
HAL Id: hal-03355664
https://laas.hal.science/hal-03355664

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cross-protocol attacks: weaponizing a smartphone by
diverting its Bluetooth controller

Romain Cayre, Géraldine Marconato, Florent Galtier, Mohamed Kaâniche,
Vincent Nicomette, Guillaume Auriol

To cite this version:
Romain Cayre, Géraldine Marconato, Florent Galtier, Mohamed Kaâniche, Vincent Nicomette, et al..
Cross-protocol attacks: weaponizing a smartphone by diverting its Bluetooth controller. 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, Jun 2021, Abu Dhabi, United
Arab Emirates. �10.1145/3448300.3468258�. �hal-03355664�

https://laas.hal.science/hal-03355664
https://hal.archives-ouvertes.fr

POSTER: Cross-protocol attacks: weaponizing a smartphone by
diverting its Bluetooth controller

Romain Cayre
Géraldine Marconato

APSYS.Lab, APSYS, Toulouse, France
firstname.lastname@airbus.com

Florent Galtier
Mohamed Kaâniche

CNRS, LAAS, Toulouse, France
firstname.lastname@laas.fr

Vincent Nicomette
Guillaume Auriol

Univ de Toulouse, INSA, LAAS
Toulouse, France

firstname.lastname@laas.fr

ABSTRACT
In this paper, we focus on a new type of wireless attacks, named
cross-technology pivoting attacks. The main objective of these
attacks is to divert the transceivers of compromised devices dedi-
cated to a given protocol to allow them to communicate through
another protocol, taking advantage of some similarities in their
modulation schemes. The main contribution of this work consists
in demonstrating the practical feasibility of pivoting attacks from
off-the-shelf devices implementing the Bluetooth 5.0 specification.
To our knowledge, this attack has not been explored so far in the
state of the art.

ACM Reference Format:
Romain Cayre, Géraldine Marconato, Florent Galtier, Mohamed Kaâniche,
Vincent Nicomette, and Guillaume Auriol. 2021. POSTER: Cross-protocol
attacks: weaponizing a smartphone by diverting its Bluetooth controller. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The rapid and massive expansion of connected objects in our daily
life raises new security concerns. Indeed, most of these devices use
heterogeneous and vulnerable decentralised wireless communica-
tion protocols such as Bluetooth or Zigbee, and some of them are
commonly used in mobile application scenarios. This situation al-
lows attackers to explore new offensive scenarios, taking advantage
of the massive and pervasive dissemination of these wireless tech-
nologies to compromise vulnerable devices and networks. Among
those, cross-technology pivoting attacks allow a compromised de-
vice to be used as an intermediary to attack other kind of devices.
Given that many IoT devices are intended for mobile use, the exis-
tence of this new type of attack significantly increases the attack
surfaces of the targeted networks. As an example, an employee’s
smartwatch may be compromised in a public space using a Blue-
tooth Low Energy (BLE) exploit, and then used as an intermediary
to compromise its company Zigbee network when the employee is
in range.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this work, we explore the feasibility of diverting a BCM4375
Bluetooth controller embedded in a Samsung Galaxy S20 smart-
phone to implement this new kind of pivoting attacks, resulting
in a wide attack surface. Second we describe how we successfully
implemented such an attack to target three different wireless tech-
nologies: Zigbee, Enhanced ShockBurst and Mosart.

2 FIRMWARE REVERSE ENGINEERING
2.1 InternalBlue framework
The InternalBlue framework[4] takes advantage of some vendor-
specific commands and allows to easily dump, analyse and patch
firmware embedded in Bluetooth controllers from Broadcom and
Cypress, which are common in the wild. First, it allowed us to
dynamically instrument the firmware to understand its internals.
Second, we used it to patch some specific functions to integrate
our customized receive and send primitives and to add support for
new protocols. Note that the use of this framework requires root
access on the smartphone as it needs to send arbitrary commands
to the Bluetooth controller using the Host-Controller Interface. In
the specific case of Samsung Galaxy S20, we also had to replace
one of the patched official Broadcom file by an older one, as some
of these patches removed support of some specific commands used
by InternalBlue, as mentioned in the framework documentation[3].

2.2 Methodology
We focused our analysis on a recent bluetooth controller, the BCM4375
chip from Broadcom. This chip is embedded in many smartphones,
such as Samsung Galaxy S10 or S20. We have chosen this specific
chip for the following reasons:

• it supports Bluetooth 5 and especially the LE 2M physical
layer, which is needed to implement Zigbee and Enhanced
ShockBurst support,

• it is compatible with InternalBlue, which considerably fa-
cilitates the process of firmware reverse engineering and
patching.

We also analysed the firmware of the CYW20735 IoT develo-
ment board. Indeed, the symbols associated to this firmware are
already known, allowing to easily identify the main functions and
to understand their behaviour.

We have partially reverse engineered these firmwares, especially
the functions linked to the RF hardware configuration and to BLE
scanning and advertising tasks. This process was conducted using
both static and dynamic analysis with IDA Pro and InternalBlue. We
also identified several common functions that are present in both
firmwares: this allowed us to take advantage of the known symbols

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche and G. Marconato

of the CYW20735 firmware to infer relevant information about the
BCM4375 firmware.

2.3 Diverting scanning and advertising tasks
We have focused our work on the Bluetooth Low Energy stack, and
more particularly on the features related to advertisements, such as
scanning or advertising. Indeed, these features do not require the
establishment of a connection as a prerequisite to send and receive
packets. Therefore, they are good candidates to be diverted, in order
to implement receive and send primitives for other wireless proto-
cols. They are implemented in the firmware as tasks, consisting of
several functions and callbacks.

First, we identified the main functions linked to the configuration
of the RF hardware, the reception callback (extendedScanTaskRx-
Done) used by the scanning task and the transmission function
(extendedAdvTaskProgHw) used by the advertising task. Second,
we modified some specific instructions in these functions to redi-
rect the execution flow to our own code stored in RAM, allow-
ing us to 1) configure the RF hardware; 2) gain direct access to
the raw demodulator output thanks to a memory mapped regis-
ter and 3) gain indirect access to the modulator input by storing
our complete packet into an advertisement packet payload, using
Packet-in-Packet attack [2].

2.4 RF hardware configuration
In order to implement our reception and transmission primitives to
support other wireless protocols, we must be able to perform the
following operations:

• choose an arbitrary preamble,
• choose an arbitrary frequency,
• select a 2Mbps data rate,
• receive data from the demodulator output,
• send data to the modulator input.

We mainly identified the configuration function linked to the setup
of LE 2M physical layer (le2m_program2MAdvMode). The BLE access
address being used as a pattern to match the beginning of a BLE
packet, we used it to select an arbitrary preamble to synchronize
with packets from other wireless protocols using a 2Mbps data rate.
The whitening operation was configured using a specific function
(bcsulp_setupWhitenning) which has been modified to disable
this feature, allowing us to manipulate the demodulator output and
the modulator input without requiring additional data processing.
Two different registers are used to select the frequency, one being
used by the scanning task and the other one by the advertising
task. However, both of them allow to select an arbitrary frequency
in the 2.4 to 2.5 GHz band by providing an offset from 2402 MHz,
specified in MHz (as an example, selecting 2410 MHz implies to
write a 8MHz offset to one of these registers).

We were able to implement both a reception and a transmission
primitive by diverting these features, allowing us to handle arbi-
trary GFSK packets using a 2Mbps data rate. We then used these
primitives to add support for several non-native protocols, such as
Zigbee, Mosart and Enhanced ShockBurst.

2.5 Host/Controller communication
We introduced these new offensive capabilities directly in the Blue-
tooth Controller by patching its firmware with InternalBlue. How-
ever, they have to be handled from the smartphone, also known as
Host. Therefore, we had to find a way to establish a communication
between the Controller and the Host to build a relevant API.

The Bluetooth specification describes an interface named Host
Controller Interface (HCI), allowing Host to Controller communica-
tion using commands and Controller to Host communication using
events. We identified two functions allowing to allocate a buffer de-
scribing an eventmessage (bthci_event_AllocateEventAndFill-
Header) and send it to theHost (bthci_event_AttemptToEnqueue-
EventToTransport) : we mostly used them to send the received
packets to the smartphone. We also discovered that HCI commands
are handled using an array of function pointers: the command iden-
tifier is used to calculate an index, allowing to call the corresponding
function into the firmware. We found two unused command identi-
fiers and stored our own functions’ addresses at the right places in
this array, allowing us to expose a simple API that can be used to
control the receiver mode and transmit a given packet.

These modifications allowed us to implement a user-friendly API,
which can then be easily manipulated from the smartphone using
the HCI. We are currently working on an experimental Android
application allowing to interact with the controller to trigger the
new offensive capabilities we added: we monitor HCI events by
parsing in real time the Bluetooth HCI snoop log and we can also
send commands to the controller by writing the raw command
message directly to /dev/ttySAC1. We plan to release both the
patches and the application as open source software.

3 PROTOCOLS SUPPORT
3.1 Zigbee
We implemented Zigbee protocol support using theWazaBee attack[1].
This attack describes how to divert a Bluetooth Low Energy chip
to implement reception and emission primitives for 802.15.4-based
protocols by taking advantage of similarities between Gaussian
Frequency Shift Keying (GFSK) and Offset Quadrature Phase Shift
Keying (O-QPSK) modulation schemes. We added a correspondence
table in the firmware, allowing to map each Zigbee symbol to the
corresponding GFSK demodulated binary sequence. We also added
helper functions allowing to automatically perform this conver-
sion when a Zigbee packet is received or sent. Every Zigbee packet
starts with a 4 bytes-long preamble which is composed of zeros: as
a consequence, we generated the GFSK bytes sequence correspond-
ing to the zero symbol and used it as preamble to synchronise the
receiver with Zigbee frames. Selecting a specific Zigbee channel
is straightforward, as the offset we have to write in the frequency
selection register depends directly on the Zigbee channel number.

We performed experiments to evaluate our primitives. We built
a custom Zigbee network composed of multiple XBee nodes: the co-
ordinator receives packets transmitted every second by end devices,
extracts a numeric value from the payload and displays it on a graph.
This setup simulates a sensors network, with the coordinator acting
as a visualizer and the end devices acting as sensors. We first used
our primitives to passively monitor traffic to identify the network
PanID and nodes’ addresses. Then, we injected a fake configuration

POSTER: Cross-protocol attacks: weaponizing a smartphone by diverting its Bluetooth controller Conference’17, July 2017, Washington, DC, USA

to perform a denial of service attack targeting a specific sensor and
spoofed it by transmitting fake data to the visualizer.

3.2 Mosart
Mosart is a proprietary protocol commonly used by wireless mice
and keyboards from various manufacturers. It is based on a GFSK
modulation scheme using a 1 Mbps datarate. A Mosart packet con-
sists of a 2-byte preamble (0x5555), a 4-byte address, a variable
length payload and a 2-byte CRC. One of the major issues we
encountered in implementing this protocol is related to the RF
hardware of BCM4375 chip: even though BLE natively supports
a physical layer using 1 Mbps data rate, the firmware does not
expose any function to select an arbitrary access address if 1 Mbps
data rate is used. We assume that the access address used in LE 1M
advertising mode is hard-coded in the RF hardware and cannot be
easily changed from the firmware, which complicates the imple-
mentation of the reception primitive. However, as we mentioned
in subsection 2.4, the access address can be chosen arbitrarily if the
LE 2M physical layer is used. We solved this problem by using LE
2M and duplicating every bit: as an example, the 2-byte preamble
0x5555 at 1 Mbps becomes 0x33333333 with 2 Mbps data rate. We
have implemented helper functions to select one bit over two in
the demodulator output to decode a received Mosart packet and
to duplicate each bit of the sent packets before their transmission
to the modulator input. It should be noted that other simple trans-
formations are also performed in these functions, allowing to deal
with scrambling and endianness.

We evaluated these two primitives by implementing several at-
tacks from MouseJack[5], a set of vulnerabilities targeting wireless
keyboards and mice. Indeed, the Mosart protocol does not use en-
cryption, so we were able to implement a wireless keylogger allow-
ing to passively collect keystrokes and inject arbitrary keystrokes
or mouse events to a vulnerable Mosart dongle.

3.3 Enhanced ShockBurst
Enhanced ShockBurst is a proprietary protocol using a GFSK modu-
lation at 2Mbps, used by many keyboard or mouse protocols, such
as Logitech Unifying.

Each packet starts with a preamble of 0xAA or 0x55, followed by a
5-byte address, a payload and a CRC. Since themodulation scheme it
uses is identical to the one used in BLE, it is quite easy to implement
the primitives described above to communicate using this protocol.
Someminor differences, such as the endianness, can be easily solved
with a simple transformation applied to the modulator input and
the demodulator output. Synchronizing the receiver with Enhanced
ShockBurst packets is straightforward if the address is known, as
we can use its first bytes as preamble. Without prior knowledge
of this address, we first configure our receiver with an arbitrary
preamble to get large demodulated buffers, in which we then search
for valid packets to extract the embedded addresses.

Using this approach, we could get the address of a Logitech wire-
less mouse, and then sniff its communications or inject malicious
packets to trigger mouse clicks or arbitrary movements. Let us note
that M. Newlin identified multiple critical vulnerabilities in Mouse-
Jack[5] that could be triggered using these primitives, allowing a
fake device to be paired with a dongle without user interaction or to

inject unencrypted keystrokes. Most of these issues were supposed
to be fixed, but during our experiments, we encountered recent
devices which are still vulnerable to some of them.

4 EXTENSION
We believe that this work could be extended to many other wireless
protocols. As an example, ANT+ protocol, a proprietary protocol
commonly used by sports-oriented devices, has been reverse en-
gineered by T. Szakaly[6] and seems to be based on a variant of
Enhanced ShockBurst protocol: therefore, implementing support
for the ANT+ protocol should be straightforward. Similarly, in our
previous research we noted that many proprietary protocols used
by drones and wireless keyboards and mice seem to be based on
similar modulation schemes, making them good candidates to be
implemented using our primitives.

This work has been focused on implementing new offensive ca-
pabilities on a BCM4375 chip. However, the InternalBlue framework
can be used to inteoperate with several other chips from Broadcom
and Cypress, and we noted in our experiments, that the firmwares
generally share a significant amount of code. Therefore, it would
probably be straightforward to implement this work on other chips
from the same manufacturers. Note that since we are relying pri-
marily on LE 2M physical layer, the candidate chips must provide a
minimal Bluetooth 5 support.

5 CONCLUSION
In this article, we presented an approach allowing to divert a Blue-
tooth chip embedded in a smartphone to communicate over dif-
ferent wireless protocols, demonstrating the feasibility of cross-
protocol attack strategies on a standard mobile phone. This is crit-
ical from a security perspective, as this attack strategy does not
require any expensive or specific equipment, takes advantage of the
ubiquity of Bluetooth devices and is mobile. For example, compro-
mising an employee’s smartphone could lead an attacker to pivot
on different other protocols used by a company to carry out passive
or active attacks, such as injecting keystrokes on a distant computer,
or inserting a malicious node in a ZigBee network. As the impact
of such attack scenarios may be critical, we therefore believe we
should rethink existing defense strategies in wireless environments,
to take possible stealthy pivoting attacks into account.

REFERENCES
[1] Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette, Mohamed

Kaâniche, and Géraldine Marconato. 2021. WazaBee: attacking Zigbee networks
by diverting Bluetooth Low Energy chips. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). Taipei (virtual), Taiwan. https:
//hal.laas.fr/hal-03193299

[2] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Rebecca Shapiro, and Ryan
Speers. 2011. Packets in Packets: Orson Welles’ In-Band Signaling Attacks for
Modern Radios.. In WOOT. 54–61.

[3] SEEMOO Lab. 2018. InternalBlue repository. https://github.com/seemoo-lab/
internalblue/.

[4] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. 2019. Internal-
Blue - Bluetooth Binary Patching and Experimentation Framework. Proceedings
of the 17th Annual International Conference on Mobile Systems, Applications, and
Services (Jun 2019). https://doi.org/10.1145/3307334.3326089

[5] Marc Newlin. 2016. MouseJack : White Paper. https://github.com/
BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-
MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf.

[6] Tamas Szakaly. 2016. Help, I’ve got ANTs !!! https://media.defcon.org/DEFCON24/
DEFCON24presentations/DEFCON24-Tamas-Szakaly-Help-I-got-ANTS.pdf.

https://hal.laas.fr/hal-03193299
https://hal.laas.fr/hal-03193299
https://github.com/seemoo-lab/internalblue/
https://github.com/seemoo-lab/internalblue/
https://doi.org/10.1145/3307334.3326089
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://github.com/BastilleResearch/mousejack/blob/master/doc/pdf/DEFCON-24-Marc-Newlin-MouseJack-Injecting-Keystrokes-Into-Wireless-Mice.whitepaper.pdf
 https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEF CON 24 - Tamas-Szakaly-Help-I-got-ANTS.pdf
 https://media.defcon.org/DEF CON 24/DEF CON 24 presentations/DEF CON 24 - Tamas-Szakaly-Help-I-got-ANTS.pdf

	Abstract
	1 Introduction
	2 Firmware reverse engineering
	2.1 InternalBlue framework
	2.2 Methodology
	2.3 Diverting scanning and advertising tasks
	2.4 RF hardware configuration
	2.5 Host/Controller communication

	3 Protocols support
	3.1 Zigbee
	3.2 Mosart
	3.3 Enhanced ShockBurst

	4 Extension
	5 Conclusion
	References

