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ABSTRACT
Analytics of student learning data are increasingly important for
continuous redesign and improvement of tutoring systems and
courses. There is still a lack of general guidance on converting
analytics into better system design, and on combining multiple
methods to maximally improve a tutor. We present a multi-method
approach to data-driven redesign of tutoring systems and its empir-
ical evaluation. Our approach systematically combines existing and
new learning analytics and instructional design methods. In partic-
ular, our methods involve identifying difficult skills and creating
focused tasks for learning these difficult skills effectively following
content redesign strategies derived from analytics. In our past work,
we applied this approach to redesigning an algebraic modeling unit
and found initial evidence of its effectiveness. In the current work,
we extended this approach and applied it to redesigning two other
tutor units in addition to a second iteration of redesigning the
previously redesigned unit. We conducted a one-month classroom
experiment with 129 high school students. Compared to the origi-
nal tutor, the redesigned tutor led to significantly higher learning
outcomes, with time mainly allocated to focused tasks rather than
original full tasks. Moreover, it reduced over- and under-practice,
yielded a more effective practice experience, and selected skills
progressing from easier to harder to a greater degree. Our work
provides empirical evidence of the effectiveness and generality of a
multi-method approach to data-driven instructional redesign.
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1 THE NEED FOR A GENERAL DATA-DRIVEN
REDESIGN APPROACH

In recent years, there have been a growing number of endeavors
to apply data-driven methods to the continuous improvement in
courses and educational technologies such as the Loop tool [6] and
Course Signals [5]. The notion of data-driven redesign of a course
or a system based on analytics of student learning data is referred
to as design-loop adaptivity in the Adaptivity Grid framework [2].
The rationale behind design-loop adaptivity is that an earlier it-
eration of a design made by domain experts may be suboptimal
due to expert blind spot [29] or resource constraints, and analytics
of data from previous iterations provides an efficient and effec-
tive way to uncover design deficiencies and to improve the design.
Design-loop adaptivity, the theme of our current work, emphasizes
between-system-iteration changes adapted to the demands of the
task domain or students’ similarities (e.g., content redesign), rather
than or in addition to within-system changes adapted to students’
differences (e.g., adaptive task selection).

Tutoring systems have become an integral part of courses in
many blended or online learning contexts, generating a large amount
of student learning data. Learning analytics of such data are in-
creasingly being used to improve instruction and enhance student
learning. Some empirical studies show that data-driven redesign
of tutoring systems (i.e., design-loop adaptivity) can lead to better
student learning outcomes. For example, Mostafavi and Barnes [28]
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augmented a logic tutor by several data-driven components adapt-
ing to students’ differences such as intelligent problem selection,
and found that it allowed students to be exposed to more concepts.
Liu and Koedinger [23] used data-driven cognitive model discover-
ies to redesign instruction of a geometry tutor and showed that the
redesigned tutor led to significantly higher learning gains relative
to a control condition.

Meanwhile, numerous learning analytics and data mining meth-
ods have been demonstrated to improve prediction accuracy on
student performance, but most stop at better predictions without
demonstrating whether and how these methods can improve stu-
dent learning in situ [10, 15, 31]. As pointed out in [11], the learning
analytics cycle is not complete (i.e., the loop is not closed) until
analytics are used to drive interventions that have some effect on
learners. Examining the few close-the-loop empirical studies, there
remains a critical limitation: they focused on a single design aspect
such as adapting to students’ differences [28, 33], or applied a sin-
gle analytics method [24, 32], lacking general, explicit guidance on
converting learning analytics outcomes into better system design.

In this paper, we demonstrate an approach that combines new
and existing learning analytics and instructional design methods
to redesign tutoring systems, and we describe a classroom exper-
iment evaluating its effectiveness and generality, extending our
prior approach and evaluation [17]. Our work makes the following
contributions:

• Provide general, explicit guidance on converting analytics
into better system design and instructional design;

• Provide general, explicit guidance on combining multiple
methods focusing on different aspects to maximally improve
a tutor, adapting to both students’ similarities (i.e., demands
of the task domain) and differences;

• Provide empirical evidence for the effectiveness and gener-
ality of our approach.

Our approach can be considered general in two senses. First, it is
intended to be applicable to systems with learn-by-doing activities,
which are usually the main activities in Cognitive Tutors [4] or
an integral part of other systems with diverse activities such as
MOOCs [9]. Doing activities have an estimated 6x greater impact
on total quiz and final exam than reading or video watching [21].
Thus, system design improvements based on analytics of doing
activities has the potential to yield substantial improvements in
student learning.

More specifically, our approach is intended to be applicable to
systems that follow a knowledge component (KC) approach to in-
struction [1], i.e., design and organize activities and instructions
according to an underlying KC model. A KC model decomposes
domain knowledge into small units (which can be called KCs or
skills) and specifies the requisite knowledge units for tasks or steps
of tasks. Our notion of a KC or a skill refers to a small unit that
is needed for a single step in a tutor problem (task), rather than a
broad notion like a topic area. A KC approach to instruction can
dramatically improve the effectiveness of instruction, even without
run-time adaptivity (i.e., tutoring systems don’t have to be “intelli-
gent” in the sense of adaptive task selection). For example, in the
redesign of a blended OLI-statistics course [24], they uncovered
deficiencies in the KC model and revised course objectives and

activities accordingly. The redesigned course led to better learn-
ing outcomes in half the time, compared to the original course. In
addition, a KC approach to instruction for individualized mastery
learning can further improve instruction [2, 12], where a tutor con-
tinues to provide practice of targeted KCs until a student reaches
mastery of each targeted KC in the given topic area (i.e., the es-
timated knowledge probability of each KC reaches a predefined
threshold), before moving on to a new topic area. This cognitive
mastery decision is achieved by adaptive task selection based on a
student model which dynamically tracks each student’s knowledge
per KC through a statistical model of learning. We summarize three
general challenges of this KC-based design-loop adaptivity:

• To create an accurate KC model that explains students’ per-
formance and learning transfer well for the task domain;

• To design content that facilitates (e.g., scaffolds) the learning
of hard KCs;

• To make sure the tutor effectively distributes practice time
across KCs for individual students.

Our multi-method redesign approach is designed to address
these three challenges. A simple example motivating our redesign
approach is as follows. In our original algebra tutor, all steps that
require writing an expression are labeled with the KC “write an
expression” and there is no difference in scaffolding between tasks.
Having such a single KC implies that 1-operator practice transfers
to 2-operator practice, and the tutor considers a student having
mastered the KC if he or she performs well on 1-operator steps.
However, as revealed by analytics (described later), students per-
formed significantly worse on 2-operator steps than on 1-operator
steps, and error rates of 2-operator steps remained high while those
of 1-operator steps steadily decreased throughout the practice. This
suggests a need to split the original KC into two KCs covering
1-operator and 2-operator expressions separately (challenge #1),
and to design tailored tasks to address difficulties in 2-operator
expressions (challenge #2). Further, the tutor should assign tasks so
that each individual can practice both 1-operator and 2-operator
KCs to mastery (challenge #3). Although there is a sizable body
of research addressing the first and third challenges through data
mining methods, there is a dearth of research on deriving explicit
content design strategies from analytics, and on combiningmethods
to address all three changes. Here, we articulate the Focused Practice
Task Design method where we derived explicit content redesign
strategies from analytics for creating focused tasks that optimize
deliberate practice, a well-established way to support learning by
doing through repetition with feedback on well-tailored tasks [14].
We also demonstrate how we combine methods to address the three
challenges to maximumly improve a tutor.

In our past work, we demonstrated a multi-method redesign
approach [17] used to redesign an algebraic modeling unit and we
obtained initial empirical evidence of its effectiveness. In the current
work, we extended the approach by adding new goals and methods.
We applied the approach to redesigning two new units in addition
to a second iteration of redesigning the unit that we previously
redesigned. We conducted a larger-scale, longer-span experiment
with comprehensive analyses for understanding the processes lead-
ing to the overall results. We now describe our redesign approach
and classroom experiment.
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2 HOW TO USE DATA TO REDESIGN
TUTORING SYSTEMS

We created an approach calledMADDRED (Multi-method Approach
to Data-Driven REDesign) that uses a principled combination of
methods to redesign tutoring systems utilizing learning data col-
lected from previous iterations (see Table 1).1 It is driven by the
main goal of identifying KCs that are demonstrably difficult for stu-
dents to learn, and to revise content and task selection to optimize
effective and efficient practice on them. To clarify the terminologies
in the table, an opportunity refers to a student’s first attempt at a
step that requires a KC, and it can be correct or incorrect.

We applied this approach to redesigning three algebraic units
in Mathtutor [3], an online tutor with comprehensive content for
middle-school mathematics. It was designed based on best prac-
tices and prior instructional design research [19], but had not been
data-tuned. Figure 1 shows an original problem in the 1/2-operator
Modeling unit, the unit we redesigned previously and in the current
work as a second iteration. Here, students learn to write 1-operator
or 2-operator algebraic expressions (e.g., 5x+25) tomodel real-world
situations. Figure 2 shows an original problem in the 2-operator
Explanation unit; the 3-operator Explanation unit has the same
format but involves 3-operator expressions. These two Explanation
units were the new units we redesigned in the current work. In
these units, students learn to explain sub-expressions from equa-
tions modeling real-world situations. We utilized log data from 499
students with 53,596 transactions collected from the original tutor
to conduct our redesign. We describe our new methods below.

Difficulty Factor Effect Analysis.We created this method for
KC model refinement so that a KC model used as the basis for
instruction captures task distinctions that are important for novices,
because such distinctions can be initially ignored due to expert blind
spot [29]. A difficulty factor (DF) refers to a property that makes
some task steps more difficult than other comparable ones of a KC.
For example, “involve a negative number or not” could be a DF
for arithmetic KCs. DFs can help reveal hidden hard KCs where
novices need deliberate practice and tailored scaffolding. Usually,
DFs are hypothesized by domain experts and are used to refine a
KC model by splitting original KCs into more fine-grained ones.
An effective way to use DFs to refine KC models is the Learning
Factor Analysis (LFA) method [7]. It automatically searches through
a space of KC models created by incorporating hypothesized DFs,
using a statistical model of learning, Additive Factors Model (AFM).

Our method may be viewed as an efficient simplification of LFA
(for its “split” operator). First, we identified a broad set of potential
DFs by automatically coding task step features hypothesized to
impact difficulty (e.g., requiring parentheses or not). Second, for
each targeted KC (i.e., using only data involving this KC), we ran a
logistic regression model predicting students’ performance with a
full interaction among DFs, and examined the main and interaction
effects of DFs on students’ performance, controlling for student
proficiencies and learning from prior opportunities of this KC. A KC
was cumulatively split by a set of DFs when there was an interaction
among them or by a DF when there was a main effect. Third, we
validated the KC modifications by incrementally incorporating the
modification of each KC. In each step, we obtained a new KC model
1Our code is available on http://learnsphere.org and https://github.com/MADDRED.

by applying the split decision to the current KC while keeping other
KCs unchanged, and compared the statistical fit on overall data
using AFM, with that from a previous KC model. An example of
our method is as follows. For the original KC “write an expression”,
we found a main effect of the DF “the number of operators”, and an
interaction between the DF “require parentheses or not” and the
DF “is repeated in a problem or not”. Thus, we split the original KC
into six more fine-grained KCs (i.e., “1op first”, “1op repeat”, “2op
no-par first”, “2op no-par repeat”, “2op par first”, “2op par repeat”),
resulting in a KC model with a better overall statistical fit.

Probability-Propagated Practice Estimation.We developed
this method for estimating the number of practice opportunities
needed for mastery and the amount of under- and over-practice
for a student on a KC, to inform content redesign. Although our
estimation technique builds on prior work [8, 22], our method
differs from prior work in that it increases computational efficiency
and it is used to inform content redesign. We examined mastery on
each fine-grained KC identified in the previous step, following one
widely adopted definition of mastery, namely, that the probability of
a student knowing a KC is ≥ 0.95, based on performance on problem
steps with the KC [12]. In our method, first, we fit parameters of
a student model (e.g., Bayesian Knowledge Tracing (BKT) [12]) to
the data. Second, we used the fitted model as the “ground truth”
to estimate knowledge for each opportunity that occurred in the
data, and extrapolated opportunities until the estimated knowledge
reached the mastery threshold, if the estimated knowledge for the
last observed opportunity did not reach the mastery threshold. We
then obtained the estimates of opportunities needed for mastery
for each student on each KC. Finally, we compared the estimates to
actual opportunities to infer over- or under-practice: if the actual
number of opportunities that occurred in the data is greater than
the estimated number of opportunities required for mastery, then
the student is inferred to have over-practiced this KC; if it is less,
then the student is inferred to have under-practiced the KC.

The challenge in this estimation is extrapolating student perfor-
mance on unseen opportunities if the data lacks sufficient opportu-
nities to reach mastery. Prior work did not consider or describe this
process [8], or had relatively high computational time [22]. Here,
instead of simulating a large number of sequences by propagating
simulated outcomes as in [22], our method simulates one sequence
by propagating the probability of succeeding (i.e., P(C)), and uses
it as weights to update knowledge (i.e., P(K)new=P(C)P(K |C)new
+P(W )P(K |W )new ). The extrapolation of a KC-student sequence
stops when the probability of the student knowing the KC reaches
the mastery threshold (i.e., P(K)new≥0.95), or the extrapolated op-
portunities reach a threshold (30). We chose 30 because it yielded
similar estimations as the main existing method [22] in our dataset.
We compared our method to the main existing method [22] in our
dataset, and found that our method reached similar estimations
with much higher computational efficiency. These estimations were
used to inform content redesign in two ways: to inform the creation
of focused tasks (explained below), and to inform the creation of
content to ensure there would be sufficient practice opportunities
for mastery (regardless of task selection).

Learning curve guided error analysis. In this analysis, we
examined frequent errors on poorly performed practice opportu-
nities according to learning curves, to better understand students’
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Table 1: A generalmulti-method approach to data-driven redesign of tutoring systems (MADDRED).

Goals Methods

1 Refine the knowledge component (KC) model

• Identify task factors that cause difficulties for learning KCs Difficulty Factor Effect Analysis
• Hypothesize and compare alternative KC models

2 Redesign content (adapting to students’ similarities or the demands of the task domain)

• Estimate opportunities to mastery, amount of under- and over-practice Probability-Propagated Practice Estimation
• Identify common errors and difficulties for hard KCs Learning curve guided error analysis
• Create focused tasks that target hard KCs Focused Practice Task Design
• Add more content to ensure a sufficiency of content for mastery Probability-Propagated Practice Estimation

3 Optimize individualized learning (adapting to students’ differences)

• Optimize student model parameters (based on a KC model) Data-tuning parameters [8], adaptive tutoring simulation
• Optimize adaptive task selection (based on a student model) Adaptive tutoring simulation

Figure 1: A full task (problem) in the original Modeling unit (with cells filled in correctly and the toolbar excluded).

Figure 2: A full task (problem) in the original 2-operator Explanation unit (with toolbar excluded).

difficulties on hard KCs for informing content redesign. A learning
curve depicts the error rates (averaged over students) over suc-
cessive practice opportunities for a KC or aggregated over KCs.
Learning curves have been used to identify difficulty factors to
refine KC models [32]. Here, we used learning curves to identify
opportunities with high error rates (≥0.75) and examined the most
frequent errors on such opportunities for each refined KC obtained
before, utilizing the error report analytics tool from DataShop [20].

Such drill-down error analysis was used to inform the creation of
focused tasks (explained below). For example, on the Explanation
units, we identified a type of error, selecting an ambiguous descrip-
tion (e.g., “the number of brownies” vs. “the number of brownies
Julia must bake” for the expression 3x-50 in Figure 2), that was not
specific to any expressions (KCs). We thus created focused tasks
with fewer KCs, providing feedback explaining this error, to address
such common errors early on in simpler tasks.
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(a) A focused whole task here targets a hard KC without upfront fixed scaffolding steps training students to “putting it all together”, in the
same context as the original full task (Figure 1). If students fail on the whole task response (the first text field), composition scaffolding
appears and isolates individual KCs (steps 1-3) including a hidden hard KC (e.g., expression embedding in step 3).

(b) A focused part task here targets a hidden hard KC that integrates other parts (e.g., integrates two 1-operator expressions into one
2-operator expression), in a smaller application context without requiring other KCs (e.g., story comprehension). If students commit specific
errors (e.g., missing parentheses), scaffolding appears and shows a multiple-choice question for enhancing understanding.

Figure 3: Focused tasks in the redesigned Modeling unit to target hard KCs.

Focused Practice Task Design. This is a novel data-driven
instructional design method where we created focused tasks that
target hard KCs, following content redesign strategies derived from
analytics of opportunities to mastery and of errors based on an
accurate KC model, informed by prior cognitive and instructional
design research. We created two kinds of focused tasks, namely,
focused whole tasks and focused part tasks, which focus students’
effort and attention for learning hard KCs in two different ways.

Focused whole tasks target a hard KC without upfront fixed scaf-
folding steps to perform in a larger application context. A larger
application context means the problem statement of the original full
task is mostly retained. As shown in Figure 3a and 4a, students are
asked to directly enter the final answer, without being required to
enter answers for easier, scaffolding steps in the interface. Unlike
typical whole (full) tasks in Cognitive Tutors [4] (e.g., Figure 1, 2)
where the interface has multiple interface steps corresponding with
the multiple KCs needed in a whole task, in focused whole tasks this
scaffolding is eliminated. The focus is on “putting it all together”,
demonstrating that students have acquired conditions on the target

hard KC that will generalize outside the context of the scaffolding
in typical whole tasks.

Focused part tasks target the hard KC(s) in isolation in a smaller
application context where other KCs are eliminated in both inter-
face steps and mental processes. Here, a smaller application context
means the problem statement defines a simpler task than the orig-
inal full or focused whole task. Focused part tasks facilitate the
focus of student attention on the particular challenges required in
learning and executing the target hard KC(s). Unlike typical part
tasks designed to isolate each step including steps for easier KCs
keeping the original task context, focused part tasks are often newly
invented tasks with smaller contexts that isolate the challenging
cognitive processing (KCs) that integrates other parts. For example,
Figure 3b shows a focused part task that isolates the hidden hard
KC that integrates two 1-operator expressions into one 2-operator
expression (i.e., expression embedding), in a context without a cover
story. Note that this step was implicit in the original full task (Fig-
ure 1), but was made explicit in focused tasks (Figure 3) thanks to
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(a) A focused whole task here provides the same equation as the original full task (Figure 2), but requires only one interface step for one
hard KC. If students fail on the whole task response (the first selection box), composition scaffolding appears and breaks down the problem.

(b) A focused part task here provides a simpler equation than the original full task (Figure 2), without requiring other hard KCs (e.g., explain
3x). Easier KCs (e.g., explain 50) are retained for addressing common errors (e.g., selecting an ambiguous description) not specific to hard
KCs, so that students could address them early on in such simpler tasks. Immediate feedback explaining common errors are provided.

Figure 4: Focused tasks in the redesigned 2-operator Explanation unit to target hard KCs.

our KC-based task design. Moreover, in both focused tasks, tailored
scaffolding appears if and only if the initial answer is incorrect.

To create focused tasks, we derived three design strategies from
analytics of opportunities to mastery and of errors based on an accu-
rate KC model, informed by prior research (Table 2). Our strategies
align with the goals pointed out by Moreno and Mayer [27] for
addressing cognitive processing demands during learning, in that
our focused tasks facilitate the focus of student attention on the
particular challenges required in learning (generative processing)
and executing (essential processing) the target hard KC(s), reducing
unnecessary processing (extraneous processing) of easier KCs or
other hard KCs. We explain our redesign strategies as follows.

Reduce over-practice on easier KCs and under-practice on hard
KCs. According to our estimation, many students over-practiced
easier KCs and under-practiced hard KCs in the original tutor. Our
focused tasks target the hard KC(s) without requiring fixed steps
of untargeted KCs (i.e., easier KCs or other hard KCs), and provide

dynamic scaffolding. In this way, students can reduce inefficient
use of their time on KCs too easy or on too many hard KCs, so that
they can better use their time to learn each hard KC, and reduce
over-practice on easier KCs and under-practice on hard KCs.

Provide effective scaffolding for hard KCs informed by prior re-
search. Our method estimated that too many opportunities would
be needed to master hard KCs in the original Modeling unit, sug-
gesting that the original scaffolding may not be effective enough.
Prior cognitive and instructional design research demonstrated that
the crux of algebraic modeling is learning the expression embed-
ding grammar (e.g., putting 800-y and 40x together into 800-40x)
[16], and that substitution tasks (“Substitute 500-x for y in y/3”) are
effective for learning this grammar (KC) [18]. Thus, we introduced
composition scaffolding to break down problems according to the
underlying cognitive processing (Figure 3a steps 1-3) and explicit
practice for the hidden hard KC through isolated steps (Figure 3a
step 3) or isolated tasks (Figure 3b). We also introduced multiple
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Table 2: Content redesign strategies derived from analytics to create focused tasks.

Analytics about the original tutor Content redesign strategies for focused tasks

Inappropriate amount of practice on KCs: Reduce over-practice on easier KCs and under-practice on hard KCs, e.g.,
• Many students over-practiced easier KCs • Eliminate fixed steps of untargeted KCs (i.e., easier KCs or other hard KCs)
• Many students under-practiced hard KCs • Provide dynamic scaffolding
• Different KCs needed different # of opp. to mastery

Inadequate scaffolding for hard KCs: Provide effective scaffolding for hard KCs informed by prior research, e.g.,
• Required too many # of opp. to mastery on hard KCs • Composition scaffolding [16]
• No explicit practice on hidden hard KCs • Explicit practice on hidden hard KCs [18]

•Multiple-choice questions for enhancing understanding [26]

Common errors persistent across opportunities and KCs Provide error feedback and hint messages to address common errors early on

choice for enhancing understanding of hard KCs (Figure 3b), based
on prior research on comprehension fostering design [26].

Provide feedback and hint messages to address common errors
early on. We found that common errors were persistent across
opportunities of a KC and across KCs in the original tutor. We
thus introduced error feedback and hint messages in focused tasks
especially in focused part tasks, rather than requiring students to do
error correction in full tasks where they would experience higher
cognitive load. For example, we designed 1-operator focused part
tasks (for original 2-operator tasks in Figure 2) with error feedback
to address common errors early on in simpler tasks (Figure 4b).

Adaptive tutoring simulation. Building on prior work [13],
we created a method that simulates the practice sequence that
would be provided by a redesigned tutor (with a refined KC model
and redesigned content), and estimates the time required to master
a set of KCs, to optimize individualized learning and conduct final
refinement of the redesigned tutor. First, we used this simulation
to optimize the task selection algorithm by comparing a set of algo-
rithms. We omit details since the idea to convey here is to utilize
simulation to help with redesign, rather than to introduce a specific
algorithm. Second, we used this simulation to optimize the student
model parameters for KCs. We compared three sets of parameters:
two were data-tuned with different parameters for different KCs,
and the other was hand-set with the same parameters for all KCs
(used in the original tutor). Our simulation takes as input a task
selection algorithm, a student model with parameters, a KC model,
a set of tasks, a strategy to simulate student performance, the num-
ber of students, and the assumed seconds per step. It simulates a
practice task sequence for each student until the student reaches
mastery for all KCs or runs out of tasks. It outputs descriptive sta-
tistics of distributions over simulated students of practice minutes,
the number of mastered KCs, knowledge levels of KCs, etc. Our
simulation suggested the superiority of one of our new selection al-
gorithms and one data-tuned parameter set. With this combination,
students’ practice time was reduced while they reached a similar
or better mastery status, compared to the alternatives.

3 CLASSROOM EXPERIMENTS
3.1 Experimental Design and Setup
We conducted a classroom experiment to investigate whether the
redesigned tutor (Data-tuned Adaptive (DA) condition) yields better

learning than the original tutor (Control condition). Table 3 lists the
comparison between the two conditions. Our experiment aimed at
evaluating the overall combined effect of redesigned components,
and thus evaluating our multi-method redesign approach. We ran
this classroom experiment in the fall of 2019 with high school Alge-
bra 1 classes for one month, with two 40-minute periods on separate
days per week. There were eight class periods taught by three teach-
ers across two schools, with two class levels (more advanced or
less advanced Algebra I classes). Students were randomly assigned
to two conditions within each class period. Students accessed the
tutor during their normal class periods, with the teacher providing
support as needed. Both conditions followed the same sequence:
pretest, practice, posttest. After removing students who were absent
in pretest, practice or posttest (missingness was not dependent on
the condition), we obtained a sample of 129 students for analysis,
with 69 and 60 students in the Control and the DA condition respec-
tively. Regarding demographics, 49% of the students were females,
27% qualified for free or reduced lunch and 11% were Black, Latinx,
or multiracial. Both pretest and posttest included two full tasks (e.g.,
Figure 1) and three unscaffolded focused whole tasks (e.g., Figure 3a
without the scaffolding) of the Modeling unit, and four full tasks of
the two Explanation units (two from each unit) (e.g., Figure 2). To
make sure pretest and posttest were equally difficult, we prepared
two forms of tests with different story problems but with the same
skill coverage and task order. Students were randomly assigned one
form as the pretest and the other as the posttest.

3.2 Analysis Methods
We examined the overall effectiveness of the redesigned tutor by
comparing posttest scores (controlling for pretest scores and other
factors) between the two conditions. To facilitate understanding the
processes leading to the overall effect, we conducted analyses with
different focuses to see whether predicted improvements according
to our redesign goals were met. We summarize four questions for
analyses and explain our analysis methods as follows.

3.2.1 RQ1: Did the redesigned tutor yield higher learning outcomes?
To control for factors affecting posttest scores, we compared learn-
ing outcomes between the two conditions by multiple regression
predicting posttest scores given the pretest scores, condition, pretest
form and class level of each student. The direction and significance
of the coefficient of the condition indicator shows the effect of our

167



LAK21, April 12–16, 2021, Irvine, CA, USA Huang, et al.

Table 3: Comparison between two experimental conditions (tutors).

System Component Control Condition Data-tuned Adaptive (DA) Condition

KC model More coarse-grained More fine-grained

Content

Problem types Only full tasks Focused tasks in addition to full tasks

Problem
scaffolding
or support

• Static scaffolding in all units
• Inductive scaffolding for the Modeling unit [19]
• Few feedback and hints for common errors

In focused tasks:
• Dynamic, composition scaffolding in all units
• More feedback and hints for common errors

Problem set Same set of full task stories or situations (focused tasks were derived from them)

Individu-
alization

Student model
Bayesian Knowledge Tracing (BKT) with skill-specific parameters [12]

• Hand-set
• Skills share the same set of parameters

• Data-tuned
• Different skills have different sets of parameters

Problem
selection

Mastery learning based on BKT knowledge levels and 0.95 mastery threshold per skill (KC)

Randomly select a task among unmastered tasks
(i.e., tasks with unmastered skills)

• Easier unmastered tasks were assigned higher
probabilities to be selected
• Students with higher overall proficiency were
more likely to skip easier tasks

redesign tutor.We also plotted themean difference between posttest
and pretest scores (i.e., learning gain) with 95% CI per condition, and
reported Cohen’s d for the comparison of these difference scores
between two conditions. A posttest or pretest score was obtained by
computing the proportion correct of each problem over steps and
then computing the average over problems. We included the pretest
form and class level because they were significant (or marginally
sign.) predictors of posttest scores in all regression models. To see
whether the improvements could be due to the increase of practice
time, we compared practice time by multiple regression predicting
practice time with pretest scores and condition (we included pretest
scores because it was a significant predictor in some regression
models). We also compared learning outcomes and practice time
per unit to see whether there is improvement for each unit, and
whether the second round of redesign of the Modeling unit yielded
greater improvement than the first round. We also examined the
practice time distribution over full and focused tasks.

3.2.2 RQ2: Did the redesigned tutor reduce over- and under-practice?
The basis of this analysis is a new KC model that models student
learning in both conditions to enable comparison, because each
condition had different KC models. We conducted a new round of
KC refinement based on the data from this experiment, and selected
the KC model with the best AIC value for the data covering both
conditions. The set of difficulty factors involved in this new KC
model is a superset of those discovered previously. It has a total of
26 skills (KCs). We then estimated over- and under-practice in each
condition using this new KC model, following the method used in
our redesign process. Here, we fitted a student model to the data of
a condition and compared the estimated opportunities to mastery
with actual opportunities occurred in the condition. We computed
the average number of over- or under-practiced opportunities (over
all students and then over all skills) per condition, both as an abso-
lute value and as a percentage of the actual opportunities. We chose

AFM [24] as our student model here because on the data from this
experiment it consistently outperformed BKT in AIC values, and
led to similar estimated opportunities to mastery as BKT. We chose
0.8 as the mastery threshold for AFM since this threshold consis-
tently matched the converted thresholds from commonly used BKT
mastery threshold 0.95, using BKT parameters fitted from the same
data (i.e., 0.95*(1-pSlip)+0.05*pGuess=0.8).

To examine the predicted improvements that the DA condition
should reduce over-practice for easy skills and high level students as
well as reduce under-practice for hard skills and low level students,
we split skills and students into groups. Under each condition, we
split skills into two groups (Easy and Hard) according to a median
split over the fitted AFM skill initial difficulty parameters, and
computed the mean of under- or over-practiced opportunities over
the skills in each group of a condition; we split students into two
groups (High and Low) according to a median split over students’
pretest scores, fitted different AFMs to the subsets of data of each
student group, and used each AFM to estimate under- or over-
practice for the corresponding student group of a condition.

3.2.3 RQ3: Did the redesigned tutor lead to a more effective practice
experience?
We utilized learning curves to measure the effectiveness of a prac-
tice experience, since they were often used in prior research as a
subtle way to measure learning outcomes [25]. We estimated er-
ror rates over successive practice opportunities for each skill, and
computed the average estimated error rate over skills for each op-
portunity to obtain an aggregated learning curve. A learning curve
with a steeper downward slope (i.e., a steeper decrease of error
rate per opportunity) indicates a more effective practice experience.
To obtain the estimated error rate of a skill opportunity, we used
AFM fitted to the data of each condition. To examine the predicted
improvements that the DA condition should lead to a more effective
practice experience for hard skills and for both low and high level
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students, we compared learning curves under each skill group (de-
fined in RQ2) by averaging over skills of a skill group, and compared
learning curves under each student group (defined in RQ2) by using
AFMs fitted per student group for obtaining estimated error rates.
We also examined the initial error rate of a learning curve to see
how much students were prepared when encountering a new skill.

3.2.4 RQ4: Did the redesigned tutor select skills to practice progress-
ing from easier to harder to a greater degree?
We examined the difficulty progression of each condition as follows:
from each student’s practice sequence, we obtained all the ordered
skill opportunity pairs (where the second skill immediately followed
or not), and classified this pair into one of three types: transitioning
from an easier to a harder skill (EH), transitioning from a harder
to an easier skill (HE), or revisiting the same skill. The relative
difficulty between skills was obtained by comparing the estimated
probabilities of succeeding on each skill opportunity according to
the AFM model fitted to the data of each condition. We computed
the frequency of each type and the frequency difference between
EH and HE (EH-HE) for each student. We then compared these
frequencies especially EH-HE between two conditions. We further
ran regression models predicting posttest scores with EH-HE, con-
trolling for the pretest scores, practice time, pretest form and class
level (we also added condition as a predictor in the regression on
the overall dataset), to see whether higher EH-HE was associated
with higher learning outcomes, and to rule out the possibility that
this association was caused by pretest score or practice time.

3.3 Results
To confirm that randomization was effective, we found that there
were no differences in pretest scores (p=0.9) between conditions.
Both conditions produced significant learning gains measured by
the difference between posttest and pretest scores (ps<0.001). We
now describe results centered on the four research questions intro-
duced above, to provide an overall comparison and understanding
of processes leading to the overall results. In all the regression
models reported, all variables used the original units and scales.

3.3.1 RQ1: Did the redesigned tutor yield higher learning outcomes?
Overall, the redesigned DA tutor led to significantly higher learning
outcomes (b=0.05, p=0.046; Cohen’s d=0.31). Meanwhile, there was
no statistical difference in overall practice time (b=4.10, p=0.40),
but the distribution of practice time differed dramatically: the DA
condition allocated 78% of practice time on average to focused tasks,
replacing much of the full task practice, while the Control condition
allocated all time to full tasks (Figure 5). These results demonstrate
the overall effectiveness of the redesigned tutor, and suggest the
effectiveness of focused task practice.

We then compared learning outcomes and practice time of each
unit. As a sanity check, we didn’t find any statistical differences
in pretest scores (ps>0.43) or ceiling effects in pretest or posttest
scores per unit. Compared to the Control condition, on the Model-
ing unit, the most difficult unit (according to posttest scores), we
found that the DA condition yielded significantly higher learning
outcomes (b=0.08, p=0.013) with no statistical difference in practice
time (b=4.15, p=0.39); the DA condition allocated significantly more
time to the 2-operator Explanation unit (b=12, p=0.003), and led

to higher learning outcomes albeit lacking statistical significance
(b=0.06, p=0.17); on the 3-operator Explanation unit, students in the
DA condition spent significantly less time (b=-12, p<0.001; 46% less
practice time on average) with no statistical difference in learning
outcomes (b=-0.004,p=0.92). Looking into practice time distribution,
the DA condition allocated the major portion of time to focused
tasks while the Control condition allocated all time to full tasks
across the three units (Figure 6). These results show that the re-
designed tutor led to improvement in each unit either in learning
outcomes or efficiency. In particular, the second round of redesign
of the Modeling unit yielded greater improvement over the Control
condition compared to the first round [17]. The redesigned tutor
led to improvement on learning outcomes or efficiency to a lesser
degree in the 2-operator Explanation unit, but yielded significantly
higher learning efficiency on the 3-operator Explanation unit with
almost no full task practice and significantly less practice time in
this unit compared to the Control condition. This suggests that the
value of focused task practice in the 2-operator Explanation unit
was in promoting better knowledge transfer for future learning.

3.3.2 RQ2: Did the redesigned tutor reduce over- and under-practice?
As shown in Figure 7 left panel, compared to the Control condi-
tion, the DA condition reduced the amount of over-practice by
half on average per student per skill, for easy skills and for high
pretest students. Specifically, the DA condition dropped the degree
of over-practice from 41% (4.59/11.08) to 31% (1.99/6.50) of actual
average opportunities for easy skills, and from 28% (3.40/12.30) to
18% (1.55/8.43) for high pretest students. Although the numbers of
over-practiced opportunities were not statistically significantly dif-
ferent (easy skills: t (24)=1.3, p=0.21; high pretest students: t (50)=1.4,
p=0.16), we found a medium effect size for easy skills (Cohen’s
d=0.51; high pretest students: d=0.40), and practical significance of
the reduction for both groups: considering the sum of reduced over-
practiced opportunities over skills for easy skills ((4.59-1.99)*13=34)
and for high pretest students ((3.40-1.55)*26=48), the overall reduc-
tion in over-practice was roughly the equivalence of opportunities
for at least one more mastered skill in the span of the study.

As shown in Figure 7 right panel, there was a significant amount
of under-practice in both conditions. We found that the average
total practice time students had was only around 64% of the planned
total practice time, which may be the main reason. Still, the DA
condition led to a reduction of around a quarter of under-practiced
opportunities on average per student per skill for hard skills and
for low pretest students, compared to the Control condition. The
numbers of under-practiced opportunities were statistically signifi-
cantly different between the conditions with medium or large effect
sizes (hard skills: t (24)=2.2, p=0.04, d=0.86; low pretest students:
t (50)=2.2, p=0.03, d=0.62). In terms of practice significance of this
reduction, the sum of reduced under-practiced opportunities over
skills for hard skills ((26.4-19.2)*13=94) and for low pretest students
((23.9-18)*26=153) were non-trivial.

Altogether, the results show that the DA condition reduced over-
practice for easy skills and high level students, and reduced under-
practice for hard skills and low level students, compared to the
Control condition, meeting our predicted improvements.

3.3.3 RQ3: Did the redesigned tutor lead to a more effective practice
experience?

169



LAK21, April 12–16, 2021, Irvine, CA, USA Huang, et al.

Figure 5: TheData-tunedAdaptive condition producedhigher learning outcomes than theControl condition through replacing
much of the full task practice in the original tutor with focused task practice. Error bars represent 95% CIs.

Figure 6: The Data-tuned Adaptive condition led to higher learning outcomes in 1/2-operator Modeling and 2-operator Expla-
nation units, and equivalent learning outcomes in 3-operator Explanation unit (left panel) despite needing much less time in
3-operator Explanation unit (right panel), compared to the Control condition. Error bars represent 95% CIs.

Figure 7: The Data-tuned Adaptive condition reduced over-practice for easy skills and high pretest level students, and reduced
under-practice for hard skills and low pretest level students, compared to the Control condition.

Figure 8: The Data-tuned Adaptive condition yielded more effective practice experiences (i.e., steeper downward slopes) for
hard skills and both levels of students, compared to the Control condition.
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Overall, the DA condition led to a much steeper downward learning
curve as shown in Figure 8. Examining different skill groups, the
DA condition led to much faster decrease in error rates for hard
skills and a similar speed of decrease for easy skills (Figure 8 middle
panel); examining different student groups, the DA condition led
to faster decrease in error rates for both levels of students and the
decreasing speed for low level students was pronounced (Figure 8
right panel). These results suggest that the DA condition provided
more effective practice experiences for hard skills and for both
levels of students, meeting our predicted improvements. Moreover,
the initial error rates for hard skills and for low level students in
the DA condition were around 0.1 lower than those of the Control
condition, suggesting that students were generally more prepared
when encountering a new hard skill, and low level students were
more prepared when encountering a new skill.

3.3.4 RQ4: Did the redesigned tutor select skills to practice progress-
ing from easier to harder to a greater degree?
As shown in Figure 9, the DA condition led to a higher frequency
of easier-to-harder skill progression (EH), and a lower frequency of
harder-to-easier skill progression (HE), doubling the frequency dif-
ference (EH-HE) from 10% more likely to 20% more likely to choose
EH over HE, and this difference in progression was practically and
statistical significant (t (127)=3.2, p=0.002; Cohen’s d=0.57). One
might argue that the HE progression indicates a tutor’s intention
to lower the difficulty which might be beneficial in some cases,
yet such an adjustment indicates that the tutor has selected a skill
too difficult in the first place, or switches to another skill before
the current skill becomes easy (i.e., mastered) for a student. The
HE progression is harmful or suboptimal in that it is at the cost of
opportunities where students could learn better from other types of
progression (EH or Same). To confirm the benefit of EH progression
over HE progression, the frequency difference (EH-HE) was a sig-
nificant predictor for posttest scores when controlling for pretest
scores and practice time (and other factors) for each condition and
overall (Table 4). This also suggests the separate contribution of
this task selection feature on learning outcomes, although we admit
that students’ proficiency (which might not be fully represented by
pretest scores) could still be an alternative explanation for this asso-
ciation. These results show that the redesigned tutor selected skills
to practice progressing from easier to harder to a greater degree
and this feature was associated with better learning outcomes.

Figure 9: The Data-tuned Adaptive condition selected skills
progressing from easier to harder to a greater degree (i.e.,
higher EH-HE), compared to the Control condition.

Table 4: Overall and per condition regression show that
higher frequency differences between easier-to-harder and
harder-to-easier skill progression (EH-HE) was associated
with higher posttest scores (controlling for other factors).

All Control DA

b=0.30, p<0.001 b=0.29, p=0.005 b=0.35, p=0.03

4 DISCUSSION AND CONCLUSION
In this paper, we demonstrate a multi-method approach (called
MADDRED) to data-driven redesign of tutoring systems, and pro-
vide empirical evidence of its effectiveness and generality through
a classroom experiment, extending our prior approach and eval-
uation [17]. The key feature of this approach is to identify hard
skills and provide effective and efficient practice on them through
focused tasks and optimized task selection. Our classroom exper-
iment shows that compared to the original tutor, the redesigned
tutor led to significantly higher learning outcomes, reduced over-
and under-practice, yielded a more effective practice experience,
and selected skills progressing from easier to harder to a greater
degree. Regarding practice time distribution, the redesigned tu-
tor replaced much of the full task practice in the original tutor
with focused task practice. Thus these results also provide indirect
evidence for the effectiveness of our focused tasks.

Our approach systematically combines new and existing learn-
ing analytics and instructional design methods. We created new
analytics methods that increase efficiency of prior methods, such
as Difficulty Factor Effect Analysis for KC model refinement, and
Probability-Propagated Practice Estimation for estimating opportu-
nities to mastery, amount of over-/under-practice. We also created
a data-driven instructional design method, Focused Practice Task
Design, with content redesign strategies derived from analytics of
opportunities to mastery and errors, informed by prior research.

Although the redesigned tutor reduced under- and over-practice,
it still led to some amount of over-practice and a non-trivial amount
of under-practice. Although there might be benefits from a small
amount of over-practice, this time might still be better spent on
other under-practiced skills. Thus, we may need redesign efforts to
further reduce over-practicing. For example, refining the KC model
and student model parameters based on the newly collected data
may lead to more accurate knowledge estimates (and design), and
help reduce over-practicing. As for under-practice in the redesigned
tutor, the primary reason may be the discrepancy between the
actual practice time and the planned time for a variety of reasons
including students’ starting late, signing off early. Although we
might consider a longer span study or a smaller set of target skills,
we may consider making the scaffolding design more adaptive to
students’ differences. After all, data-driven redesign is intended
as an iterative process. In addition, examining students’ learning
outcomes in a delayed test or standardized tests may provide more
evidence regarding the effect of the redesign on robust learning.

As an initial test of the generality of the approach, we tested it
in multiple units in the algebra task domain in the same intelligent
tutoring system. To further test the generality, we need to apply it
to other task domains or other tutoring systems. Our approach is in-
tended to be applicable to systems with learning-by-doing activities,
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and where activities and instructions are designed and organized
based on a KC model. In systems with other types of activities
(e.g., reading, video watching), analytics on engagement (e.g., time
or usage on resources [30]) might provide valuable insights into
redesign. Moreover, our data-driven redesign approach can borrow
from human-centered learning analytics to answer design questions
that data analytics alone cannot answer, and it may also enhance
human-centered learning analytics processes.

Our study investigated how to combine methods to maximally
improve a tutor, and whether our systematic combination leads to
student learning improvements. We believe that such an approach
and evaluation are of value for instructional design practices and
learning engineering research. Our experiment does not allow teas-
ing apart the effects of different components; there may be value
in further studies to isolate the contributions of these components.

The present research serves as a first step towards understanding
how to combine methods for data-driven redesign of tutoring sys-
tems and courses. Our work provides general guidance on how to
convert learning analytics into better system design, an important
need in LAK research and practice. Our work may also help define
and enhance data-driven learning engineering processes.
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