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ABSTRACT

Generative Adversarial Networks (GANs) can generate levels for a
variety of games. This paper focuses on combining GAN-generated
segments in a snaking pattern to create levels for Mega Man. Adja-
cent segments in such levels can be orthogonally adjacent in any
direction, meaning that an otherwise fine segment might impose a
barrier between its neighbor depending on what sorts of segments
in the training set are being most closely emulated: horizontal, ver-
tical, or corner segments. To pick appropriate segments, multiple
GANs were trained on different types of segments to ensure better
flow between segments. Flow was further improved by evolving
the latent vectors for the segments being joined in the level to maxi-
mize the length of the level’s solution path. Using multiple GANs to
represent different types of segments results in significantly longer
solution paths than using one GAN for all segment types, and a
human subject study verifies that these levels are more fun and
have more human-like design than levels produced by one GAN.
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1 INTRODUCTION

Generative Adversarial Networks (GANSs [8]) are capable of repro-
ducing certain aspects of a given training set. GANs are artificial
neural networks that can be trained to generate fake samples based
on real examples. Past successes include the generation of fake
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celebrity faces [10] and fingerprints [3]. In the domain of games,
GANSs have generated levels for Mario and others [7, 9, 25, 26].

In this paper, GANSs are used to generate Mega Man levels based
on levels in the original game. Data from the Video Game Level
Corpus (VGLC [22]) is used to train GANs. Volz et al. [26] generated
Mario levels by placing individual segments left-to-right. In contrast
to Mario, Mega Man levels have a snaking pattern of horizontal,
vertical, and corner segments. Therefore, different GANs are used
for different segment types, resulting in levels with better flow and
organization, and a more human-like design.

Levels were optimized using latent variable evolution (LVE [2]):
one real-valued vector consisting of the concatenation of multiple
latent vectors was used to generate several segments. The vec-
tor also contained information on the relative placement of each
segment. Levels were evolved using multiple objectives by Non-
Dominated Sorting Genetic Algorithm II (NSGA-II [5]), the most
relevant being solution path length as determined by A* Search.

Our new approach, MultiGAN, trains distinct GANSs on different
portions of the training data, and queries the appropriate GAN
for each segment type as needed. MultiGAN is compared with
the standard approach of training one GAN on all data: OneGAN.
Although segments produced by GANs make no assumptions re-
garding neighboring segments, LVE encourages sensible transitions
between segments. However, MultiGAN more easily selects appro-
priate segments, resulting in significantly longer solution paths,
and levels that flow in a more human-like fashion. In contrast, One-
GAN levels are chaotic and have shorter solutions, since irregular
boundaries and undesirable shortcuts emerge despite evolution.

A human subject study was also conducted that indicates Multi-
GAN levels are significantly more fun and human-like in their
design than OneGAN levels, confirming our analysis of the levels,
and indicating that MultiGAN is a promising approach for generat-
ing better levels for classic platforming games.

2 RELATED WORK

Procedural Content Generation (PCG [24]) is an automated way
of creating content for video games. PCG via Machine Learning
(PCGML [12]) is a way of combining machine learning with PCG.

Generative Adversarial Networks are an increasingly popular
PCGML method for video game level generation. After the GAN
is properly trained, randomly sampling vectors from the induced
latent space generally produces outputs that could pass as real seg-
ments of levels. However, some segments are more convincing than
others, or have other desirable qualities (e.g. enemy count, solution
length, tile distribution), so it makes sense to search the latent space
for these desirable segments via methods such as evolution.
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The first latent variable evolution (LVE) approach was introduced
by Bontrager et al. [3]. In their work a GAN was trained on a set of
real fingerprint images and then evolutionary search was used to
find latent vectors that matched subjects in the data set. Because
the GAN is trained on a specific target domain, most generated
phenotypes resemble valid domain artifacts. The first LVE approach
to generating video game levels was applied to Mario [26]. Work
quickly followed in other domains.

Giacomello et al. [7] used a GAN to generate 3D levels for the
First-Person Shooter Doom. Gutierrez and Schrum [9] used a Graph
Grammar in tandem with a GAN to generate dungeons for The
Legend of Zelda. Work in the GVG-AI [16] variant of Zelda was also
done by Torrado et al. [25] using conditional GANs. This work used
bootstrapping to help in the generation of more solvable levels. A
similar bootstrapping approach was also used by Park et al. [15]
in an educational puzzle-solving game. Additional work has also
been done in a broader collection of GVG-AI games by Kumaran
et al. [11], who used one branched generator to create levels for
multiple games derived from a shared latent space.

Additional work has also been done in the original Mario do-
main. In particular, Fontaine et al. [6] and Schrum et al. [19] have
both used the quality diversity algorithm MAP-Elites [14] to find a
diversity of interesting Mario levels. The approach by Schrum et al.
specifically used Compositional Pattern Producing Networks [20]
with GANs to make levels with better cohesion and connectivity.
This approach was applied to Zelda as well as Mario. Schrum et
al. [18] also combined GANs with interactive evolution in these
domains to search the space of levels according to user preferences.

Previous work with GANs in Mario [6, 18, 19, 26] all learn to
generate one level segment at a time, before placing the adjacent
segments left-to-right. Mega Man levels are more complicated in
that they have a snaking-pattern that can move right, up, down,
and even to the left. The only other paper that has addressed this
challenge is recent work by Sarkar and Cooper [17] that uses Varia-
tional Autoencoders (VAEs). This method was applied to horizontal
Mario levels, vertical Kid Icarus levels, and snaking Mega Man lev-
els. Although their results seem promising, they often still have
problems with barriers between segments. In their work, A* paths
through the training levels were part of training data, and proposed
paths are actually part of the VAE output. However, these paths are
not always valid, and example levels shown in the paper are not
always traversable. Therefore, in our work, levels are specifically
optimized to maximize the resulting A* path length, to assure that
the Mega Man levels are actually traversable.

3 MEGA MAN

Mega Man (Rockman in Japan), was released in 1987 on the Nin-
tendo Entertainment System (NES). Gameplay involves jumping
puzzles, killing enemies, and a boss at the end of each level. Mega
Man’s success led to numerous sequels on the NES and other sys-
tems, most with the same graphics aesthetic and game mechanics.

The Video Game Level Corpus (VGLC [22]) contains data from
numerous games, including Mega Man. VGLC is the source of
training data for much of the research in Section 2 [7, 9, 17-19,
26]. The levels are represented as text files, where each character
represents a different tile type from the level, as seen in Table 1. The
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Table 1: Tile Types Used in Mega Man.

Tile types come from VGLC, though additional types were added based on
observations of the actual game. The original VGLC did not include
enemies, level orbs, or water. The “In VGLC” column indicates whether the
tile was originally represented in VGLC. “Training” indicates whether the
tile was used in GAN training sets. “Char” is the original character code
representation in VGLC (or a made up code for tiles not in VGLC), and “Int”
is a numeric code used in JSON representations of the training data. In
VGLC, one tile was associated with a Cannon obstacle. That tile maps to
Int 6, but was deemed unnecessary and becomes a solid block in generated
levels. Additionally, although no specific enemy was used for training, a
single general enemy type with code 11 was used as a placeholder for an
enemy, and an algorithm later specified the type based on location.

Tile type In VGLC | Training | Char | Int | Game
Air Yes Yes - 0
Solid Yes Yes # 1,6 E
Ladder Yes Yes | 2 ;l
Hazard Yes Yes H 3 ﬁ
Breakable Yes Yes B 4 ﬁ
Moving Platform Yes Yes M 5 sssaan
Orb No No z 7 I:='|:,'=:I
Player Yes No P 8 L]
Null Yes Yes @ 9 r
Water No Yes W 10 T
Generic Enemy No Yes Varies | 11 | N/A
Ground Enemy No No G 11 =
Wall Enemy No No W 12 T
Flying Enemy No No F 13 EX

original VGLC data is slightly modified and enhanced as described
in the table caption. Additionally, a level orb is added to mark the
end of each level (bosses not included). The snaking pattern of some
levels presents an interesting challenge for level generation.
Mega Man Maker! is a fan-made game for building and playing
user-created levels. The game includes content from each Mega Man
game, including a platform-gun that allows the player to traverse
otherwise difficult jumping puzzles with more ease. Mega Man
Maker is used to visualize and play levels generated by the GANS.

4 APPROACH

First, data was collected from VGLC for training the GANs. One-
GAN was trained in a manner similar to previous PCGML work
with GANs, but MultiGAN required the collected training data
to be separated by type. However, levels were evolved for both
approaches using the same genome encoding.

4.1 Collecting Data

MultiGAN requires the training data to be categorized by type: up,
down, horizontal, lower left, lower right, upper left, and upper right
segments (Fig. 1). Up and down segments are distinct because down
segments often involve falling, thus making it impossible to move
upward. Up segments require ladders and/or platforms that enable
upward movement. In contrast, there is no distinction between left
and right segments, which are both horizontal.

!https://megamanmaker.com/
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Figure 1: Level Generated by MultiGAN. Each color represents
a segment of a different type: Yellow:Down, Pink:Lower Right,
Red:Horizontal, Blue:Upper Left, Black:Lower Left, White:Up. Up-
per Right segments can also be generated, but none are shown.
Each GAN was trained only on the data of that given type.

The VGLC data was missing many details from the original game,
some of which were added back to the data before training (Table 1).
In contrast, player spawn points were replaced with air tiles. Only
one is needed per level, which is better placed using simple rules.

The modified level files were scanned with a sliding window
to create training data. The window size corresponds to the area
visible on screen, which is 14 tiles high by 16 tiles wide. The window
slides one tile at a time in the appropriate direction given where
the path of the level led next. Although adjacent segments can be
orthogonally adjacent in any direction, there is no branching, so
there is always exactly one direction to head in toward the end
of the level. Horizontal, up, and down segments are categorized
according to the direction the window slides while collecting the
data. A segment is identified as a corner segment whenever the
direction of sliding has to change. However, each corner segment
is also considered a horizontal, up, or down segment, depending
on which direction the window slides when entering the segment.
The result of this process is a collection of 14 X 16 segment training
samples. OneGAN is trained with all of the data, whereas MultiGAN
had a separate training set for each segment type (Table 2).

4.2 Training the GANs

The type of GAN used is a Deep Convolutional GAN, specifically a
Wasserstein GAN [1], as used in previous studies [9, 19, 26]. The
specific architecture is shown in Fig. 2.

There are two key components to training a GAN: a generator
and a discriminator. The generator is the GAN itself, and is respon-
sible for generating fake outputs based on an input latent vector.
The discriminator is trained to recognize whether a given input is
real (from the training set) or fake (from the generator).
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Table 2: Characterization of VGLC Mega Man Data.
Number of segments of each type in the training data. OneGAN uses all
training data, but MultiGAN uses a separate training set for each of seven
distinct GANSs, each consisting of samples with the same segment type.

GAN Type Segment Count
OneGAN All 2344
Horizontal 1462
Up 518
Down 364
MultiGAN | Upper Left Corner 10
Lower Right Corner 9
Upper Right Corner 8
Lower Left Corner 8

Generator Discriminator
conv
conv
conv
- =[]
szm-a-@-@m (J-7-=0
[— 1
L'_J
AXAX26 - BXBXIB 1o t6es

32x32x12

Figure 2: GAN architecture.

The 2D JSON training segments of size? 14X 16 are expanded into
3D volumes by converting each integer into a one-hot vector across
12 channels, one per tile type in Mega Man. During training, the
discriminator is shown real and fake level segments. Fake segments
are generated by the GAN by giving it randomized latent vectors of
length 5. Discriminator weights are adjusted to be more accurate,
and generator weights are adjusted to produce better fakes. The
GAN is trained for 5000 epochs, at which point the discriminator
can no longer determine whether an image is real or fake, and is thus
discarded. However, the generator can now produce convincing
fake level segments given arbitrary latent vector inputs.

The OneGAN is trained on all data, which is the norm, but as a
result there is no clear way to retrieve a segment of a desired type.
MultiGAN is trained on the same data, but each individual GAN
of the MultiGAN was trained on a different category of data from
Table 2. Each of the seven GANs had the same architecture (Fig. 2)
and therefore same latent input size of 5 as OneGAN. Each was
also trained for 5000 epochs.

4.3 Genome Encoding

Complete levels are generated from MultiGAN and OneGAN in the
same way. The genome is a vector of real numbers from [-1, 1] di-
vided into sections for each segment. In each section of 9 variables,
the first 5 are latent variables, and the last 4 determine the relative
placement of the next segment. These 4 values correspond to up,
down, left, right placement. Whichever direction has the maximum
value is chosen for the next placement, unless that location is oc-
cupied, in which case the next highest value is chosen, and so on
until an unoccupied neighboring location is found. If there are no
unoccupied neighbors, then level generation terminates early.

For each segment generated by OneGAN, the 5 latent variables
of the genome section are sent to the GAN to produce the segment.
For MultiGAN, the direction of the next placement and the previous

The actual size of the generator output and discriminator input is 32 X 32 for com-
patibility with previous research. Inputs are padded with zeros to be the right size.
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placement determine the appropriate type for the current segment,
and the specific GAN for the needed type is used to generate the
segment. If the new direction is different from the previous one,
a corner GAN is used to generate that segment. If a segment is
generated to the right, and the new direction will be up, then the
lower-right GAN will generate a segment to the right to prepare
for the new up segment, and so on.

For simplicity, the player spawn is placed in the upper-left most
section of the first segment placed, and the level ending orb is
placed in the lower-right most section of the last segment placed.

5 EXPERIMENTS

This section goes into detail regarding how levels were evolved
and evaluated based on desirable properties. Both the OneGAN and
MultiGAN methods use NSGA-II [5] to evolve suitable levels. The
two fitness objectives are solution path length and connectivity,
both determined by A* search. Parameters for evolution are also
explained in this section. Code for the experiments is available as
part of the MM-NEAT software framework>.

5.1 NSGA-II

NSGA-II [5] is a Pareto-based multi-objective evolutionary opti-
mization algorithm. NSGA-II uses the concept of Pareto Dominance
to sort populations into Pareto layers based on their objective scores.
If an individual is at least as good as another in all objectives, and
strictly better in at least one objective, then that individual dom-
inates the other. The most dominant Pareto layer contains indi-
viduals which are not dominated by any other individual in the
population, and is known as the nondominated Pareto front.

NSGA-II uses elitist selection favoring individuals in the Pareto
front over others. The second tier of individuals consists of those
that would be nondominated if the Pareto front were absent, and
further layers can be defined by peeling off higher layers in this
fashion. When ties need to be broken among individuals in the same
layer, individuals that are maximally spread out to lower density
regions of the current layer are preferred.

Pareto-based algorithms like NSGA-II are useful when objectives
can be in conflict with each other, thus causing trade-offs. However,
even when objectives correlate fairly well with each other, as in
this paper, NSGA-II is useful in that it can provide a fitness signal in
regions of the search space when one objective may be flat, without
the need to define any kind of weighting between objectives.

5.2 Fitness Functions

Levels are evolved with a combination of connectivity score and
solution path length: the connectivity score provides a smooth
gradient to improvement, even in regions of the search space filled
with unbeatable levels whose solution path length is undefined.
Solution path length is determined by A* search on a simplified
model of the game to allow for quick execution. If A* could not beat
the level, then it was assigned a score of —1, and levels that were
beatable were assigned a score equal to the length of the A* path.
When multiple levels are unbeatable, connectivity provides a
way of differentiating them. Connectivity can also differentiate two
levels with the same solution length. Connectivity score is formally

Shttps://github.com/schrum2/MM-NEAT
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defined as the proportion of traversable tiles (e.g. air, ladders) in the
level that are reachable. Higher connectivity implies more places
to explore, thus containing less wasted/unused space.

The simplified A* model only allows the avatar to move dis-
cretely through the space one tile position at a time, and has a
simplified jumping model that simulates the playable game. The
model recognizes that Mega Man will die from contact with spikes
or due to falling off the edge of the screen, but ignores the exis-
tence of enemies in the level. Though the model is not perfect, it is
sufficient, and faster to calculate than an actual simulation of the
full dynamics of Mega Man. To verify that all evolved champion
levels were beatable, they were uploaded to the Mega Man Maker
servers, which do not allow levels to be uploaded unless a human
player successfully beats them first.

5.3 Experimental Parameters

Levels were evolved using both the OneGAN and MultiGAN ap-
proach using NSGA-II with a population size of y = A = 100 for
300 generations. Preliminary experiments indicated no significant
improvements after 300 generations. The evolution experiment was
repeated with each pre-trained generator 30 times.

Evolved levels consisted of 10 segments each, unless generation
terminated early (see Section 4.3). Since the GAN latent input size
was 5, and each segment used 4 auxiliary variables for determining
relative placement, the total length of each real-valued genome was
(5+4) x 10 = 90 variables in the range [—1, 1]. Each generation
offspring were created using a 50% chance of single-point crossover.
Whether crossover occurred or not, every offspring was mutated:
each real-valued number in the vector had an independent 30%
chance of polynomial mutation [4].

6 RESULTS

Levels produced by OneGAN and MultiGAN are compared quan-
titatively in terms of their solution path lengths and novelty, and
qualitatively in terms of the final levels produced by each run.

6.1 Quantitative Analysis

The A* path lengths are significantly longer (p < 0.05) with Multi-
GAN than OneGAN (Fig. 3). The separation between methods is
established early in evolution and maintained until the end. The
difference in averages is approximately 50 tile steps throughout
all of evolution. Because segments are 14 X 16 tiles, a difference of
50 means that OneGAN champions sometimes skip one or more
segments, though it is also possible for paths to be lengthened with
additional twists and turns inside individual segments.

Levels produced by the two approaches were also compared
in terms of a novelty metric. Novelty can be defined in terms of
an individual segment, a whole level, or an arbitrary collection of
segments. Segment distance d(x, y) between two segments x and
y is defined as the number of positions in which their respective
tile types differ, normalized to [0,1]. Then, the novelty N of a
segment x is defined as its average distance from all segments in
some reference collection S:

ZyES d(x5 y)

N(x,S) = 5

(1)
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Figure 3: Average Champion A* Path Length Across Evolu-
tion. Plot of averages across 30 runs of OneGAN and MultiGAN of
champion A” path lengths by generation. MultiGAN path lengths
are approximately 50 steps longer than OneGAN paths throughout
evolution. For context, recall that segments are 14 X 16 tiles.

Table 3: Average Level Novelty By Type
For each type of level, the LN of each level is calculated. The average LN

score across N levels of the given type are presented below.
Type N | Average + StDev | Min | Max
VGLC 10 0.34+0.09 0.11 | 0.45
OneGAN | 30 0.43+0.03 0.36 | 0.48
MultiGAN | 30 0.41+0.02 0.34 | 0.46

The novelty of a level M is the average novelty of all segments it
contains, where each segment’s novelty is calculated with respect
to the set of other segments in the level (excluding itself). The Level
Novelty LN is:

Zxem N(x, M - {x})
|M]

Within VGLC levels, segments are fairly uniform and less novel.
Both GAN approaches produce levels where there is greater seg-
ment variety in each level compared to VGLC (Table 3). This sug-
gests that there is more variety in GAN-generated levels than in
the original game, but it may also suggest less consistent style.

Table 4 indicates that there are not that many repeated segments
within the individual data sets for a given type of level. MultiGAN
repeats segments more than OneGAN (fewer unique segments),
likely because of the lack of training samples in corner segment
GANS . In fact, Table 5 analyzes the distinct segments and novelty
scores of each corner GAN from MultiGAN, showing that these
corner GANSs produced less novel results. However, despite some
repetition in the corners, the overall novelty scores of OneGAN
and MultiGAN are slightly more than VGLC.

LN(M) = (2

6.2 Qualitative Analysis

The specific levels talked about in this section can be found in
Table 6. Evolved champions from all 30 runs with OneGAN and
MultiGAN can be viewed online* and played with Mega Man Maker.

OneGAN levels were more confusing due to the lack of flow.
There are many random pits that Mega Man cannot traverse without
the platform gun (see Section 3). MultiGAN levels generally look
more natural, meaning adjacent segments connect and flow better.

“https://southwestern.edu/~schrum2/SCOPE/megaman.php
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Table 4: Distinct Segments By Type
For each level type, the total number of segments, number and percentage
of unique segments within the collection (removing duplicates to get a set),
average segment novelty with respect to the collection, and average
segment novelty with respect to the set (without duplicates) are shown.
MultiGAN has the lowest percentage of distinct segments, but is between
VGLC and OneGAN in terms of novelty, whether sets or complete
collections are used, though the comparative novelty scores are all close.

Segments | Distinct Average Average
Segments | Novelty All | Novelty Set
VGLC 178 159 (89.3%) 0.4390 0.4349
OneGAN 300 287 (95.7%) 0.4709 0.4637
MultiGAN 300 254 (84.7%) 0.4542 0.4483

Table 5: Distinct Corner Segments in MultiGAN
Shows number of segments in MultiGAN levels generated by each corner
GAN, number that were distinct, average novelty of collections from each
GAN, and average novelty across the distinct segments. Corner segments
from the same GAN often differ by only a few tiles, which is why novelty
scores are low despite the sometimes high percentage of distinct segments.

Segments | Distinct Average Average
Segments | Novelty All | Novelty Set
Lower Left 42 28 (66.7%) 0.2453 0.2689
Lower Right 25 20 (80.0%) 0.3537 0.3448
Upper Right 40 29 (725%) | 0.2635 0.2770
Upper Left 25 22 (88.0%) 0.2875 0.2857

Different MultiGAN levels tend to have the same or nearly iden-
tical corner segments because of issues with novelty pointed out
in Table 5. However, a typical 10-segment level often only has one
or two representatives of each corner type, so repetition of corner
segments within the same level is very rare.

As seen in OneGAN15, OneGAN levels tend to have entire
segments that are unreachable or unnecessary. One water segment
in the figure leads to a dead end, and the other is blocked off by
the other segments. Note that despite being specifically evolved to
maximize solution length and connectivity, OneGAN struggled to
connect segments. Similarly, in OneGANO there are two unused
segments at the bottom. These segments are reachable, but not
needed. Examples like these explain why OneGAN’s solution path
lengths are on average 50 tiles shorter than those of MultiGAN.

However, OneGAN solutions do sometimes successfully traverse
all segments, as seen in OneGANS8. However, even this level has
large sections in the lower left and upper mid section that are
not traversed, which further explains the shorter solution paths
compared to MultiGAN.

In contrast, MultiGAN levels made better use of their allotment
of 10 segments. In MultiGAN1, the average portion of each seg-
ment occupied by the solution path is roughly 12%, whereas in
OneGAN15 the portion is only 8%. Every ladder in the level is part
of the solution path, suggesting a more efficient use of space and
intelligent placement. In fact, the left-most side of MultiGAN27
even presents an example of ladders between distinct segments
perfectly aligning. MultiGAN1 also effectively paired moving plat-
forms with hazard spikes, which is an interesting challenge. Multi-
GAN levels were good at placing blocks in such a way that a simple
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Table 6: Example Generated Levels.

Each is discussed in detail in Section 6.2. Names appear under each level.

OneGANO

MultiGAN25

OneGAN15
MultiGAN27

MultiGAN7 OneGANS
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miscalculated jump could result in death, as in the original Mega
Man, which is known for frustrating platforming challenges.
MultiGAN levels generally follow a snaking pattern not only in
segment placement, but also in the solution path, whereas solution
paths for OneGAN levels were more direct. Though MultiGAN does
occasionally struggle with unnecessary block placement, such as
in MultiGAN25 with the lower left corner, the solution paths are
both longer and more challenging to traverse than in OneGAN.
Human subjects confirmed some of these observations.

7 HUMAN SUBJECT STUDY

This section briefly describes a human subject study comparing
OneGAN and MultiGAN levels, and the results of the study.

7.1 Human Subject Study Procedure

The study was advertised globally on social media and forums,
but most of the 20 participants were undergraduate students from
Southwestern University. Response was limited because partici-
pants seemed unwilling or unable to install and create an account
for Mega Man Maker, which was required in order to participate.

Participants played a random evolved champion level of each
type. Subjects were not informed how levels were generated, and
were led to believe that some levels might be made by humans.
Participants compared levels based on how difficult, fun, human-
like, and interesting the designs were.

Mega Man Maker allows for a rich diversity of tiles that vary
mainly in their appearance, but the tile types produced by the
GAN (Table 1) are relatively plain. As a result, levels look simpler
than typical human-designed levels. One study participant who
had experience with Mega Man Maker pointed out that our levels
would be impossible to make using the level editor because the
editor blends different tiles from a given tile set to distinguish
surfaces, corners, etc. As a result, this user could tell that our levels
were made through direct manipulation of level text files.

Players had access to the platform-gun, allowing them to more
easily traverse the more difficult, or otherwise impossible, jumping
puzzles. Participants were asked if they thought the platform-gun
was required to beat the level. Even with the platform-gun, some
players did not beat both levels. They were encouraged, though not
required, to make several attempts at each.

7.2 Human Subject Study Results

Quantitative results from the human subject study are in Table 7,
including a statistical analysis.

Because it was difficult to find expert Mega Man players, several
participants struggled to complete the levels. Only 14 participants
completed the OneGAN level, whereas 17 completed the MultiGAN
level. Additionally, 11 thought the platform-gun was required to
beat the OneGAN level, whereas only 8 believed this of the Multi-
GAN level. Needing the platform-gun could indicate bad design, as
most actual levels can be traversed by normal jumping.

Most participants found their OneGAN level harder than their
MultiGAN level. One respondent who said the OneGAN level was
harder noted that the ladder placement “made no sense/led to
nowhere/death screen” Another respondent said the OneGAN level
“seemed hard in a random and not very well thought-out way.” Yet
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Table 7: Human Subject Study Results
Shows the data associated with the Human Subject Study that was
conducted. Under Type, “y/n” means participants could answer yes or no
for each individual level, and “e/o” means the participant had to pick either
one level or the other. Responses to “e/0” questions were compared using
one-sided binomial tests whose approximate p values are shown in the last
column, where bold values indicate a significant difference (p < 0.05)

| Question [Type[OneGANMultiGAN]  p |
Completed? y/n 14 17 N/A
Platform-Gun Required?| y/n 11 8 N/A
Created by a Human? | y/n 4 13 N/A
Harder? e/o 14 6 0.05766
More Fun? e/o 2 18 0.0002012
More Human-Like? | e/o 5 15 0.02069
More Interesting? e/o 7 13 0.1316

another said they could not see where they were falling and that
it was difficult to “time [their] falls.” A different participant said
that OneGAN was harder because it “seemed to force the player to
make a leap of faith at the start” which led to confusion.

A significant number of participants found the MultiGAN level
more fun (p < 0.05). One participant said that the level “knew’
what [they were] going to do and could make things deliberately
harder for [them] in an intelligent way,” whereas the OneGAN level
was “hard in a seemingly unintentional way.” Another participant
said that they “liked how much longer [MultiGAN] was. There
were many places [they] could go” However, two participants said
that neither were particularly enjoyable, and another participant
said that the MultiGAN level “felt more like [they] were supposed
to lose, where [the OneGAN level]...wanted to be beaten.” For that
particular user, the OneGAN level had five segments where the
player could fall down to quickly and easily traverse a large portion
of the level, whereas the SevenGAN level had more enemies, harder
jumping puzzles, and a longer solution path. Such comments also
explain why a majority of users thought MultiGAN levels were
more interesting than OneGAN levels.

A significant number of participants (p < 0.05) thought the
MultiGAN level’s design was more human-like than OneGAN’s,
and 13 thought the MultiGAN level was created by a human in
comparison to OneGAN’s 4, though some thought correctly that
neither was designed by a human. One participant said the OneGAN
level was not created by a human because it spawns the player next
to enemies, and it “feels impossible to not take damage from them”
Another participant said that the OneGAN level “seemed like it
was entirely random” and that it made it “frustrating.” Yet another
said that the MultiGAN level was made by a human because it “had
more repeated building elements” and that the OneGAN level had
no such pattern, and would sometimes have a “solitary floating
block” Finally, one participant said that the OneGAN level “seemed
more random” than MultiGAN, which led to them thinking that it
was “made by a human trying to trick the player”

8 DISCUSSION AND FUTURE WORK

With OneGAN, the barriers between segments are unpredictable.
The majority of the training data consists of horizontal segments,
making such segments more likely. However, if Mega Man needs to
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move up into a new segment, he could get stuck banging into the
floor of the segment above him. Often, when Mega Man needs to
move down to a new segment, the only way to do so is by falling into
what looks like a pit trap, because the next segment was generated
beneath a segment modelled on horizontal segments. Note that
OneGAN does not appear to be suffering from mode collapse [23];
but it does struggle to pick the right type of segment for a given
situation. Because there are higher odds of the next segment being
unreachable, the only way to traverse some OneGAN levels is by
side routes caused when the sequence of segments snakes back into
being adjacent to an earlier segment. However, these side routes
result in certain segments being skipped in the solution path.

MultiGAN does not have this problem. When an upward segment
is needed, it can be generated reliably. Everything generated by
the Up GAN will provide ladders and/or platforms that make such
movement possible. Similarly, when movement transitions from
horizontal to vertical, the MultiGAN will use an appropriate corner
GAN. However, corner GANs are trained on significantly fewer
segments than their horizontal and vertical counterparts, causing
a lack of diversity in generated corner segments (Table 5). This
lack of diversity will generally not be noticed in any individual
MultiGAN level, but repetition of specific corner segments can be
seen across levels. Also, those familiar with the original game may
notice the duplication of certain corner segments from Mega Man.

Both OneGAN and MultiGAN sometimes produce plain hallways
filled with water. This segment is a reproduction of a segment that
occurs repeatedly in Level 9, which consists of a long boring hallway
filled with water. In the context of the original game, this scenario
is an interesting departure from the norm, but the appearance of
this segment in levels produced by GANs is usually out of place. In
fact, the handling of water by both approaches can lead to unusual
segments on occasion, indicating that some special handling of
segments containing water may be necessary. However, despite the
lack of continuity when handling water segments, LVE resulted
in other types of segments derived from the diverse training set
fitting well together.

Conditional Generative Adversarial Networks (CGANs [13])
could serve as an alternative to using multiple GANs. A CGAN
is conditioned on some additional input, allowing it to produce
output of a desired type on demand, thus eliminating the need for
multiple GANs. However, the imbalance of training data would be
a more serious issue for CGANs than it is for MultiGAN. The data
disparity between horizontal/corner segments is nearly 150 to 1.

Larger training sets could solve these problems. There are many
possible sources for Mega Man levels, such as the many other games
in the Mega Man franchise. Data for games beyond Mega Man 1
are not in VGLC, but such a data set could be constructed. A more
readily available source of levels is on the Mega Man Maker servers.
These can be freely downloaded, and if properly simplified, could
be converted into a format usable for training. With a large enough
training set, MultiGAN should be able to produce greater diversity
in its corner segments. However, more data in general means there
will still be an imbalance with respect to corner segments, so simply
using more data still might not make CGANSs easier to apply.

In lieu of more training data, better corner diversity could be
achieved by being more permissive about what counts as a corner
segment. Currently, a sequence of horizontal and vertical window
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slices lead into and out of every occurrence of a corner segment.
However, the three or four window slices surrounding each corner
segment could potentially serve as viable corner segments as well.
For example, if a corner segment has a floor section that is four
tiles deep, then sliding the window up three tiles still leaves a floor
at the bottom of the screen. Ladders and platforms for vertical
movement would remain. Including such segments in the training
sets for corners would increase their sizes without resulting in
corner segments that could not be traversed. These new members
of the corner sets could also be removed from horizontal and vertical
data sets, slightly improving the balance of data.

A larger problem affecting OneGAN and, to a lesser extent, Multi-
GAN, is the issue of continuity between adjacent segments. The
levels in the training set are all stylistically different, so if one sim-
ply stitched together a series of horizontal segments from different
levels, the result would likely not be cohesive. To some extent, use
of proper fitness functions during evolution creates some cohesion,
but it would be easier if evolution did not need to make up for
shortcomings in the GAN and genotype encoding.

A recently developed approach that could address this issue is
CPPN2GAN [19], which uses Compositional Pattern Producing
Networks (CPPNs [20]) to generate GAN latent inputs. CPPN out-
puts vary gradually as a function of segment location within the
level, and since similar latent vectors result in similar GAN outputs,
adjacent segments should be linked in a more cohesive way. This
approach has the added benefit of scale, because levels of arbitrary
size can be generated by a compact CPPN.

Because MultiGAN produced less variety in its corner segments,
its levels were slightly less diverse than OneGAN’s. Having better
training data could fix this, but another way to increase diversity is
to explicitly favor it during evolution. Quality diversity algorithms
like MAP-Elites [14] could help in discovering such diverse levels,
as has already been done in other GAN-based approaches [6, 19, 21].

9 CONCLUSION

When using GANSs to generate levels with various segment types,
it helps to use multiple GANs. Doing so preserves the structure of
each segment type. In Mega Man, each segment type affects how
adjacent segments connect. If poorly connected segments are gen-
erated, as with OneGAN, then Mega Man cannot properly traverse
the entire level. MultiGAN is proposed to allow generation of the
right type of segment whenever needed. MultiGAN was effective
in producing levels with longer solution paths going through all
available segments, in a way reminiscent of human-designed levels
from the original game. In fact, a significant number of human
subjects confirmed that MultiGAN levels had more human-like de-
sign and were more fun, in contrast to OneGAN levels which often
had unusual barriers, unreachable segments, and overall stranger
level design. MultiGAN shows promise for the generation of more
complex, challenging, and cohesive levels, and future extensions to
the approach should result in more diverse level designs as well.
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