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ABSTRACT
In this article we discuss how to build a reliable system to estimate
the quality of a VR eye-tracker from an accuracy and robustness
point of view. We list up and discuss problems that occur at the data
collection, data curation and data processing stages. We address
this article to academic eye-tracking researchers and commercial
eye-tracker developers with the purpose of raising the problem of
standardization of eye-tracking benchmarks, and to make a step
towards repeatability of benchmarking results. The main scope of
this article is consumer-focused eye-tracking VR headsets, how-
ever some parts also apply to AR and remote eye-trackers, and to
research environments. As an example, we demonstrate how to use
the proposed methodology to build, benchmark and estimate the
accuracy of the FOVE0 eye-tracking headset.

CCS CONCEPTS
• General and reference → Evaluation; • Human-centered
computing → Virtual reality.
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1 INTRODUCTION
There are an increasing number of research papers that contain
eye-tracking benchmarks. This has led to a variety of inconsis-
tent benchmark results, even for identical eye-tracking systems.
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For commercial eye-tracker comparisons, we can see that various
papers report different results for eye-tracking accuracy due to
different measurement methodologies[Clemotte et al. 2014]. Given
the multitude of approaches to estimate accuracy, there is a need for
increased standardization in order to make reliable comparisons.

Most papers with eye-tracker accuracy estimation have some
description of the data collection and processing, however we found
that this description is quite often incomplete, or lacks sufficient
data to represent population coverage and robustness, and the
results are often difficult to reproduce. There is not much work
publicly available which provides sufficient data collection and
processing information to make fair eye-tracker assessments.

An extensive summary regarding eye-tracking quality, and the
influencing factors therein, was made in [Holmqvist et al. 2012]. It
highlights multiple problems inherent to the benchmarking of eye-
trackers, and lists various sample filtering approaches to remove
invalid data. However, we found that it does not propose a solution
for these problems that would help the benchmark results to be
reproducible.

The paper [Lohr et al. 2019] extensively describes various ET
characteristics, and shows how to build a benchmark using an SMI
eye-tracker as an example. However, there is no explanation of how
the outlier removal process was designed, how the thresholds were
chosen, and the overall impact of the curation remained unclear.
We also found that the accuracy of the raw data presented for one
of the subjects is different from the total accuracy claimed in the
paper after data curation, which raises the question of how the
accuracy is distributed across participants.

State-of-the-art works regarding objective eye-tracker quality
estimation propose to establish ground truth gaze direction by using
another more accurate eye-tracker simultaneously. Many retinal
feature tracking devices can provide ground truth with the accuracy
of fractions of arcminutes[Sheehy et al. 2015]. Beside high price
and complexity, this method is not always mechanically compatible
with other eye-tracking devices. The magnetic search coil method is
another very precise approach, but requires wearing contact lenses,
which makes collection of large amounts of data complicated in
practice[Collewijn et al. 1975]. Usage of artificial eyes with a high
degree of orientation control might not be an accessible solution for
researchers, and it cannot be used to measure robustness, since it
does not represent the full diversity of human eyes[Reingold 2014].

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3448017.3457383
https://doi.org/10.1145/3448017.3457383
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3448017.3457383&domain=pdf&date_stamp=2021-05-25


ETRA ’21 Full Papers, May 25–27, 2021, Virtual Event, Germany Iakov Chernyak, Grigory Chernyak, Jeffrey Keith Spaneas Bland, and Pierre Daniel Philippe Rahier

Numerical eyeball simulation can provide high eye variety, however
it partially substitutes human fixation inaccuracy with inaccuracy
of the simulation, which can either positively or negatively bias the
result of the assessment.

Despite the existence of these advancedmethods, most researchers
prefer to display stimuli on a screen and use it as ground truth due
to the simplicity of this approach. In addition, the recent develop-
ment of eye-tracking technology for virtual reality (VR) headsets
creates new opportunities for eye-tracking evaluation, since these
devices are capable of displaying stimulus with high spatial and
temporal accuracy.

Presently, eye-tracking is used most often in a laboratory or
other controlled setting where an operator is present to ensure that
the accuracy of the data collected is as high as possible. However, as
eye-tracking is introduced into more consumer devices, an increas-
ing number of people are using eye-trackers in more casual settings.
These users, herein referred to as "end-users", usually do not have
an operator present, and may not take steps to increase the eye-
tracking accuracy, so long as their device is functioning well enough
to suit their needs. For this reason, we distinguish two general cat-
egories of eye-tracking use cases, as shown in Table 1. Benchmarks
designed to estimate eye-tracking characteristics for each category
are different in principle. The differences are highlighted in Table 2.
The benchmark included in this paper is geared towards end-user
eye-tracking, however some of the methods described apply to both
categories.

We want to emphasize that with this approach, we also make
the result more reproducible, because we minimize the amount
of variables and thresholds necessary for benchmarking. The re-
sults do not depend on how experienced the operator is, how many
calibrations participants completed before actual eye-tracking mea-
surements, or how many "improper" users were excluded.

In this paper we describe various problems that occur at data col-
lection, data curation and data processing stages. We list up factors
that can affect accuracy estimation, and discuss how the impact of
these factors can be mitigated. Some factors which are difficult to
control should be explicitly accompanied with the provided data,
giving additional insight to the dataset and processing methods.
After that, we demonstrate how to build a benchmark to estimate
the accuracy of the FOVE eye-tracker.

2 DATA COLLECTION
Data collection is the most difficult to control part of benchmarking.
In this chapter we describe our data collection process and comment
on important aspects of collection that have to be considered.

Commonly, eye-tracking video processing can be done in real
time during data collection. In that case, the participant calibrates
the eye-tracking system and follows the stimulus, while the eye-
tracker estimates the gaze direction and compares it with the ground
truth. This approach does not require access to the eye-tracker’s
internal logic, and in some situations it is the only way to estimate
performance of the eye-tracking system. In order to allow deeper
analysis, video recordings of the eyes during the calibration and
fixation segments should be made. The eye images from the camera,
paired with the position of stimulus, allow us to compare and assess
various eye-tracking methods and calibration approaches across the

same data. For example, in our data collections, we begin by asking
participants to complete two calibration processes: the smooth
pursuit calibration and the single-point calibration. Later, we can
playback the eye video to estimate the accuracy of both calibrations
against the same data. In addition, it helps us to analyze failures,
and identify potential eye-tracking improvements.

In our data collection, the calibration process is "blind". At the
time of data collection, we do not know how good the calibration
was, or even whether it was successful or not. The reason for the
blind calibration process is that, in reality, a typical end-user will
recalibrate the eye-tracker only in the case of explicit calibration
failure. Arbitrary thresholds or operator judgements that govern
whether to recalibrate during the data collection process will affect
the overall rate of failure, forcing participants to iterate calibration
until it has the best quality, thus creating the potential for manipula-
tion of the final benchmark result. The blindness of the calibration
aims to equalize different eye-tracking calibration fail rates, and
helps to avoid unintentionally biasing the results towards better
accuracy than would be experienced in real-world conditions.

Nevertheless, blind calibration processes can be used only for
eye-tracking systems that can continue emitting eye-tracking data
regardless of whether or not the calibration succeeded. Many eye-
trackers on the market prevent eye-tracking to be used after explicit
calibration failure. In that case, if blind calibration is impossible,
we propose to accompany the benchmark data with information
about the amount of recalibrations.

After calibration is completed, participants have to look at a se-
quence of 30 fixation points. Participants look to the point, and press
a button at the time that they think they are fixated on it. They con-
tinue to look for the point for a short period, until the next fixation
target is displayed. User-provided timing is shown to have better
accuracy when compared to operator-controlled timing[Nyström
et al. 2013]. There are multiple ways that recordings are timed.
Some researchers skip a small amount of time before starting eye-
tracking data acquisition, and others record data prior[Blignaut
et al. 2014]. In our case, we record eye-tracking frames immediately
after the user clicked, because it more closely approximates the
timing of end-user use cases, such as when pressing a button to
control a user interface. Participants are permitted to remount or
adjust the VR headset any time they feel the need to, since the
end-user may also do so.

The field-of-view varies based on the user’s facial structure and
VR headset mount position, and thus it is impossible to know the
boundaries of what is visible for each participant ahead of time. In
order to ensure that the entire field-of-view is covered, the area
where fixation targets can appear should be wider than the normal
headset field-of-view. If the participant cannot find the target, they
are asked to press the "skip" button to show another random point
instead. The fixation point probability distribution across the field
may vary, however it is important to provide information about
average angular deviation of the target from the center, because this
impacts the final accuracy. The eye-tracking maximum range of
the headset is estimated from the eyeball rotation pivot, as opposed
to the field-of-view, which is measured from the pupil as shown in
Fig 1.

Another aspect that affects the gaze range is the physiological
limits of the human oculomotor system. The maximum eyeball
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Table 1: Differences between operator-assisted and end-user eye-tracking use cases.

Operator-assisted eye-tracking End-user eye-tracking

Example applications: Follow simple moving stim-
ulus, watch video, move around in a fixed 3D
environment, and later build heatmaps, analyze
fixations and saccades.

Example applications: Keyboard typing with gaze,
UI operation, aiming at enemies in games, real-
time recognition of user focus in virtual or real
environments.

Eye-tracking data is recorded, and can be re-
viewed by the operator.

Eye-tracking data may be interactive and may
affect the user in real time.

An operator is present to guide the eye-tracking
experiment.

No operator is present.

The operator or user themselves can see the gaze
point and confirm gaze quality.

Usersmay ormay not be aware of gaze estimation.

Multiple calibrations can be performed in order
to pick the best one to maximize quality.

Users rarely recalibrate, unless the eye-tracker
itself reports unsuccessful calibration, or the ac-
curacy is low enough to make the application
difficult to use.

The eye-tracking environment is always opti-
mized for the best results. Operators help partici-
pants mount the headset for ideal performance.

Eye-tracking may happen in any environment,
but application-provided guidance is sometimes
available to help users improve the eye-tracking
experience.

Eye-tracking participants are preselected in order
to improve eye-tracking quality for some study.

There are no restrictions on who can be the end-
user.

Table 2: Difference in methodology for benchmarks that target operator-assisted eye-tracking vs end-user eye-tracking.

Operator-assisted eye-tracking End-user eye-tracking

After data collection is done, a custom approach
to pick the human fixation timing can be imple-
mented. Operators may automatically or man-
ually select the most ideal fixations and sac-
cades[Morgante et al. 2011].

Participants complete an automated benchmark,
where the participant gazes towards the targets
and picks the moment when they believe they are
looking at the target.

The resulting quality depends on the operator’s
experience[Hessels and Hooge 2019].

Operators are optional for data collection, but they
should not bias the final score of the benchmark,
as this would not be representative of the end-user
conditions.

Dataset may exclude people with improper eye
shape, eyelashes, or other factors[Tobii Technol-
ogy 2012].

Dataset includes as wide a variety of people as
possible.

Given the above, data curation aims to filter out
poor data caused by both eye-tracker and partici-
pant error.

Data curation aims to only filter out poor data
caused by participant error.

rotation angle is 20 to 60 degrees, with the upper part of the visual
field normally being narrower than the rest. The values vary greatly
between individuals. Individual oculomotor limits combine with the
limits of the headset structure and its mounting position to further
restrict the maximum gaze range and make it user-dependent[Lee
et al. 2019].

Each time a new fixation point is displayed to the participant,
the background brightness is randomly changed to increase variety
in pupil dilation. Dark backgrounds should be well represented
in the dataset, since dilated pupils have different pupil centers,
and cause additional challenges to eye-tracking[Choe et al. 2016].

Since most eye-trackers operate based on pupil position, pupil
dilation is a potential source of eye-tracking inaccuracies due to
the physiological difference between the pupil center position for
different pupil dilations. For each eye, the scale of the error has an
average amplitude of 1 degree, but in exceptional cases can reach
5 degrees[Yang et al. 2010]. Even with pupil dilation calibration,
this effect can be compensated only partially[Drewes et al. 2012].
Fortunately, the horizontal components of the shifts for the left and
right eyes are similar in magnitude and opposite in direction[Anne
et al. 1992; Drewes et al. 2014]. When the gaze convergence vector
is computed by taking the average of the left and right gaze vectors,
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Figure 1: Difference between field-of-view (left) and possible
range of gaze (right).

the horizontal components will be partially cancelled out. Thus the
gaze convergence can reduce the negative impact of this effect on
the resulting gaze direction accuracy. In our data collection, when
the background brightness is changing, we do not wait for the pupil
to adapt to the new brightness completely. So extreme dilation cases
can be underrepresented in our data.

Since the resulting eye-tracking accuracy is very dependent on
whether the person wears eyeglasses or not, we split all the data
into two categories: with and without eyeglasses. The category
without eyeglasses also includes all the participants with contact
lenses and colored lenses. We found that the ET accuracy is worse
for people who wear contact lenses, since contact lenses alter the
cornea surface shape. In principle, if eye-tracking characteristics
have a strong correlation with a certain factor, then the datasets
should be split into subsets according to this factor. However, the
eye-tracker uses the same image processing for people who wear
contacts as for those who do not, so we decided to combine them
into the same group.

After the data has been divided into categories, every subset of
the data has its own resulting eye-tracking characteristics, and this
will prevent the results from being dependent on the ratios that
these factors are represented in the data. Alternatively, data can be
accompanied with a distribution of the participants over this factor,
and then this data can be grouped together. This especially makes
sense if there is not much data corresponding to a certain factor,
such that it will not provide statistically significant results.

Besides eyeglasses / non-eyeglasses / contact lens / colored lens
categories, the accuracy might also depend on eye color, skin color,
makeup, conditions and surgeries of the subject[Tobii Technology
2017]. Certain conditions (such as nystagmus, strabismus, ambly-
opia, blindness in one eye) might lead to eye-tracking failure, and
for some eye-trackers it might be reasonable to separate them into
a different subset in the case of enough statistical significance, or
exclude them from the dataset with a corresponding notice in the
report otherwise.

3 ESTIMATION OF EYE-TRACKER
CHARACTERISTICS

Spatial accuracy is one of the major characteristics of eye-tracking.
There are two ways to define it, where the first is the distance

between the ground truth point and the centroid of gaze sam-
ples[Vehlen et al. 2021], and the second is the mean distance be-
tween the ground truth point and the gaze samples[Holmqvist et al.
2012; Lohr et al. 2019].

In the case of the FOVE eye-tracker, the standard deviation of
the gaze estimation samples for a single fixation is numerically
lower than the accuracy, so averaging multiple gaze samples does
not have much impact in general. Furthermore, averaging gaze
data over a long period increases the probability of including an
undesirable saccade or blink. For accuracy measurement, we use
only the first recorded frame from the eye-tracker that corresponds
to a given fixation point, without averaging over time.

In contrast to precision, the accuracy depends on how we define
the ground truth gaze vector. In the case of a head-mounted display
(HMD) that is capable of displaying stimulus on a screen, there are
two ways to define it. One is based on the rendering projection
matrix, and another is bound to the real world.

The projection matrix-based approach is the most widely used,
where the ground truth gaze vector is the coordinate of the 3D
target in the VR scene relative to each eye. Eye-tracking aims to
match the estimated gaze to the virtual environment rather than
to the actual eyeball orientation. This is what the most end-users
normally expect from eye-tracking in VR headsets.

However, the vector from the camera towards the 3D target in
the VR scene is not always parallel to the actual visual axis of the
eyeball. In fact, the digital correction with barrel distortion does
not perfectly compensate for distortion that is caused by the HMD
lens. The further the pupil is located from the lens’s optical axis,
the stronger the difference will be[Martschinke et al. 2019]. FOVE0
has no built-in adjustment of the HMD lenses to match the inter-
pupillary distance of the user, causing an additional discrepancy
between the virtual and real world.

In order to estimate the accuracy of eye-tracking in the real
world, we have to estimate the expected eye visual axis for the
displayed stimulus. If we know the exact physical coordinate of
the highlighted pixel on the HMD screen, and the properties of the
lens and gaze origin, we can solve an inverse problem to find the
direction of the ray that starts at the gaze origin and is refracted by
the lens to hit the target pixel on the screen. The resulting direction
is the ground truth gaze.

It differs from the projection matrix-based approach in that this
approach is fully physically based. It eliminates any inaccuracy
caused by imperfect lens distortion compensation. However, it
requires knowledge of the internal structure of the headset, the
position of the screen, and the properties of the lens. It also needs
the 3D gaze origin relative to the headset, which is part of the
eye-tracking output. We believe that this is not a major issue, since
normally the HMD optical system is designed in a way that in-
significant gaze origin shifts do not affect much the observed image
within a reasonable tolerance, and that becomes a secondary order
parameter to the ground truth inaccuracy.

We believe the projection matrix-based approach is well suited
to 3D VR content, while the real world-based approach suits certain
medical applications and AR.
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4 DATA CURATION
In order to reduce the impact of human error on the final assess-
ment, the data has to be properly curated. In the case of our data
collection, every fixation section has a sequence of random points
that appear on the screen, and the participant should look at the
currently displayed target and press the "accept" button. If the tar-
get is out of their field-of-view, the participant should press the
"skip" button. The majority of the participants are first-time VR
users, and they are almost entirely first-time eye-tracking users.
This has a negative impact on the quality of the collected data,
because the participants are more likely to make an error due to
unfamiliarity with the technology. Even with proper instructions,
some participants accidentally press the "accept" button not when
they are looking at the target, but before or afterwards. Sometimes
participants press the "accept" button instead of the "skip" button,
and in that case they are likely to be looking in a totally different
direction.

Involuntary eye movements are another source of human er-
ror[McCamy et al. 2013; Yuval-Greenberg et al. 2014]. Microsac-
cades can have amplitudes up to 0.5 degrees, such that the visual
axis may not directly point at the target point, but somewhere
nearby. One approach[Nyström et al. 2013] is to identify separate
fixations within the recording window, and choose the closest fixa-
tion to the target. We strongly oppose this method, because samples
can be collected until one is sufficiently close to the ground truth.
The extent of the microsaccade range thus becomes the extent to
which accuracy can be arbitrarily increased, given a sufficiently
long window. Another way[Dalrymple et al. 2018] is to use the
longest fixation instead, which is less biased, but very dependent
on the fixation detection algorithm that was chosen, and how the
participant-specific thresholds are selected[Saez de Urabain et al.
2015]. Algorithms that behave differently based on subtle changes
in the data collection procedure, should be avoided to ensure the
benchmark reflects the accuracy of the eye-tracker itself, rather
than the quality of the data. We do not know of any algorithm
that can eliminate the effect of microsaccades without biasing the
results. We propose to apply no special algorithms and simply keep
in mind that estimated spatial accuracy, even with a perfect eye-
tracker, will not converge to zero. In the best case, it will converge
to an average human microsaccade range.

Researchers use various data curation processes in order to esti-
mate eye-tracking characteristics and reduce the impact of low qual-
ity data. Different approaches to curation lead to different results
in estimated characteristics. We describe two major approaches for
data curation: "pick the best" and "filter out the worst".

The former underlies many strong curation filters and aims for
complete elimination of invalid data and unreliable ET results. The
primary goal is to show the maximum accuracy of the eye-tracker
in the best-case scenario, where ET has maximum confidence in its
results. The main advantage of this approach is the possibility to
weaken various criteria one-by-one and see how the eye-tracking
accuracy depends on each of them while other conditions remain
perfect. For example, [Tobii Technology 2012] uses curation that
aims to select good eye-tracking scenarios by filtering out the entire
fixation point if the eye-tracker failed on at least 20% of the total
frames.

Figure 2: Schematic dependency of the resulting ET accuracy
(top figure) and fixation point acceptance rate (bottom fig-
ure) for different filtering threshold selections.

Another approach is to "filter out the worst," which aims to filter
out bad quality data while avoiding filtering poor results from the
eye-tracker. This approach is supposed to be used to represent
robustness of accuracy, or the actual accuracy that the average
eye-tracking user will experience. To understand the difference
with the previous approach, we are not going to filter out the point
unless there is not even a single valid gaze sample coming from the
eye-tracker. The data curation criteria should be designed in a way
to explicitly separate bad data from poor ET output. The resulting
accuracy should be stable against small changes to the thresholds
used in the curation method. If the curation approach violates this
rule, then by adjusting thresholds we can arbitrarily manipulate
the resulting eye-tracking accuracy.

In order to estimate the quality of some curation method, we
propose to identify the threshold parameter used in the method
and investigate how the results depend on it. For simplicity here,
we assume that if the parameter is equal to zero, then no filtration
is applied, and the larger the value of parameter, the more filtration
is applied. The amount of collected data that survived curation, as
well as the resulting ET accuracy, can be studied against different
values of the selected threshold parameter. We suggest to plot this
dependency for every curation method separately while other cura-
tions are disabled. This allows us to pick the most appropriate value
for the threshold to curate invalid data while minimizing curation
of low-quality eye-tracker output.

A typical function for awell designed curation approach is shown
in Fig 2. The ET accuracy dependency starts with a steep improve-
ment and is followed by a region with small deviation against the
data curation threshold. Beyond that point, the dependency of the
fixation point acceptance rate begins to stabilize, and then with
higher parameters the curation rejects more and more frames. We
claim that the value of the parameter where the accuracy plot
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Figure 3: Dependency of the fixation point acceptance rate
(red line) and the resulting ET accuracy (blue line) for the
curation based on eye difference.

stabilizes, and the acceptance rate has not yet started to drop sig-
nificantly, is an optimal threshold value. This comes from the as-
sumption that there is not much poor quality data quantitatively,
but these data have a strong impact on the final statistics of the
eye-tracking accuracy.

Below we show an example of designing curation methods and
selecting parameters for them. This curation will be used for the
FOVE headset benchmark in the next chapter. Assuming that the
eye-tracker output is independent for the left and right eyes, then
the probability that failed eye-tracking for the left and right eyes
coincidentally gives the same results is very low. We can mark
frames as invalid if the gazes for the left and right eyes are close to
each other, but both of them are far from the ground truth direction.
This usually indicates that eye-tracking worked well, but the person
did not look at the target point properly. The condition when we
are going to reject fixation points can be represented as:

Anдle(GL ,GR ) < β ∗Anдle(
GL +GR

2
,GT ) − 0.5◦ (1)

Here GL and GR are the left and right gazes obtained from eye-
tracker. GT is the ground truth direction. We added an additional
empirical constant 0.5 degrees in order to guarantee that no eye-
tracking data will be filtered out within 0.5/β degrees from the
ground truth. The resulting rejection rate significantly depends on
the value of the threshold β .

The dependency of the fixation point acceptance rate (red line)
and the resulting ET accuracy (blue line) is shown in Fig 3. The
stationary region of the fixation point acceptance rate line extends
until β = 0.75, while the accuracy line stops rapidly falling at around
β = 0.25. From here we can see that the threshold parameter β = 0.5
would filter most of the bad quality data, with minimal impact on
the amount of filtered data.

This curation method assumes that the data for both the left and
right eyes are available at the moment, which is not guaranteed. We
can use additional curation that omits any fixation points that have
accuracy worse than some threshold. Normally, eye-tracking does
not give very large errors in the case that the participant has no
eyeglasses, but there are quite a lot of cases when subjects pressed
the "accept" button while they were not looking at the target point.
This happened often when the point was on the edge of the screen
and the subjects could not find it. The condition by which we are

Figure 4: Dependency of the fixation point acceptance rate
(red line) and the resulting ET accuracy (blue line) for the
curation based on distance from ground truth.

going to reject fixation points can be represented as:

Anдle(GConv ,GT ) > 1/γ (2)

Where GConv = 0.5(GL + GR ) if both eyes gaze available, and
GConv = GL or GR if only one eye was tracked.

This is a very dangerous curation where we can guarantee an
ET accuracy at least 1/γ degrees. The dependency for the fixation
point acceptance rate and average ET accuracy on γ is shown in Fig
4. The fixation point acceptance rate stationary region extends up
to γ = 0.3, while the accuracy figure decreases its declination from
γ = 0.1. We can see that the most appropriate value for γ is around
0.2, which is equivalent to the rejection of any fixation points that
have accuracy worse than 5 degrees.

5 DISCUSSION
We demonstrate how to apply the proposed methodology to build
a benchmark and estimate the accuracy of the FOVE eye-tracking
headset. We used data from 157 people without eye-glasses, and
the majority of these people were first-time eye-tracking and VR
users. The raw data for every participant can be downloaded from
https://github.com/jbfove/BenchmarkPaperData [Chernyak et al.
2021].

In our benchmark, we had two sequences of fixation points where
each contains 30 targets with random uniform distribution in 3D
space. Headset remount was compulsory in between these sections.
Thus the first set of fixation points reflects the eye-tracking imme-
diately after calibration with a low rate of headset readjustment,
while the second set of fixation points will show eye-tracking after
headset remounting.

We had 17.8 degrees of average angular deviation of the targets
from the forward direction, while the possible maximum gaze range
is about 30 to 35 degrees for FOVE0. In our data collection, the
minimal distance to the target is 2 meters. At the data curation
stage, we further restrict the range of the fixation targets to 25
degrees, as it is the range where we are guaranteed that the targets
are visible to both eyes.

After every fixation target shown, the user should look at the
stimulus and confirm by clicking. Any fixation point is considered
to be successful if at least one frame in the recording had success-
ful eye-tracker output (this filters out 1.56% of the total data). To
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Figure 5: Accuracy per dataset (sorted).

measure accuracy we will use gaze convergence, the average gaze
between the left and right eyes. If at a certain frame only one eye
had valid gaze output, that eye gaze is used as the gaze convergence.

The benchmark curation was based on the "filter out the worst"
principle, so we will avoid filtering points with failed eye-tracking.
In order to curate data, we used the two filtrationmethods described
in the previous chapter. The benchmark was divided into 2 sub-
datasets: non-eyeglasses and eyeglasses. In this paper we include
only data taken from people not using eyeglasses, but we include
people with contact lenses and color lenses. We used the projec-
tion matrix-based definition of the ground truth, as it is the most
reproducible.

As for numerical values, we prefer to use Mean Absolute Er-
ror (MAE) over Root-Mean-Square Error (RMSE). RMSE is a good
indicator to see how many error spikes the ET algorithm has. In
practice, the amount of outliers is more dependent on data quality
and data curation methods, rather than on the ET algorithm. Fur-
thermore, there is an ambiguity when calculating RMSE. It can be
calculated across all fixation points and across all participants, or
it can be the mean value across participants, and the RMSE across
fixations of each person.

In order to estimate the statistical significance, we propose to
calculate confidence intervals where the average accuracy for each
subject is considered as a separate sample. This allows each sample
to be statistically independent from each other. The confidence
interval for accuracy with probability p becomes:

CI (p) = Tp (N − 1)stdanд/
√
N (3)

Where N is the number of participants in the dataset, Tp (N − 1) is
the inverse of student’s t-cumulative distribution for probability
p and degree of freedom N − 1, stdanд is a standard deviation of
mean eye-tracking accuracies across participants.

Table 3 shows the statistical data on people who participated in
the data collection. The benchmark results may change based on
different statistical distributions. For example, we found a noticeable
correlation between eye-tracking accuracy and the presence of
contact lenses, makeup (and sex as a consequence) and the ethnicity
of the participants. After building a linear regression model we
got similar results to [Blignaut and Wium 2013], and in our case
Asian people on average showed 0.147 degrees worse accuracy
compared to non-Asian people (p-value 0.013). Participants with
contact lenses experienced an accuracy reduction of 0.203 degrees

Table 3: Distribution of data collection participants

Feature Value Amount

Sex Male 88
Female 69

Contact lenses None 131
Yes 18

Colored 8
Ethnicity Asian 88

Black 4
Hispanic 11

Middle Eastern 1
White 53

Makeup None 112
Yes 45

Eye Color Amber 3
Blue 21
Brown 63

Dark Brown 61
Green 9

Conditions None 149
Anisocoria 1

Cataract (both eyes) 1
Cataract (one eye) 2

Presbyopia 1
Prescription 2
Strabismus 1

Surgeries None 146
Lasik 9

Lens Replacement (both eyes) 1
Lens Replacement (one eye) 1

Birth year 1940s 2
1950s 1
1960s 16
1970s 21
1980s 49
1990s 62
2000s 6

(p-value 0.018). The most impactful factor was colored contact
lenses, with a reduction of 0.362 degrees (p-value 0.003).

The result of the accuracy benchmark for participants that com-
pleted FOVE0 smooth pursuit calibration is shown in Fig 5. Every
bar there represents an individual participant’s accuracy. We per-
formed an ascending sort of bars with MAE, so we can see the range
of how ET accuracy varies from person to person. The overall mean
eye-tracking accuracy is 1.136+0.058 degrees (confidence interval
95%).

6 CONCLUSION
In this paper we listed up important factors that have to be consid-
ered when building a benchmark to measure the performance of a
VR eye-tracker for end-users. A short summary of these factors can
be found in Table 4. We proposed a reproducible methodology to
estimate eye-tracker accuracy with a minimal amount of dependent
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Table 4: List of factors

Factor What we propose Why

Participant characteristics Collect participant data that can affect qual-
ity (Age, Iris color, Skin color, Conditions
and medical treatment history, make up,
Eyeglasses/ contact lenses/ colored contact
lenses. Was it the first time the user had
used an eye-tracker or VR?

These data can be used to identify the im-
pact of each factor, for example via linear
regression. It also makes it possible to sub-
divide the dataset.

Entire dataset rejection for
some set of participants

Avoid dataset rejection, if possible. Different rejection strategies would lead to
different and unreproducible results.

Recalibration Avoid user recalibration except when the
eye-tracking system completely fails to
work.

The number of recalibrations can be oper-
ator dependent, so the result will not be
reproducible. If there was some recalibra-
tion due do ET failure, the amount should
be described.

Spatial distribution Use a uniform distribution of fixation points,
and describe how the points are selected to
ensure the distribution.

The distribution type affects the final overall
score, because different areas in the FOV
may have different accuracies.

Represent pupil dilation va-
riety

Optionally randomize brightness of back-
ground during collection.

It simulates eye-tracking in various envi-
ronments. Data collected while the pupil is
dilated may yield lower accuracy.

Eye-tracker drift Optionally include an eye-tracker drift sec-
tion during data collection.

It helps to understand how drift affects the
quality of eye-tracking.

Fixation point timings Allow the participant to control the timing. It improves accuracy of the benchmark and
simulates end-user experience.

Gaze sample timing Use the frames right at the moment of click-
ing

It corresponds to an end-user interactive
experience.

Curation strategy method Use "filter out the worst" for general eye-
tracker benchmarks.

It seeks to estimate the typical accuracy
rather than the base-case accuracy, and min-
imizes the amount of threshold parameters
needed.

Curation Describe every curation method and the
chosen threshold parameters.

This helps other researchers build compara-
ble benchmarks or understandwhere bench-
marks are not comparable.

For VR headsets: Definition
of ground truth

Use virtual 3D world ground truth for VR-
based eye-trackers.

It’s easy to reproduce, and does not re-
quire knowledge of internal structure of the
HMD.

factors. We want to emphasize that the context of how the final
ET accuracy value is obtained is as important as the value itself.
We recommend, for the sake of getting roughly comparable and
reproducible accuracy numbers, avoiding methodologies that allow
unintentional manipulation of the final result. We encourage VR
eye-tracker manufacturers as well as researchers to provide more
information about their data curation process, and design filters
using the "filter out the worst" approach for general benchmarks,
since it better measures population coverage, an important charac-
teristic of eye-trackers that is often not included. We also suggest
that data on accuracy distribution across participants be included,
since it is a simple way to show the robustness towards all varieties
of people.

We showed an example of a complete benchmark report that
includes a description of data collection, and the procedure of build-
ing curation filters for fair estimation of the eye-tracker accuracy.

Nevertheless, many decisions that were made in this paper need
further investigation. For example, in our data collection, we asked
participants to fixate on 30 fixation points twice, before and after
headset shift. In this benchmark, these data were combined, how-
ever it might be worthwhile to explicitly show how headset drift
affects accuracy. In addition, we asked participants to fixate on a
total of 60 points, and we have not studied yet how the number of
points may affect benchmark quality, since the participants may
become increasingly fatigued.

In future research, we plan to investigate further the correla-
tion between eye-tracking accuracy and various characteristics of
the participants. We hope to better understand how each factor
can negatively impact eye-tracking quality, and thereby develop
methods to mitigate such effects.
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