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ABSTRACT
DNA sequencing, especially ofmicrobial genomes andmetagenomes,

has been at the core of recent research advances in large-scale com-

parative genomics. The data deluge has resulted in exponential

growth in genomic datasets over the past years and has shown

no sign of slowing down. Several recent attempts have been made

to tame the computational burden of sequence search on these

terabyte and petabyte-scale datasets, including raw reads and as-

sembled genomes. However, no known implementation provides

both fast query and construction time, keeps the low false-positive

requirement, and offers cheap storage of the data structure.

We propose a data structure for search called RAMBO (Repeated

And Merged BloOm Filter) which is significantly faster in query

time than state-of-the-art genome indexing methods- COBS (Com-

pact bit-sliced signature index), Sequence Bloom Trees, HowDeSBT,

and SSBT. Furthermore, it supports insertion and query process

parallelism, cheap updates for streaming inputs, has a zero false-

negative rate, a low false-positive rate, and a small index size.

RAMBO converts the search problem into set membership test-

ing among 𝐾 documents. Interestingly, it is a count-min sketch

type arrangement of a membership testing utility (Bloom Filter

in our case). The simplicity of the algorithm and embarrassingly

parallel architecture allows us to stream and index a 170TB whole-

genome sequence dataset in a mere 9 hours on a cluster of 100

nodes while competing methods require weeks.
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1 INTRODUCTION
The availability of genomic data facilitates necessary biological

research like cancer genomics, vaccine development and immuniza-

tion, infection tracking, early diagnosis and treatments, structural

variant analyses, and more [30] [27]. Recent advances in DNA se-

quencing technologies have both increased the throughput and

decreased the cost of reading the DNA sequence of organisms

and microbial communities of interest. While this has broadened

the horizons of biological research, it poses new challenges for

computational biologists. Thanks to these advancements, genome

sequence data has doubled in size every 2 years and is likely to grow

at an increasing pace [9, 26]. The European Nucleotide Archive

(ENA) and NCBI Archive already contain petabytes of data. It has

become computationally prohibitive to search these vast archives

for DNA sequences of interest. Efficient and frugal search func-

tionality across all available genomic and metagenomic datasets is

significant to public health. It would enable quick identification of

already-sequenced organisms that are highly similar to an outbreak

strain.
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Method Size Query Time Comments

Inverted Index Best case: 𝑂 (1) Enormous construction time, Impractical for bigger datasets

log𝐾
⋃
𝑆 ∈S |𝑆 | Best case needs MPH and a known k-mer (term) distribution

BIGSI/COBS

∑
𝑆 ∈S |𝑆 | 𝑂 (𝐾) Query time is linear in 𝐾 , Small size index

Sequence Bloom Trees log𝐾
∑
𝑆 ∈S |𝑆 | Best: 𝑂 (𝑙𝑜𝑔𝐾), Worst: 𝑂 (𝐾) Sequential query process is bottleneck

RAMBO Γ log𝐾
∑
𝑆 ∈S |𝑆 | 𝑂 (

√
𝐾 log𝐾) Γ < 1, Sub-linear query time

Table 1: Theoretical comparison of related algorithms on sequence searching. 𝑆 ∈ S represents a document. 𝐾 is the total
number of documents. Here

∑
𝑆 ∈S |𝑆 | represents total number of terms in 𝐾 documents and

⋃
𝑆 ∈S |𝑆 | is total unique terms.

MPH is minimal Perfect Hashing [8]. For the Inverted Index size, the extra log𝐾 comes from the bit precision document IDs.
For SBTs, log𝐾 is the height of the tree and Bloom Filters at each level is 𝑂 (∑𝑆 ∈S |𝑆 |) big in total. Refer to Section 4 for the
detailed analysis of RAMBO.

The DNA sequence search problem is analogous to Document

Retrieval. Given a query gene strand, we are expected to retrieve the

whole gene sequence that contains it (Figure 1). The search results

are critical for a variety of genomic research and analysis tasks.

Its similarities with the problem of web search, in terms of both

objective and scale, have triggered a flurry of ideas borrowed from

the information retrieval community [17, 23]. In the seminal work

BLAST [5], a popular search platform for biological databases, the

authors provided the first attempt to search over large databases.

However, the method does not scale to large query datasets [5]

due to the reliance on computationally expensive local sequence

alignment. On the other hand, traditional approaches such as the

inverted index [18] cannot quickly index large-scale data without

violating memory constraints.

To address this issue, computational biologists and database prac-

titioners have shifted their attention to Bloom Filter based meth-

ods [6, 7, 9] and similar bit-signature approaches for gene sequence

search due to the sheer scale of genomic data. A recent Nature
Biotechnology article, BIGSI [9], proposed a method which was suc-

cessful in indexing the set of 469,654 bacterial, viral and parasitic

DNA sequences in the European Nucleotide Archive [3] of Decem-

ber 2016. These sequences come from read archive datasets (FASTQ

format) or assembled genomes (FASTA format) consisting of raw

sequences from a DNA sequencer or genome assembler, respec-

tively. The average length of each of these half-million sequences is

more than 100M characters. This makes the entire archive database

about 170TB in size.

To create the index, BIGSI and many other practical indices

convert a long gene sequence into a set of length-31 strings (each

shifted by 1 character) and compress the strings using a Bloom Filter

(sometimes called a Bitsliced signature). These length-31 strings are
called 𝑘-mers. It is analogous to "terms" in the information retrieval

literature. Specifically, a 𝑘-mer is a character 𝑛-gram where 𝑘 = 𝑛.

In our experiments 𝑘 = 31, just like most of the state of the art

methods. We explain the rationale behind this choice in Section 5.

BIGSI essentially creates a Bloom Filter for each document (a set

of 𝑘-mers for one microbe). This index is simply an array of inde-

pendent Bloom Filters where the query time grows linearly in the

number of documents. The Sequence Bloom Tree (SBT) [17, 28]
is another approach to solve the sequence search problem on the

scale of the entire sequence read archive (SRA) [20] using Bloom

Filters. To achieve sublinear query time complexity, the SBT uses a

tree-like hierarchy of Bloom Filters [28]. However, this introduces

Doc 3 Doc K

Sequence Search Problem
Dataset of k-mers CT GA

Membership test

Query k-mers

K

Doc 1 Doc 2 Doc 4

Figure 1: Sequence search problem: First, we convert each of
the 𝐾 documents into a set of k-mers. The k-mers of length
31 are generated using a sliding window on the sequence
(k=4 in the figure for illustration). Given the k-mers from
a query sequence, the task is to determine which of the 𝐾
documents contain all the k-mers present in the query.

a substantial memory overhead at each node. Moreover, the query

process cannot enjoy the parallelism of BIGSI because tree-based

traversal is a sequential algorithm. Experimental results from [9]

suggest that SBTs become less scalable when the time and evolu-

tion of species are factored in, which is the case for bacteria and

viruses. Several follow-ups using ideas similar to SBTs also suffer

from the same issues [24, 29, 31]. By removing the hierarchy, BIGSI

and its recent follow-up COBS (Compact bit-sliced signature
index) [6] obtained substantial memory savings compared to SBTs.

The simplicity of the index, combined with embarrassingly parallel

architecture and clever bit manipulation tricks, enables BIGSI and

COBS to process and search over 170TB WGS datasets in a record

query time. However, with an exponential increase in the number

of datasets in the sequence archive, the linear scaling of latency

and energy is too expensive.

Our Focus: We propose methods to reduce the query cost of se-

quence search over the archive of dataset files to address the sheer

scale and explosive increase of new sequence files. In particular, un-

like BIGSI and COBS, we do not want the number of Bloom Filters

used in the query to be of the same order as the number of datasets,

which can run into several million. At the same time, we also want

an algorithm that maintains all other beneficial BIGSI and COBS

features. We are looking for a data structure for sequence search,

which has the following properties: 1. A zero false-negative rate,

2. A low false-positive rate, 3. Cheap updates for streaming inputs,

4. Fast query time, and 5. A simple, system-friendly data structure



that is straightforward to parallelize. The system should have all

these properties with the least possible memory size.

Insights from Computer Science Literature: There is a funda-
mental algorithmic barrier at the heart of this problem. The classical

sub-linear search data structure provides tree-based solutions that

mainly implement the SBT [28]. However, trees complicate the

query process and have issues with balanced partitions, especially

when dimensionality blows up. Fortunately, the Count-Min Sketch

(CMS) Algorithm [16] from the data streaming literature provides

a workaround. Our proposal for sequence search, Repeated And

Merged BloOm Filter (RAMBO) is a CMS using Bloom Filters. It

is a simple and intuitive way of creating merges and repetitions

of Bloom Filters for membership testing over many sets. RAMBO

leads to a better query-time and memory trade-off in practice. It

beats the current baselines by achieving a very robust, low memory

and ultrafast indexing data structure.

1.1 Contribution
Instead of having separate Bloom Filters for each document, we

split the documents into a small number of random partitions. We

keep one Bloom Filter for each partition. Inspired by the theory of

the Count-Min Sketch [16], if we repeat the partitioning process

with different random seeds a small number of times, we can return

documents with high accuracy.

Our proposed index RAMBO leads to massive improvements in

query cost and would allow effortless scaling to millions of docu-

ments. We provide a rigorous experimental and theoretical analysis

of the query time. Experimental comparisons show that RAMBO is

significantly faster (between 25x to 2000x improvement) in query

time over the most competitive baselines of gene data indexing

while preserving competitive false-positive rates.

RAMBO can be made embarrassingly parallel for insertion and

query by an intelligent choice of hash functions and judicious

utilization of parallel processors. It can be easily distributed over

multiple nodes, cores, and threads for achieving substantial speedup.

We show remarkable improvements in construction and query time

over the baselines on a 170TB WGS dataset. We reduce the time

of offline construction of the index from 6 weeks (1008 hours for

BIGSI) to only 9 hours (including the additional download time of 8

hrs). This is attributed to the fact that BIGSI downloads and indexes

460,500 files (170TB) sequentially. Its successor, COBS [6], is much

faster and better in all aspects than BIGSI. The RAMBO index has a

slightly larger memory requirement than an optimal array of Bloom

Filters (COBS), but it keeps a cheap index (1.8 terabytes) for 170TB

worth of data. It is important to note that Bloom Filters in RAMBO

can be replaced with any other set membership testing method.

2 PRELIMINARIES
2.1 Bloom Filters
The Bloom Filter [7, 15, 22] is an array of𝑚 bits which represents

a set 𝑆 of 𝑛 elements. It is initialized with all bits set to 0. During

construction, we apply 𝜂 universal hash [11] functions {ℎ1, ℎ2 ...ℎ𝜂 }
with range𝑚 to the elements of 𝑆 (𝜂 and 𝑛 are different). We set

the bits at the respective locations {ℎ1 (𝑥), ℎ2 (𝑥) ...ℎ𝜂 (𝑥)} for each
key 𝑥 ∈ 𝑆 . Once the construction is done, the Bloom Filter can be

used to determine whether a query 𝑞 ∈ 𝑆 by calculating the AND

of the bits at the 𝜂 locations: ℎ1 (𝑞), ℎ2 (𝑞)...ℎ𝜂 (𝑞). The output will
be True if all 𝜂 locations are 1 and False otherwise. Bloom Filters

have no false negatives as every key 𝑥 ∈ 𝑆 will set all the bits at

locations {ℎ1 (𝑥), ℎ2 (𝑥) ...ℎ𝜂 (𝑥)}. However, there are false positives
introduced by hash collisions. The false positive rate of the Bloom

Filter, 𝑝 , is given by: 𝑝 =

(
1 −

[
1 − 1

𝑚

]𝜂𝑛)𝜂 ≈ (
1 − 𝑒−𝜂𝑛/𝑚

)𝜂
. We

should note that this expression makes many simplifying assump-

tions and is not entirely correct, as we assume independence of

the probabilities of each bit being set. A more accurate analysis is

given in Christensen et al [13]. However, its deviation from practical

numbers is minimal when the Bloom Filter size is large (Figure 2 of

[13]). At the scale that we are dealing with, the difference becomes

insignificant.

Using the simplified analysis, the false positive rate is minimized

when we use 𝜂 = − log 𝑝
log 2 and 𝑚 = −𝑛 log 𝑝

log 2 . The size of a Bloom

Filter grows linearly in the cardinality 𝑛 of the set it represents.

Bloom Filter has a constant-time query operation.

R
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Figure 2: (a) Left: RAMBO architecture and the insertion
process. The construction of the first repetition is high-
lighted.Here the𝐾 documents are randomly partitioned (via
a 2-universal hash function [11]). Each Bloom Filter (called
BFU) is the union of sets equivalent of partitioned docu-
ments. (b) Right: For a given query each table, RAMBO re-
turns one or more BFUs (represented by the dots) where the
membership is defined. The red dot represents the false pos-
itives and green dot represents the true positives. The mem-
bership of a query 𝑘-mer is defined by the union of the re-
turned documents from each repetition followed by the in-
tersection across 𝑅 repetitions.

3 RAMBO: REPEATED AND MERGED BLOOM
FILTERS

The RAMBO architecture (Figure 2) comprises an array of 𝑅 tables,

each containing 𝐵 Bloom Filters. We partition the𝐾 documents into

𝐵 groups and compress every group of documents to a Bloom Filter

called Bloom Filters for the Union (BFU). Here each document is a

set of𝑘-mers. This process is repeated independently for the𝑅 tables

using 𝑅 different and independent 2-universal hash functions. Due

to the hash functions’ universality, every cell of a table in RAMBO

contains 𝐾/𝐵 sets from S in expectation.

3.1 Intuition
We have 𝐾 documents, partitioned into 𝐵 partitions, where 2 ≤
𝐵 ≪ 𝐾 . Now, we are given a query term 𝑞. For simplicity, assume



that this query belongs to a single document. Now, if we query

each partition, we can determine which one of them contains 𝑞.

We refer to this partition as 𝐴1. Thus, with only 𝐵 Bloom Filter

queries, we have reduced the number of candidate sets from 𝐾 to

𝐾
𝐵
in expectation. If we independently repeat this process again,

we find another partition 𝐴2 that contains 𝑞. Our pool of candidate

sets is now the set intersection of 𝐴1 and 𝐴2, which in expectation

has size
𝐾
𝐵2 . With more repetitions, we progressively rule out more

and more options until we are left with only the sets that contain 𝑞.

The critical insight is that each repetition reduces the number of

candidates by a factor of
1
𝐵
, which decreases exponentially with the

number of repetitions. Since RAMBO is an extension of the Count-

Min Sketch (CMS) data structure [16], most theoretical guarantees

carry forward. We replace the counters in the CMS with Bloom

Filters. Instead of adding counters to construct the CMS, we merge

the sets of k-mer terms. The querying procedure of the CMS is

replaced with an intersection over the merged sets to determine

which sets contain a query term.

3.2 Construction
We assign sets based on a partition hash function 𝜙 (.) that maps the

set identity to one of 𝐵 cells. We use 𝑅 independent partition hash

functions {𝜙1, 𝜙2, ..., 𝜙𝑅}. Suppose we want to add a set of terms

in Doc-1 to RAMBO. We first use the partition function 𝜙𝑖 (Doc-1)
to map Doc-1 in repetition 𝑖 , ∀ 𝑖 ∈ {0, 1, ..., 𝑅}. Then we insert the

terms (𝑘-mers) of Doc-1 in 𝑅 assigned BFUs (Algorithm 1). The

Bloom Filter insertion process is defined in Section 2.1. We define

the size of each BFU based on the expected number of insertions in

it. This is further analyzed in Section 5.1.

Our RAMBO data structure is a 𝐵 × 𝑅 CMS of Bloom Filters.

Clearly, this structure is conducive to updates to a data stream.

Every new term in a document is hashed to unique locations in 𝑅

tables. The size of the BFU can be predefined or a scalable Bloom

Filter [4] can be used for adaptive size.

Algorithm 1 Algorithm for insertion in RAMBO architecture

Input: Set S of 𝐾 sets

Result: RAMBO (size: 𝐵 × 𝑅 )

Generate 𝑅 partition hash functions 𝜙1 (·), ...𝜙𝑅 (·)
RAMBO← 𝐵 × 𝑅 array of Bloom Filters

while Input 𝑆𝑖 do
for term 𝑥 ∈ 𝑆𝑖 do

for 𝑑 = 1, ...𝑅 do
Insert(𝑥 , RAMBO[𝜙𝑑 (𝑥), 𝑑])

end for
end for

end while

3.3 Query
We start the RAMBO query process by performing membership

testing for each of the 𝐵 × 𝑅 BFUs. This is followed by taking the

union of the sets corresponding to each filter that returns True

in each table, and then the intersection of those unions across

the 𝑅 tables. The union and intersection are implemented using

fast bitwise operations, and the expected query time is sub-linear

(Section 4.2). Algorithm 2 presents the query process. Here, set

𝐴 ⊆ S is the final set of matched documents.

Note that a 𝑘-mer can occur in multiple documents, which we

call multiplicity. For this reason, and the fact that Bloom Filters

have a nonzero false positive rate, multiple BFUs may return True

(Figure 2). If a query 𝑘-mer does not exist in any document, RAMBO

will most likely return an empty set 𝐴 = ∅ or a small set of false

positives with low probability.

3.3.1 Large SequenceQuery. To query a larger term sequence with

length 𝑛, we simply use a sliding window of size 𝑘 to go through

the entire sequence. This will create a set of terms𝑄 to query. Then

we iterate over the terms in 𝑄 and membership test each term.

The final output should be the intersection of all returned outputs

from each term in 𝑄 . Since Bloom Filter does not have any false

negatives, we are guaranteed to obtain a valid result. We only need

to perform exponentially less (in the cardinality of 𝑄) number of

membership tests as the first returned FALSE will be conclusive. It

is interesting to note that the final output size is upper bounded by

the output size of the rarest k-mer in the query sequence.

Algorithm 2 Algorithm for query using RAMBO architecture

Input: query 𝑞 ∈ Ω
Architecture: RAMBO (𝑀) // Size 𝐵 ×𝑅 array of Bloom Filters.

Result: 𝐴 ⊆ S, where 𝑞 ∈ 𝑆𝑖 ∀ 𝑆𝑖 ∈ 𝐴
𝑄 =Terms(𝑞)
for 𝑟 = 1 : 𝑅 do
𝐺𝑟 = {𝑁𝑢𝑙𝑙}
for 𝑏 = 1 : 𝐵 do
𝐺𝑟 = 𝐺𝑟 ∪ 𝐷𝑜𝑐𝐼𝐷𝑠 (𝑀 [𝑏, 𝑟 ]) if 𝑄 ∈BFU(𝑀 [𝑏, 𝑟 ])

end for
end for
𝐴 = ∩𝑖𝐺𝑖 {final returned Doc ID’s}

Define: Q ∈ BFU(M[𝑏, 𝑟 ])
return True if 𝑥 ∈BFU(M[𝑏, 𝑟 ]) ∀𝑥 ∈Q

4 ANALYSIS
Problem Definition: We are given a set of 𝐾 documents S =

{𝑆1, 𝑆2, ..., 𝑆𝐾 }. Each document 𝑆𝑖 contains 𝑘-mers from a universe

Ω of all possible 𝑘-mers. Given a query 𝑞 ∈ Ω, our goal is to identify
all the documents in S that contain 𝑞. That is, the task is to return

the subset 𝐴𝑞 ⊆ S, such that 𝑞 ∈ 𝑆𝑖 if and only if 𝑆𝑖 ∈ 𝐴𝑞 .
RAMBO has two important parameters, 𝑅 and 𝐵, that control

the resource-accuracy trade-off. In this section, we will analyze the

false positive rate, query time, and index size to find the optimal

values of R and B.

4.1 False-Positives
Our first claim is that RAMBO cannot report false negatives. This

follows trivially from our merging procedure and the fact that each

BFU cannot produce false negatives [7]. Next, we begin by finding

the false positive rate of one document and extend this result to all

𝐾 documents.

Lemma 4.1. Per document False Positive Rate
Given the RAMBO data structure with 𝐵 × 𝑅 BFUs, each with false
positive rate 𝑝 and query 𝑞, we assume that 𝑞 belongs to no more than
𝑉 documents. Under these assumptions, the probability of incorrectly



reporting that 𝑞 ∈ 𝑆𝑖 when 𝑞 ∉ 𝑆𝑖 is

𝐹𝑝 =

(
𝑝

(
1 − 1

𝐵

)𝑉
+ 1 −

(
1 − 1

𝐵

)𝑉 )𝑅
where 𝑝 is the individual false positive rate of BFUs.

Proof: The probability of selecting a BFU which should return

false is (1 − 1
𝐵
) if the multiplicity of the key is 1. If it is 𝑉 then

the probability becomes (1 − 1
𝐵
)𝑉 . Since each Bloom Filter has a

false positive rate 𝑝 , the probability of introducing a false positive

through a Bloom Filter failure is 𝑝 (1 − 1
𝐵
)𝑉 .

Because each BFU contains multiple documents, ‘True’ docu-

ments (containing the query) can occur with ‘False’ documents (not

containing the query). Thus, we may also introduce false positives

by merging 𝑆𝑖 into a BFU that contains the 𝑘-mer. The probability

for this event is 1 − (1 − 1
𝐵
)𝑉 . The total per-document false posi-

tive rate for 𝑅 independent repetitions is 𝐹𝑝 = (𝑝 (1 − 1
𝐵
)𝑉 + 1 −

(1 − 1
𝐵
)𝑉 )𝑅 Using this theorem, we can construct the overall false

positive rate of RAMBO.

Lemma 4.2. RAMBO False Positive Rate
Given a RAMBO data structure with 𝐵 × 𝑅 BFUs, each with false
positive rate 𝑝 and query 𝑞, we assume that 𝑞 belongs to no more than
𝑉 documents. Under this assumption, the probability of reporting
an incorrect membership status for any of the 𝐾 documents, a.k.a.
RAMBO False Positive Rate (𝛿) is upper bounded by

𝛿 ≤ 𝐾
(
1 − (1 − 𝑝)

(
1 − 1

𝐵

)𝑉 )𝑅
where 𝑝 is the individual false positive rate of the BFUs.

This is a direct result of Lemma 4.1 with union bound. A conse-

quence of lemma 4.2 is that we need sub-linear RAMBO repetitions

(logarithmic in 𝐾 ) to obtain an overall false positive rate 𝛿 . We can

state that it is sufficient to keep 𝑅 ≥ log𝐾 − log 𝛿 .

Theorem 4.3. Number of Repetitions
Given a set of 𝐾 files, maximum RAMBO false positive rate 𝛿 and 𝐵
Bloom Filter for each repetition, we need 𝑅 repetitions such that-

𝑅 = 𝑂 (log𝐾 − log 𝛿)

4.2 Query Time Analysis
This section demonstrates that RAMBO achieves sublinear query

time in expectation. To query the set membership status of an

element 𝑥 , we perform 𝐵 × 𝑅 Bloom Filter look-ups followed by

union and intersection operations (Section 3.3).

Since each repetition makes a disjoint partition of the 𝐾 docu-

ments, the union operations do not require any computational over-

head. The set intersections between repetitions, however, require

|𝑋1 | + |𝑋2 | operations, where 𝑋1 is the set of all active documents

in first repetition and 𝑋2 is the set of all active documents in the

next repetition. Since there are 𝑅 repetitions, the total cost for the

intersection is

∑𝑅
𝑟=1 |𝑋𝑟 |. By observing that E[|𝑋𝑟 |] ≤ 𝑉 + 𝐵𝑝 , we

obtain the following result.

Lemma 4.4. Expected query time
Given the RAMBO data structure with 𝐵 ×𝑅 BFUs and a query 𝑞 that

is present in at most 𝑉 documents, the expected query time is

E[𝑞𝑡 ] ≤ 𝐵𝑅𝜂 +
𝐾

𝐵
(𝑉 + 𝐵𝑝)𝑅

where 𝐾 is the number of documents, 𝑝 is the BFU false positive rate,
and 𝜂 is the number of hash functions used in BFUs.

The first term represents the time to query the 𝐵 × 𝑅 BFUs.

Note that 𝜂 ranges from 1 to 6 in practice. The second term is the

time required to perform 𝑅 intersections. We get 𝐵 =
√︁
𝐾𝑉 /𝜂 by

minimising the query time (i.e. solving ∇𝐵 (E[𝑞𝑡 ]) = 0). To obtain

an expression for the query time in terms of the overall failure

probability 𝛿 and the number of documents 𝐾 , we suppose that

𝑝 ≤ 1
𝐵
and set 𝑅 according to Theorem 4.3. Our main theorem is a

simplified version of this result where we omit lower-order terms.

Theorem 4.5. RAMBO Query time
Given a RAMBO data structure and a query 𝑞 that is present in at-
most 𝑉 documents, RAMBO performs the search over 𝐾 documents
with false positive rate ≤ 𝛿 in query time 𝑞𝑡 , where

E[𝑞𝑡 ] = 𝑂
(√
𝐾 (log𝐾 − log 𝛿)

)
Note that 𝑉 is independent of 𝐾 and 𝛿 .

4.3 Memory Analysis
Weprovide an average case analysis under a simplifying assumption

to analyze the expected performance of our method. We assume

that every key has a fixed multiplicity𝑉 , meaning that every item is

present in exactly𝑉 documents. Under these assumptions, RAMBO

requires the following amount of space.

Lemma 4.6. Size of RAMBO
For the proposed RAMBO architecture with size 𝐵 × 𝑅 and data with
𝐾 files, where every key has 𝑉 number of duplicates, the expected
memory requirement is

E𝑣 (𝑀) = Γ log𝐾 log(1/𝑝)
∑︁
𝑆 ∈S
|𝑆 | where Γ < 1

Here Γ =
∑𝑉
𝑣=1

1
𝑣
(𝐵−1)𝑉−2𝑣+1

𝐵𝑉−1
. The expectation is defined over

the variable 𝑣 which takes values from {1,2...V}. This expression

of Γ holds if we are hashing document IDs using a universal hash

function. If 𝐵 = 𝐾 , we will have one Bloom Filter per set. In that

case, Γ = 1. We prove the expression of Γ and its variation for any

𝐵 < 𝐾 and 𝑉 > 1 in Section 7.

5 EXPERIMENTS
5.1 Parameter Selection and Design Choices
Size of BFU: For each BFU to have a false positive rate 𝑝 using 𝜂

hashes, the size of the BFU must be set based on the number of

insertions (Section 2.1). One way to determine the BFU size is to

preprocess the data by counting the number of terms that will fall

into each BFU. In practice, it is sufficient to estimate the average

set cardinality from a tiny fraction of the data, and we use this

cardinality to set the size for all BFUs. Section 5.2 presents these

statistics for our data.

B and R: They are chosen according to 𝐵 = 𝑂 (
√
𝐾) and 𝑅 =

𝑂 (𝑙𝑜𝑔𝐾), where the constants were found empirically.

Bitmap arrays: The intersection may be implemented using either



Time per query (ms) (CPU time) Construction time

FASTQ McCortex FASTQ McCortex

#files HowDe SSBT RAMBO RAMBO
+

COBS RAMBO RAMBO
+

HowDe SSBT RAMBO COBS RAMBO

100 5.24 8.47 0.018 0.0151 0.19 0.014 0.005 2h30m 52m 35m 1m25s 1m12s

200 10.38 17.12 0.025 0.0202 0.38 0.017 0.011 8h 1h47m 52m 3m58s 2m25s

500 24.15 42.27 0.056 0.0483 1.03 0.04 0.018 21h 4h51m 1h57m 8m28s 6m22s

1000 - 82.32 0.093 0.0747 1.78 0.07 0.031 - 9h16m 4h6m 14m18s 12m32s

2000 - 161.58 0.191 0.149 2.72 0.09 0.059 - 18h22m 8h55m 15m38s 25m41s

Table 2: Performance comparison between RAMBO and baselines on 1000 queries. To ensure a fair comparison, we have se-
lected baseline hyper-parameters from their papers with the target false positive rate range of [0.01, 0.011], where the RAMBO
false positive rate always falls in the range [0.0095, 0.01]. HowDeSBT exceeds the available RAMon our platform after 500files.

Size (FASTQ) Size (McCortex)

#files HowDe SSBT RAMBO COBS RAMBO

100 92.5GB 9.5GB 12.8GB 2.4GB 3.5GB

200 182GB 9.5GB 19GB 4.9GB 6.3GB

500 456GB 18GB 42GB 7.5GB 13.9GB

1000 - 36GB 70GB 20GB 23.2GB

2000 - 72GB 140GB 28GB 47 GB

Table 3: Size of index comparison for the same experiment
from Table 2. In worst case, RAMBO takes 𝑂 (log𝐾) ex-
tra space than the optimal Array of Bloom Filter (COBS).
HowDeSBT and SSBT uses RRR [25] bitvector compression,
however RAMBO does not compress the bitvectors. Any pos-
sible compression based optimization is left for the future
exploration.

bitmap arrays or sets. For binary operations, the OR operation is

𝑂 (1), hence intersection is very fast using bitmaps. The complexity

of the AND operation depends on the set size; bitmaps are more

efficient when 1s occupy > 15% of the bitmap [21]. This is true in

our case, so we used bitmaps and found that the AND operations

take fewer than 5% of the query process cycles. Extensions such

as SIMD-accelerated bitmaps are outside the scope of this work.

Query time speedup: We may avoid querying all 𝐵 × 𝑅 BFUs by

analyzing the repetitions sequentially. Specifically, in repetition 𝑟

we only need to query the BFUs that contain documents returned

by previous repetitions {1, 2...𝑟 − 1}. BFUs that do not contain doc-

uments identified by previous repetitions cannot change the output,

as any documents corresponding to those BFUs will be removed by

the intersection operation of Algorithm 2. We obtain a significant

speedup using this sparse evaluation process (RAMBO
+
in Table 2).

k-mer size for sequence indexing: The value of 𝑘 must be large

enough that each gene sequence may be uniquely identified by a

set of distinct 𝑘-mers. In the laboratory, the gene sequencing of

an organism is done in parts by the sequencing machine. Here,

each part (called "reads") is around 400 − 600 in length typically.

One might be tempted to set 𝑘 equal to the read length. However,

portions of each read are often corrupted by errors, so a smaller 𝑘

must be used in practice. The work by Chikhi et.al. [12] confirmed

k=31/51/71 to be optimal for 𝑘-mer set size and uniqueness. For

the ENA dataset, most of the best methods [10] [6] [28] [19] use

k=31, partially also because it is small enough to be represented as

a 64-bit integer variable with 2-bit encoding. For these reasons and

to provide a fair comparison with popular baselines, we use k=31.

Dataset: We use the 170TB WGS dataset (containing 460500 files)

as described in [9] and [3]. It is the set of all bacterial, viral, and

parasitic gene sequence data in the European Nucleotide Archive

(ENA) as of December 2016. The data is present in two formats

- 1) FASTQ [14] files containing raw, unfiltered sequence reads

and 2) McCortex [32] [10] format, which is a filtered set of 𝑘-mers

that omits low-frequency errors from the sequencing instruments.

The 𝑘-mer length is 31 and the sequence alphabet (or nucleotides)

are A, T, G, and C. Using 1000 random documents we found that

the {average, standard deviation} number of 𝑘-mers is {377.6𝑀 ,

354.9𝑀}, number of unique 𝑘-mers is {95𝑀 , 103.1𝑀} and file size is

{145𝑀𝐵, 86.5𝑀𝐵}. The high variation among documents demands

either a preprocessing pass or our pooling method from Section 5.1

to set the size of each BFU - we use the pooling procedure.

5.2 Genomic sequence indexing
We start our experiments by indexing only the first 2000 documents

(2.4 TB). The results for the subset are shown in Table 2. The details

are as follows

Baselines: The COBS (Compact bit-sliced signature index) [6] (In-

dex based on an array of Bloom Filters) prefers McCortex data

format and hence gives a very erroneous output on FASTQ. The

Bloom Filter tree-based methods, SSBT [29] and HowDeSBT [19]

works with FASTQ version but not with McCortex. Hence, we com-

pare with COBS on McCortex and with SSBT and HowDeSBT on

FASTQ. The comparison with BIGSI is unnecessary, as COBS is

the successor of BIGSI and is better in all aspects. The baseline

implementations and RAMBO are in C++.

Parameters: For HowDeSBT, the Bloom Filter size is 7.5 × 109

bits. HowDeSBT only supports 1 hash function and crashes if an-

other value is used. For SSBT, we use 4 hash functions and set

Bloom Filter size to 8.5 × 108 bits. For COBS, we use 3 hash func-

tion and set the false positive rate to 0.01. These parameters were

hand-optimized and hard-coded into the program by the authors

of COBS. For RAMBO, we use 2 hash functions, the number of

partitions 𝐵 is 15, 27, 60, 100 and 200 for number of set insertions

100, 200, 500, 1000 and 2000. We set 𝑅 = 2 and the BFU size to 109

bits for the McCortex data. For FASTQ, we use 𝑅 = 3 and 29 bits.

These parameters are optimal for low query time, keeping in mind

the allowable (comparable to baselines) index size, false positive

rate, and construction time.

EvaluationMetrics: Creating a test set with ground truth requires
a very time-consuming procedure of generating inverted indices.



The index’s actual false positive rate can also be assessed by creat-

ing an artificial and unseen query-ground-truth set and inserting

this set into the index before querying. Therefore, we calculated the

false positive rate by creating a test set of 1000 randomly generated

30 length 𝑘-mer terms. We used length 30 to ensure that there are

no collisions from the existing 𝑘-mers already in the RAMBO data

structure. These 𝑘-mers were assigned to 𝑉 files (distributed expo-

nentially (1/𝛼) exp(−𝑥/𝛼) with 𝛼 = 100) randomly. The test set is

much much smaller than the dataset’s actual size; hence it makes

an insignificant change in the size of RAMBO. To get the index

size, we report the maximum resident set size (RSS) in memory as

returned by the time utility or the serialized index size, whichever

is higher. This size includes the main index as well as all auxiliary

data structures (like the inverted index mapping 𝐵 buckets to 𝐾

documents). Query time is the CPU time on a single thread, and

construction time is the wall-clock time on 40 threads (with no

other process running on the machine).

System andPlatformDetails: We ran the experiment on a cluster

with multiple 40 core Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz

processor nodes. Each node has 192 GB of RAM and 960 GB of

disk space. The experiments, apart from RAMBO construction on

the full dataset, are performed on a single node. We did not use

multi-threading for querying.

From Table 2 we can see that RAMBO has much faster query

time (from around 25x to 2000x) than the baselines. Furthermore,

RAMBO achieves a small index size (practically close to the theo-

retical lower bound - the array of Bloom Filters). The construction

of RAMBO is an I/O bound process; hence we see almost linear

growth in construction time (with number of files), which is equiva-

lent to COBS and faster than SSBT and HowDeSBT. Insertion from

McCortex format is blazing fast and preferred as it has unique and

filtered 𝑘-mers.

5.3 Smart parallelism- Indexing the full 170TB
WGS dataset in 9 hours from scratch

We now address the construction of RAMBO for the entire 170TB

dataset. One could theoretically create a single RAMBO data struc-

ture with the given R and B parameters on a single machine. How-

ever, this is infeasible due to the limited DRAM and compute re-

sources. We could also construct the index over multiple machines

using a message passing interface, but this introduces a massive

latency overhead due to data transmission over the network. A

third way is using a shared-memory cluster of machines, which

requires a massive DRAM and is infeasible in current multi-core

servers.

We propose a better solution. We parallelize the computation

by partitioning the RAMBO data structure over 100 nodes of the

cluster. Each node contains a small RAMBO data structure indexing

1/100 of the whole dataset, which is around 4605 files in our case.

In the streaming setting, a file (set of terms) is routed to a BFU of a

node randomly. More details about routing are the following-

Routing:We first use a random hash function 𝜏 (.) to assign files to

node and then use an independent smaller node-local 2-universal

hash function 𝜙𝑖 (.) to assign the file to the local Bloom Filter (BFU).

This process preserves all the mathematical properties and random-

ness in RAMBO as the final mapping is again 2-universal, i.e., the

probability of any two datasets colliding is exactly 1/𝐵, where 𝐵

is the total range (number of partitions in RAMBO). The two-level

hash function is given by: (𝑏 × 𝜏 (𝐷 𝑗 )) + 𝜙𝑖 (𝐷 𝑗 ). For a repetition
𝑖 , where 𝑖 ∈ {0..𝑅}, 𝑏 is the number of partitions in RAMBO on a

single machine and also the range of 𝜙 (.), 𝐷 𝑗 is the name ID of 𝑗𝑡ℎ

dataset, and the range of 𝜏 (.) is {0..100} in our case. Note that this

two-level hash function allows us to divide the insertion process

into multiple disjoint parts (100 in our case) without repeating any

installation of datasets and internode communications. Effectively,

each node will contain a set of 4605 files in expectation. In this way,

we eliminate costly transmission of data among the nodes. The

data structure on each node has size 𝐵 = 500 and 𝑅 = 5. Stacking
them vertically makes the complete RAMBO data structure of size

𝐵 = 50000 and 𝑅 = 5. This process preserves the randomness of

set insertion, i.e., the probability of any two sets colliding is exactly

1/𝐵, where 𝐵 is the total range (50000 in this case).
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Figure 3: Indexing process of 460K documents over a cluster
of 100 nodes. Each machine carries a part of RAMBO with
size 500 × 5 Bloom Filters. The dataset is routed to machine
via 𝜏 (.) hash functions followed by insertion using 𝜙𝑖 (.). The
combined direct routing is done by a two-level hash function
equivalent (𝑏∗𝜏 (.)+𝜙 (.)). The stacked view of RAMBO shows
the folding process. The folding is done such that number of
repetitions 𝑅 remains the same but 𝐵 halves, so as the total
size. Folding reduces memory progressively by factors of 2,
4, 8... and increases false positive rate super-linearly.

Query Time (CPU time in ms) Index size

Fold 2 66.5 7.13 TB

Fold 4 43.5 3.6 TB

Fold 8 26.25 1.78 TB

Table 4: CPU time (in ms) per query of the k-mer averaged
over 1000 queries. Each column shows the different number
of RAMBO folds. Second column shows the memory size (in
TB) of RAMBO for each fold.

This interesting parallel insertion trick results in a fully con-

structed RAMBO in about an hour on 100 CPU nodes when
using the McCortex file format. The additional 8 hours are used
to download the dataset. It is the round-off time of the highest time

taking job. Here we have to ensure that all machines use the same

parameters (𝐵, 𝑅, Bloom Filter size and hash function 𝜏 (.), 𝜙 (.) and
ℎ(.)) as well as the random seeds. The consistency of seeds across



machines and larger than required 𝐵 and 𝑅 allow us to flexibly

reduce the size of RAMBO later by doing bitwise OR between the

corresponding BFUs of the first half of RAMBO over the other half

(vertically). Each of these processes reduces the index size 𝐵 × 𝑅 to

𝐵
2 × 𝑅. This is called folding over. Refer Figure 3.

Folding Over: The data structures on every machine are indepen-

dent and disjoint, but they have the same parameters and uses the

same hash seeds. Since RAMBO is all made of Bloom Filters, we

can perform the bit-wise OR between the first half of RAMBO over

the other half to reduce the partitions in RAMBO from 𝐵 to
𝐵
2 . This

operation is depicted in Figure 3. With this folding-over, a one-time

processing allows us to create several versions of RAMBO with

varying sizes and FP rates (Table 4 and Figure 4).

Figure 4: False positive rate of RAMBO for different values
of V (k-mer multiplicity per 4605 sets) and memory. Note
that the false positive rates are very low if query is rare. For
a full sequence search, the returned result depends solely on
the rarest k-mer. Hence our method returns very accurate
(low false positives) results.

Wiki-dump (17K) ClueWeb (50K)

QT(ms) Size CT QT(ms) Size CT

HowDe 3.781 6.43GB 101m 1.5 8GB 5h

COBS 0.523 157MB 2.71s 0.56 88M 7.6s

RAMBO 0.074 51 MB 1.75s 0.58 62M 5.3s
Table 5: Performance comparison between RAMBO and
baselines onwiki-dump data and part ClueWeb data on false
positive rate of 0.01. QT is time per query (CPU time) in ms.

5.4 Document indexing
We extend our experiments for web data where each document is

represented as a set of English words.

Datasets: We use a sample from Wiki-dump [1] and the popular

TREC Category B ClueWeb09 dataset[2]. The Wiki-dump sample

has 17618 documents The ClueWeb09 dataset sample has 50K (non-

spam) documents of the English language. Both datasets were pre-

processed by removing stop words, keeping only alpha-numeric,

and tokenizing as word unigrams. Wiki dump is 207 MB, and

Clueweb is 98𝑀𝐵 after pre-processing.

Parameters: For Wiki dump, RAMBO has 𝐵 = 1000, 𝑅 = 2, and
the size of each BFU is 200000 bits. ClueWeb09, we choose 𝐵 =

5000, 𝑅 = 3, and size of each BFU = 20000 bits. Clueweb has shorter
files ( 450 terms per file) than Wiki-dump ( 650 terms per file).

Baseline: We compare with the COBS and Sequence Bloom Tree

as in Section 5.

Evaluation Metric: We created a query set of randomly generated

terms other than what is present in the data. We inserted them

using an exponentially distributed term multiplicity 𝑉 , similar to

the experiment on genomic data. We perform experiments on the

same system as in section 5.2. The query is performed sequentially

on a single core and thread for a fair comparison. Refer Table 5.

6 DISCUSSION
RAMBO provides a solid trade-off between false positive rate and

query time while retaining all desirable properties of Bloom Filter

and the bitsliced data structure. Due to cheap updates, RAMBO

takes very little time for index creation (Table 4 and Section 5.3).

RAMBO performs updates on the stream and is embarrassingly

parallel for both insertion and query. The false positive rate of

RAMBO is very low for low term multiplicity (Figure 4). This low

false positive rate is guaranteed for full sequence/phrase queries,

as the rarest of the terms dominates. Therefore, RAMBO can per-

form a quick and accurate check of an unknown and rare gene

sequence. Furthermore, due to sublinear scaling, RAMBO becomes

more efficient in memory at a large scale. This property will allow

RAMBO to be used as an efficient search engine for extreme-scale

applications.

7 APPENDIX
Lemma 4.6 Proof: We want to find the unique insertions in each

𝐵 Bloom Filter and sum them up to get the size of a single ta-

ble in RAMBO. If 𝐵 = 1, the unique insertions will be 𝑁
𝑉

where

𝑁 =
∑
𝑆 ∈S |𝑆 | is the total number of insertions. If we partition these

documents into 𝐵 bins, every term from the dataset has varying

number of duplicates 𝑣 where 𝑣 ∈ {0, 1, 2...𝑉 } in a bin. 0 duplicate

implies that the term does not exist in the given bin, and 1 duplicate

implies that the term has only one copy. Note that each bin corre-

sponds to a BFU where the terms/kmers are inserted. The expected

number of unique terms going in bin 𝑏 is given by: |𝑏 | = E
[ ∑𝑁𝑏

𝑖
1
𝑣

]
,

where there are 𝑁𝑏 is the number of insertions in 𝑏𝑡ℎ bucket and

1
𝑣 is a random variable,

1
𝑣 ∈ {1,

1
2 ,

1
3 , .....

1
𝑉
}. By the linearity of

expectation, we can state that

|𝑏 | =
𝑁𝑏∑︁
𝑖

E
[1
𝑣

]
=

𝑁𝑏∑︁
𝑖

𝑉∑︁
𝑣=1

1

𝑣
× 𝑝𝑣

We can view
1
𝑣 as a multiplicity reduction factor of a term. Here,

𝑃𝑣 is the probability of getting 𝑣 balls in one bucket and 𝑉 − 𝑣 in
remaining others. Hence we can write 𝑃𝑣 =

1
𝐵𝑣−1 ×

(
𝐵−1
𝐵

)𝑉−𝑣
. This

gives the expected size of all the bins in a table-

𝑁∑︁
𝑖

𝑉∑︁
𝑣=1

1

𝑣

(𝐵 − 1)𝑉−2𝑣+1

𝐵𝑉−1
=

∑︁
𝑆 ∈S
|𝑆 |

𝑉∑︁
𝑣=1

1

𝑣

(𝐵 − 1)𝑉−2𝑣+1

𝐵𝑉−1

As 𝐵 < 𝐾 and 𝑉 > 1, Γ < 1 always, where Γ =
∑𝑉
𝑣=1

1
𝑣
(𝐵−1)𝑉−2𝑣+1

𝐵𝑉−1
The expected size of RAMBO is given by

Γ log𝐾 log(1/𝑝)
∑︁
𝑆 ∈S
|𝑆 |
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