
Vertex-centric Parallel Computation of SQLQueries
Ainur Smagulova

UC San Diego

asmagulo@cs.ucsd.edu

Alin Deutsch

UC San Diego

deutsch@cs.ucsd.edu

ABSTRACT
We present a scheme for parallel execution of SQL queries on top

of any vertex-centric BSP graph processing engine. The scheme

comprises a graph encoding of relational instances and a vertex

program specification of our algorithm called TAG-join, which

matches the theoretical communication and computation complex-

ity of state-of-the-art join algorithms. When run on top of the

vertex-centric TigerGraph database engine on a single multi-core

server, TAG-join exploits thread parallelism and is competitive with

(and often outperforms) reference RDBMSs on the TPC benchmarks

they are traditionally tuned for. In a distributed cluster, TAG-join

outperforms the popular Spark SQL engine.

CCS CONCEPTS
• Information systems→Graph-based databasemodels; Join
algorithms.

KEYWORDS
vertex-centric graph processing; BSP parallel SQL evaluation

ACM Reference Format:
Ainur Smagulova and Alin Deutsch. 2021. Vertex-centric Parallel Computa-

tion of SQL Queries. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457314

1 INTRODUCTION
We study the evaluation of SQL join queries in a parallel model of

computation that we show to be extremely well-suited for this task

despite the fact that it was designed for a different purpose and it

has not been previously employed in this setting.We are referring to

the vertex-centric flavor [38] of Valiant’s bulk-synchronous parallel

(BSP) model of computation [48], originally designed for processing

analytic tasks over data modeled as a graph.

Our solution comprises (i) a graph encoding of relational in-

stances which we call the Tuple-Attribute Graph (TAG), and (ii) an

evaluation algorithm specified as a vertex-centric program running

over TAG inputs. The evaluation is centered around a novel join

algorithm we call TAG-join.
On the theoretical front, we show that TAG-join’s communi-

cation and computation complexities are competitive with those

of the best-known parallel join algorithms [10, 15, 16, 32, 33, 35]

while avoiding the relation reshuffling these algorithms require

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3457314

(for re-sorting or re-hashing) between individual join operations.

TAG-join adapts techniques from the best sequential join algorithms

(based on worst-case optimal bounds [42, 43, 49] and on generalized

hypertree decompositions [28, 29]), matching their computation

complexity as well.

On the practical front, we note that our vertex-centric SQL eval-

uation scheme applies to both intra-server thread parallelism and

to distributed cluster parallelism. The focus in this work is to tune

and evaluate how our approach exploits thread parallelism in the

"comfort zone" of RDBMSs: running the benchmarks they are tradi-

tionally tuned for, on a multi-threaded server with large RAM and

SSD memory holding all working set data in warm runs.

We note that the benefit of recent developments in both parallel

and sequential join technology has only been shown in settings be-

yond the RDBMS comfort zone. The parallel join algorithms target

scenarios of clusters with numerous processors, while engines based

on worst-case optimal algorithms tend to be outperformed
1
by

commercial RDBMSs operating in their comfort zone [8, 9, 26, 40].

TAG-join proves particularly well suited to data warehousing

scenarios (snowflake schemas, primary-foreign key joins). Our ex-

periments show competitive performance on the TPC-H [1] and

across-the-board dominance on the TPC-DS [2] benchmark.

In a secondary investigation, we also evaluate our TAG-join im-

plementation’s ability to exploit parallelism in a distributed cluster,

showing that it outperforms the popular Spark SQL engine [12].

A bonus of our approach is its applicability on top of vertex-

centric platforms without having to change their internals. There

are many exemplars in circulation, including open-source [3, 6, 27,

36] and commercial [21, 38]. We chose the free version of the Tiger-

Graph engine [7, 21] for our evaluation due to its high performance.

Our work uncovers a synergistic coupling between the TAG

representation of relational databases and vertex-centric parallelism

that went undiscovered so far because, despite abundant prior work

on querying graphs on native relational backends [24, 34, 50, 54],

there were no attempts to query relations on native graph backends.

Paper organization. After reviewing the vertex-centric BSPmodel

in §2, we present the TAG encoding of relational instances (§3),

then develop TAG-join starting from two-way (§4), to acyclic (§5)

and to arbitrary join (§6). We discuss extensions beyond joins in

§7, report experiments in §8 and conclude in §9.

2 VERTEX-CENTRIC BSP MODEL
The vertex-centric computationalmodel was introduced byGoogle’s

Pregel [38] system as an adaptation to graph data of Valiant’s Bulk

Synchronous Parallel (BSP) model of computation [48].

1
Their benefit kicks in on queries where intermediate results are much larger than the

input tables. This is not the case with the primary-foreign key joins that are prevalent

in OLTP and OLAP workloads since the cardinality of 𝑅 ⊲⊳𝑅.𝐹𝐾=𝑆.𝑃𝐾 𝑆 is upper

bounded by that of 𝑅 (every 𝑅-tuple joins with at most one 𝑆-tuple).

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457314

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1664

https://doi.org/10.1145/3448016.3457314
https://doi.org/10.1145/3448016.3457314
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448016.3457314&domain=pdf&date_stamp=2021-06-18

A BSP model includes three main components: a number of pro-

cessors, each with its own local memory and ability to perform local

computation; a communication environment that delivers messages

from one processor to another; and a barrier synchronization mech-

anism. A BSP computation is a sequence of supersteps. A superstep

comprises of a computation stage, where each processor performs

a sequence of operations on local data, and a communication stage,

where each processor sends a number of messages. The processors

are synchronized between supersteps, i.e. they wait at the barrier

until all processors have received their messages.

The vertex-centric model adapts the BSP model to graphs, such

that each vertex plays the role of a processor that executes a user-

defined program. Vertices communicate with each other by sending

messages via outgoing edges, or directly to any other vertex whose

identifier they know (e.g. discovered during computation).

Each vertex is identified by a vertex ID. It holds a state, which

represents intermediate results of the computation; a list of outgo-

ing edges; and an incoming message queue. Edges are identified by

the IDs of their source and destination vertices, and they can also

store state. The vertex program is designed from the perspective

of a vertex. The vertex program operates on local data only: the

vertex state, the received messages, and the incident edges.

At the beginning of a computation all vertices are in active state,

and start the computation. At the end of the superstep each vertex

deactivates itself, and it will stay inactive unless it receivesmessages.

All messages sent during superstep 𝑖 are available at the beginning

of superstep 𝑖 + 1. Vertices that did not receive any messages are

not activated in superstep 𝑖 + 1, and thus do not participate in the

computation. The computation terminates when there are no active

vertices, i.e. no messages were sent during the previous superstep.

The output of the computation is the union of values computed by

multiple vertices (distributed output).

2.0.1 Examples of vertex-centric engines. Avertex-centric BSPmodel

was first introduced in Pregel [38], followed by a proliferation of

open-source and commercial implementations, some running on

distributed clusters, others realizing vertex communication via a

shared memory. Surveys of the landscape can be found in [39, 51],

while their comparative experimental evaluation has been reported

in [11, 31, 37]. These works exclude the new arrival TigerGraph [21],

which exploits both thread parallelism within a server and dis-

tributed cluster parallelism.

3 TAG ENCODING OF A RELATIONAL DB
We present the Tuple-Attribute Graph (TAG) data model we use

to encode a relational database as a graph. A graph is a collection

of vertices and edges, where each vertex and edge has a label and

can store data as a collection of (key,value) pairs (i.e. attributes).

The TAG model defines two classes of vertices: tuple vertices, rep-
resenting tuples of a relation; and attribute vertices, representing
attribute values of a tuple. Tuple and attribute vertices function

the same in the vertex-centric computational model, i.e. both can

execute a user-defined program and communicate via messages.

We construct a TAG graph from a relational database as follows.

(1) For every tuple 𝑡 in relation 𝑅 create a tuple vertex 𝑣𝑡 labeled

𝑅 (each duplicate occurrence of 𝑡 receives its own fresh tuple

vertex). Store 𝑡 in 𝑣𝑡 ’s state.

Figure 1: Encoding relational data in a TAG representation.
Tuple vertices are depicted as rectangles, and attribute ver-
tices as circles.

(2) For each attribute value 𝑎 in the active domain of the data-

base create an attribute vertex 𝑣𝑎 . Add a label based on the

domain/type of 𝑎 (e.g. int, string, etc.). Create exactly one

vertex per value regardless of how many times the value

occurs in the database.

(3) For each occurrence of 𝑅-tuple 𝑡 with an attribute named 𝐴

of value 𝑎, add an edge labeled 𝑅.𝐴 between 𝑣𝑡 and 𝑣𝑎 .

Notice that the graph is bipartite, as edges never connect tuple

vertices with each other, nor attribute vertices with each other.

Example 3.1. Figure 1 shows the example instance of relational
data and its corresponding graph representation (to unclutter the fig-
ure, edge labels do not include the table names). We start with the
first tuple of relation 𝑁𝐴𝑇𝐼𝑂𝑁 , and map it to a tuple vertex with
ID 𝑁𝐴𝑇𝐼𝑂𝑁_1 with corresponding label 𝑁𝐴𝑇𝐼𝑂𝑁 . Then each of its
attribute values maps to an attribute vertex, i.e. value 1maps to an in-
teger attribute vertex, and value𝑈𝑆𝐴maps to a string attribute vertex.
We finish the transformation by creating edges from the tuple vertex
to the two attribute vertices with labels that correspond to the attribute
names of the tuple. We repeat the same steps for the rest of the tuples
and for all relations. Tuple vertex 𝐶𝑈𝑆𝑇𝑂𝑀𝐸𝑅_10 also uses integer
value 1 as its attribute, and thus we simply add an edge to connect it
to this attribute vertex. Note how integer attribute vertex 2 is shared
among three tuple vertices 𝑁𝐴𝑇𝐼𝑂𝑁_2,𝐶𝑈𝑆𝑇𝑂𝑀𝐸𝑅_2,𝑂𝑅𝐷𝐸𝑅_2,
and used as a value of five different attributes, hence the five edges
with different labels are added. Two𝑂𝑅𝐷𝐸𝑅 tuples are connected with
each other via the date attribute value that they share. □

The TAG representation of a relational database is query-independent

and therefore can be computed offline. Moreover, the size of the

graph is linear in the size of the relational database.

The most prominent feature of the TAG representation is that

pairs of joining
2
tuples are explicitly connected with each other via

edges to their join attribute value. For each attribute value 𝑎, the

tuples that join through 𝑎 can be found by simply following the

outgoing edges from the attribute vertex representing 𝑎. Therefore,

attribute vertices act as an indexing scheme for speeding up joins.

This scheme features significant benefits over RDBMS indexing:

First, note that the TAG representation corresponds in the rela-

tional setting to indexing all attributes in the schema. While this is

2
In this paper, the unqualified term "join" is shorthand for "equi-join".

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1665

prohibitively expensive in an RDBMS because of the duplication of

information across indexes, notice that TAG attribute vertices are

not duplicated. One can think of them as shared across indexes, in

the sense that even if a value appears in an 𝐴 and a 𝐵 attribute, it is

still represented only once (e.g. attribute vertex 2 in Figure 1).

Second, an attribute vertex can lookup the tuples joining through

it in time linear in their number by simply following the appropriate

edges. In contrast, even when an appropriate RDBMS index exists

(which cannot be taken for granted), the RDBMS index lookup time

depends, albeit only logarithmically, on the size of the involved

input relations even if the lookup result size is small.

Third, attribute vertices are cheaper to build, and in the presence

of changing data they are less challenging to maintain than tradi-

tional RDBMS indexes, as they do not require any reorganization

of the graph. It suffices to locally insert/delete vertex attributes and

their incident edges.

Finally, since the set of edges is disjointly partitioned by the

attribute vertices they are incident on, the TAGmodel is particularly

conducive to parallel join processing in which attribute vertices

perform the tuple lookup in parallel. The vertex-centric BSP model

of computation suggests itself as a natural candidate because it

enables precisely such parallel computation across vertices and

messaging along edges. In the remainder of the paper, we exploit

this fact by developing a vertex-centric BSP join algorithm.

3.0.1 Related Encodings for Attribute-centric Indexing. Paper [47]
addresses mapping of a relational instance to a property graph,

connecting vertices based on key-foreign key relationships only. In

contrast, the TAG encoding supports arbitrary equi-join conditions.

Moreover, [47] focuses on the data modeling aspect only and does

not address query evaluation (let alone the vertex-centric kind).

TAG encoding’s attribute vertices generalize the value-driven

indexing of [25] from RDF triples to arbitrary tuples. Their indexing

role is also related in spirit to indexing Nested Relational data [20].

Both works propose secondary indexing structures, with the requi-

site space and time overhead for creation and maintenance. These

are avoided in TAG encoding, where attribute vertices are not re-

dundant indexes, but the original data. Moreover, neither of [20, 25]

considers parallel evaluation of joins in general, and in particular

the vertex-centric computational model.

4 VERTEX-CENTRIC TWO-WAY JOIN
We begin with computing a natural join between two binary rela-

tions: 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶), using a vertex-centric algorithm over their

TAG representation. For presentation simplicity we consider natu-

ral join queries as examples throughout the paper, however note

that any equi-join query can be transformed into a natural join by

appropriate renaming of attributes. Furthermore, the generalization

to n-ary relations is straightforward.

Our approach is based on Yannakakis’ algorithm for acyclic

queries [53], that first performs a semi-join reduction on all relations

to eliminate dangling tuples, and then joins the relations in arbitrary

order. The semi-join is an essential query processing technique

that can reduce the cost of a join query evaluation, especially in a

distributed environment [18].

The semi-join of 𝑅(𝐴, 𝐵) with 𝑆 (𝐵,𝐶), denoted 𝑅 X 𝑆 , retrieves

precisely those 𝑅-tuples that join with at least one 𝑆-tuple. To

implement a reduction of 𝑅, it suffices to obtain a duplicate-free

projection of the join column 𝑆.𝐵: 𝑅 X 𝑆 = 𝑅 X 𝜋𝐵 (𝑆).
Per Yannakakis’s algorithm, in order to compute a two-way

join we first reduce the sizes of 𝑅 and 𝑆 via a series of semi-joins,

𝐽1 := 𝑅 X 𝑆 and 𝐽2 := 𝑆 X 𝑅. Now that the tuples that do not

contribute to the output (a.k.a. ’dangling tuples’) are removed, the

algorithm constructs the join of the reduced relations, 𝐽1 Z 𝐽2.

Our algorithm follows a similar idea of splitting the computation

into: (1) a reduction phase to eliminate vertices and edges such

that the surviving ones correspond to the TAG representation of

the reduced relations; and (2) a collection phase that traverses the

reduced TAG subgraph to construct the final join output.

4.1 Join on a Single Attribute
By design of the TAG model, the semi-join reduction can be natu-

rally mapped to a vertex-centric computational model. Each value

𝑏 of an attribute 𝐵 is mapped to a TAG attribute vertex 𝑣𝑏 whose

outgoing edges connect it to precisely the (vertex representations

of) 𝑅- and 𝑆-tuples that join through 𝑣𝑏 . Thus, for a reduction to

be performed, each attribute vertex needs to check its outgoing

edges, confirming that it connects to at least one tuple vertex of

each label 𝑅 and 𝑆 , and then signal those tuple vertices that they are

part of the final output by sending a message. Note that all attribute

vertices can do this in parallel, independently of each other, since

their individual computation and messaging only requires access

to the locally stored vertex data. Also note that the attribute vertex

need not ’cross the edge’ to inspect the proper labeling of the tuple

vertex at the other end: this information can be encoded in the edge

label itself, by qualifying the attribute name with the relation name

it belongs to (see Figure 2).

4.1.1 Algorithm. We sketch a vertex-centric two-way join algo-

rithm through the following example. Consider the TAG instance

depicted in Figure 2. The computation starts by activating attribute

vertices corresponding to the join attribute 𝐵.

Superstep 1: Each attribute vertex checks whether it can serve

as join value, i.e. a value in the intersection of columns R.B and S.B.

For a vertex 𝑣 to be a join value it needs to have outgoing edges

with labels R.B and S.B. If so, 𝑣 messages the target tuple vertices

via these edges. Otherwise, 𝑣 just deactivates itself. As depicted on

Figure 2(a), vertex 𝑏1 figures out that it is a join value, and sends its

ID to the target tuple vertices (3 R vertices and 3 S vertices). Vertices

𝑏2 and 𝑏3 deactivate themselves without sending any message.

Superstep 2: Tuple vertices are activated by the incoming mes-

sages. Each tuple vertex 𝑡 marks the edges along which it has

received messages. Then 𝑡 sends its non-join attribute value back to

the join attribute vertex via the marked edges, and deactivates itself.

In Figure 2(b), the 𝑅 tuple vertices 𝑅1, 𝑅2, 𝑅3 send their 𝐴 values

and the 𝑆 tuple vertices 𝑆1, 𝑆2, 𝑆3 send their 𝐶 values to vertex 𝑏1

via marked edges (shown in bold).

Superstep 3: Each active attribute vertex 𝑣 constructs a join

result by combining the values received from both sides with their

own value (the operation is really a Cartesian product). Next, 𝑣

stores this result locally (or possibly outputs it to the client applica-

tion). The computation completes when all vertices are deactivated.

See Figure 2(c), which shows the locally stored join result.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1666

Figure 2: Example two-way join of relations R and S. Borders of active vertices are highlighted in lighter shade (green).

Superstep (1) is a reduction phase that eliminates tuple vertices

with no contribution to the join, while (2) and (3) are part of a

collection phase whose purpose is to collect, via messages, data

from 𝑅-tuples and 𝑆-tuples that join and construct the output tuples.

In Superstep (3), the 𝐴-attribute and 𝐶-attribute values received

at a 𝐵-attribute vertex correspond to the factorized representation of
the join result [44], i.e. the latter can be obtained losslessly as their

Cartesian product. If the distributed and factorized representation

of the join is required, then Superstep (3) is skipped.

4.1.2 Cost Analysis. Let |𝑅 | and |𝑆 | denote the sizes (in tuple count)
of R and S respectively. Then the total input size 𝐼𝑁 = |𝑅 | + |𝑆 |. Let
𝑂𝑈𝑇 = |𝑅 Z 𝑆 | denote the size of the join result in the standard

unfactorized bag-of-tuples representation.

In superstep (1), all 𝐵-attribute vertices are active (their number

is upper bounded by 𝐼𝑁). They send messages along the edges with

labels R.B and S.B, but only when the recipient tuples contribute to

the join. Since the value of the join attribute disjointly partitions

𝑅, 𝑆 , and also 𝑅 Z 𝑆 , the total message count over all attribute

vertices is |𝑅 X 𝑆 | + |𝑆 X 𝑅 |, which is upper bounded by both 𝐼𝑁

and𝑂𝑈𝑇 , and therefore by𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇). Even for the worst-case

instance, where an attribute vertex is connected to all 𝑅 and 𝑆 tuple

vertices, the communication cost does not exceed𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇).
During the computation phase each attribute vertex with label 𝐵

(e.g. 𝑏1, 𝑏2, 𝑏3) iterates over its outgoing edges in order to figure out

whether it joins tuples from both 𝑅 and 𝑆 . The total computation

cost summed up over all vertices is upper bounded by the total

number of edges and therefore by 𝐼𝑁 .

In Superstep (2), only tuple vertices that contribute to the final

output send messages, for a total number of messages |𝑅 X 𝑆 |
(sent by 𝑅-labeled tuple vertices) + |𝑆 X 𝑅 | (sent by 𝑆-labeled tuple

vertices). This is again upper bounded by𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇). Since the
computation at tuple vertices is constant-time, the overall compu-

tation in this superstep is also upper bounded by𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇).
In Superstep (3) each join vertex combines the received messages

to construct output tuples. Each attribute vertex of value 𝑏 receives

the 𝐴 attribute values from its R-tuple neighbors, the 𝐶 attribute

values from its 𝑆-tuple neighbors, and computes 𝜎𝐵=𝑏 (𝑅 Z 𝑆)
locally as a Cartesian product. The total computation cost across

all active vertices is 𝑂𝑈𝑇 because the output tuple sets are disjoint

across join vertices. If the output is left distributed over the vertices

(the standard convention in distributed join algorithms [10, 16] is to

leave the result distributed over processors, which in our setting are

the vertices) no further messages are sent and the communication

cost is 0. Even if the output is instead sent to a client application,

the additional communication cost totalled over all vertices is𝑂𝑈𝑇 .

In summary, if we desire the collection of the join output in

unfactorized representation, we require the total communication

𝑂 (𝑂𝑈𝑇 + 𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) and the total computation in 𝑂 (𝐼𝑁 +
𝑂𝑈𝑇 +𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) ⊆ 𝑂 (𝐼𝑁 + 𝑂𝑈𝑇). To leave the unfactor-

ized join output distributed across vertices requires communica-

tion cost in 𝑂 (𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇) and computation cost in 𝑂 (𝐼𝑁 +
𝑂𝑈𝑇 + 𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) ⊆ 𝑂 (𝐼𝑁 + 𝑂𝑈𝑇). To collect the factor-

ized join output, the algorithm requires communication cost in

𝑂 (𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) and computation cost in𝑂 (𝐼𝑁+𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) ⊆
𝑂 (𝐼𝑁). Finally, leaving the factorized join output distributed across

vertices requires communication cost in 𝑂 (𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) and
computation cost in 𝑂 (𝐼𝑁 +𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)) ⊆ 𝑂 (𝐼𝑁).

A lax upper bound that covers all cases is therefore𝑂 (𝐼𝑁 +𝑂𝑈𝑇)
for both computation and communication cost.

Dependence on the number of hardware processors. The vertex-
centric model of computation makes the conceptual assumption

that each vertex is a processor. This is of course just an abstraction as

the vertex processors are virtual, several of them being simulated by

the same hardware processor in practice. Our complexity analysis

is carried out on the abstract model, hence it overestimates the

communication cost by counting each message as inter-processor

when a large number of messages are actually intra-processor and

do not tax the bandwidth of the interconnect.

4.1.3 Comparison to other algorithms. Regarding both total com-

munication and computation, our algorithm has the same lax upper

bound𝑂 (𝐼𝑁 +𝑂𝑈𝑇) as the computation upper bound of the classi-

cal sequential Yannakakis’ algorithm [53], with the advantage of

parallelism due to the vertex-centric nature.

State-of-the-art parallel join algorithms are mainly based on

two techniques: hashing and sorting. These algorithms are usually

based on the MPC [16] and Map-Reduce [10] computational models

in a cluster setting.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1667

The parallel hash-join algorithm [16] is the most common ap-

proach used in practice, where tuples are distributed by hashing on

the join attribute value. It achieves the same total communication

complexity of𝑂 (𝐼𝑁 +𝑂𝑈𝑇), assuming the unfactorized result from

each processor is collected in a centralized location. In the scenario

of a distributed, factorized representation of the join result, parallel

hash-join requires communication 𝑂 (𝐼𝑁) while our vertex-centric
join requires communication in 𝑂 (𝑚𝑖𝑛(𝐼𝑁 ,𝑂𝑈𝑇)), which is better

when the join is selective (the computation cost is the same,𝑂 (𝐼𝑁)).
The parallel sort-join algorithm [32] is an MPC-based algorithm

designed to handle arbitrarily skewed data, and measures the com-

munication complexity per processor. We do not consider processor

load balance in the scope of this paper, leaving it for future work.

For apples-to-apples comparison, we derive from [32] the total com-

munication cost as𝑂 (𝐼𝑁 +
√
𝑝 ·𝑂𝑈𝑇 +𝑂𝑈𝑇), where 𝑝 is the number

of processors and the last term describes the cost of streaming the

final output to a centralized location. A skew resilient generalized

version of a parallel hash join is also presented in [15, 35], and

achieves the same total communication cost as parallel sort-join.

Depending on the size of the output and how skewed the input is,

parallel sort-join will require more total communication. Otherwise

(skew-free input), it achieves the same total communication cost as

our vertex-centric algorithm. The parallel sort-join requires the in-

put to be sorted on the join attribute via a reshuffling phase (which

we do not require). Such sorting incurs a communication cost of

𝑂 (𝐼𝑁), but requires additional supersteps, degrading the parallel
sort-join’s performance on ad-hoc queries that join on different

attributes and in scenarios where the data is not read-only.

In summary, using the vertex-centric BSP model we can compute

a single-attribute two-way join over the TAG representation of the

input relations matching the communication complexity of the

best-known parallel algorithms (and even improving on it for the

distributed factorized output scenario), while saving the query-

dependent reshuffling they each require (for hashing or sorting).

4.2 Join on Multiple Attributes
A necessary building block to generalize to arbitrary queries is

to consider join conditions on multiple attributes. We reuse the

algorithm described in §4.1 with a small adjustment in the reduction

phase. We reduce a join on two attributes 𝑋1 and 𝑋2 to a join

on a single attribute by having tuple attributes send their value

of the 𝑋2 attribute to the 𝑋1-attribute vertices. Each 𝑋1-attribute

vertex intersects these values and messages back only to the tuple

vertices whose𝑋2 value is in the intersection. The two-attribute join

generalizes to a multi-attribute join on 𝑋1, 𝑋2, . . . , 𝑋𝑛 , by sending

a message with 𝑋2, . . . , 𝑋𝑛 attribute values to the coordinating 𝑋1-

attribute vertex. See the extended version [46] for the algorithm

details, examples and cost analysis. The communication complexity

remains in 𝑂 (𝐼𝑁 +𝑂𝑈𝑇).

5 ACYCLIC MULTI-WAY JOINS
We extend the two-way join algorithm to multi-way joins, as long

as they are acyclic. For presentation simplicity, our treatment is

confined to single-attribute joins, with the understanding that these

can be generalized to multi-attribute joins as described in §4.2.

Figure 3: Example of a query plan translation

5.1 TAG Traversal Plan
We use a generalized hypertree decomposition (GHD) of the join

query as a basis to obtain a TAG traversal plan (TAG plan), which

in turn will help drive the vertex program.

We refresh the notion of GHD, referring to [28, 29] for a more

detailed treatment. A GHD is a tree decomposition of a query, such

that each node of the tree (referred to as a ’bag’) is assigned a set

of attributes A and a set of relation names R. For every bag, the

schema of each 𝑅 ∈ R is included in A. Moreover, every relation

mentioned in the query is assigned to some bag. Finally, for any

attribute 𝐴, all bags 𝐴 occurs in form a connected subtree. A GHD

where each bag is labeled by a single relation is called a join tree.
Recall that a query is acyclic if and only if it has a join tree [17].

TAG plan. The TAG plan is itself a tree structure, constructed as

follows from the join tree:

(1) For each bag, create a node labeled with the same relation.

(2) For each join attribute 𝐴 (𝐴 occurs in at least two bags),

create a node labeled 𝐴 if it does not exist already.

(3) For each join attribute 𝐴, let B𝐴 denote the set of all bags

containing 𝐴. For each bag 𝑏 ∈ B𝐴 , denote with 𝑅𝑏 the rela-

tion labeling𝑏. Add an edge that connects the TAG plan node

corresponding to 𝐴 with the TAG plan node corresponding

to 𝑏. Label the edge with 𝑅𝑏 .𝐴.

We call the elements of the TAG plan nodes, to avoid confusion

with elements of the TAG representation, which we call vertices.

Example 5.1. Figure 3(b) shows the TAG plan constructed from
the join tree in Figure 3(a). □

Note that the example query only computes joins, thus it suffices

to create plan nodes only for the join attributes. However, depend-

ing on the input query other attributes may be necessary for the

computation (e.g. 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 attributes and attributes occurring

in the𝑊𝐻𝐸𝑅𝐸 clause). In such cases we create plan nodes for these

attributes as well.

We next translate a TAG plan into a list 𝐿 of edge labels. Intu-

itively, 𝐿 is used to drive a vertex-centric program as follows: at

superstep 𝑖 , the active vertices send messages along their outgoing

edges labeled 𝐿(𝑖). We detail the list-driven vertex-centric program

in Algorithm 1 below. First we explain how the list is obtained.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1668

Connected Bottom-up Traversal. The list corresponds to what we

call a connected bottom-up traversal of the TAG plan. The traversal

is bottom-up in that it starts from the rightmost leaf and makes

its way towards the root, eventually visiting the entire plan, while

first visiting all subtrees of a node 𝑛 before moving to 𝑛’s parent.

Moreover, the traversal is connected in the sense that each traversal

step must start from the node reached in the previous step. It should

also be noted that reversing the list corresponds to a top-down

(preorder) traversal of the TAG plan.

Example 5.2. See Figure 3 (c) for the list of labels obtained from
the TAG plan in Figure 3 (b). Notice that it corresponds to the con-
nected bottom-up traversal of the plan starting from the rightmost
leaf (labeled𝑉). For convenience, we show to the left and right of each
edge label the source, respectively destination of the traversal step. □

5.2 Vertex-Centric Algorithm
Vertex Program. The join algorithm performs a vertex-centric

analogy to Yannakakis’ semijoin reduction technique in the fol-

lowing sense. All vertices execute in parallel a vertex program

comprising two phases: an initial reduction phase followed by a col-

lection phase. The role of the reduction phase is to mark precisely

the edges that connect the tuple and attribute vertices that con-

tribute to the join. The collection phase then traverses the marked

subgraph to collect the actual join result.

Before detailing the logic implemented by the program, we note

that its structure conforms to that of the classical vertex-centric

BSP program. Each iteration of the while loop starting at line 5 in

Algorithm 1 implements a superstep. In each superstep, all active

vertices compute in parallel, carrying out a computation and a com-

munication stage. In the computation stage, each vertex processes

its incoming messages (lines 8-9). In the communication stage, each

vertex sends messages to its neighbors via the edges whose label is

dictated by variable 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (lines 11-13, 15-18). At the end of

the superstep, vertices wait at a synchronization barrier for all mes-

sages to be received (line 24). Only message recipients are activated

for the next superstep (line 25). Once all vertices finish processing

the current traversal step, the edge label indicating the next traver-

sal step is popped from the stack (line 5) and a new superstep is

carried out. The reason why the input 𝑙𝑎𝑏𝑒𝑙𝑠 must correspond to

a connected traversal becomes apparent now: the vertex-centric

model requires each superstep to be carried out by the vertices

activated by the previous superstep.

Reduction Phase. The vertex program takes as input 𝑠𝑡𝑎𝑟𝑡𝐿𝑎𝑏𝑒𝑙 ,

the label of the rightmost leaf in the TAG plan 𝑇 , and a list of edge

labels (given in the stack 𝑙𝑎𝑏𝑒𝑙𝑠), corresponding to the connected

bottom-up traversal of 𝑇 . The program starts by activating the

tuple vertices labeled with 𝑠𝑡𝑎𝑟𝑡𝐿𝑎𝑏𝑒𝑙 (line 1). Next, it iteratively

performs supersteps, one for every edge label in the stack.

The intuition behind the reduction phase is the following. Recall

that our TAG graph is bipartite: it consists of two kinds of ver-

tices (attribute and tuple) and edges always go between the two

vertex kinds. Therefore, the active vertex set alternates between

containing exclusively attribute vertices and exclusively tuple ver-

tices. At every step, the active vertex set can be regarded as a

distributed relation (with the set of attribute vertices correspond-

ing to a single-column table). A superstep that starts from a set 𝑆

Algorithm 1: Vertex Program
Input: 𝑠𝑡𝑎𝑟𝑡𝐿𝑎𝑏𝑒𝑙 : a vertex label
Input: 𝑙𝑎𝑏𝑒𝑙𝑠: a stack of edge labels

1 𝐴𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑒𝑡 ← {all vertices labeled 𝑠𝑡𝑎𝑟𝑡𝐿𝑎𝑏𝑒𝑙 };

2 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← UP ; // bottom-up traversal first

3 Reduction Phase:
4 while 𝑙𝑎𝑏𝑒𝑙𝑠 not empty do
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 ← 𝑙𝑎𝑏𝑒𝑙𝑠 .𝑝𝑜𝑝 ();
6 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑑𝑒𝑟 .𝑝𝑢𝑠ℎ(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙);
7 foreach 𝑣 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑟𝑡𝑒𝑥𝑆𝑒𝑡 do in parallel
8 for each 𝑖𝑑 ∈ 𝑣 .𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑠𝑔𝑄𝑢𝑒𝑢𝑒 do
9 insert 𝑖𝑑 into 𝑣 .𝑚𝑎𝑟𝑘𝑒𝑑𝐸𝑑𝑔𝑒𝑠;

10 if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = UP then
11 for each 𝑒 ∈ 𝑜𝑢𝑡𝐸𝑑𝑔𝑒𝑠 (𝑣) do
12 if 𝑒.𝑙𝑎𝑏𝑒𝑙 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 then
13 send message 𝑣 .𝑖𝑑 to 𝑒’s target;

14 if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = DOWN then
15 for each 𝑒 ∈ 𝑜𝑢𝑡𝐸𝑑𝑔𝑒𝑠 (𝑣) do
16 𝑡 ← target of 𝑒;

17 if 𝑒.𝑙𝑎𝑏𝑒𝑙 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 AND
𝑡 ∈ 𝑣 .𝑚𝑎𝑟𝑘𝑒𝑑𝐸𝑑𝑔𝑒𝑠 then

18 send message 𝑣 .𝑖𝑑 to 𝑡 ;

19 update 𝑣 .𝑚𝑎𝑟𝑘𝑒𝑑𝐸𝑑𝑔𝑒𝑠 ;

20 if 𝑙𝑎𝑏𝑒𝑙𝑠 is empty AND 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = UP then
21 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑑𝑒𝑟 ;

22 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑑𝑒𝑟 .𝑐𝑙𝑒𝑎𝑟 ();
23 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← DOWN;

// synchronization barrier

24 wait for all vertices to receive their messages;

25 ActiveVertexSet← {all message recipients};

26 Collection Phase:
27 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑑𝑒𝑟 // bottom-up order again

28 while 𝑙𝑎𝑏𝑒𝑙𝑠 not empty do
29 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 ← 𝑙𝑎𝑏𝑒𝑙𝑠 .𝑝𝑜𝑝 ();
30 foreach 𝑣 ∈ ActiveVertexSet do in parallel
31 𝑣 .𝑣𝑎𝑙𝑢𝑒 ← join all tables in 𝑣 .𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑀𝑠𝑔𝑄𝑢𝑒𝑢𝑒 ;

32 if 𝑣 is a tuple vertex then
33 if this is first superstep in collection phase then
34 𝑣 .𝑣𝑎𝑙𝑢𝑒 ← {𝑣 .𝑑𝑎𝑡𝑎};
35 else
36 𝑣 .𝑣𝑎𝑙𝑢𝑒 ← 𝑣 .𝑣𝑎𝑙𝑢𝑒 Z {𝑣 .𝑑𝑎𝑡𝑎};

37 for each 𝑒 ∈ 𝑜𝑢𝑡𝐸𝑑𝑔𝑒𝑠 (𝑣) do
38 𝑡 ← target of 𝑒;

39 if 𝑒.𝑙𝑎𝑏𝑒𝑙 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 AND
𝑡 ∈ 𝑣 .𝑚𝑎𝑟𝑘𝑒𝑑𝐸𝑑𝑔𝑒𝑠 then

40 send message 𝑣 .𝑣𝑎𝑙𝑢𝑒 to 𝑡 ;

41 if 𝑙𝑎𝑏𝑒𝑙𝑠 not empty then
42 Output 𝑣 .𝑣𝑎𝑙𝑢𝑒 ; // computation is done

// synchronization barrier

43 wait for all vertices to receive their messages;

44 ActiveVertexSet← {all message recipients};

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1669

of active tuple vertices labeled 𝑅 and activates next the attribute

vertices reachable via edges labeled 𝑅.𝐴 corresponds to taking the

duplicate-eliminating projection on 𝐴 of the 𝑅-tuples in 𝑆 , 𝜋𝐴 (𝑆),
in the sense that the values in this column correspond precisely to

the newly activated attribute vertices. Conversely, a superstep that

starts from set 𝑆 of active attribute vertices and next activates their

neighbors reachable via edges labeled 𝑅.𝐴 activates precisely the

tuple vertices corresponding to the semijoin of table 𝑅 with an 𝐴

column of values from 𝑆 , 𝑅 X 𝜋𝐴 (𝑆). The order in which the super-

steps are performed by the reduction phase leads to a sequence of

column projection and semijoins operations that corresponds to a

Yannakakis-style reducer program.

The reduction phase starts with a connected bottom-up pass due

to the 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 variable being initialized to 𝑈𝑃 (line 2). At each

superstep, vertices send their ID to their neighbors along edges

labeled by the current step (lines 12-13). Each vertex 𝑣 identifies its

incoming join-relevant edges 𝑒 by their source ID (received as the

message payload). Vertex 𝑣 marks 𝑒 in its local state 𝑣 .𝑚𝑎𝑟𝑘𝑒𝑑𝐸𝑑𝑔𝑒𝑠

(line 9). The effect of the reduction pass is formalized by Lemma 5.1.

Lemma 5.1. Consider a list 𝐿 of edge labels and the execution of
a vertex program driven by 𝐿. Let 𝑇 .𝐴 be the label at position 𝑖 in
the concatenation of 𝐿 with its reverse. Denote with 𝑅𝑖 the distributed
relation corresponding to the vertex set activated by superstep 𝑖 . If 𝑖 is
odd, then 𝑅𝑖 = 𝜋𝐴 (𝑅𝑖−1). If 𝑖 is even, then 𝑅𝑖 = 𝑇 X 𝑅𝑖−1. □

Example 5.3. Recall the edge label list shown in Figure 3(c). With
the notation from Lemma 5.1, the list induces the following sequence of
operations:𝑅0 := 𝑉 , 𝑅1 := 𝜋𝐵 (𝑅0), 𝑅2 := 𝑇 X 𝑅1, 𝑅3 := 𝜋𝐵 (𝑅2), 𝑅4 :=
𝑆 X 𝑅3, 𝑅5 := 𝜋𝐴 (𝑅4), 𝑅6 := 𝑅 X 𝑅5. Notice that this sequence is a
full reducer for table 𝑅, i.e. the last relation computed, 𝑅6, contains
precisely the 𝑅-tuples that participate in the multi-way join specified
by the join tree in Figure 3(a). □

As usual in full reducer programs, the bottom-up pass only re-

duces fully the root relation of the join tree (in Example 5.3 that

would be table 𝑅, whose full reduction is computed as 𝑅6). The

other relations do not yet reflect the reduction of their ancestors in

the join tree. To remedy this, one needs to apply further semijoin

reduction operations in an order given by a top-down traversal of

the join tree. In our vertex-centric adaptation, the vertex program

switches to top-down mode (lines 20-23). It uses the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑂𝑟𝑑𝑒𝑟

stack to reverse the order of input steps, thus obtaining a top-down

order (line 6 and 21). The resulting top-down pass continues to

apply reduction steps just like the bottom-up pass.

The only difference between the top-down and the bottom-up

reduction is that when sending messages, the former does not only

check the edge label but it also makes sure to only signal via those

edges that have been marked during the bottom-up pass (line 17).

This ensures that the top-down pass never visits vertices that were

already reduced away by the bottom-up pass. The set of marked

edges is updated further during the top-down pass to only include

edges that are on the join result path (line 19). Marked edges then

guide the collection phase (line 39), ensuring that it visits only the

marked subgraph corresponding to the fully reduced relations.

Example 5.4. Continuing Example 5.3, the vertex program switches
into the DOWN pass, being driven by the reversed edge label list

𝑅.𝐴, 𝑆 .𝐴, 𝑆 .𝐵,𝑇 .𝐵,𝑇 .𝐵,𝑉 .𝐵, which determines the sequence of oper-
ations 𝑅7 := 𝜋𝐴 (𝑅6), 𝑅8 := 𝑆 X 𝑅7, 𝑅9 := 𝜋𝐵 (𝑅8), 𝑅10 := 𝑇 X
𝑅9, 𝑅11 := 𝜋𝐵 (𝑅10), 𝑅12 := 𝑉 X 𝑅11 which fully reduces all tables. □

Collection Phase. For the collection phase we reverse the order

of steps once more, obtaining a bottom-up pass that starts from the

vertices activated last by the reduction phase. During this phase,

messages hold tables that correspond to intermediate results of the

desired join. In the computation stage, each vertex 𝑣 computes a

value 𝑣 .𝑣𝑎𝑙𝑢𝑒 that corresponds to the join of the tables it receives

via messages (line 31)
3
. If the vertex is a tuple vertex, it also joins

the computed value with the tuple it represents. This tuple is stored

in the 𝑑𝑎𝑡𝑎 attribute (lines 32-36). In the communication stage,

vertices propagate the computed value further up via marked edges

(lines 37-40). When the root of a plan is reached, the computation

completes and each active vertex outputs its computed value (line

42). The join result is the union of values output by vertices.

5.2.1 Cost Analysis. We are interested in the data complexity of

our algorithm, which treats the query size as a constant. The com-

putation of a vertex in the reduction phase involves iterating over

its incoming message queue and performing constant-time com-

putation on each message. Each active vertex sends messages only

via its outgoing edges, so at each superstep the total number of

messages is bounded by the number of out-edges in the graph,

while the size of each message is constant (we treat the size of

vertex IDs as fixed by the architecture, therefore the message size

is fixed). Since the size of the TAG graph is linear in the size of the

input database, the total computation and communication of each

superstep of the reduction phase is𝑂 (𝐼𝑁). Note that the number of

supersteps is independent of the data, being linear in the query size.

Therefore, the total computation and communication complexity

of the reduction phase remain 𝑂 (𝐼𝑁).
The collection phase involves the traversal of the reduced sub-

graph, which has size linear in the size𝑂𝑈𝑇 of the join result. Each

vertex constructs tuples by joining its own data with the intermedi-

ate results received. These tuples are sent as messages along edges.

There is no redundant tuple construction within and across vertices,

so the overall computation and communication is in 𝑂 (𝑂𝑈𝑇).
Combining the complexity of the reduction and collection stages,

we obtain 𝑂 (𝐼𝑁 +𝑂𝑈𝑇) for the overall communication and com-

putation costs of our vertex-centric acyclic join.

5.2.2 Comparison to other algorithms. Reference [35] describes

a hash-based parallel version of Yannakakis’ algorithm in a dis-

tributed setting (the MPC model) with the same communication

complexity of 𝑂 (𝐼𝑁 +𝑂𝑈𝑇). The main difference from our algo-

rithm is that data needs to be reshuffled (re-distributed among

processors) in a query-dependent way for each join operation. In

our vertex-centric join, the graph representation of the input data-

base is never reshuffled, regardless of the query.

3
This value is a joined partial table and can be size-biased, its construction potentially

creating load imbalance across vertices. This effect can be mitigated by keeping join

results in factorized representation as long as possible (as discussed in our complexity

analyses), but a full solution involves load balancing. Since we are targeting solutions

on top of vertex-centric engines, we implicitly inherit their load balancing scheme and

do not attempt to control it in this work. We believe that our encouraging experimental

results render our approach interesting even before incorporating customized load

balancing for vertex-centric SQL evaluation, which we leave for future work.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1670

Figure 4: TAG instance for a triangle query in Example 6.1

The generalization of parallel sort-join algorithm to any acyclic

join is presented in [33], and has a total communication cost of

𝑂 (𝐼𝑁 +
√
𝐼𝑁 ·𝑂𝑈𝑇). This outperforms our algorithm and parallel

hash-join when the join output blows up to be lager than the input,

but it is worse for selective joins and it is equivalent when the query

involves only PK-FK joins.

Both parallel sort-join and parallel hash-join rely on query-

dependent reshuffling (re-sorting and re-hashing) of the input,

which again impairs the applicability to ad-hoc queries that join on

different attributes and to scenarios where the data is not read-only.

6 ARBITRARY (CYCLIC) JOINS
In this section, we extend our algorithm to arbitrary (cyclic) joins.

We begin with the famous triangle query in §6.1 and we extend the

algorithm to arbitrary joins in §6.2.

6.1 Triangle Query
We begin with the triangle query 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) Z 𝑇 (𝐶,𝐴).
First, we describe a first-cut vertex-centric triangle algorithm and

show that it is optimal for a class of queries with primary-foreign

key (PK-FK) join conditions. We then improve upon it to achieve

the complexity proportional to the worst-case output size defined

by the renowned AGM bound [13]. This is a tight bound that esti-

mates query output size based on input relations cardinalities and

structural property of a query called fractional edge cover (𝜌∗). For
a full review of AGM and fractional edge cover we refer to [13, 30].

The AGM bound for triangle query is𝑂 (𝐼𝑁
3

2), while the traditional
RDBMS plans with binary joins can run in time 𝑂 (𝐼𝑁 2) on some

instances. The AGM bound has led to the development of the class

of worst-case optimal (centralized, sequential) join algorithms such

as NPRR [42], Leapfrog Triejoin [49] and Generic-Join [43]. Our

parallel vertex-centric algorithm’s communication and computa-

tion complexities match the worst-case computational upper bound

of these algorithms for triangle queries.

6.1.1 Triangle Query for PK-FK Joins. The main idea of the vertex-

centric triangle algorithm is to start the computation from𝐴-attribute

vertices, and send their ID values in both directions via paths that

lead to 𝐶-attribute vertices such that if a cycle exists the values

travelling from both sides meet at the final destination. Note that

values propagated through the left side have a longer path to cross

and pass through 𝐵-attribute vertices. Any order of the traversal

can be chosen, e.g. start from 𝐵-attribute vertices and propagate 𝐵

values in both directions to 𝐴-attribute vertices.

Example 6.1. We illustrate the algorithm using the TAG instance
in Figure 4. Attribute vertex 𝑎1 sends its ID via edges 𝑅.𝐴 (left side

traversal) and 𝑇 .𝐴 (right side traversal). Note that if vertex 𝑎1 has
no incident 𝑅.𝐴- or 𝑇 .𝐴-edge, it deactivates itself. On the right side
the value 𝑎1 travels along the edge 𝑇 .𝐶 to arrive at attribute vertex
𝑐1. On the left side the value 𝑎1 arrives at the 𝑐1 vertex via the edge
list 𝑅.𝐵, 𝑆 .𝐵, 𝑆 .𝐶 . The 𝑐1 vertex intersects messages received from the
left side with the messages received from the right side, as described
in §4.2 (empty intersection indicates that a vertex is not part of any
triangle). Since the result of the intersection is 𝑎1, vertex 𝑐1 continues
into the collection phase. To construct the output, 𝑐1 sends messages
back following the trail of the 𝑎1 value to activate tuple vertices 𝑆1
and𝑇 1. Those tuples then send their values to 𝑐1, which then combines
them and outputs a triangle {(𝑎1, 𝑏1, 𝑐1)}. □

PK-FK Optimality. In the triangle query when a value reaches an

attribute vertex it needs to be propagated further via its outgoing

edges, i.e. every message gets replicated a number of times. The

replication rate is defined by the number of outgoing edges which

is linear in the size of the input 𝐼𝑁 . The number of messages that

an attribute vertex can receive is also upper bounded by 𝐼𝑁 . In the

worst case the number of messages that need to be sent can blow

up to𝑂 (𝐼𝑁 2), which exceeds the worst-case AGM bound. However,

the replication rate is not an issue with PK-FK joins, since the size

of the PK-FK join result cannot exceed the size of the foreign key

relation, which is at most 𝐼𝑁 . Assume the primary key of each

input relation is its first attribute, e.g attribute 𝐴 is the primary

key of relation 𝑅. The number of 𝐴 values that 𝑏1 can receive is at

most |𝑅 |, but since 𝑏1 itself is a primary key value of 𝑆 tuple it can

have at most one outgoing edge with label 𝑆.𝐵. Thus, the number

of messages sent by 𝑏1 is at most |𝑅 |. The same analysis applies to

the 𝑐1 vertex.

If all joins in the query are PK-FK joins, the triangle query can be

evaluated in the vertex-centric model with optimal communication

and computation cost 𝑂 (𝐼𝑁 +𝑂𝑈𝑇), just like acyclic joins.

6.1.2 Worst-case Optimal Triangle Query Algorithm. In order to

match the worst-case optimal guarantees by keeping the complexity

within the AGM bound we improve upon the algorithm above. We

employ the strategy of the NPRR algorithm. NPRR splits the values

of attribute 𝐴 in relation 𝑅 into heavy and light. A value 𝑎 is heavy

if it occurs more times than a defined threshold value \ in relation

𝑅. Specifically, if |𝜎𝐴=𝑎𝑅 | > \ then (a,b) ∈ 𝑅ℎ𝑒𝑎𝑣𝑦 , otherwise (a,b)
∈ 𝑅𝑙𝑖𝑔ℎ𝑡 . As a result, the original triangle query can be decomposed

as follows [41]:

(𝑅ℎ𝑒𝑎𝑣𝑦 Z 𝑆) X 𝑇)) ∪ ((𝑅𝑙𝑖𝑔ℎ𝑡 Z 𝑇) X 𝑆) (1)

We solve the triangle query separately for heavy and light cases

and then union the results. We apply the vertex-centric triangle

algorithm as described above, for simplicity we refer to it as vanilla

triangle. The triangle algorithm proceeds as follows:

(1) Initialization: Activate 𝑅-tuple vertices and navigate to

𝐴-attribute vertices via edge 𝑅.𝐴. Each 𝐴-attribute vertex

checks whether it’s heavy or light.

(2) Heavy 𝐴-attribute vertices execute vanilla triangle algo-

rithm (as described in Example 6.1).

(3) Light 𝐴-attribute vertices send "wake-up" messages to 𝐵-

attribute vertices via their𝑅-tuple vertex. Activated𝐵-attribute

vertices then execute vanilla triangle algorithm to propagate

their ID values to 𝐶-attribute vertices.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1671

Note that the number of outgoing edges with label 𝑅.𝐴 indicate how

many tuples in 𝑅 contain the current attribute vertex value, hence

it becomes trivial for each 𝐴-attribute vertex to check whether it’s

heavy or light. The threshold value \ helps to bound the number

of messages and not to exceed the AGM bound. In the heavy case,

the replication of messages happens when 𝐵-attribute vertices send

received heavy 𝑎 values via 𝑆.𝐵-edges. This corresponds to the

term 𝑅ℎ𝑒𝑎𝑣𝑦 Z 𝑆 in equation (1). The number of messages that can

be received by 𝐵-attribute vertices is upper bounded by the total

number of heavy 𝑎 values in the 𝑅 relation, which is at most
|𝑅 |
\
.

Each message is sent via outgoing edge 𝑆.𝐵. Since the total number

of 𝑆.𝐵 edges is |𝑆 |, the communication cost is
|𝑅 |
\
· |𝑆 | messages.

In the light case, the worst replication happens when 𝐴-attribute

vertices send 𝑏 values via edge𝑇 .𝐴, i.e. term 𝑅𝑙𝑖𝑔ℎ𝑡 Z 𝑇 in equation

(1). The number of 𝑏 values that 𝐴-attribute vertices can receive

is at most \ , since all of these 𝑏 vertex values are connected to

light 𝑎 vertices. Each 𝑏 value is sent via at most |𝑇 | edges. This
results in \ · |𝑇 | total messages for the light case computation.

Each vertex’ computation is linear to the received message count.

Given \ =
√
𝐼𝑁 , where 𝐼𝑁 defines the sizes of input relations,

the complexity of the reduction phase is proportional to the AGM

bound, i.e. 𝑂 (𝐼𝑁
3

2). Taking into account that the size of the actual

output is upper bounded by the AGM, the overall communication

and computation cost of our triangle algorithm in a vertex-centric

BSP model is 𝑂 (𝐼𝑁
3

2).
Besides being sequential algorithms, both NPRR and Leapfrog

Triejoin require expensive precomputation to build index structures

for each input relation based on some attribute order. Our parallel

triangle algorithm does not rely on any additional index structures

to achieve the worst-case optimal guarantees.

6.2 Arbitrary Equi-Join Queries
We extend our algorithm to arbitrary equi-joins by generalizing

from triangle to n-cycles, then combining the acyclic and cyclic

join strategies. We relegate details to [46].

7 BEYOND EQUI-JOINS
TAG-join is compatible with the efficient evaluation of other alge-

braic operations. Small edits to the vertex program (Algorithm 1)

allow the seamless interleaving of join with other algebraic opera-

tions, supporting classical optimizations such as pushing selections,

projections and aggregations before the join.

Selection. Pushing selections before joins translates in our setting

to vertices checking the selection condition as early as possible.

Conditions involving a single attribute are checked in parallel by

the corresponding attribute vertices during the reduction phase

(by adding the selection to line 12 in Algorithm 1). Attribute ver-

tices that fail the selection deactivate themselves, reducing overall

computation and communication. Conditions involving multiple

attributes are also applied in parallel by attribute vertices but need

to wait for the earliest round of the collection phase where collected

intermediate tuples contain the relevant attributes. This is achieved

by adding the selection to line 31 in Algorithm 1, together with a

check of the current label (set in line 21) to identify the round.

Projection. Pushing projections early is beneficial for the col-

lection phase. Although it does not reduce the number of sent

messages, it affects their size by reducing the number of attributes

of the comprised tuples. Projection pushing is implemented by ap-

plication to the local joins in lines 34 and 36 of Algorithm 1. Which

columns can be projected away depends on the round, which in

turn is given by the current label (set in line 21).

Aggregation. The aggregation scheme is inspired by aggregation

over hypertree decompositions in factorized databases [14, 44],

since our TAG plan is based on a GHD (recall §5.1). The scheme

includes the classic optimization technique of pushing grouping and

aggregation before the join [52]. Aggregates are computed during

the collection phase as soon as the intermediate tuples contain the

relevant attributes, by using a modification to line 31 in Algorithm 1

and by checking the current label to identify the aggregation rounds.

We distinguish three types of aggregation:

• Local aggregation (LA) corresponds to SQL queries with

GROUP BY on one attribute, or multiple attributes where

one attribute functionally determines the others.

• Scalar aggregation computes a single tuple of scalar values.

Vertices need to send their computed aggregates to a global

’aggregation’ vertex whose ID is known to all.

• Global aggregation (GA) uses a multi-attribute GROUP BY

clause, such that the attributes do not determine each other.

This also requires vertices to communicate with a global

’aggregation’ vertex to output the final aggregation.

Local aggregation benefits the most from vertex-centric computa-

tion: aggregation within each group is computable by the attribute

vertex representing the group key, in parallel to the other groups.

Outer Joins. These can be naturally computed as a small tweak

of TAG-join algorithm (details in the extended version [46]).

Correlated Subqueries.We employ a navigational execution strat-

egy with a forward lookup [23] used in traditional RDBMSs, i.e.

start with the outer query, and in a tuple-at-time fashion invoke

the nested subquery. Our vertex-centric approach naturally sup-

ports parallelization: tuple vertices matching the outer query are

activated in parallel and their subquery calls execute in parallel.

8 EXPERIMENTS
Our vertex-centric SQL evaluation scheme applies to both intra-

server thread-based and to distributed cluster parallelism.

The bulk of our experiments (§8.2,§8.3, §8.4, §8.5) evaluates how

our approach enables thread parallelism in the comfort zone of high-
end RDBMSs: running the benchmarks they are traditionally tuned

for, on a multi-threaded server with large RAM and SSD memory

holding all working set data in warm runs.

We also carry out preliminary experiments evaluating the ability

to exploit parallelism in a distributed cluster, where we compare

our approach against Spark SQL (§8.6).

We detail our performance comparisons below but first we sum-

marize the experimental results.

Table 1 shows the aggregate runtimes (i.e. summed over all

queries) for the TPC-H and TPC-DS query workloads in single-

server mode. For each benchmark we performed three sets of exper-

iments with varying data sizes. In aggregate, TAG-join outperforms

all relational systems (5x-30x speedup) on TPC-DS queries (see

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1672

Table 1: Aggregate time (in seconds) in single-server mode

TPC-H (TPC-DS)

SF-30 SF-50 SF-75

psql 358.9 (7275.7) 592.6 (8789.3) 796.2 (10094.3)

rdbX 78.6 (842.6) 88.8 (1357.7) 104.1 (1888.6)

rdbX_im 32.5 (1065.7) 52.2 (1317.1) 74.5 (1611.2)

rdbY 59.2 (787.1) 80.4 (1328.2) 132.7 (2117.7)

rdbY_non 70.7 (2349.6) 87.6 (2780.8) 139.8 (3230.9)

spark_sql 248.9 (906.4) 391.5 (1282.2) 572.9 (1955.2)

TAG_tg 53.4 (149.1) 85.1 (246.3) 121.3 (357.3)

parenthesised numbers). On TPC-H, it is much faster than Post-

greSQL and Spark SQL and competitive with all others except for

RDBMS-X IM (whose speedup does not exceed 1.6x). As the drill-

down into our measurements shows, TAG-join excels particularly at

computing local-aggregation queries and, regardless of aggregation

style, PK-FK join queries and queries with selective joins, outper-

forming even RDBMS-X IM on these query classes. Figure 5 shows

that TAG-join outperforms Spark SQL in both aggregate runtime

and network communication in our distributed experiments.

8.1 Experiment Setup
8.1.1 Datasets andQueries. We evaluate our approach using two

standard relational database benchmarks TPC-H [1] and TPC-DS

[2]. The query workload of the TPC-H benchmark consists of 22

queries: 20 among them with 2 to 8 joins, the remaining 2 queries

are single table scans. All but 1 are acyclic, the exception is a five-

way cycle query. The TPC-DS benchmark offers a more realistic

and challenging query workload that contains 99 acyclic queries in

total [45], of which we evaluate 84 queries in our experiments. We

discarded 15 queries that contain functions that are not supported

by the vertex-centric platform we used (and are not in the scope

of this work), such as ranking function (rank over()), extracting

a substring, and computing standard deviation. We also exclude

a scenario containing iterative queries. The 84 TPC-DS queries

in our experiments feature between 3 to 12 joins each, including

joining multiple fact tables and multiple dimension tables, and joins

between large dimension tables (so not all joins are PK-FK). The

queries are of varying complexities, containing aggregation and

grouping and correlated subqueries. All queries are run without the

ORDER BY and LIMIT clauses as we left top-k processing outside

the scope of this paper.

8.1.2 The Vertex-Centric System We Used. We implemented our

approach on top of TigerGraph [21], a graph database system that

supports native graph storage and a vertex-centric BSP computa-

tional model that takes advantage of both thread and distributed

cluster parallelism. TigerGraph offers a graph query language that

allows developers to express vertex-centric programs concisely. The

mapping from the query to the vertex program is straightforward,

well-defined [21, 22], and is not where the optimizations kick in

(we checked with the TigerGraph engineers). This ensures that the

queries we wrote execute our intended vertex-centric programs

faithfully, without compiling/optimizing them away
4
.

We used the free TigerGraph 3.0 Enterprise Edition in experi-

ments and ran it in main-memory mode. We denote our implemen-

tation with TAG_tg in figures and tables below.

8.1.3 The Comparison Systems. We compared our TAG-join im-

plementation against popular relational database systems:

PostgreSQL 12.3 is a popular open-source relational database

implemented as a row store (psql in tables).

RDBMS-X is a leading commercial RDBMS with row store sup-

port (release version from 2018). RDBMS-X offers an In-Memory

feature that uses an in-memory column store format. This format

accelerates query processing by enabling faster data scans, aggre-

gation and joins. We ran the queries with two settings: traditional

row store format (rdbX) and dual format with in-memory column

store enabled (rdbX_im).

RDBMS-Y is a commercial RDBMS with row store support (re-

lease version from 2019). We run RDBMS-Y with two settings: clus-

tered (rdbY) and non-clustered primary key (rdbY_non).
Spark SQL 3.0.1 [12] is a module of Apache Spark [5] supporting

relational (and JSON) data processing. For the purpose of our ex-

periments, we include it in the collective term "relational engines".

For all relational engines we tuned memory parameters (e.g.

buffer cache size) to ensure that the entire database as well as in-

termediate query results can fit into memory (we monitored disk

usage during the experiments, confirming that all warm runs per-

formed no disk access). We enabled parallel execution of queries for

all of the RDBMSs without forcing a specific degree of parallelism,

letting their optimizer decide on how many workers to use during

execution. The exact configuration parameters for all systems are

listed in the extended version of the paper [46].

8.1.4 Hardware. The single-server experiments ran on an AWS

EC2 r4.8xlarge instance, with 2.3 GHz Intel Xeon E5-2686 v4 proces-

sor with 32 vCPU count (number of supported parallel threads), 244

GB of memory and 500GB SSD drive, running Ubuntu 16.04. For

RDBMS-X, we used Linux 7.6. We ran distributed experiments on

an Amazon EC2 cluster of 6 machines, each with an 8-core 2.50GHz

Intel XeonPlatinum 8259CL processor and 2 threads per core (i.e. 16

vCPUcount), 64 GB of memory and 200GB SSD drive. All machines

ran Ubuntu 18.04.

8.1.5 Methodology. The queries are evaluated on datasets obtained
with the benchmark generators, at scale factors 30 (30GB), 50 (50GB)

and 75 (75GB). Each dataset is supplied with primary and foreign

key indexes. Each query is executed 11 times, the first run to warm

up the cache and the remaining 10 runs to compute the average

runtime. We impose a timeout of 30 minutes per execution.

4
Some systems offer vertex-centric APIs which are implemented internally via

relational-style joins (e.g. [9, 19]), thus being unsuited for our experiment. In contrast,

TigerGraph features native implementation for the vertex-centric primitives we de-

scribe here. Inspection of the queries we published with the extended version of the

paper reveals that they each are expressed as a sequence of separate one-edge hops,

i.e. vertex-centric steps where edge sources send messages to edge targets.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1673

8.2 Data Loading Results
The datasets are generated by the tools provided with the bench-

mark suites, and are loaded into databases using their respective

commands for bulk data load. For relational systems, primary and

foreign key indexes are built on the loaded data, as prescribed by

the TPC benchmark protocol. All RDBMSs we deployed organize

indexes in a B-tree structure by default.

We measured both loading time (including index creation time

for the RDBMSs) and loaded data size (including index size for

RDBMSs). Recall that no indexes are constructed for the TAG repre-

sentation since the attribute vertices act as indexes implicitly. The

exact measurements for all systems and datasets are published in

the extended version.

The gist of the experiment is that we observed similar loaded data

size for all systems (within 10% of each other except for the more

wasteful Postgres) and similar loading times (also within roughly

10% of each other, except for RDBMS-X which takes double the

time of the others on TPC-DS). This testifies to the absence of time

and space overhead for loading data as a graph vs into an RDBMS.

8.3 Single-Server TPC-H Results
Table 1 shows the aggregate run times of TPC-H queries over

datasets of different scale factors. In aggregate, TAG-join approach

is 6.5x faster than PostgreSQL, 4.7x faster than Spark SQL, and

shows competitive performance with RDBMS-Y (both versions)

and RDBMS-X. The exception is RDBMS-X with In-Memory col-

umn store, which outperforms TAG-join by 1.6x in aggregate.

A more nuanced picture emerges when we drill down to indi-

vidual queries: TAG-join is competitive with or outperforms both

RDBMS-X row store and in-memory column store on local aggrega-

tion (LA) queries (recall §7), including those with nested correlated

subqueries (where TAG-join shines). TAG-join is outperformed by

RDBMS-X in-memory column store on low-selectivity global ag-

gregation (GA) queries (§7) requiring full data scans and involving

relatively few joins (in the most extreme case, query q1 aggregates

a single-table scan with no joins at all). For this class of queries,

TAG-join’s benefit is limited since execution cost is dominated by

full scan aggregation, for which the compressed in-memory col-

umn store format is tuned. Full results at individual query level

for all three scale factors are shown and discussed in the extended

version [46].

8.4 Single-Server TPC-DS Results
Table 1 shows the aggregate run times of TPC-DS queries at differ-

ent scale factors (the parenthesised numbers). In aggregate, TAG-

join on TigerGraph (TAG_tg) performs the best on TPC-DS queries,

followed by RDBMS-X in-memory column store (rdbX_im), RDBMS-

X row-store (rdbX), RDBMS-Y with clustered PK (rdbY) and without

(rdbY_non), then Spark SQL and PostgreSQL (psql).

The breakdown in Table 2 shows that TAG-join outperforms the

relational engines on the majority of the TPC-DS queries. Runtimes

of all individual queries are shown in the extended version.

Most of the TPC-DS queries involve aggregation, including local,

global and scalar. In Table 3 we present aggregate times of queries

across all systems by breaking down the queries into 4 groups based

on the type of the aggregation.

Table 2: Number of TPC-DS queries where TAG-join ap-
proach outperforms, shows competitive or worse perfor-
mance against each of the relational systems at SF-75. Total
number of queries is 84.

#queries outperforms competitive worse

psql 84 - -

rdbX 74 4 4

rdbX_im 64 3 17

rdbY 53 22 9

rdbY_non 64 12 8

spark_sql 73 5 6

Table 3: Runtime (in seconds) of TPC-DS workload at SF-75
broken down by aggregation type

SF-75 No agg LA GA Scalar GA

psql 0.58 1913.7 7788.433 391.592

rdbX 2.42 72.3 1375.739 438.137

rdbX_im 1.71 43.9 1279.353 286.183

rdbY 0.52 42.8 1771.947 302.384

rdbY_non 0.32 138.3 2736.952 355.361

spark_sql 13.6 160.4 1549.5 231.5

TAG_tg 0.16 8.37 231.044 117.734

Queries without Aggregation. TAG-join achieves 1.5-27x speedup

over relational systems on individual queries that do not use any

aggregation function, i.e. select-project-join queries. There are only

3 queries of this type.

LA Queries. TAG-join does very well on queries involving local

aggregation, as observed in the TPC-H results and confirmed on

the 15 TPC-DS queries whose aggregation is local. TAG-join con-

sistently outperforms PostgreSQL with an aggregate speedup of

two orders of magnitude, and the other relational engines with an

aggregate speedup of 5-16x. The highest speedups on individual LA

queries are observed on queries that use a WITH clause in order to

union results of subquery blocks, where each block joins at least 3

dimensions with a different fact table (e.g. q56, q33, q60).

GA and Scalar GA Queries . TAG-join does very well on most of

the queries with global aggregation, showing 5-30x speedup in ag-

gregate. There are 66 queries (out of 84) with GA or scalar GA. Most

of these queries have relatively selective filter conditions, reducing

the number of active vertices that need to aggregate their values

into the same global structure, and thus achieving competitive per-

formance with relational systems. Examples of such queries with

GA are queries q22, q45, q69 and q74. Note that these queries in-

clude roll-up aggregations (e.g. q18) to compute subtotal aggregate

values of each group by key. This functionality is not offered out-

of-the-box by the TigerGraph engine, but it can be simulated using

multiple global structures with different keys. TAG-join performs

well on queries with global scalar aggregation (e.g. q32 and q94),

achieving 2-3x speedup in aggregate over most of the relational

engines, except for RDBMS-X IM, which outperforms TAG-join on

17 GA or Scalar GA queries out of the total 84 TPC-DS queries.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1674

Table 4: Peak RAM usage percentage at SF-75.

% psql rdbX rdbX_im rdbY spark_sql TAG_tg

TPC-H 65.9 57.1 51.2 55.1 57.4 53.8

TPC-DS 61.7 49.8 43.5 54.3 68.1 52.9

8.5 Memory Usage
Table 4 shows the peak RAM usage percentage (full measurements

and methodology are detailed in [46]). For RDBMS-Y the numbers

are shown only for clustered PK, being the same for non-clustered

PK. We only show results for SF-75, but the numbers are propor-

tional for SF-30 and SF-50. Notice that TAG_tg’ memory perfor-

mance is similar to RDBMS-Y and RDBMS-X row store. RDBMS-X

IM does better, but not by a game-changingmargin: 9.4% on TPC-DS

(where TAG_tg is faster though) and a negligible 2.6% on TPC-H.

8.6 Distributed Experiments
In a cluster setting, we compared TAG-join implementation on

TigerGraph 3.1 against Spark SQL 3.0.1.

8.6.1 Experiment Setup. We used the TPC workloads described in

§8.1.1 and the cluster described in §8.1.4.

We operated TigerGraph in distributed query mode, in which

the vertex program is executed in parallel on all machines and

the result is gathered at the machine where the given query is

started. No additional tuning was carried out for TigerGraph. We

used TigerGraph’s default automatic partitioning of the input graph

among the machines. Since we observed strong performance as is,

we did not try to tune partitioning, which we leave for future work.

A Spark application consists of a driver process and a number of

executor processes distributed across machines in a cluster. Execu-

tor processes are launched by the driver process, read data from

distributed files systems (S3 bucket in our experiments) and exe-

cute the given query. Each executor process can run multiple tasks

in parallel. Through extensive tuning experiments, we found the

best-performing configuration to assign 3 executors per machine,

with 5 cores and 16GB of memory per executor (almost 2x faster

than one executor per machine). We used Parquet [4], a compressed

columnar file format, as a data source, for which Spark supports

column pruning and filter predicate pushdown. Spark SQL also

offers in-memory caching, which we enabled in our experiments.

8.6.2 Results. Figure 5 shows the aggregate runtimes of TPC-H

and TPC-DS queries. On TPC-H queries TAG_tg is in aggregate

2x faster than Spark SQL, and 1.46x faster on TPC-DS queries.

Similarly to the single-server experiments, the best performance is

observed on queries without aggregation, with local aggregation

and correlated subqueries.

On TPC-H queries, TAG_tg is faster than Spark SQL on 17 queries

and competitive on 3 queries (out of 22 queries total). For example,

on LA queries such as q3, q4, q5 and q10 the speedup ranges from

1.6x to 4x. The biggest speedup of 17x over Spark SQL is observed

on q17, which contains a correlated a subquery. TAG_tg performs

Figure 5: Summary of distributed experiments

well on most queries with GA or scalar GA, except for q6 and q13

where Spark SQL is faster by 1.4-2.5x. Individual runtimes of all

TPC-H queries are shown in [46].

Out of 84 TPC-DS queries, TAG_tg is either competitive or out-

performs Spark SQL on 64 queries. On queries without aggregation

the speedup is 3.4-5.5x, while on queries with LA TAG_tg achieves

up to 7.6x speedup. TAG_tg performs well on most of the queries

with either GA or scalar GA. Spark SQL is only faster on 20 queries

from this class, because in order to compute the final result all active

vertices need to write into a single global accumulator, which be-

comes the parallelism bottleneck. Individual runtimes of all TPC-DS

queries are shown in [46].

We track network usage on each machine in the cluster using the

𝑠𝑎𝑟 tool to record the total number of bytes received and transmitted.

Figure 5 shows the total network traffic per benchmark execution.

Spark SQL incurs 9x more traffic on TPC-H and 4x more on TPC-DS

because it uses broadcast or shuffle joins, which require runtime

replication of data across partitions.

9 CONCLUSION AND FUTUREWORK
We have shown that the TAG encoding and our TAG-join algorithm

combine to unlock the potential of vertex-centric SQL evaluation to

exploit both intra- and inter-machine parallelism. By running full

TPC SQL queries we have proven that our vertex-centric approach

is compatible with executing RA operations beyond joins. The

observed performance constitutes very promising evidence for the

relevance of vertex-centric approaches to SQL evaluation.

From the SQL user’s perspective, our experiments show that

in single-server data warehousing settings, vertex-centric evalua-

tion can clearly outperform even leading commercial engines like

RDBMS-X IM column store. In TPC-H workloads, comparison to

RDBMS-X IM depends on the kind of aggregation performed, while

our approach is competitive with or superior to the other relational

engines. In a distributed cluster, our TAG-join implementation out-

performs Spark SQL on both TPC benchmarks.

Our main focus has been on join evaluation and we have only

scratched the surface of inter-operator optimizations, confining

ourselves to those inspired by the relational setting (like pushing

selection, projection and aggregations before joins). We plan to

explore optimizations specific to the vertex-centric model.

If the value domain is continuous and the database is constantly

being updated, the TAG encoding would prescribe creating a new

attribute vertex for virtually each incoming value, which is imprac-

tical. Applying our vertex-centric paradigm to this scenario is an

open problem which constitutes an appealing future work avenue.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1675

REFERENCES
[1] 2018. TPC-H Benchmark. http://www.tpc.org/tpch

[2] 2019. TPC-DS Benchmark. http://www.tpc.org/tpcds

[3] 2020. Apache Giraph. https://giraph.apache.org/

[4] 2020. Apache Parquet. https://parquet.apache.org/

[5] 2020. Apache Spark. https://spark.apache.org

[6] 2020. Apache Spark GraphX. https://spark.apache.org/graphx/

[7] 2020. TigerGraph. https://www.tigergraph.com/

[8] C. Aberger, A. Lamb, K. Olukotun, and C. Re. 2018. LevelHeaded: A Unified

Engine for Business Intelligence and Linear Algebra Querying. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE). 449–460.

[9] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-

tun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph

Processing. ACM Trans. Database Syst. 42, 4, Article 20 (Oct. 2017), 44 pages.

https://doi.org/10.1145/3129246

[10] F. N. Afrati and J. D. Ullman. 2011. Optimizing Multiway Joins in a Map-Reduce

Environment. IEEE Transactions on Knowledge and Data Engineering 23, 9 (2011),

1282–1298.

[11] Khaled Ammar and M. Tamer Özsu. 2018. Experimental Analysis of Distributed

Graph Systems. Proc. VLDB Endow. 11, 10 (June 2018), 1151–1164. https://doi.

org/10.14778/3231751.3231764

[12] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei

Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-

bourne, Victoria, Australia) (SIGMOD ’15). Association for Computing Machinery,

New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[13] Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query

Plans for Relational Joins. In Proceedings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’08). IEEE Computer Society, USA,

739–748. https://doi.org/10.1109/FOCS.2008.43

[14] Nurzhan Bakibayev, Tomáš Kočiský, Dan Olteanu, and Jakub Závodný. 2013.

Aggregation and Ordering in Factorised Databases. Proc. VLDB Endow. 6, 14 (Sept.
2013), 1990–2001. https://doi.org/10.14778/2556549.2556579

[15] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in Parallel Query

Processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (Snowbird, Utah, USA) (PODS ’14). Association
for Computing Machinery, New York, NY, USA, 212–223. https://doi.org/10.

1145/2594538.2594558

[16] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps

for Parallel Query Processing. J. ACM 64, 6, Article 40 (Oct. 2017), 58 pages.

https://doi.org/10.1145/3125644

[17] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the

Desirability of Acyclic Database Schemes. J. ACM 30, 3 (July 1983), 479–513.

https://doi.org/10.1145/2402.322389

[18] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve

Relational Queries. J. ACM 28, 1 (Jan. 1981), 25–40. https://doi.org/10.1145/

322234.322238

[19] Yingyi Bu, Vinayak R. Borkar, Jianfeng Jia, Michael J. Carey, and Tyson Condie.

2014. Pregelix: Big(ger) Graph Analytics on a Dataflow Engine. Proc. VLDB
Endow. 8, 2 (2014), 161–172. https://doi.org/10.14778/2735471.2735477

[20] Anand Deshpande and D. V. Gucht. 1988. An Implementation for Nested Rela-

tional Databases. In VLDB.
[21] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native

MPP Graph Database. CoRR abs/1901.08248 (2019). arXiv:1901.08248 http:

//arxiv.org/abs/1901.08248

[22] Alin Deutsch, Yu Xu,MingxiWu, and Victor E. Lee. 2020. Aggregation Support for

Modern Graph Analytics in TigerGraph. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 377–392. https:

//doi.org/10.1145/3318464.3386144

[23] Mostafa Elhemali, César A. Galindo-Legaria, Torsten Grabs, and Milind M. Joshi.

2007. Execution Strategies for SQL Subqueries. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (Beijing, China) (SIG-
MOD ’07). Association for Computing Machinery, New York, NY, USA, 993–1004.

https://doi.org/10.1145/1247480.1247598

[24] Jing Fan, Adalbert Gerald Soosai Raj, and J. M. Patel. 2015. The Case Against

Specialized Graph Analytics Engines. In CIDR.
[25] GeorgeH.L. Fletcher and PeterW. Beck. 2009. Scalable Indexing of RDFGraphs for

Efficient Join Processing. In Proceedings of the 18th ACMConference on Information
and Knowledge Management (Hong Kong, China) (CIKM ’09). Association for

Computing Machinery, New York, NY, USA, 1513–1516. https://doi.org/10.1145/

1645953.1646159

[26] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas

Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational Database

Systems. Proc. VLDB Endow. 13, 12 (July 2020), 1891–1904. https://doi.org/10.

14778/3407790.3407797

[27] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12). USENIX Association, Hollywood, CA, 17–30. https://www.usenix.

org/conference/osdi12/technical-sessions/presentation/gonzalez

[28] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and Francesco Scarcello. 2005. Hy-

pertree Decompositions: Structure, Algorithms, and Applications. InWG.
[29] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1999. Hypertree Decom-

positions and Tractable Queries. In Proceedings of the Eighteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 31 - June
2, 1999, Philadelphia, Pennsylvania. ACM Press, 21–32. https://doi.org/10.1145/

303976.303979

[30] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge

Covers. ACM Trans. Algorithms 11, 1, Article 4 (Aug. 2014), 20 pages. https:

//doi.org/10.1145/2636918

[31] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang

Wang, and Tianqi Jin. 2014. An experimental comparison of Pregel-like graph

processing systems. Proceedings of the VLDB Endowment 7 (08 2014), 1047–1058.
https://doi.org/10.14778/2732977.2732980

[32] Xiao Hu, Yufei Tao, and Ke Yi. 2017. Output-Optimal Parallel Algorithms for

Similarity Joins. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17).
Association for Computing Machinery, New York, NY, USA, 79–90. https:

//doi.org/10.1145/3034786.3056110

[33] Xiao Hu and Ke Yi. 2019. Instance and Output Optimal Parallel Algorithms

for Acyclic Joins. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Amsterdam, Netherlands) (PODS
’19). Association for Computing Machinery, New York, NY, USA, 450–463.

https://doi.org/10.1145/3294052.3319698

[34] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Deshpande,

and Mike Stonebraker. 2014. Vertexica: Your Relational Friend for Graph Analyt-

ics! Proc. VLDB Endow. 7, 13 (Aug. 2014), 1669–1672. https://doi.org/10.14778/

2733004.2733057

[35] Paraschos Koutris, Semih Salihoglu, and Dan Suciu. 2018. Algorithmic Aspects

of Parallel Data Processing. Foundations and Trends® in Databases 8, 4 (2018),
239–370. https://doi.org/10.1561/1900000055

[36] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,

and Joseph Hellerstein. 2010. GraphLab: A New Framework for Parallel Machine

Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence (Catalina Island, CA) (UAI’10). AUAI Press, Arlington, Virginia, USA,
340–349.

[37] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. 2014. Large-Scale Distributed

Graph Computing Systems: An Experimental Evaluation. Proceedings of the
VLDB Endowment 8.

[38] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-

Scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (Indianapolis, Indiana, USA) (SIGMOD ’10).
Association for Computing Machinery, New York, NY, USA, 135–146. https:

//doi.org/10.1145/1807167.1807184

[39] Robert McCune, Tim Weninger, and Gregory Madey. 2015. Thinking Like a

Vertex: a Survey of Vertex-Centric Frameworks for Distributed Graph Processing.

Comput. Surveys 48 (07 2015). https://doi.org/10.1145/2818185

[40] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph Queries by

Combining Binary and Worst-Case Optimal Joins. Proc. VLDB Endow. 12, 11 (July
2019), 1692–1704. https://doi.org/10.14778/3342263.3342643

[41] Hung Q. Ngo. 2018. Worst-Case Optimal Join Algorithms: Techniques, Results,

and Open Problems. arXiv:1803.09930 [cs.DB]

[42] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case

Optimal Join Algorithms. J. ACM 65, 3, Article 16 (March 2018), 40 pages. https:

//doi.org/10.1145/3180143

[43] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew Strikes Back: New

Developments in the Theory of Join Algorithms. SIGMOD Rec. 42, 4 (Feb. 2014),
5–16. https://doi.org/10.1145/2590989.2590991

[44] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representa-

tions of Query Results. ACM Trans. Database Syst. 40, 1, Article 2 (March 2015),

44 pages. https://doi.org/10.1145/2656335

[45] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You

Should Run TPC-DS: A Workload Analysis. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases (Vienna, Austria) (VLDB ’07). VLDB
Endowment, 1138–1149.

[46] Ainur Smagulova and Alin Deutsch. 2021. Vertex-centric Parallel Computation

of SQL Queries. arXiv:2103.14120 [cs.DB]

[47] Radu Stoica, George Fletcher, and Juan F. Sequeda. 2019. On directly mapping

relational databases to property graphs. In Alberto Mendelzon Workshop on Foun-
dations of Data Management (AMW2019) (CEUR Workshop Proceedings), Aidan
Hogan and Tova Milo (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-2369 13th

AlbertoMendelzon InternationalWorkshop on Foundations of DataManagement,

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1676

http://www.tpc.org/tpch
http://www.tpc.org/tpcds
https://giraph.apache.org/
https://parquet.apache.org/
https://spark.apache.org
https://spark.apache.org/graphx/
https://www.tigergraph.com/
https://doi.org/10.1145/3129246
https://doi.org/10.14778/3231751.3231764
https://doi.org/10.14778/3231751.3231764
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.1145/2594538.2594558
https://doi.org/10.1145/2594538.2594558
https://doi.org/10.1145/3125644
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.14778/2735471.2735477
https://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/1247480.1247598
https://doi.org/10.1145/1645953.1646159
https://doi.org/10.1145/1645953.1646159
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2636918
https://doi.org/10.14778/2732977.2732980
https://doi.org/10.1145/3034786.3056110
https://doi.org/10.1145/3034786.3056110
https://doi.org/10.1145/3294052.3319698
https://doi.org/10.14778/2733004.2733057
https://doi.org/10.14778/2733004.2733057
https://doi.org/10.1561/1900000055
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2818185
https://doi.org/10.14778/3342263.3342643
https://arxiv.org/abs/1803.09930
https://doi.org/10.1145/3180143
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/2656335
https://arxiv.org/abs/2103.14120
http://ceur-ws.org/Vol-2369

AMW 2019 ; Conference date: 03-06-2019 Through 07-06-2019.

[48] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug. 1990), 103–111. https://doi.org/10.1145/79173.79181

[49] Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm.

arXiv:1210.0481 [cs.DB]

[50] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong, Hassan Chafi, and

Jay Banerjee. 2013. Graph Analysis: Do We Have to Reinvent the Wheel?. In

First International Workshop on Graph Data Management Experiences and Systems
(New York, New York) (GRADES ’13). Association for Computing Machinery,

New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2484425.2484432

[51] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big Graph

Analytics Platforms. Foundations and Trends in Databases 7 (01 2017), 1–195.

https://doi.org/10.1561/1900000056

[52] Weipeng P. Yan and Per-Åke Larson. 1995. Eager Aggregation and Lazy Aggrega-

tion. In Proceedings of the 21th International Conference on Very Large Data Bases
(VLDB ’95). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 345–357.

[53] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases - Volume 7
(Cannes, France) (VLDB ’81). VLDB Endowment, 82–94.

[54] Kangfei Zhao and Jeffrey Xu Yu. 2017. All-in-One: Graph Processing in RDBMSs

Revisited. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for ComputingMachin-

ery, New York, NY, USA, 1165–1180. https://doi.org/10.1145/3035918.3035943

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1677

https://doi.org/10.1145/79173.79181
https://arxiv.org/abs/1210.0481
https://doi.org/10.1145/2484425.2484432
https://doi.org/10.1561/1900000056
https://doi.org/10.1145/3035918.3035943

	Abstract
	1 Introduction
	2 Vertex-centric BSP Model
	3 TAG Encoding of a Relational DB
	4 Vertex-centric Two-Way Join
	4.1 Join on a Single Attribute
	4.2 Join on Multiple Attributes

	5 Acyclic Multi-way Joins
	5.1 TAG Traversal Plan
	5.2 Vertex-Centric Algorithm

	6 Arbitrary (Cyclic) Joins
	6.1 Triangle Query
	6.2 Arbitrary Equi-Join Queries

	7 Beyond Equi-Joins
	8 Experiments
	8.1 Experiment Setup
	8.2 Data Loading Results
	8.3 blackSingle-Server TPC-H Results
	8.4 blackSingle-Server TPC-DS Results
	8.5 Memory Usage
	8.6 Distributed Experiments

	9 Conclusion and Future Work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.86, 52.29 Width 250.28 Height 108.86 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.8569 52.289 250.2846 108.8567

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 14
 0
 1

 1

 HistoryList_V1
 qi2base

