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ABSTRACT

Generating diverse populations of high quality solutions has gained interest as a promising extension
to the traditional optimization tasks. This work contributes to this line of research with an investiga-
tion on evolutionary diversity optimization for three of the most well-studied permutation problems,
namely the Traveling Salesperson Problem (TSP), both symmetric and asymmetric variants, and
Quadratic Assignment Problem (QAP). It includes an analysis of the worst-case performance of a
simple mutation-only evolutionary algorithm with different mutation operators, using an established
diversity measure. Theoretical results show many mutation operators for these problems guaran-
tee convergence to maximally diverse populations of sufficiently small size within cubic to quartic
expected run-time. On the other hand, the result on QAP suggests that strong mutations give poor
worst-case performance, as mutation strength contributes exponentially to the expected run-time.
Additionally, experiments are carried out on QAPLIB and synthetic instances in unconstrained and
constrained settings, and reveal much more optimistic practical performances, while corroborating
the theoretical finding regarding mutation strength. These results should serve as a baseline for
future studies.

Keywords evolutionary algorithms, diversity maximization, traveling salesperson problem, quadratic assignment
problem, run-time analysis

1 Introduction

Evolutionary diversity optimization (EDO) aims to compute a set of diverse solutions that all have high quality while
maximally differing from each other. This area of research started by Ulrich and Thiele [1, 2]1 has recently gained
significant attention within the evolutionary computation community, as evolution itself is increasingly regarded as a
diversification device rather than a pure objective optimizer [4]. After all, in nature, deviating from the predecessors
leads to finding new niches, which reduces competitive pressure and increases evolvability [5]. This perspective
challenges the notion that evolutionary processes are mainly adaptive with respect to some quality metrics, and that
population diversity is only in service of adapting its individuals and is without intrinsic worth. In applications,
diversity optimization is a useful extension to the traditional optimization tasks, as a set of multiple interesting solutions
has more practical value than a single very good solution.

Formally, given an objective function f to be minimized (the maximization variant is defined similarly) over a feasible
solution space S, a threshold value F , a natural number µ, and a diversity function div over solution sets, EDO
searches for a solution set P such that

1The idea of finding maximally diverse solutions with genetic algorithms can be traced back to [3]
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P ∈ argmax
Q⊆2S :|Q|=µ

{div(Q) | ∀x ∈ Q, f(x) ≤ F} . (1)

EDO research arose amid the interest in diverse solutions problems in the broader optimization research, which is
currently relevant [6, 7, 8]. This class of problem addresses the practical necessity of having multiple solutions, such
as providing alternatives that are, by being diverse, robust in allowing quick adaptation to changes in the problems.
Furthermore, it helps the users be more flexible in adjusting for gaps between the problem models and real-world
settings, arising frequently from modeling errors, and imprecise/uncertain aspects of the problem [9]. Additionally,
diverse solution sets contain rich information about the problem instance (as opposed to similar solution sets), which
aids the users in making better decisions. While one could make use of existing solution enumeration techniques
to obtain such values, the number of relevant solutions can grow rapidly [10], overburdening the decision makers.
Moreover, top-k enumeration, while being expensive, often yields highly similar solutions [11, 12]. These reasons
justify separate treatments of diverse solutions problems from those of enumeration and multi-modal optimization.

1.1 Related work

Before diversity of solutions became of interest as it is in EDO, researchers in evolutionary computation considered the
“multi-solution problems”, in which many solutions of interest are sought. This has been one of the main motivations
and applications of Evolutionary multi-modal optimization [13, 14, 15, 16]. Most effort in this area has been spent on
continuous search spaces, while fewer works such as [3, 17, 18, 19, 20, 21] deal with combinatorial problems. It is
important to note that in multi-modal optimization, diversity of solutions primarily serves as a necessary property of
local optima discovery processes, and not as an optimization objective in its own right. In fact, multi-solution in this
context is mostly regarded as an intermediate problem, the solutions to which facilitate the search for global optima.

On the other hand, there have been studies in evolutionary computation that explore different relationships between
quality and diversity. These include a trend emerging from the evolutionary robotics that is Quality Diversity, which
focuses on exploring diverse niches in the feature space and maximizing quality within each niche [4, 22, 23, 24].
This paradigm seeks to maximize diversity via niches discovery, relying on determining a well-defined notion of
niches. Other studies place more importance on diversity measured directly from solutions, applying evolutionary
techniques to generate images with varying features [25], or to compute diverse Traveling Salesperson Problem (TSP)
instances [26, 27] useful for automated algorithm selection and configuration [28]. Different indicators for measuring
the diversity of sets of solutions in EDO algorithms such as the star discrepancy [29] or popular indicators from the area
of evolutionary multi-objective optimization [30] have been investigated to create high quality sets of solutions. The
studies [31, 32] explore EDO for symmetric TSP solutions using entropy measure, while non-scalar diversity measures
are proposed in [33]. Others also consider EDO in knapsack problems [34], minimum spanning tree problem [35],
and submodular optimization [36].

Outside the realm of evolutionary computation, the diverse solutions problem has been studied as an extension to
many important classes of difficult problems. Many interesting results have been discovered for diverse solutions
to constraint satisfaction and optimization problems [37, 38, 39]. Extensions to the traditional solving paradigms
have been made to compute diverse solutions to SAT and Answer Set Problem, using existing powerful frameworks
[40, 41]. Others have proposed methods for Mixed Integer Programming that incorporate diversity into quality-based
heuristics [10, 42, 43]. More recently, the first provably fixed-parameter tractable algorithms have been proposed for
diverse solutions to a broad class of graph-based vertex problems [7], via modification of dynamic programming on
the graph’s tree decomposition. This inspired subsequent research on other combinatorial structures such as trees,
paths [8, 44], matching [45], independent sets [46], and linear orders [47]. On the other hand, a general modeling
framework has been proposed for diverse solutions to any combinatorial problem [6].

1.2 Our contribution

We contribute to the understanding of evolutionary diversity optimization on combinatorial problems, mainly from
the theoretical run-time perspective. We refer to [48, 49] for comprehensive overviews of run-time analysis of dis-
crete evolutionary optimizers. Specifically, we focus on symmetric and asymmetric TSP (abbreviated as STSP and
ATSP, respectively), and Quadratic Assignment Problem (QAP), two classical NP-hard problems where solutions are
represented as permutations, and the latter of which has also been attempted with genetic algorithms [50, 51, 52, 53].
The structures of the solution spaces associated with these problems are similar, yet different enough to merit distinct
diversity measures. We use two approaches to measuring diversity: one based on the representation frequencies of
“objects” (edges or assignments) in the population, and one based on the minimum distance between each solution
and the rest. We consider the simple evolutionary algorithm that only uses mutation, and examine its worst-case per-
formances in diversity maximization when various mutation operators are used. Our results reveal how properties of
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a population influence the effectiveness of mutations in equalizing objects’ representation frequencies. Additionally,
we carry out experimental benchmark on various QAPLIB instances in unconstrained (no quality threshold) and con-
strained settings, using a simple mutation-only algorithm with 2-opt mutation. The results indicate optimistic run-time
to maximize diversity on QAP solutions, and show maximization behaviors when using different diversity measures in
the algorithm. These contributions are included in the conference version of this article, published in the proceedings
of GECCO 2021 [54]. Note that the experimental results on TSP already presented in [33] are not included here.
Nevertheless, those results also exhibit, when the population is small, lower run-time than our worst-case analysis
implies.

This article extends the conference version by first expanding the scope of the worst-case run-time result in QAP: we
generalize the proof to k-opt mutation from 2-opt mutation, to account for larger mutation strength choices (Section
4.3). Secondly, we augment the lemma for this result by proving constructively that the condition for the lack of local
optima is non-trivial in case of 2-opt. Thirdly, we add theoretical results for the algorithm on ATSP using 3-opt and
4-opt mutation (Section 4.2). Finally, we perform additional experimentation with unconstrained scenarios in QAP,
using exhaustive combinations of problem size and population size values, and varying mutation strengths (Section
5.1).

Our results regarding ATSP tours show that strict improvements are guaranteed at population sizes greater than the
upper bound in the corresponding results regarding STSP tours. However, this extra flexibility comes at a cost of
increased asymptotic worst-case expected run-time. We reveal similar insight in diversifying QAP solutions: the mu-
tation strength contributes exponentially to the expected run-time, which is most significant at near-optimal diversity.
This theoretical phenomenon from the use of strong mutations aligns with our experimental results. Furthermore, we
observe in the experiment that the hard cases for the algorithm occur when the population size is close to multiples of
the problem size, and that in all other cases, average run times to reach the optimum are significantly lower than the
worst-case run-time.

The paper is structured as follows. In Section 2, we introduce the STSP/ATSP and QAP in the context of evolutionary
diversity optimization and describe the algorithm that is the subject of our analysis. In Section 3, we define the diversity
measures used for the three problems. Section 4 includes the run-time analysis of the algorithm. We report on our
experimental investigations in Section 5 and finish with some conclusions.

2 Maximizing diversity in STSP, ATSP and QAP

Throughout the paper, we use the shorthand [n] = {1, . . . , n}. The symmetric STSP is formulated as follow. Given a
complete undirected graph G = (V,E) with n = |V | nodes, m = n(n− 1)/2 = |E| edges and the distance function
d : V × V → R≥0, the goal is to compute a tour of minimal cost that visits each node exactly once and finally returns
to the original node. Let V = [n], the goal is to find a tour represented by the permutation π : V → V that minimizes
the tour cost

c(π) = d(π(n), π(1)) +

n−1∑
i=1

d(π(i), π(i+ 1)).

An ATSP instance is defined with a directed graph containing n(n − 1) edges, an asymmetric edge weight function
d, and an identical cost function. The QAP is formulated as follow. Given facilities F = {f1, . . . , fn}, locations
L = {l1, . . . , ln}, weights w : F ×F → R≥0, flows f : L×L→ R≥0, find a 1-1 mapping a : F → L that minimizes
the cost function

c(a) =
∑
i,j∈F

w(i, j)f(a(i), a(j)).

A problem instance is encoded with two n× n matrices: one for w and one for f . Similar to STSP and ATSP, we can
abstract F and L like we do V : F = [n] and L = [n]. Therefore, each mapping is uniquely defined by a [n] → [n]
permutation. Given that there is a 1-to-1 correspondence between all permutations and all mappings, the solution
space is the permutation space. This is an important distinction between STSP/ATSP and QAP from which low-level
differences between the diversity measures in each case emerge. Furthermore, a STSP tour corresponds to 2 edge-
disjoint ATSP tours, which highlights the differences between the two types of search spaces. On the other hand, the
high level structure of a tour (directed or undirected) is identical to that of a mapping, so the notions like distance or
diversity are the same for all three problems above a certain layer of abstraction.

In this paper, we consider diversity optimization for STSP, ATSP and QAP, which is a special case of (1). For each
problem instance, we are to find a set P of µ = |P | solutions that is diverse with respect to some diversity measure,
while each solution meets a given quality threshold. Typically, this threshold is set to be (1 + α)OPT , where OPT
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denotes the optimal objective value and α > 0 decides the optimality gap. Such a formulation requires that the final
population only contains (1 + α)-approximations for a problem instance. We assume that the optimal solution is
known for a given instance, which does not eliminate the problem’s intractability. We refer to such an instance a
(µ, α)-instance of the diversity optimization problem.

We consider (µ + 1)-EA which was used to diversify STSP tours [33]. The algorithm is described in Algorithm 1;
it takes in the raw threshold value instead of α, and the diversity measure to be maximized. It uses only mutation to
introduce new genes, and tries to minimize duplication in the gene pool with elitist survival selection. The algorithm
slightly modifies the population in each step by mutating a random solution, essentially performing random local
search in the population space. As with many evolutionary algorithms, it can be customized for different problems, in
this case by modifying the mutation operator and the diversity measure. In this work, we are interested in worst-case
performances of the algorithm under the assumption that any offspring is acceptable. We consider the usual black-box
complexity model, where the run-time is defined as the number of fitness evaluations [49]. For (µ + 1)-EA, it is the
same as the number of iterations.

Algorithm 1 (µ+ 1)-EA for diversity optimization
1: Inputs: instance c, set size µ, threshold value F , diversity measure function div
2: P ← initial population
3: while stopping criteria not met do
4: I ← randomSelect(P )
5: I ′ ← mutate(I)
6: if c(I ′) ≤ F then
7: P ← P ∪ {I ′}
8: I ′′ ← argminJ∈P {div(P \ {J})}
9: P ← P \ {I ′′}

10: end if
11: end while
12: return P

3 Diversity measures

The structure of a STSP/ATSP tour is similar to that of a QAP mapping in the sense that they are both each defined by a
set of objects: edges in tours and assignments in mappings. In fact, the size of such a set is always equal to the instance
size n. For this reason, diversity measures for populations of tours, and those for populations of mappings share many
commonalities. In particular, we describe two measures introduced in [33], customized for STSP, ATSP and QAP.
For consistency, we use the same notations for the same concepts between the three problems unless told otherwise.
We also refer to [33] for more in-depth discussion on the measures, and fast implementations of the survival selection
for Algorithm 1 based on these measures, which can be customized for ATSP and QAP solutions. We remark that
while QAP is a generalization of STSP and ATSP, their corresponding diversity optimization problems do not share
this relationship.

3.1 Edge/Assignment diversity

In this approach, we consider diversity in terms of equal representations of edges/assignments in the population. It
takes into account, for each object, the number of solutions containing it, among the µ solutions in the population.

For STSP and ATSP, given a population of tours P and an edge e ∈ E, we denote by n(e, P ) its edge count, which is
defined,

n(e, P ) = |{T ∈ P | e ∈ E(T )}| ∈ {0, . . . , µ}
whereE(T ) ⊂ E is the set of edges used by tour T . Then in order to maximize the edge diversity we aim to minimize,
in the lexicographic order, the vector

N (P ) = sort (n(e1, P ), n(e2, P ), . . . , n(em, P )) , (2)

where sorting is performed in descending order. As shown in [33], since the total edge count is fixed, this equalizes
the counts across edges, thus maximizing the pairwise distances sum

D1(P ) =
∑
T1∈P

∑
T2∈P

|E(T1) \ E(T2)| = |P |(|P | − 1)n+
∑
e∈E

n(e, P )(1− n(e, P )).
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Similarly for QAP, given a population of mappings P , we denote by n(i, j, P ) its assignment count as follow,

n(i, j, P ) = |{a ∈ P | (i, j) ∈ A(a)}| ∈ {0, . . . , µ}

where A(a) ⊂ [n] × [n] is the set of assignments used by solution a. The corresponding vector to be minimized in
order to maximize assignment diversity is then

N (P ) = sort (n(i, j, P ))i,j∈[n] , (3)

in the lexicographic order where sorting is performed in descending order. Similarly, this maximizes the following
quantity

D1(P ) =
∑
a∈P

∑
b∈P

|A(a) \A(b)|.

While this diversity measure is directly related to the notion of diversity, using it to optimize populations has its
drawbacks. As mentioned in [33], populations containing clustering subsets of solutions can have high D1 score,
which is undesirable. For this reason, we also consider another measure that circumvents this issue.

3.2 Equalizing pairwise distances

Instead of maximizing all pairwise distances at once, this approach focuses on maximizing smallest distances, poten-
tially reducing larger distances as a result. Optimizing for this measure reduces clustering phenomena, as well as tends
to increase the distance sum. In this approach, we minimize the following vector lexicographically

D(P ) = sort
(

(oX,Y )X,Y ∈P

)
, (4)

where sorting is performed in descending order, and oXY = |E(X) ∩ E(Y )| if X and Y are STSP tours, and
oXY = |A(X) ∩A(Y )| if they are QAP mappings. Doing this would also maximize the following quantity

D2(P ) =
∑
T∈P

min
X∈P\{T}

{|E(T ) \ E(X)|} , or D2(P ) =
∑
a∈P

min
b∈P\{T}

{|A(a) \A(b)|} .

We know from Hamiltonian decomposition of complete undirected graphs (Theorem 1 in [55]) that for any STSP tour
population P of size at most

⌊
n−1
2

⌋
, we have

argmin
P
{N (P )} = argmin

P
{D(P )} = argmin

P
{D1(P )} = argmin

P
{D2(P )}.

One of the results in this study implies that the same is true for any QAP mapping population of size at most n. On
the other hand, when µ > n, P ∗ ∈ argmaxP {D2(P )} doesn’t necessarily imply P ∗ ∈ argminP {D(P )}, as shown
by the following example.
Example 1. For a QAP instance where n = 4 and µ = 5, let a1 = (1, 2, 3, 4), a2 = (1, 3, 4, 2), a3 = (3, 2, 4, 1), a4 =
(2, 4, 3, 1), a5 = (2, 3, 1, 4), a6 = (4, 2, 1, 3), a7 = (3, 1, 2, 4), P = {a1, a2, a3, a4, a5}, P ′ = {a1, a2, a4, a6, a7},
we have D2(P ) = D2(P ′) = 15 which is the maximum. However,

D(P ) = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0) > D(P ′) = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0).

Because of this, it is tricky to determine the maximum achievable diversity D in such cases. For now, we assume the
upper bound µn of D2, which is relevant to our experimentation in Section 5.

4 Properties and worst-case results

We investigate the theoretical performance of Algorithm 1 in optimizing for N defined in (2) and (3) without the
quality criterion. For STSP, we consider three mutation operators: 2-opt, 3-opt (insertion) and 4-opt (exchange) on the
visit-order representation. For ATSP, we consider 3-opt and 4-opt, the former of which is typically used in local search
heuristics [56, 57]. For QAP, we consider the k-opt mutation which is a generalization of the 2-opt transposition.
Regarding the solution’s representation, we assume that each of the operators samples its corresponding neighborhood
(in the underlying space and not the representation space) uniformly, so the choice of representation is only a matter of
implementation. As mentioned, we use, in our proofs, the visit-order representation for STSP/ATSP solutions, and the
natural assignment permutation for QAP solutions. As we will see in the proofs, these representations can be used to
index the subset of the neighborhood that is relevant to the algorithm’s behaviors, thus allowing for accurate counting.

5
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For the analysis, we are interested in the number of iterations until a population with optimal diversity is achieved. Our
derivation of results is predicated on the lack of local optima: we only consider scenarios where it is always possible
to strictly improves diversity in a single step of the algorithm. Formally, we say that Algorithm 1, using the mutation
operator sampling from the neighborhood B(·), encounters a local optimum if its current population, P , is such that

∀a, b ∈ P,∀b′ ∈ B(b),N (P ) ≤ N (P \ {a} ∪ {b′}).

This consideration facilitates positive lower bounds of the success rate, allowing us to apply the drift analysis technique
[58]. Since this technique is intuitive, we do not explicitly mention it in the proofs for brevity’s sake.

4.1 STSP

Let dP = maxe∈E{n(e, P )} and cP = |e ∈ E | n(e, P ) = dP |. For each node i, let in(i) be the set of edges incident
to i, and s(i, P ) =

∑
e∈in(i) n(e, P ). For each tour I , let 2opt(I, i, j) be the tour resulted from applying 2-opt to I

at positions i and j in the permutation, and 4opt(I, i, j) be the tour from exchanging i-th and j-th elements in I . We
assume n ≥ 4 as the other cases are trivial. Note that we must have n ≥ 6 for 4-opt to be applicable, so it is implicitly
assumed when appropriate.

First, we show that any population with sub-optimal diversity and of sufficiently small size presents no local optima
to the Algorithm 1 with 2-opt mutation, while deriving a lower bound of the probability where a strict improvement is
made in a single step. Here, we regard a single-step improvement as the reduction of either cP or dP , as aligned with
the algorithm’s convergence path. Furthermore, it has been shown, using Hamiltonian cycle decomposition, that for
any µ ≤

⌊
n−1
2

⌋
, there is a µ-size population P where dP = 1 [33]. As such, within this context, any sub-optimally

diverse population P has dP ≥ 2.

Lemma 1. Given a population of tours P such that 2 ≤ µ ≤
⌊
n+2
4

⌋
and dP ≥ 2, there exists a tour I ∈ P and a pair

(i, j), such that P ′ = (P \ {I}) ∪ {2opt(I, i, j)} satisfies,

(cP > cP ′ ∧ dP = dP ′) ∨ dP > dP ′ . (5)

Moreover, in each iteration, the Algorithm 1 with 2-opt mutation on a (µ,∞)-instance makes such an improvement
with probability at least

2[(n− 1)(dP − 2) + 1]

µn(n− 3)
.

Proof. There must be dP tours I in P containing edge e such that , n(e, P ) = dP , let I be one such tour. W.l.o.g, let
I be represented by a permutation of nodes (i1, i2, . . . , in) where n({i1, i2}, P ) = dP . The operation 2opt(I, 2, k)
trades edges {i1, i2} and {ik, ik+1} in I for {i1, ik} and {i2, ik+1}. If for every such new edge e′ we have n(e′, P ) <
dP − 1, then P ′ = (P \ {I}) ∪ {2opt(I, 2, k)} satisfies (5) since n({i1, ik}, P ′) and n({i2, ik+1}, P ′) cannot reach
dP . We show that there is always such a position k. Since k can only go from 3 to n − 1, there are n − 3 choices of
k. It’s the case that s(i, P ) = 2µ for any i since each tour contributes 2 to s(i, P ), and that n({in, i1}, P ) ≥ 1 and
n({i2, i3}, P ) ≥ 1 since I contains them, thus

n−1∑
k=3

n({i1, ik}, P ) ≤ 2µ− dP − 1, and
n∑
k=4

n({i2, ik}, P ) ≤ 2µ− dP − 1. (6)

According to the Pigeonhole Principle, (6) implies there are at least δ elements k from 3 to n − 1 such that
n({i1, ik}, P ) < dP − 1, where

δ = n− 3−
⌊

2µ− dP − 1

dP − 1

⌋
.

Likewise, there are at least δ elements k from 4 to n such that n({i2, ik}, P ) < dP − 1. This implies that there are at
least σ elements k from 3 to n− 1 such that n({i1, ik}, P ) < dP − 1 and n({i2, ik+1}, P ) < dP − 1, where

σ = 2δ − n+ 3 = n− 3− 2

⌊
2µ− dP − 1

dP − 1

⌋
. (7)

We can see that σ ≥ 1 when

µ ≤
⌊

(n− 3)(dP − 1) + 2dP + 1

4

⌋
.
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Figure 1: Examples of constructed tours with n = 8 and n = 12 where no single 3-opt operation on any tour improves
diversity among tours in each row.

This proves the first part of the lemma since dP ≥ 2. In each iteration, the Algorithm 1 selects a tour like I with
probability at least dP /µ. There are at least σ different 2-opt neighbors on such a tour to produce P ′. Since there are
n(n− 3)/2 2-opt neighbors in total, the probability that the Algorithm 1 obtains P ′ from P is at least

dP
µ

2σ

n(n− 3)
≥ (n− 1)(dP − 2) + 1

dP − 1

2dP
µn(n− 3)

≥ 2[(n− 1)(dP − 2) + 1]

µn(n− 3)
,

where the first inequality follows from (7) and the upper bound of µ.

In Lemma 1, only one favorable scenario is accounted for where both edges to be traded in have counts less than dP−1.
However, there are other situations where strict improvements would be made as well, such as when both swapped-out
edges have count dP . Furthermore, a tour to be mutated might contain more than 2 edges with such count, increasing
the number of beneficial choices dramatically. Consequently, the derived probability bound is pessimistic, and the
average success rate might be much higher. It also means that the bound of the range of µ is pessimistic and the lack
of local optima is very probable at larger population sizes, albeit with reduced diversity improvement probability.

Intuitively, larger population sizes present more complex search spaces where local search approaches are more prone
to reaching sub-optimal results. It is reasonable to infer that small population sizes make diversity maximization easier
for Algorithm 1. However, for 3-opt mutation, local optima can still exist even with population size being as small as
3. Here, we show a simple construction of supposedly easy cases where 3-opt fails to produce any strict improvement.
Example 2. For any STSP instance of size n ≥ 8 where n is a multiple of 4, we can always construct a population
of 3 tours having sub-optimal diversity, such that no single 3-opt operation on any tour can improve diversity. Let the
first tour be I1 = (i1, i2, . . . , in), we derive the second tour I2 sharing only 2 edges with I1 and containing edges that
form a “crisscrossing” pattern on I1,

I2 =(i1, in−1, . . . , i2k+1, in−2k−1, . . . , in/2−1, in/2+1, in/2, in/2+2, . . . , in/2−2k, in/2+2k, . . . , i2, in).

The third tour I3 shares no edge with I1 or I2 and contains many edges that “skip one node” on I1.

I3 =(i1, . . . , i2k+1, . . . , in/2−1, in/2+2, . . . , in/2+2k, . . . , in, in/2, . . . , in/2−2k, . . . , i2, in−1, . . . , in−2k−1, in/2+1).

In order to improve diversity, the operation must exchange, on either tour, at least one edge with count 2. However, any
3-opt operation with such restriction ends up trading in at least another edge used by the other tours, nullifying any
improvement it makes. This population presents a local optimum for algorithms that uses 3-opt as the only solution
generating mechanism. Figure 1 illustrates two examples of the construction with n = 8 and n = 12.

We speculate that in many cases, the insertion 3-opt suffers from its asymmetrical nature. Both 2-opt and 3-opt
neighbors are each defined by two decisions. For 2-opt, the two decisions are which two edges to be exchanged, and
only after both are made will the two new edges be fixed. For 3-opt, one decision determines which set of two adjacent
edges to exchanged, and the other defines the third edge. Unlike 2-opt, after only one decision, one out of the three

7
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new edges is already fixed. Such limited flexibility makes it difficult to guarantee diversity improvements via 3-opt
without additional assumptions about the population. In contrast, 4-opt is not subjected to this drawback, as the two
decisions associated with it are symmetric. For this reason, we can derive another result for 4-opt similar to Lemma 1.
Lemma 2. Given a population of tours P such that 2 ≤ µ ≤

⌊
n+4
8

⌋
and dP ≥ 2, there exists a tour I ∈ P and a pair

(i, j), such that P ′ = (P \ {I})∪ {4opt(I, i, j)} satisfies (5). Moreover, in each iteration, the Algorithm 1 with 4-opt
mutation on a (µ,∞)-instance makes such an improvement with probability at least

4[(n− 2)(dP − 2) + 1]

µn(n− 5)
.

Proof. There must be dP tours I in P containing edge e such that n(e, P ) = dP , let I be one such tour. W.l.o.g, let
I be represented by a permutation of nodes (i1, i2, . . . , in) where n({i1, i2}, P ) = dP . The operation 4opt(I, 2, k)
trades edges {i1, i2}, {i2, i3}, {ik−1, ik}, {ik, ik+1} in I for {i1, ik}, {i3, ik}, {i2, ik−1}, {i2, ik+1}. If for every
such new edge e′ we have n(e′, P ) < dP − 1, then P ′ = (P \ {I}) ∪ {4opt(I, 2, k)} satisfies (5) following similar
reasoning in the proof of Lemma 1. We show that there is always such a position k. Since k can only go from 5 to
n − 1, there are n − 5 choices of k. We use the fact that s(i, P ) = 2µ for any i, and that n({i2, i3}, P ) ≥ 1 since I
uses them, thus

n−1∑
k=5

n({i2, ik−1}, P ) ≤ 2µ− dP − 1, and
n−1∑
k=5

n({i2, ik+1}, P ) ≤ 2µ− dP − 1. (8)

According to the Pigeonhole Principle, (8) implies there are at least δ elements k from 5 to n − 1 such that
n({i2, ik−1}, P ) < dP − 1, where

δ = n− 5−
⌊

2µ− dP − 1

dP − 1

⌋
.

Likewise, there are at least δ elements k from 5 to n− 1 such that n({i2, ik+1}, P ) < dP − 1. This implies that there
are at least 2δ − n+ 5 elements k from 5 to n− 1 where n({i2, ik−1}, P ) < dP − 1 and n({i2, ik+1}, P ) < dP − 1,
which we will call condition 1. We denote the number by ∆

∆ = 2δ − n+ 5 = n− 5− 2

⌊
2µ− dP − 1

dP − 1

⌋
,

Using n({i1, in}, P ) ≥ 1, we similarly derive that there are at least δ element k from 5 to n−1 where n({i1, ik}, P ) <
dP − 1. However, we only have n({i3, i4}, P ) ≥ 1, meaning there are at least δ′ element k from 5 to n− 1 such that
n({i3, ik}, P ) < dP − 1 where

δ′ = n− 5−
⌊

2µ− 1

dP − 1

⌋
.

From this, we have that there are at least δ + δ′ − n + 5 elements k from 5 to n − 1 where n({i1, ik}, P ) < dP − 1
and n({i3, ik}, P ) < dP − 1, which we will call condition 2. We denote the number by ∆′

∆′ = δ + δ′ − n+ 5 = n− 5−
⌊

2µ− dP − 1

dP − 1

⌋
−
⌊

2µ− 1

dP − 1

⌋
,

Finally, we can infer that there are at least σ choices of k such that both condition 1 and condition 2 are met, where

σ = ∆ + ∆′ − n+ 5 = n− 5− 3

⌊
2µ− dP − 1

dP − 1

⌋
−
⌊

2µ− 1

dP − 1

⌋
. (9)

We can see that σ ≥ 1 when

µ ≤
⌊

(n− 5)(dP − 1) + 3dP + 3

8

⌋
.

This proves the first part of the lemma since dP ≥ 2. By symmetry, there are at least σ choices of k from 4 to n − 2
such that P ′ = (P \ {I}) ∪ {4opt(I, 1, k)} satisfies (5), meaning there are at least 2σ 4-opt neighbors of I leading
to such an improvement. In each iteration, the Algorithm 1 selects a tour like I with probability at least dP /µ. Since
there are n(n− 5)/2 4-opt neighbors in total, the probability that the Algorithm 1 obtains P ′ from P is at least

dP
µ

4σ

n(n− 5)
≥ (n− 2)(dP − 2) + 1

dP − 1

4dP
µn(n− 5)

≥ 4[(n− 2)(dP − 2) + 1]

µn(n− 5)
,

where the first inequality follows from (9) and the upper bound of µ.

8
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Like in Lemma 1, only one out of many favorable scenarios is considered in Lemma 2, so the lower bound is strict.
The range of the population size is smaller to account for the fact that the condition for such a scenario is stronger than
the one in Lemma 1. With these results, we derive run-time results for 2-opt and 4-opt, relying on the longest possible
path from zero diversity to the optimum.
Theorem 1. On a (µ,∞)-instance based on any STSP instance with n ≥ 6 nodes, and µ ≥ 2, the Algorithm 1 obtains
a µ-population with maximum diversity within expected time O(µ2n3) if

• it uses 2-opt mutation and µ ≤
⌊
n+2
4

⌋
,

• it uses 4-opt mutation and µ ≤
⌊
n+4
8

⌋
.

Proof. In the worst case, the algorithm begins with dP = µ and cP = n. At any time, we have cP ≤ µn/dP .
Moreover, in the worst case, each improvement either reduces cP by 1, or reduces dP by 1 and sets cP to its maximum
value. With 2 ≤ µ ≤

⌊
n−1
2

⌋
, the maximum diversity is achieved iff dP = 1 as shown in [33]. According to Lemma

1, the expected run time Algorithm 1 requires to reach maximum diversity when using 2-opt mutation is at most
µ∑
j=2

µn

j

µn(n− 3)

2[(n− 1)(j − 2) + 1]
= O(µ2n3).

On the other hand, Lemma 2 implies that when 2 ≤ µ ≤
⌊
n+4
8

⌋
, Algorithm 1 with 4-opt mutation needs at most the

following expected run time
µ∑
j=2

µn

j

µn(n− 5)

2[(n− 2)(j − 2) + 1]
= O(µ2n3).

As expected, the simple algorithm requires only quadratic expected run-time to achieve optimal diversity from any
starting population of sufficiently small size. The quadratic scaling with µ comes from two factors. One is the fact that
Algorithm 1 needs to select the “correct” tour to mutate out of µ tours. The other is the fact that up to µ− 1 tours need
to be modified to achieve the optimum, and only one is modified in each step. The cubic scaling with n comes from
the quadratic number of possible mutation operations, and the number of edges to modify in each tour. Additionally,
most of the run-time is spent on the “last stretch” when reducing dP from 2 to 1, as the rest only takes up O(µ2n2)
expected number of steps.

4.2 ATSP

For ATSP, it is clear that no two distinct directed tours are less than 3 edges apart. In this case, we consider 3-opt and
4-opt, examples of which are illustrated in Figure 2. Note that for any set of 3 or 4 edges removed, there is only one
way to reconnect the segments, and that these segments can be empty (i.e. having only one node). Let 3opt(I, i, j, k)
and 4opt(I, i, j, k, h) denote a 3-opt neighbor and 4-opt neighbor of I , respectively, where the parameters are the
ending positions of the segments in ascending order. Figure 2 then illustrates 3opt(I, 1, 3, 6) and 4opt(I, 1, 3, 5, 7),
where I = (1, 2, 3, 4, 5, 6, 7, 8). Once the parameters are fixed, the same edge exchange occurs regardless of which
two segments are swapped in the permutation. We can see that for any directed tour containing n edges, there are

(
n
3

)
distinct 3-opt neighbors, and

(
n
4

)
distinct 4-opt neighbors; these are also implied in [56]. Naturally, we assume n ≥ 3

for 3-opt, and n ≥ 4 for 4-opt. Lastly, here we use the same definitions of dP and cP in Section 4.1, only with directed
edges instead.

We first prove that in ATSP, the achievable maximum diversity takes a similar form as in STSP, by relying on the
corresponding proof in [33].
Corollary 1. Given n ≥ 3 and µ ≥ 1, there exists a µ-size population P of tours in a complete directed graph
G = (V,E) where |V | = n such that

max
e∈E

n(e, P )−min
e∈E

n(e, P ) ≤ 1. (10)

Proof. We prove by construction. First, we construct a population P ′ of
⌈
µ
2

⌉
tours in a complete undirected graph

G′ = (V,E′) as specified in the proof of Theorem 1 in [33], while keeping track of which tours are in L. Then, for
each undirected tour I ∈ P ′, we add two corresponding directed tours to P , obtained by imposing directions on I .
Finally, if µ ≡ 1 (mod 2), then remove a tour from P corresponding to the last added tour into P ′

9
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(1,2,3,4,5,6,7,8) → (1,4,5,6,2,3,7,8) (1,2,3,4,5,6,7,8) → (1,6,7,4,5,2,3,8)

7

1

23

4

6 8

1

2

34

5

7

6

Figure 2: Examples of 3-opt and 4-opt, and their corresponding actions on the permutation.

For any h = {i, j} ∈ E′, we have n(e, P ′) = n((i, j), P ) = n((j, i), P ) by the second step of the construction.
Furthermore, if h is in the last added tour in P ′, then n(e, P ) = maxe∈E′ n(e, P ′) according to the proof in [33].
Therefore, (10) holds after the last step.

With maximum diversity well-defined, we can determine if it is reached with population P using only information
from N (P ). Therefore, we can show the guarantee of strict diversity improvement with a single 3-opt or 4-opt on
a tour in some sub-optimal population, and the probability that Algorithm 1 makes such an improvement, similar to
Lemma 1 and 2.

Lemma 3. Given a population of directed tours P such that 2 ≤ µ ≤
⌊
n+2
3

⌋
and dP ≥ 2, there exists a tour I ∈ P

and a triplet (i, j, k) where 1 ≤ i < j < k ≤ n, such that P ′ = (P \{I})∪{3opt(I, i, j, k)} satisfies (5). Moreover, in
each iteration, the Algorithm 1 with 3-opt mutation on a (µ,∞)-instance makes such an improvement with probability
at least

3[n(dP − 2) + 1][(n+ 1)(dP − 2) + 2]

µn(n− 1)(n− 2)(dP − 1)
.

Proof. There must be dP tours I in P containing edge e such that n(e, P ) = dP , let I be one such tour. W.l.o.g,
let I be represented by a permutation of nodes (i1, i2, . . . , in) where n((i1, i2), P ) = dP . For all 2 ≤ j < k ≤ n,
the operation 3opt(I, 1, j, k) trades edges (i1, i2), (ij , ij+1), (ik, ik+1) in I for (i1, ij+1), (ik, i2), (ij , ik+1). If for
each new edge e′, n(e′, P ) < dP − 1, then P ′ = (P \ {I}| ∪ {3opt(I, 1, j, k)} satisfies (5). We have the following
equations

∀h ∈ [n],
∑
j∈[n]

n((h, j), P ) =
∑
j∈[n]

n((j, h), P ) = |P | = µ. (11)

Using the Pigeonhole Principle with (11), we have at least δ position j from 2 to n − 1 such that n((i1, ij+1), P ) <
dP − 1 where

δ = n− 2−
⌊
µ− dP
dP − 1

⌋
.

Likewise, there are at least δ positions k from 3 to n such that n((ik, i2), P ) < dP−1. Let the sets of such positions of j
and k beQ andW , respectively,mj = minQ andmk = maxW , we have that the worst-case ismk = mj+2δ−n+2,
which occurs when Q = {n − δ, . . . , n − 1} and W = {3, . . . , δ + 2}. For each position h ∈ W ∩ (mj ,mk], we
define Sh = Q ∩ [mj , h). We can see that for any h ∈ W ∩ (mj ,mk], |Sh| ≥ h −mj . The number of choices of j
and k in Q and W , respectively, such that j < k and n((ij , ik+1), P ) < dP − 1 is at least

σ =
∑

h∈W∩(mj ,mk]

max

{
|Sh| −

⌊
µ− 1

dP − 1

⌋
, 0

}
≥

2δ−n+2∑
h=1

max

{
h−

⌊
µ− 1

dP − 1

⌋
, 0

}
. (12)

This follows from the Pigeonhole Principle, (11), and n((ik, ik+1), P ) ≥ 1. We have σ ≥ 1 when

µ ≤
⌊

(n− 2)(dP − 1) + 2dP
3

⌋
.

10



Analysis of Evolutionary Diversity Optimization for Permutation Problems A PREPRINT

This proves the first part of the lemma since dP ≥ 2. In each iteration, the Algorithm 1 selects a directed tour like I
with probability at least dP /µ. There are at least σ different 3-opt neighbors on such a tour to produce P ′. Since there
are
(
n
3

)
3-opt neighbors in total, the probability that the Algorithm 1 obtains P ′ from P is at least

dP
µ

σ(
n
3

) ≥ dP

µ
(
n
3

) 1

2

(
n− 2− 2

⌊
µ− dP
dP − 1

⌋
−
⌊
µ− 1

dP − 1

⌋)(
n− 1− 2

⌊
µ− dP
dP − 1

⌋
−
⌊
µ− 1

dP − 1

⌋)
≥ dP

µ
(
n
3

) [n(dP − 2) + 1][(n+ 1)(dP − 2) + 2]

2(dP − 1)2
≥ 3[n(dP − 2) + 1][(n+ 1)(dP − 2) + 2]

µn(n− 1)(n− 2)(dP − 1)
,

where the first inequality follows from (12) and the second from applying the upper bound of µ.

We use similar approaches to derive the result for 4-opt. Some complicated expressions are encapsulated in asymptotic
notations for brevity’s sake.
Lemma 4. Given a population of directed tours P such that 2 ≤ µ ≤

⌊
n
3

⌋
and dP ≥ 2, there exists a tour I ∈ P and

a quadruplet (i, j, k, h) where 1 ≤ i < j < k < h ≤ n, such that P ′ = (P \ {I}) ∪ {4opt(I, i, j, k, h)} satisfies (5).
Moreover, in each iteration, the Algorithm 1 with 4-opt mutation on a (µ,∞)-instance makes such an improvement
with probability lower-bounded by Ω(1/µn3) when dP = 2 and Ω(dP /µn) when dP > 2.

Proof. There must be dP tours I in P containing edge e such that n(e, P ) = dP , let I be one such tour. W.l.o.g, let
I be represented by a permutation of nodes (i1, i2, . . . , in) where n((i1, i2), P ) = dP . For all 2 ≤ j < k < h ≤ n,
the operation 4opt(I, 1, j, k, h) trades edges (i1, i2), (ij , ij+1), (ik, ik+1), (ih, ih+1) in I for (i1, ik+1), (ih, ij+1),
(ik, i2), (ij , ih+1). If for each new edge e′, n(e′, P ) < dP − 1, then P ′ = (P \ {I}) ∪ {4opt(I, 1, j, k, h)} satisfies
(5). According to the Pigeonhole Principle, (11) and the fact n((i1, i2), P ) ≥ 1, there are at least δ positions k from 3
to n− 1 such that n((ik, i2), P ) < dP − 1 (condition 1), where

δ = n− 3−
⌊
µ− dP
dP − 1

⌋
.

Likewise, there are at least δ positions k from 3 to n− 1 such that n((i1, ik+1), P ) < dP − 1 (condition 2). Let S be
the set of positions of k such that conditions 1 and 2 hold, we have

|S| ≥ 2δ − n+ 3 = n− 3− 2

⌊
µ− dP
dP − 1

⌋
.

For each k ∈ S, we use the same argument to infer that there are at least δk positions h ∈ (k, n] for each j ∈ [2, k)
such that n((ih, ij+1), P ) < dP − 1 (condition 3) and n((ij , ih+1), P ) < dP − 1 (condition 4), as there are at least δ′k
positions j ∈ [2, k) for each h ∈ (k, n], where

δk = n− k − 2

⌊
µ− 1

dP − 1

⌋
, and δ′k = k − 2− 2

⌊
µ− 1

dP − 1

⌋
.

This means the number of choices of j, k, h such that conditions 1, 2, 3 and 4 hold is at least

σ =
∑
l∈S

σl =
∑
l∈S

max {(l − 2)δl, (n− l)δ′l, 0}

=
∑
l∈S

max

{
(n− l)(l − 2)− 2 min{l − 2, n− l}

⌊
µ− 1

dP − 1

⌋
, 0

}
.

We have σ ≥ 1 if |S| ≥ 1 and maxl∈S {σl} ≥ 1. The first condition is satisfied when

µ ≤
⌊

(n− 3)(dP − 1) + 2dP − 1

2

⌋
.

The second condition is satisfied if ∆ = |{l = 3, . . . , n− 1|σl ≥ 1}| > n− 3− |S|. By solving for σl > 0, we have

∆ = max

{
min

{
2n− 6− 4

⌊
µ− 1

dP − 1

⌋
, n− 3

}
, 0

}
.

We can see then this condition is satisfied when

µ ≤
⌊

(n− 3)(dP − 1) + dP + 1

3

⌋
.

11
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This proves the first part of the lemma since dP ≥ 2. Since µ ∈ [2, bn/3c], we can assume n ≥ 6. Let S′ = {l ∈
S|σl ≥ 1} and B = {l = 3, . . . , n− 1|σl ∈ (0, σ(n+2)/2)}, we have

|B| = max

{
2

(⌊
n− 3

2

⌋
− 2

⌊
µ− 1

dP − 1

⌋)
, 0

}
, and |S′| − |B| ≥ min

{
n− 1− 2

⌊
µ− 1

dP − 1

⌋
, |S′|

}
≥ 1.

We have |B| > 0 if dP ≥ 4µ−3
n−4 + 1 ≥ 2. Using the fact that σl is a piece-wise quadratic function, we get

σ ≥ 2

|B|/2∑
l=1

σl+2 + 4

⌊
|S′|+|B|

4

⌋∑
l=|B|/2+1

σl+2 ≥
{

2n−4
8 if dP = 2 and µ = n

3

Ω(n3) if dP > 2 and µ = n
3

. (13)

In each iteration, the Algorithm 1 selects a directed tour like I with probability at least dP /µ. There are at least σ
different 4-opt neighbors on such a tour to produce P ′. Since there are

(
n
4

)
4-opt neighbors in total, the probability

that the Algorithm 1 obtains P ′ from P is at least

dP
µ

σ(
n
4

) ≥ { 12(n−2)
µn(n−1)(n−2)(n−3) if dP = 2

Ω(dP /µn) if dP > 2
,

following from (13).

Compared to Lemma 1 and 2, the upper bounds of µ that guarantee lack of local optima are looser in Lemma 3 and 4,
in exchange for lower improvement probability bounds. The former is due to the greater numbers of operation choices:
O(n3) in 3-opt and O(n4) in 4-opt, compared to O(n2) in 2-opt and 4-opt exchange. This creates more flexibility,
making it more likely to be able to escape local optima. The latter is due to the fact that with µ being at the upper
bound, the numbers of satisfactory operations remain constant (or linear w.r.t. n in case of 4-opt), leading to smaller
improvement probabilities as the total numbers of operations increase. We can see that this would lead to a greater
expected asymptotic run-time.
Theorem 2. On a (µ,∞)-instance based on any ATSP instance with n ≥ 6 nodes, and µ ≥ 2, the Algorithm 1 obtains
a µ-population with maximum diversity within expected time O(µ2n4) if

• it uses 3-opt mutation and µ ≤
⌊
n+2
3

⌋
,

• it uses 4-opt mutation and µ ≤
⌊
n
3

⌋
.

Proof. In the worst case, the algorithm begins with dP = µ and cP = n. At any time, we have cP ≤ µn/dP .
Moreover, in the worst case, each improvement either reduces cP by 1, or reduces dP by 1 and sets cP to its maximum
value. With 2 ≤ µ ≤ n − 1, the maximum diversity is achieved iff dP = 1 since the construction in [33] can be
extended to directed complete graphs by creating two directed tours out of each undirected tour. According to Lemma
3, the expected run time Algorithm 1 requires to reach maximum diversity when using 3-opt mutation is at most

µ∑
j=2

µn

j

µn(n− 1)(n− 2)(j − 1)

3[n(j − 2) + 1][(n+ 1)(j − 2) + 2]
= O(µ2n4).

Similarly, Lemma 4 implies that when 2 ≤ µ ≤
⌊
n
3

⌋
, Algorithm 1 with 4-opt mutation needs at most the following

expected run time
µ2n2(n− 1)(n− 2)(n− 3)

24(n− 2)
+

µ∑
j=3

µn

j
O(µn/j) = O(µ2n4).

4.3 QAP

In QAP, we largely use the same notations as we define in Section 4.1. Let dP = maxi,j∈[n]{n(i, j, P )} and cP =
|i, j ∈ [n] | n(i, j, P ) = dP |. For convenience, we use the notation A(P ) = {(i, j) | ∃a ∈ P, a(i) = j}. Let φ be a
shift operation such that for all permutation a : [n]→ [n],

b = φ(a) =⇒ ∀i ∈ [n− 1], b(i) = a(i+ 1) ∧ b(n) = a(1).

We first show the achievable maximum diversity for any positive n and µ, which will be the foundation for our run-time
analysis.

12
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Theorem 3. Given n, µ ≥ 1, there exists a µ-size population P of permutations of [n] such that

max
i,j∈[n]

n(i, j, P )− min
i,j∈[n]

n(i, j, P ) ≤ 1. (14)

Proof. We prove by constructing such a P . Let a : [n]→ [n] be some arbitrary permutation andQ = {φi(a) | i ∈ [n]}
where φi is φ applied i times. Note that φn(a) = a. It is the case that no two solutions in Q share assignments, so for
all i, j ∈ [n], we have n(i, j, Q) = 1, and A(Q) = [n]× [n]. Let µ = kn+ r where k, r ∈ N and r < n, and B ⊂ Q
where |B| = r, we include in P k + 1 copies of each solution in B and k copies of each solution in Q \ B. Then P
satisfies (14) since

∀(i, j) ∈ A(B), n(i, j, P ) = k + 1, and ∀(i, j) ∈ A(Q \B), n(i, j, P ) = k.

Here, we give a formal definition of k-opt. We denote the k-opt transformation by s(S, p, ·) where (S, p) ∈ {Z ⊆ [n] |
|Z| = k} × {q : [k]→ [k] | ∀i ∈ [k], q(i) 6= i}. The operation is defined on a permutation a as follow

a′ = s(S, p, a) =⇒ a′(i) =

{
a(i) if i /∈ S
(a ◦ r−1S ◦ p ◦ rS)(i) otherwise

, (15)

rS : S → [k],∀i, j ∈ S, i > j ⇐⇒ rS(i) > rS(j),

where ◦ denotes a function composition. The operation modifies exactly k positions, S, in the permutation, by shuffling
elements in those positions according to a derangement p. There are !k =

⌊
k!+1
e

⌋
derangements on k positions [59],

and !k
(
n
k

)
distinct k-opt neighbors of a permutation on [n]. We illustrate this definition with an example

S = {1, 3, 5}, p = (2, 3, 1) =⇒ s(S, p, (5, 4, 3, 2, 1)) = (3, 4, 1, 2, 5).

Again, we establish a lower bound of the probability of strict progressions toward maximum diversity, in order to
obtain a worst-case run-time result. For brevity’s sake, we reuse the expression (5) with notations defined in the
QAP context. Here, 1F denotes a characteristic function assuming value 1 if the logical expression F holds, and 0
otherwise.
Lemma 5. Given 2 ≤ k ≤ n − 1 and a population of [n] → [n] permutations P such that 2 ≤ µ ≤

⌊
n−k+3+1k=2

2

⌋
and dP ≥ 2, there exists a permutation a ∈ P , a k-subset S of [n] and a derangement p : [k] → [k], such that
P ′ = (P \ {a}) ∪ {s(S, p, a)} satisfies (5). Moreover, in each iteration, the Algorithm 1 with k-opt mutation on a
(µ,∞)-instance makes such an improvement with probability at least(

dP − 1.5

dP − 1

)k−2
(n− k + 2 + 1k=2)(dP − 2) + 1

µ(n− 1)(n− k + 1 + 1k=2)(!k)/k!
.

Proof. There must be dP permutations a in P such that ∃i ∈ [n], n(i, a(i), P ) = dP , let a be one such permutation,
and i ∈ [n] such that n(i, a(i), P ) = dP . The operation s(S, p, a), for each j ∈ S, removes assignments j → a(j),
and adds j → (a ◦ r−1S ◦ p ◦ rS)(j), with rS defined in (15). If the counts of all new assignments are less than dP − 1,
then P ′ = (P \ {a}) ∪ {s(S, p, a)} satisfies (5). We show that there is always such a pair (S, p) by constructing them
step-by-step, starting from i (i.e. S0 = {i}) and an empty permutation q. We will frequently make use of the following
equations

∀h ∈ [n],
∑
j∈[n]

n(h, j, P ) =
∑
j∈[n]

n(j, h, P ) = |P | = µ. (16)

Let Z1 = {x ∈ [n] \ S0 | n(i, a(x), P ) < dP − 1}, for the first step, we can add an element x′ ∈ Z1, S1 = S0 ∪ {x′}
and set q(i) = x′. Using the Pigeonhole principle with (16) gives

|Z1| ≥ n− 1−
⌊
µ− dP
dP − 1

⌋
.

At the l-th step for all 2 ≤ l ≤ k − 2, let Zl = {x ∈ [n] \ Sl−1 | n(yl−1, a(x), P ) < dP − 1} where yl−1 is the
element added in the previous step, we can add an element yl ∈ Zl, Sl = Sl−1 ∪ {yl}, and set q(yl) = yl+1. Using
the Pigeonhole principle with (16) and the fact n(yl−1, a(yl−1), P ) ≥ 1 gives

|Zl| ≥ n− l −
⌊
µ− 1

dP − 1

⌋
. (17)

13
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At the k−1-th step, let Zk−1 be defined similarly as Zl, and B = {x ∈ [n]\Sk−2 | n(x, i, P ) < dP −1}, we can add
an element yk−1 ∈ Zk−1 ∩ B, S = Sk−2 ∪ {yk−1}, and set p(yk−2) = yk−1 and p(yk−1) = i. Since the inequality
(17) also holds for l = k − 1, we have

|Zk−1 ∩B| ≥ |Zk−1|+ |B| − n+ k − 1 ≥ n− k + 1−
⌊
µ− dP
dP − 1

⌋
−
⌊
µ− 1

dP − 1

⌋
≥ n− k −

⌊
2
µ− dP
dP − 1

⌋
.

Finally, we define p = rS ◦ q ◦ r−1S , thus finish constructing S and p. According to each step, for all j ∈ S,
n(j, (a ◦ q)(j), P ) < dP − 1. Since q = r−1S ◦ p ◦ rS , s(S, p, a) is the desirable operation. As the sequence (yj)

k−1
j=1

uniquely defines the pair (S, p), we have the minimum number of desirable k-opt neighbors

σk = |Zk−1 ∩B|
k−2∏
l=1

|Zl| ≥
(
n− k −

⌊
2
µ− dP
dP − 1

⌋)(
n− 1−

⌊
µ− dP
dP − 1

⌋) k−2∏
l=2

(
n− l −

⌊
µ− 1

dP − 1

⌋)
. (18)

Note that (18) only applies to k > 2. For k = 2, there is only one step, so we instead have

σ2 = |Z1 ∩B| ≥ n− 1− 2

⌊
µ− dP
dP − 1

⌋
.

In any case, σk > 0 if |Zk−1 ∩B| ≥ 1, which is satisfied when

µ ≤
⌊

(n− k + 1k=2)(dP − 1) + 2dP − 1

2

⌋
.

This proves the first part of the lemma since dP ≥ 2. In each iteration, the Algorithm 1 selects a mapping like a with
probability at least dP /µ. There are at least σk different k-opt neighbors on such a mapping to produce P ′. Since
there are !k

(
n
k

)
k-opt neighbors in total, for k > 2, the probability that the Algorithm 1 obtains P ′ from P is at least

σk(
n
k

)
!k

dP
µ
≥ dP

µ

(
n− k −

⌊
2µ−dPdP−1

⌋)(
n− 1−

⌊
µ−dP
dP−1

⌋)∏k−2
l=2

(
n− l −

⌊
µ−1
dP−1

⌋)
!k
∏k−1
j=0 (n− j)/k!

≥
(
dP − 1.5

dP − 1

)k−2
(n− k + 2)(dP − 2) + 1

µ(n− 1)(n− k + 1)(!k)/k!
.

For k = 2, this lower bound is

σ2(
n
2

)
!2

dP
µ
≥ (n+ 1)(dP − 2) + 1

dP − 1

2dP
µn(n− 1)

≥ 2[(n+ 1)(dP − 2) + 1]

µn(n− 1)
.

Regarding the upper bound of µ, we can see that the presence of k, that is the number of elements affected by mutation,
in the numerator exhibits similar pattern as in the bounds of µ in Lemma 3 and 4. The difference is the denominator,
which is 3 instead 2 as in Lemma 5. This might be explained by the observation that the minimum edge distance
between two directed tours is 3 and not 2 as between permutations.

It is important to note that in Lemma 5, we only consider one scenario where the improvement can be made, from
which the upper bound of µ is derived. One would then assume that other scenarios would make strict improvements
possible at larger µ, even at near-optimal diversity (e.g. dP = 2). It turns out that this is not the case with 2-opt,
meaning if µ exceeds this bound, then no improvement scenario is guaranteed. We demonstrate the tightness of this
bound with the following constructive proof.
Proposition 1. Given n ≥ 5, there exists a population P of

⌊
n+2
2

⌋
+ 1 permutations on [n] such that dP = 2 and for

all 2-opt s(S, p, ·) and a, b ∈ P , the new population P ′ = (P \ {a}) ∪ {s(S, p, b)} is such that D(P ′) ≥ D(P ).

Proof. We prove by construction. For convenience, let l =
⌊
n+2
2

⌋
. Firstly, we see that if a 6= b, then both b and

s(S, p, b) are in P ′. Since |A(b) ∩ A(s(S, p, b))| = n − 2 for any 2-opt s(S, p, ·), we know that regardless of P ,
dP ′ ≥ 2 and if dP ′ = 2 then cP ′ ≥ n − 2. We can construct l + 1 permutations for P by adding an arbitrary
starting permutation, then sequentially applying the shift operation φ to generate l more, and finally applying 2-opt
on the last permutation at any 2 cyclically consecutive positions. This gives us P such that dP = 2 and cP = 1,
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meaning D(P ′) ≥ D(P ). Therefore, we assume a = b. Secondly, we observe that D(P ′) < D(P ) only holds if b
(the permutation undergoing the 2-opt) is such that there is a position i ∈ [n] where n(i, b(i), P ) = dP ; the 2-opt must
also change said position.

For n = 6, we have a1 = (i1, . . . , i6), a2 = φ2(a), a3 = (i4, i5, i6, i2, i3, i1), a4 = (i2, i1, i4, i5, i6, i3), and a5 =
(i1, i6, i2, i3, i4, i5). For any even n > 6, let a1 = (i1, . . . , in) w.l.o.g and for j = 2, . . . , l−1 let aj = sn−j+1◦φj(a1)
where sj is a 2-opt in positions j and j + 1. Finally, let

al = (i2, i1, i4, . . . , in/2+1, i3, in/2+3, . . . , in, in/2+2), al+1 = (i1, in, i2, . . . , in−1),

and P = {a1, . . . , al+1}. We have |A(a1)∩A(al+1)| = 1 andA(a1)∩A(aj) = A(al+1)∩A(aj) = A(ah)∩A(aj) =
∅ for any j, h = 2, . . . , l and j 6= h. For any j = 2, . . . , n/2 + 1, n(1, ij , P ) = 1, and for any j = n/2 + 1, . . . , n,
n(j, i1, P ) = 1. This means (5) cannot be satisfied from any 2-opt on a1, nor can it be satisfied from a 2-opt on al+1 at
positions 1 and j for any j = 3, . . . , n. Given that n(2, i1, P ) = 1 since (2, i1) ∈ A(al), we have that D(P ′) ≥ D(P )
by any 2-opt on any permutation in P .

For any odd n ≥ 5, again let a1 = (i1, . . . , in), and for all j = 2, . . . , l − 1, aj = φj(a1). Finally,

al = (i2, i(n+5)/2, . . . , in, i(n+3)/2, i3, . . . , i(n+1)/2, i1),

and al+1 = (i1, i3, . . . , i(n+1)/2, i2, i(n+5)/2, . . . , in, i(n+3)/2).

Similarly, D(P ′) < D(P ) only if the 2-opt is performed on a1 or al+1, and changes position 1 of either. However,
such an operation must introduce an assignment in {(1, ij), (j + (n− 1)/2, i1) | j = 2, . . . , (n+ 1)/2}, all of which
have count 1 in P . Since dP = 2 and cP = 1, this means D(P ′) ≥ D(P ).

Naturally, Lemma 5 allows us to derive the following run-time bound for Algorithm 1, similar to Theorem 1 and 2.

Theorem 4. On a (µ,∞)-instance based on any QAP instance with n ≥ 1, and 2 ≤ µ ≤
⌊
n−k+3+1k=2

2

⌋
, the Algo-

rithm 1 with k-opt mutation obtains a µ-population with maximum diversity within expected time O(2k−2µ2n2(n −
k + 1)).

Proof. In the worst case, the algorithm begins with dP = µ and cP = n. At any time, we have cP ≤ µn/dP .
Moreover, in the worst case, each improvement either reduces cP by 1, or reduces dP by 1 and sets cP to its maximum
value. With 2 ≤ µ ≤

⌊
n−k+3+1k=2

2

⌋
, the maximum diversity is achieved iff dP = 1 according to Theorem 3.

According to Lemma 5, the expected run time Algorithm 1 requires to reach maximum diversity is at most
µ∑
j=2

µn

j

(
j − 1

j − 1.5

)k−2
µ(n− 1)(n− k + 1 + 1k=2)(!k)/k!

(n− k + 2 + 1k=2)(j − 2) + 1
= O(2k−2µ2n2(n− k + 1)).

The results in Theorem 1 and 4 (for k = 2) are identical due to similarities between structures of STSP tours and
QAP mappings, and the same intuition applies. Of note is that according to the proofs, the probability of making
improvements drops as the population is closer to maximum diversity. This is a common phenomenon for randomized
heuristics in general, which we expect to see replicated in experimentation. Our result also shows that such reduction
is more severe at stronger mutation strengths, which seems to be the direct consequence of greater flexibility that
comes with making larger changes. Lemma 5 implies that this also holds in scenarios where α is non-trivial in a sense
that it changes how diverse the population can be; the algorithm tends to have a harder time converging with stronger
mutations, when the population is close to maximally achievable diversity.

5 Experimental investigations

We perform two sets of experiments to establish baseline results for evolving diverse QAP mappings. These involve
running Algorithm 1 separately using two described measures: N (2) and D (4). We denote these two variants by D1

and D2 as they are correspondingly correlated measures. The mutation operator used is 2-opt. Firstly, we consider the
unconstrained case where no quality constraint is applied. Then, we impose constraints with varying quality thresholds
α on the solutions. For similar experiments on TSP, we refer to [33].

For our experiments, we use three QAPLIB instances: Nug30 [60], Lipa90b [61], Esc128 [62]. The optimal solutions
for these instances are known2. We vary the population size among 3, 10, 20, 50. We run each variant of the algorithm

2The QAPLIB instances are publicly available at https://coral.ise.lehigh.edu/data-sets/qaplib/
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Figure 3: Means and standard deviations of normalized D1 and D2 scores from both approaches over time. The total
run-time is µn2. The dashed lines denote the average numbers of steps till termination.

30 times on each instance, and each run is allotted µn2 maximum iterations. It is important to note that any reported
diversity score is normalized with the upper bound appropriate to the instance. For D1, the bound is derived from
Theorem 3, while it is µn for D2 as mentioned. We specify the differences in settings between unconstrained case and
constrained case in the following sections.

5.1 Unconstrained diversity optimization

In the unconstrained case, we are interested in how optimizing for one measure affect the other, and how many
iterations are needed to reach maximum diversity from zero diversity. To this end, we set the initial population to
contain only duplicates of some random tour. Furthermore, we apply a stopping criterion that holds when the measure
being optimized for reaches its upper bound. However, for n > µ, the bound is unreachable, so we expect that the
algorithm does not terminate prematurely while minimizing D.

Figure 3 shows the mean diversity scores and their standard deviations throughout the runs, and the average numbers
of iterations till termination. Each column corresponds to a µ value, and each row a QAPLIB instance. For visibility,
in each case, the X-axis range is scaled to the maximum number of steps till termination from all runs, and missing
data points are extrapolated from the final scores. Since the red curves exhibit extremely noisy behaviors, smoothing
is applied to expose the high-level trends, by taking an average in each of 500 equal-length intervals along the time
dimension. This changes the appearance of other curves very minimally. Overall, when µ ≤ n, Algorithm 1 maximizes
bothD1 andD2 well within the run time limit. The ratios between needed run-times and corresponding total run-times
seem to correlate with the ratio µ/n. Additionally, the algorithm seems to require similar run-time to optimize for both
measures, as no consistent differences are visible.

The figure also shows a notable difference in the evolutionary trajectories resulted from using N and D for survival
selection. When D is used, Algorithm 1 improves D1 about as efficiently as when N is used. On the other hand,
when N is used, it increases D2 poorly during the early stages in many cases, and in some cases even noticeably
decreases it in short periods. Furthermore, in many cases, D2 only starts to increase quickly when D1 reaches a
certain threshold. That said, this particular difference is not observable for µ = 3. Nevertheless, it indicates that even
in easy cases (µ ≤ n), highly even distributions of assignments in the population are unlikely to prevent clustering. In
fact, judging by the noisy behaviors in the red curves, the degree of clustering seems almost uncorrelated to D1. In
contrast, separating each solution from the rest of the population tends to improve overall diversity effectively.

To further investigate the impact of n and µ on the run-time of Algorithm 1, we carry out another experiment on
synthetic instances with exhaustive combinations of (n, µ) values. More precisely, n is assigned values from 20 to 120
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with step 5, and µ from 5 to 120 with step 5. For each value pair of (n, µ), we run 30 times Algorithm 1 usingN , with
µn2 maximum iterations, and record the number of step it takes to reach maximum diversity in each run. If it fails, the
maximum iteration is recorded. Additionally, we experiment with different mutation strengths, namely 2-opt, 3-opt,
4-opt, and dn/5e-opt.

(a) 2-opt (b) 3-opt

(c) 4-opt (d) dn/5e-opt

Figure 4: Heat-maps of mean time-to-optimum as percentages of the respective budgets µn2. The red lines indicate
the upper bound of the µ values to which the result of Theorem 4 applies.

Figure 4 shows the 2D heat-maps of recorded numbers of steps as percentages of the corresponding iteration budgets.
Each axis (x-axis for n, y-axis for µ) is discretized into bins, each of which corresponds to a specific parameter value
used in the experiment; each cell corresponding to a pair of values is assigned a color denoting the percentage. Dark
colors indicate cases where the algorithm efficiently converges to maximum diversity, whereas bright colors suggest
difficult cases. Heat-map 4a shows mostly dark cells, with bright cells only concentrated in areas where µ is multiples
of n. Heat-map 4a exhibits a similar pattern, differing only in having more bright cells around these regions. Heat-
maps 4c and 4d extend this trend further, with 4d showing mostly bright cells, and only relatively few dark cells at
small µ values.

From Figure 4, we can observe that the algorithm terminates well within the budget, except for when µ is close to
multiples of n. In these cases, it frequently gets stuck in near-optimal diversity states for most of the budget. Note
that the average required run-time is small even at larger µ and n, as long as µ is sufficiently far from multiples of n.
This suggests that in such cases, the search trajectories made by incremental improvements almost guarantee reaching
hard-to-escape local optima. The heat-maps suggest that these detrimental cases occur when µ ∈ [(t− ε)n, (t+ ε)n],
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where t ∈ N∗ and ε > 0. Assuming this, ε seems to increase at stronger mutation strengths, implying that local optima
are more likely. It can also mean that the expected number of steps needed to escape local optima increases with
mutation strength.

Within the upper bound of µ in the premise of Theorem 4, Algorithm 1 seems to consume only a small portion of
the budget using 2-opt, 3-opt and 4-opt, further reinforcing the observation that average case run-time is orders of
magnitude smaller than worst-case. On the other hand, in case of dn/5e-opt, it exceeds the budgets near this bound
at larger n. Since the mutation strengths are large in these instances, it suggests that k values (in k-opt) contributes
non-trivially to the expected run-time to optimum even when the lack of local optima is guaranteed, which agrees with
the insight from Theorem 4.

As a side note, we observe from the experimental results on STSP in [33] that the algorithm, in unconstrained settings,
fails to reach maximum diversity within the same budgets when the population size is close to a multiple of half the
problem size (i.e. µ ≈ kn/2). This, when juxtaposed with the “failure” phenomena observed in our experiments,
seems to mirror the difference in the upper bounds of the population size between Lemma 1 (STSP) and Lemma
5 (QAP). While these are not demonstrated as comprehensively as in our experiment, we still find this similarity
interesting, as it seems to suggest some universal property of mutation/local-search operators for different types of
permutation-based representations (e.g. adjacency, assignment).

5.2 Constrained diversity optimization

In the constrained case, we look for the final diversity scores across varying thresholds F = (1 + α)OPT and the
extent to which optimizing for D2 mitigate clustering, especially at small α. Therefore, we consider α values 0.05,
0.2, 0.5, 1, and run the algorithm for µn2 steps with no additional stopping criterion. Furthermore, we initiate the
population with duplicates of the optimal solution to allow flexibility for meaningful behaviors. Aside from diversity
scores, we also record the percentage of assignments belonging to exactly one solution (unique) out of µn assignments
in each final population.

Table 1 shows a comparison in terms of D1 and D2 score averages as well as unique assignment percentage averages.
Overall, maximum diversity is achieved reliably in most cases when α ≥ 0.5. For Lipa90b, there are tremendous gaps
in final diversity scores when α changes from 0.05 to 0.2, from 61% to 66%. The differences are much smaller in
other QAPLIB instances, no more than 16%. Also, at α = 0.5, maximum diversity is not reached as frequently for
Esc128 as for other instances. These suggest significantly different cost distributions in the solution spaces associ-
ated with these QAPLIB instances. More specifically, it seems that the connected (via 2-opt neighborhood) region of
1.05-approximation solutions around the optimum is much smaller in Lipa90b than it is in other instances. Addition-
ally, unique assignment percentages follow the same trend, and understandably decrease with bigger populations as
uniqueness diminishes. This drop is most severe in Nug30 cases, since the increase in µ is the largest relative to the
instance size.

Comparing the diversity scores from the two approaches, we can see trends consistent with those in the unconstrained
case. Each approach predictably excels at maximizing its own measure over the other. That said, the D2 approach
does not fall far behind in D1 scores, even in cases where statistical significance is observed (at most 7% difference).
Meanwhile, the D1 approach’s D2 scores are much lower than those of the other, especially in hard cases (small α
and large µ), up to 46% gap. This indicates that using the measure D, Algorithm 1 significantly reduces clustering,
and equalizes assignments’ representations almost as effectively as when using the measure N . Additionally, we can
observe similar differences in the percentages of unique assignments, which seem to correlate with D2 stronger than
with D1.

Based on the standard deviations, it seems that the outputs are mostly stable. This suggests that the algorithm converges
within the budget in most cases, and that it reaches similarly diverse populations across runs. The exceptions are when
N is used at α ≤ 0.2, the D2 scores achieved exhibit relatively large variances. This agrees with the observation made
in Figure 3, and confirms the existence of satisfactory populations of similar D1 diversity that have wildly different
D2.

6 Conclusion

We studied evolutionary diversity optimization in the Traveling Salesperson Problem and Quadratic Assignment Prob-
lem. In this type of optimization problem, the goal is to maximize diversity as quantified by some metric, and the
constraint involves the solutions’ qualities. We described the similarity and difference between the structure of a
STSP/ATSP tour and that of a QAP mapping, and customized two diversity measures to each problem. We consid-
ered a baseline (µ + 1) evolutionary algorithm that incrementally modifies the population using traditional mutation
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Table 1: Diversity scores and the ratios of unique assignments in the final populations. The highlights denote greater
values between the two approaches with statistical significance, based on Wilcoxon rank sum tests with 95% confi-
dence level.

µ α
Optimizing D1 Optimizing D2

D1 D2 unique percentage D1 D2 unique percentage
mean std mean std mean std mean std mean std mean std

N
ug

30

3 0.05 90.74% 4.23% 87.93% 4.85% 83.70% 6.00% 91.15% 3.47% 88.96% 4.08% 84.19% 5.36%
0.2 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

10 0.05 84.10% 2.05% 48.06% 10.09% 23.00% 4.13% 81.71% 1.87% 74.24% 2.47% 34.39% 2.44%
0.2 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

20 0.05 84.00% 0.95% 32.07% 5.53% 8.44% 1.72% 79.45% 1.22% 68.61% 1.59% 16.72% 1.28%
0.2 99.95% 0.03% 99.09% 0.41% 98.98% 0.52% 99.93% 0.03% 98.79% 0.49% 98.58% 0.63%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

50 0.05 86.06% 0.71% 17.44% 2.50% 2.58% 0.49% 79.98% 0.81% 64.08% 1.01% 6.65% 0.52%
0.2 99.97% 0.01% 90.62% 0.48% 19.79% 0.26% 99.72% 0.02% 95.74% 0.24% 22.81% 0.41%
0.5 100.00% 0.00% 91.28% 0.39% 20.00% 0.00% 100.00% 0.00% 96.67% 0.00% 20.04% 0.04%

1 100.00% 0.00% 91.41% 0.48% 20.00% 0.00% 100.00% 0.00% 96.67% 0.00% 20.04% 0.06%

L
ip

a9
0b

3 0.05 17.72% 0.73% 17.01% 0.78% 10.14% 0.68% 17.75% 0.77% 17.09% 1.12% 10.36% 0.67%
0.2 83.88% 1.32% 82.32% 1.46% 74.46% 1.78% 84.07% 1.35% 82.48% 1.54% 74.52% 1.45%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

10 0.05 17.44% 0.40% 13.85% 1.30% 9.11% 0.38% 17.48% 0.43% 15.48% 0.59% 9.30% 0.22%
0.2 78.23% 1.33% 44.26% 11.52% 38.70% 8.79% 80.00% 0.62% 76.08% 0.87% 55.88% 0.55%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

20 0.05 17.54% 0.27% 12.00% 0.83% 8.87% 0.25% 17.52% 0.25% 14.92% 0.36% 9.26% 0.13%
0.2 78.95% 0.78% 30.84% 7.01% 26.07% 5.65% 79.62% 0.40% 74.70% 0.40% 54.94% 0.37%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

50 0.05 17.74% 0.21% 9.38% 0.52% 7.98% 0.46% 17.60% 0.17% 14.69% 0.24% 9.24% 0.10%
0.2 80.59% 0.45% 15.16% 3.04% 10.44% 2.21% 78.71% 0.27% 72.84% 0.27% 52.86% 0.29%
0.5 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

E
sc

12
8

3 0.05 96.64% 0.98% 95.91% 1.07% 95.47% 1.11% 96.46% 0.94% 95.99% 1.04% 95.23% 1.07%
0.2 99.19% 0.43% 98.87% 0.56% 98.78% 0.64% 99.41% 0.26% 99.11% 0.30% 99.00% 0.34%
0.5 99.97% 0.09% 99.93% 0.18% 99.93% 0.18% 99.96% 0.10% 99.91% 0.20% 99.91% 0.20%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

10 0.05 95.69% 1.17% 85.97% 4.53% 83.07% 4.06% 95.51% 0.49% 94.14% 0.48% 88.63% 0.69%
0.2 98.80% 0.70% 94.35% 4.32% 91.72% 4.18% 98.93% 0.22% 98.07% 0.36% 95.09% 0.55%
0.5 99.92% 0.06% 99.48% 0.27% 99.24% 0.52% 99.95% 0.04% 99.71% 0.18% 99.64% 0.27%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

20 0.05 96.39% 0.89% 81.10% 6.59% 76.90% 7.14% 94.83% 0.34% 93.08% 0.29% 84.70% 0.41%
0.2 99.06% 0.17% 93.57% 2.22% 89.11% 1.74% 98.68% 0.16% 97.44% 0.19% 91.23% 0.45%
0.5 99.90% 0.05% 99.06% 0.46% 98.17% 1.02% 99.86% 0.05% 99.29% 0.08% 97.84% 0.82%

1 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

50 0.05 96.81% 1.04% 65.25% 17.04% 57.76% 17.24% 94.52% 0.23% 92.00% 0.21% 82.12% 0.18%
0.2 98.99% 0.13% 88.62% 3.71% 83.69% 4.21% 98.38% 0.10% 96.42% 0.16% 87.93% 0.34%
0.5 99.92% 0.02% 98.01% 0.59% 96.30% 1.05% 99.76% 0.05% 98.79% 0.09% 95.31% 0.37%

1 100.00% 0.00% 100.00% 0.01% 100.00% 0.01% 100.00% 0.00% 99.99% 0.02% 99.99% 0.02%

operators on one solution at a time, and scenarios where solutions are accepted regardless of quality. We showed that
for any sufficiently small µ, the algorithm guarantees maximum diversity in STSP within using 2-opt and 4-opt within
O(µ2n3) expected iterations, while 3-opt suffers from local optima even with very small µ. For ATSP, we proved
a worst-case run-time of O(µ2n4) from using 3-opt and 4-opt, under more generous upper bounds of µ. Lastly, we
showed that in QAP, the algorithm reaches maximum diversity inO(2k−2µ2n2(n−k+1)) steps using k-opt mutation
as we describe in this work. In the same proof, we showed that the upper bound of µ guaranteeing the lack of local
optima decreases as the mutation strength increases.
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Additional experiments on QAPLIB instances shed light on differences on evolutionary trajectories when optimizing
for the two diversity measures. Our results show heterogeneity in the correlation between the quality constraint
threshold and the achieved diversity across different instances, and that the average practical performance is much
more optimistic than the worst-case suggests. Furthermore, our experiment in unconstrained scenarios indicated that
the algorithm tends to encounter local optima when µ is close to multiples of n, and that these detrimental regions
expand with increasing mutation strength, agreeing with our theoretical insight.

In realistic settings, obtaining a solution satisfying a given quality criterion can be very difficult, an aspect that is not
rigorously addressed in this work. For NP-hard problems like TSP and QAP, this typically necessitates exponential-
time algorithms. For any-time algorithms, one might consider multi-modal optimization approaches to evolve many
good solutions simultaneously. It is known that the number of solutions affect multi-modal searches’ convergence
speed tremendously. Therefore, it is an interesting challenge to craft efficient niching-based algorithms, for instance,
to tackle the diverse solutions problem; one can expect that the desired population to this problem deviates significantly
from that to the multi-modal problem on the same fitness landscape.
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