values or the inclusion of tuples in the dataset are
uncertain. The goal is to estimate possible results for queries. Alter-
natively, uncertainty can be modeled using probabilistic databases
[10, 18, 24, 29, 31, 32, 35] where tuples or sets of tuples are anno-
tated with probabilities. In contrast to our work, missing tuples
cannot be handled directly. Possibly missing tuples would have to
be manually inserted in the database and annotated with a proba-
bility which is challenging since the user often does not have an
understanding of what data is missing.
Data Cleaning. Our approach is also related to data cleaning. A

major direction in data cleaning are approaches for value imputa-
tion [8]. For value imputation, there exist many techniques that
leverage probabilistic graphical models [28], relational dependency
networks [21] or neural approaches [38, 41]. All these approaches,
however, cannot synthesize completely missing tuples as we do.
Another interesting direction, is [37] which estimates the result
of aggregate queries by cleaning a sample of dirty data. However,
again missing tuples are not being compensated for.

9 Conclusion and Future Work
In this paper, we have introduced ReStore — an approach that ap-
proximates queries over a relational database in cases where only
incomplete data is available (i.e., tuples in individual tables are
missing). In our experimental evaluation, we have demonstrated
that our approach can synthesize missing data with high accuracy
and thus enables improved decision making on top of incomplete
relational databases. In future work, we also want to investigate
how the models devised can be used for tasks like missing data
imputation or other downstream tasks (e.g., learning a classification
model) that can now use the completed dataset as input. In addi-
tion, we believe that combining our approach with probabilistic
databases is also a promising direction.
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A Extended Confidence Interval Experiments
In the following, we present further results of using our confidence
estimates that we could not add to the revision due to space restric-
tions as mentioned before. The results of the additional experiments
for synthetic and real world data sets (i.e., housing and movies) are
depicted in Figures 13 and 14, respectively.

Synthetic data. We first use the synthetic dataset, since for this
dataset we can explicitly control how accurately the true share of
missing tuples can be predicted given the evidence tuples using the
predictability parameter (i.e., how much the missing data correlates
with the available data). For this experiment, we use the same setup
with two tables as for Exp. 1 in the paper: a complete table 𝑇𝐴
with a single attribute 𝐴 and an incomplete table 𝑇𝐵 with a single
attribute 𝐵 where 𝑇𝐵 has a foreign-key relationship to 𝑇𝐴 and we
vary the predictability as noted in the setup of this experiment. Note
that due to a bias, a certain attribute value 𝑏 of 𝐵 can appear less
/more frequently in the incomplete table as in the true (complete)
database.

We now compute the confidence intervals for a count-query
over 𝐵 that reports how often a particular attribute value 𝑏 occurs.
We have chosen the attribute value 𝑏 with the highest deviation
between incomplete and complete data which is in particular chal-
lenging for ReStore. Hence, confidence intervals are particularly of
interest. The 95% confidence intervals for the count-query men-
tioned before for varying parameters can be seen in Figures 13. In
all plots, we can compare the fraction of the selected attribute value
𝑏 in the complete (true) database (orange line) and the confidence
intervals (blue area) that our approach computes for the completion.
As we can see in Figure 13, when increasing the predictability for
the missing data (i.e., attribute 𝐵), the resulting confidence intervals
are becoming indeed tighter since the models can more confidently
synthesize the 𝐵 values of the missing tuples. Moreover, a larger
keep rate (i.e., fewer missing tuples in 𝑇𝐵 ) also results in tighter
confidence intervals as expected.

In addition to the predicted confidence intervals, we also plot
the theoretical minimum and maximum of the bounds. The theo-
retical minimum and maximum can be computed by replacing all
respectively none of the missing values with the given attribute
value 𝑏 of 𝐵 we used for the plot. As a sanity check, we see that our
confidence bounds also fall into the theoretical bounds.

Another important observation when looking at Figure 13 is that
the true fraction is in (almost) all cases within our confidence inter-
vals. However, in some rare cases the true fraction is slightly lower

than the predicted lower bound of the confidence intervals (e.g.,
for a keep rate of 80%). In these cases, the correlations of missing
tuples deviate too much from the correlations of the training data.
This can happen if we only remove a few (extreme) outlier tuples
from the complete data to create the incomplete database. Note that
a similar effect that the true value is out of the confidence bounds
can also be observed for confidence intervals in other applications
(e.g., approximate query processing) when some (extreme) outliers
are missing in the sample but occur in the true (complete) database.

Real-world data. In addition to synthetic data, we also evaluated
the confidence intervals on real-world data. Here we used the se-
tups as listed in Table 4c in the paper. In each of those setups, we
investigate how well the values of different attributes of missing
tuples in different real-world datasets (i.e., housing and movies) can
be restored (e.g., the room type for setup 𝐻2).

In this experiment, we first concentrated on the categorical at-
tributes such as the room type mentioned before. Similar to the
synthetic data, for categorical attributes a certain attribute value
appears less/more frequently in the incomplete data due to the bias.
We thus issue a count-query over the attribute that reports, how of-
ten a particular attribute value occurs. We again select the attribute
value, at which the deviation between incomplete and complete
data and thus the error of the query is maximized, e.g., a certain
apartment type that occurs much more frequently in the complete
dataset. The results for different setups (i.e., different attributes)
are given in Figure 14. As we can see, as before for the synthetic
data in nearly all cases on real data the true share of the restored
attribute value (in the true complete database) is either contained
in the confidence intervals or close to the predicted bounds.

Note that in contrast to the synthetic datasets, we cannot vary
the predictability since correlations are given by the data. Instead,
as in other experiments with real-world data (e.g., Exp. 2) we varied
the removal correlation (as shown on the x-axis of Figure 14). Note
that as expected this parameter does not have a clear influence
on the tightness of the completion intervals. The reason is that
this parameter controls the intensity of the bias in the incomplete
table but for a constant predictability, i.e., for a larger removal cor-
relation fewer tuples with a particular attribute value remain in
the incomplete dataset. Instead, it is important that the confidence
intervals (blue area) contain the true fractions (orange line) in most
cases again. Moreover, we also repeated the experiment for con-
tinuous attributes (e.g., rental prices of apartments) and observed
comparable results.
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Figure 13: Confidence Intervals for all Synthetic Data Setups. An increased predictability results in tighter estimated confi-
dence intervals.
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