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ABSTRACT

We demonstrate the training of Spiking Neural Networks (SNN) in

a novel multi-agent Evolutionary Robotics (ER) framework inspired

by competitive evolutionary environments in nature. The topology

of a SNN along with morphological parameters of the bot it controls

in the ER environment is together treated as a phenotype. Rules of

the framework select certain bots and their SNNs for reproduction

and others for elimination based on their efficacy in capturing food

in a competitive environment. While the bots and their SNNs are

not explicitly trained to survive or reproduce using loss functions,

these drives emerge implicitly as they evolve to hunt food and sur-

vive. Their efficiency in capturing food exhibits the evolutionary

signature of punctuated equilibrium. We use this signature to com-

pare the performances of two evolutionary inheritance algorithms

on the phenotypes, Mutation and Crossover with Mutation, using

ensembles of 100 experiments for each algorithm. We find that

Crossover with Mutation promotes 40% faster learning in the SNN

than mere Mutation with a statistically significant margin.
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1 INTRODUCTION

Darwinian evolution through natural selection serves as the broad

inspiration for the field of evolutionary computation in defining

searches for solutions to optimization problems in high dimensional

spaces. Evolutionary algorithms have been used to train the weights

and biases of deep artificial neural networks [18]. In this paper, we

demonstrate the use of multi-agent evolutionary algorithms, in-

spired by competition in nature, to train Spiking Neural Networks

(SNN) as forms of artificial intelligence. SNNs are a special class

of ANNs that mimic the biological dynamics of discrete signaling
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events between neurons known as spikes [17]. This is in contrast to

currently popular ANNs which use real numbers to represent aver-

age spiking frequencies. SNNs thus allow for encoding information

in the temporal sequence of spikes and offer higher computational

capacity per neuron than generic ANNs. The temporal sparseness

of spikes also make SNNs attractive candidates for low-energy, neu-

romorphic hardware implementations [19]. Alluring though SNNs

may be, training them requires novel methods since unlike generic

ANNs which use continuous and differentiable activation functions

in their neurons that lend themselves to gradient descent methods

for learning, SNNs define the activation mechanics of their neu-

rons in terms of the time evolution of their membrane potentials.

Hence, adapting gradient descent methods for SNNs are not trivial.

This motivates us to search for nature-inspired paradigms within

multi-agent Evolutionary Robotics to train them.

1.1 Evolutionary Robotics

The field of Evolutionary Robotics (ER) considers the co-evolution

of robot morphology and intelligence within an environment of

selection, inheritance and mutation [3]. ER may be considered a

confluence of evolutionary computation and robotics. In this work,

SNNs provide the intelligence of simulated robots in a multi-agent

ER arena. We demonstrate a simple ER arena, consisting of an

environment and rules, where the SNNs evolve to meet the criteria

for reproduction with increasing efficiency. Multi-agent arenas can

be challenging to learn in since the actions of one agent affect

the options available to another. This sets up indirect interaction

between the agents. Our work is the first to bring SNNs to a multi-

agent ER arena for effective training.

In this work, synaptic weights of the SNN and morphological

parameters of the robot (henceforth referred to as the “bot") together

constitute each bot’s phenotype. The phenotype is identical to the

genotype in our setup. A population of initially random phenotypes

are created and let loose in the ER arena as described in Section 2.

We investigate two evolutionary inheritance algorithms, Mutation,

and Crossover with Mutation, described in Section 3. Learning

behavior is seen to emerge in a few generations, including the

evolutionary signature of punctuated equilibria. This is described in

Section 4. Features of the punctuated equilibria are used to compare

performances of the inheritance algorithms.

1.2 Spiking Neural Networks

Spiking Neural Networks are considered to be the third generation

of neural networks [12]. The first generation of neural networks

used was a binary classifier more commonly known as the percep-

tron. The second generation of neural networks, more commonly
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referred to as artificial neural networks employ continuous non-

linear activation functions. Experimental results from neurobiology

have paved the way for the more biologically realistic spiking neu-

rons [12]. The temporal sequence of spikes are known to play a role

in computation in brains [1, 8, 13]. SNNs have found success in var-

ious pattern recognition applications, including image processing

and medical diagnosis [4–6, 9, 14, 21]. SNNs may be configured in

convolutional, recurrent and deep-belief network forms as well [19].

SNNs are a natural fit for robotics as individual spikes can trigger

discrete motor movements, and sequences of spikes at different

motor neurons can articulate complex, composite motions.

Learning in SNNs is achieved by optimizing the synaptic weights

and spontaneous firing rate of neurons. This may be accomplished

by local methods like Spike Timing Dependent Plasticity [7], adap-

tations of gradient descent techniques [11, 19], or global techniques

like evolutionary algorithms [10]. Gradient descent techniques

rely on differentiable surrogates for the SNN activation mecha-

nism [2, 15, 16]. Although surrogate gradients have paved the way

to perform training, the problem of training multi-layered SNNs

efficiently remains challenging. While some forms of evolutionary

algorithms have been used to train SNNs, our work distinguishes

itself by the use of a multi-agent ER framework.

1.3 Main Contributions

The main contributions of this work are as follows.

(1) Demonstration of a multi-agent ER framework, inspired by

competition in nature, to train SNNs. The framework is kept

as simple as possible with the smallest set of parameters so

we may arrive at general conclusions.

(2) Quantitative characterization of evolutionary learning by

fitting punctuated equilibria to logistic curves.

(3) Comparison between the performances of two evolutionary

algorithms for training the SNNs: Mutation versus Crossover

with Mutation.

2 SYSTEM COMPONENTS

The multi-agent ER framework within which we investigate the

efficacy of evolutionary algorithms for SNN training is described

in this section. Experiments are performed in a simulated arena

consisting of a group of bots, each with an SNN, competing for the

capture of “food" in a “game environment" with certain rules. The

bot is described in Section 2.1, the SNN is described in Section 2.2,

and the game environment and food in Section 2.3. Since the food

is replenished after a capture event, the experiments can run in-

definitely. The rules of evolution that kick in at each capture event

are described in Section 3. The code for this setup may be found at

https://github.itap.purdue.edu/das69/EvolutionarySNN.

2.1 Bots

Each bot occupies a circular area (of 40 units squared) and has a

position (𝑥,𝑦) and angular orientation 𝜃 within a 2D game envi-

ronment (of 500 units × 500 units). The movement of the bot, in

response to sensory input, is governed by motor output from the

SNN that controls it. Its sensory input is received through its field

of view as illustrated in Fig. 1. The field of view is segmented into

9 parts; 3 radial ranges, and 3 angular ranges. The 3 radial ranges

Figure 1: Graphical representation of a bot. The circular dot

represents its areal extent in the game environment. The

blue quadrant represents its field of view that is segmented

as described in Section 2.1. Each visual segment activates a

different combination of the sensory neurons of its SNN.

extend from 0 - 30, 30 - 60, and 60 - 100 units. The presence of

food within the field of view triggers a different neuron for each

of the radial ranges. The opening angle of the field of view, 𝑣 , is
considered a morphological parameter of the bot and is allowed

to evolve along with its SNN. The angle is trisected for 3 angular

ranges and the presence of food within each of them triggers a

different sensory neuron. Thus, a total of 6 sensory neurons are

dedicated for the bot’s vision.

Four motor neurons control the movement of the bot. The first

one, when fired, advances the bot by 1 unit in its orientation direc-

tion. The second makes the bot take 1 step back. The third and the

fourth rotate the bot clockwise and anti-clockwise by 0.1 radians,

respectively.

2.2 The Spiking Neural Network

Each bot has a SNN that controls it. Each SNN consists of 30 neurons

in a fully-connected, directed network, as illustrated in Fig. 2. The

edges of the network are associated with weights 𝑤𝑖 𝑗 , and this

matrix is allowed to evolve. Neurons in this network do not connect

to themselves, hence 𝑤𝑖𝑖 = 0. Of the neurons, 6 are sensory and

4 are motor as has been described. The SNN operates in discrete

time steps that also correspond to time steps in the motion of the

bot. Each neuron has a membrane potential 𝑉 (𝑡) whose dynamics

is governed by the Leaky Integrate and Fire (LIF) model [10]. The

LIF model may be described by

𝑑𝑉 (𝑡)

𝑑𝑡
=

1

𝐶𝑚

𝑑𝑞

𝑑𝑡
−

𝑉 (𝑡)

𝑅𝑚𝐶𝑚
(1)

where 𝑑𝑞/𝑑𝑡 is the input current, 𝐶𝑚 is a measure of the neuron’s

membrane capacitance, and 𝑅𝑚 is its membrane resistance. The

first term expresses the increase in membrane potential from the
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Figure 2: The structure of a SNN that controls a single bot

shown at a representative state in its evolution. It consists of

30 spiking neurons in a directed network. The shade of the

edges correspond to their weights at a particular generation.

6 neurons are connected to the sensory inputs of the bot and

4 to its motor output.
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Figure 3: The membrane potential of a single simulated neu-

ron as a function of time-steps when fired with two values of

incoming charge. In red is when the incoming charge corre-

sponds to an increase in potential that exceeds the threshold

𝑉𝑡ℎ , and in blue is when it does not.

rate of charge deposition from incoming spikes. The second term

reflects the decay of membrane potential due to the spontaneous

neutralization of charge. In our model, we approximate LIF in the

limit of infinitesimal time-steps using the difference equation:

𝑉 (𝑡 + 1) −𝑉 (𝑡) = 𝑞(𝑡) − 𝛽𝑉 (𝑡) (2)

where 𝛽 contains the 𝑅𝑚𝐶𝑚 decay constant and is set to 1%. The

capacitance is set to unity in our simulation with no loss of gener-

ality as the scale of 𝑉 is set by the voltage threshold 𝑉𝑡ℎ beyond

which the neuron fires.

The incoming charge for neuron 𝑖 at time-step 𝑡 is given by the

the sum of arriving spikes weighted by𝑤𝑖 𝑗

𝑞𝑖 (𝑡) =
∑
𝑗

𝑤𝑖 𝑗𝐴 𝑗 (𝑡) (3)

where 𝐴 𝑗 (𝑡) is 1 if the 𝑗𝑡ℎ neuron has fired in time-step 𝑡 and 0

otherwise.

A neuron fires if its membrane voltage exceeds the threshold

𝑉𝑡ℎ = 0.4 or randomly at a spontaneous rate of 𝑏 ≈ 1%. The spon-

taneous rate, which corresponds loosely to the bias term for each

neuron in traditional neural networks, is found to be important to

avoid trapping the SNN in states where no neurons are firing. This

spontaneous firing rate, 𝑏, is allowed to evolve. Thus, for the 𝑖𝑡ℎ

neuron at time 𝑡 ,

𝐴𝑖 (𝑡) =

{
1 if 𝑉𝑖 (𝑡) > 𝑉𝑡ℎ OR 𝑟 > 𝑏

0 otherwise
(4)

where 𝑟 is a uniform random number from 0 to 1. When the neuron

fires, the membrane potential 𝑉 is set back to 0 at the next time-

step. We illustrate the firing behavior of a single simulated neuron

in Fig. 3 by plotting its membrane potential by time-step when

fired with an incoming charge corresponding to potential increases

greater and lesser than 𝑉𝑡ℎ .

2.3 The Environment

Figure 4: Snapshot of the multi-agent environment within

which the bots and their SNNs evolve. The physical space

is 500 units x 500 units, and is populated here with 10 bots

and 10 pieces of food, all in constant motion. The walls are

reflective, as described in the text. The rules of evolution

implemented by the environment are described in Section 3.

The evolutionary environment in which our bots operate is a

2D square of 500 units × 500 units, as shown in Fig. 4. The walls

are reflective, i.e. when bots run into the vertical walls their 𝜃 is
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changed to 𝜋 − 𝜃 , and when they run into horizontal walls their 𝜃
is multiplied by -1.

The environment contains entities that result in the reproduction

of a bot if captured. We call these entities “food" for the remainder

of the paper. Like the bots, they each have (𝑥,𝑦) coordinates, a
fixed orientation angle 𝜃 , and a randomly chosen speed. A capture

occurs when the square of the Euclidean distance between a food

and a bot, (𝑥𝑏𝑜𝑡 − 𝑥 𝑓 𝑜𝑜𝑑 )
2 + (𝑦𝑏𝑜𝑡 − 𝑦𝑓 𝑜𝑜𝑑 )

2, is less than 13. The

procedures implemented in the reproduction of the bots at each

capture is described in Section 3. The food is replenished in the

environment by placing a new instance in a random position and

orientation with a randomly chosen speed.

3 EVOLUTIONARY ALGORITHMS

Two evolutionary inheritance algorithms are investigated in this pa-

per: we call the first one “Mutation" and the second one “Crossover

with Mutation". In both algorithms, when a capture event occurs

as described in Section 2.3, three procedures kick in: a selection

procedure, a reproduction procedure, and an elimination procedure.

This results in a new “generation" of bots which then continue

to compete in the environment till the next capture event. The

phenotypical parameters of the bots, i.e., its SNN weight matrix𝑤 ,

the spontaneous firing rate 𝑏, and its visual angle 𝑣 , are initially
random. Thus, initially, there is there no correlation between what

a bot senses in its field of view and what it does. No explicit reward

in the form of weights reinforcement is given to an individual bot

when it captures food. The successful bot(s) are reproduced with

purely random mutations, depending on the inheritance algorithm,

and bot(s) eliminated according to a fitness function to keep the

population constant. With this bare minimum of evolutionary pres-

sure, we expect the SNNs to learn to drive the bots to food with

increasing efficiency in the course of a few generations. The fitness

function used is

𝑓 = 𝑁 /𝜏, (5)

where 𝑁 is the number of times it has captured food and 𝜏 is its

age in time-steps. During elimination, bots with the lowest values

of 𝑓 are removed from memory.

3.1 Mutation

In this inheritance algorithm, the bot that captured food is selected

for reproduction. The phenotype of the bot is duplicated with ran-

dom mutations to create a new bot. Components of the weight

matrix𝑤 and 𝑏 are modified with random Gaussian variations of

standard deviation 𝜎𝑚𝑜𝑑 . The visual angle, 𝑣 , is modified similarly

with the parameter 𝜎𝑣𝑖𝑠𝑢𝑎𝑙 . This is summarized in Algorithm 1. One

bot in the population is removed according the fitness function 𝑓
as described earlier.

3.2 Crossover with Mutation

This inheritance algorithm involves waiting for two bots to capture

food and mixing their phenotype parameters to create two child

bots. Two bots with the lowest fitness values, 𝑓 as described in

Eq. 5, are then eliminated. There exist a variety of crossover op-

erations on matrices that exist in literature [20]. In our algorithm,

the weight matrices of the SNNs of the two bots, 𝑤1 and 𝑤2, are

partitioned in half and interchanged as illustrated in Fig. 5. The

Algorithm 1: Evolutionary inheritance algorithm of Muta-

tion

Input: Selected bot has phenotype (𝑤𝑜𝑙𝑑 , 𝑏𝑜𝑙𝑑 , 𝑣𝑜𝑙𝑑 );
Output: New bot made with phenotype

(𝑤𝑛𝑒𝑤 , 𝑏𝑛𝑒𝑤 , 𝑣𝑛𝑒𝑤);

for each connection (i, j) in𝑤 do

𝑤𝑛𝑒𝑤
𝑖 𝑗 ← 𝑤𝑜𝑙𝑑

𝑖 𝑗 + N(0, 𝜎2
𝑚𝑜𝑑

);

end

𝑏𝑛𝑒𝑤 ← 𝑏𝑜𝑙𝑑 + N(0, 𝜎2
𝑚𝑜𝑑

);

𝑣𝑛𝑒𝑤 ← 𝑣𝑜𝑙𝑑 + N(0, 𝜎2
𝑣𝑖𝑠𝑢𝑎𝑙

);

Figure 5: Illustration of the crossover procedure that mixes

the SNNweights of two bots for the “Crossover andMutation"

strategy described in Section 3.2. While the illustration is

with 4 × 4matrices, the SNN weight matrices are 30 × 30.

new weight matrices, spontaneous rate and visual angle are then

mutated in exactly the same way and with the same parameters

𝜎𝑚𝑜𝑑 and 𝜎𝑣𝑖𝑠𝑢𝑎𝑙 as described in Section 3.1. This is summarized in

Algorithm 2.

4 EVALUATIONS

We evaluate the two evolutionary algorithms by measuring the

average number of time-steps,𝑇 , needed by a bot to capture food at
each generation. For our analysis, since Crossover with Mutation

requires 2 bots to capture food to advance a generation, we consider

the time taken for 2 consecutive captures in the definition of 𝑇 for

both strategies. Thus, we define 𝑇 as

𝑇 = 〈𝑡2 − 𝑡1〉50 generations, (6)

where 𝑡1 is the time-step at which piece of food is captured by a

bot, and 𝑡2 is the time-step at which another piece of food has been

captured by any other bot and then yet another piece captured

by any bot. This quantity is averaged over 50 generations and

studied. As the SNNs learn, this is expected to decrease with the

number of generations. Since this is evolutionary learning, we also

expect features of punctuated equilibria which we fit to the logistic

function.
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Algorithm 2: Evolutionary inheritance algorithm of

Crossover with Mutation.

Input: Selected bots have phenotypes (𝑤1, 𝑏1, 𝑣1),
(𝑤2, 𝑏2, 𝑣2);

Output: New bots made with phenotypes (𝑤3, 𝑏3, 𝑣3),
(𝑤4, 𝑏4, 𝑣4);

𝑤3 ← 𝑤1;

𝑤4 ← 𝑤2;

for each connection (i,j) in𝑤1 do

if 𝑗 > 𝑘/2 then
𝑤4
𝑖 𝑗 ← 𝑤1

𝑖 𝑗 ;

𝑤3
𝑖 𝑗 ← 𝑤2

𝑖 𝑗 ;

end

𝑤3
𝑖 𝑗 ← 𝑤3

𝑖 𝑗 + N(0, 𝜎2
𝑚𝑜𝑑

);

𝑤4
𝑖 𝑗 ← 𝑤4

𝑖 𝑗 + N(0, 𝜎2
𝑚𝑜𝑑

);

end

𝑏3 ← 𝑏1 + N(0, 𝜎2
𝑚𝑜𝑑

);

𝑏4 ← 𝑏2 + N(0, 𝜎2
𝑚𝑜𝑑

);

𝑣3 ← 𝑣1 + N(0, 𝜎2
𝑣𝑖𝑠𝑢𝑎𝑙

);

𝑣4 ← 𝑣2 + N(0, 𝜎2
𝑣𝑖𝑠𝑢𝑎𝑙

);

Experiments for this paper are conducted in the previously de-

scribed 500 units × 500 units environment with 10 bots and 5 pieces

of food. Each bot is controlled by a SNN. The global mutation param-

eters, 𝜎𝑚𝑜𝑑 and 𝜎𝑣𝑖𝑠𝑢𝑎𝑙 defined in Section 3.1, are set to 2.5 × 10−3

and 6.4 × 10−5, respectively. We arrived at these values by rough

optimization of the final 𝑇 after 10,000 generations of evolution

to obtain a fairly efficient learning environment. Our results, es-

pecially in their qualitative features, do not lose generality in the

neighborhood of this parameter set.

4.1 One experiment of Mutation

Much can be learned by observing the outcome of one experiment

with the Mutation inheritance algorithm. As seen in the video

accompanying this paper, bots are initially seen to execute random

motions with no regard for food in their fields of view. As bots

accidentally capture food and reproduction begins, small mutations

in a bot’s phenotype that make food capture more probable allow

that bot to have more offspring. Thus, after roughly 100 generations,

food capture becomes less accidental and more apparently inten-

tional as the SNNs structure themselves to make use of sensory

data from their field of view. Around generation 1,400, we observe

the development of hunting behavior as the bots learn to cover

ground and spin their fields of view in search of food. Bots that

do not hunt have lower fitness values 𝑓 and are eventually culled.

This development results in a rapid improvement in efficiency and

decrease in 𝑇 , as defined in Eq. 6.

In Fig. 6, we study the variation of 𝑇 as a function of generation

up to 10,000 generations.While there is a large variance in𝑇 initially,

as the population of bots branches into lineages that sometimes

work well and sometimes do not, we note a sharp drop around

generation 1,214 when a bot discovers hunting. Thereafter, the bot

that discovered hunting dominates the population with its offspring

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
generations

1000

2000

3000

4000

5000

6000

7000

T

𝐿 = 2935 ± 144

𝑘 = 0.020 ± 0.001

𝑔0 = 1214 ± 17

𝑐 = 717 ± 10

Figure 6: The average time-steps to capture food,𝑇 as defined

in Eq. 6, as a function of the number of generations using

the evolutionary inheritance algorithm of Mutation. A fit to

a logistic function is used to extract quantitative features of

the punctuated equilibria.

and 𝑇 remains relatively stable up to 10,000 generations. Thus, we

observe two periods of equilibrium connected by a punctuation, as

expected in evolutionary systems. We extract broad features of this

punctuated equilibria by fitting the graph with a logistic function

on a flat pedestal of the form

𝑓 (𝑔) =
𝐿

1 + 𝑒𝑘 (𝑔−𝑔0)
+ 𝑐. (7)

The center of the punctuation, or the Inflection Point, is given by

𝑔0 in generations. The sharpness of the punctuation is given by

the slope of the inflection, 𝑘 . The final equilibrium value of 𝑇 is

given by 𝑐 , and we call this the Convergence Point. The initial

equilibrium value of 𝑇 is given by 𝐿 + 𝑐 . A minimum 𝜒2 fit returns
𝑔0 = 1214±17 generations, 𝑘 = 0.020±0.001 time-steps / generation,

𝐿 = 2935 ± 144 time-steps and 𝑐 = 717 ± 10 time-steps.

4.2 One experiment of Crossover with Mutation

We repeat the experiment with the inheritance method of Crossover

withMutation and observe similar behavior in the bots as they learn

to capture food. Faster learning is observed as hunting behavior

emerges around generation 469. A minimum 𝜒2 fit with Eq. 7 re-

turns 𝑔0 = 469 ± 33 generations, 𝑘 = 0.020 ± 0.001 time-steps /

generation, 𝐿 = 5164 ± 669 time-steps and 𝑐 = 780 ± 10 time-steps.

4.3 Comparison over experimental ensembles

The trajectories of these experiments and the quantitative features

of the punctuated equilibria depend sensitively on the random

number generator that dictate the initial phenotypes of the bots and

their mutations. Therefore, to establish any significant quantitative

difference between the two evolutionary algorithms, a statistical

study is performed. The experiments with Mutation, and Crossover
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Evolutionary Strategy Inflection Point Convergence Point

(generations) (time-steps)

Mutation 512 ± 68 699 ± 5

Crossover with Mutation 300 ± 9 759 ± 25 and 1967 ± 31

Table 1: Summary of mean Inflection Point and Convergence Point for the evolutionary strategies of Mutation and Crossover

with Mutation.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
generations

2000

4000

6000

8000

10000

T

𝐿 = 5164 ± 669

𝑘 = 0.020 ± 0.000

𝑔0 = 469 ± 33

𝑐 = 780 ± 10

Figure 7: The average time-steps to capture food,𝑇 , as a func-
tion of the number of generations using the evolutionary

strategy of Crossover and Mutation. A fit to a logistic func-

tion is used to extract quantitative features of the punctuated

equilibria.

with Mutation are each repeated 100 times with different random

number seeds. This results in an ensemble of trajectories for each

approach.

One may be naively tempted to consider the average of𝑇 at each

generation over the 100 trajectories for each ensemble. However,

since the inflection happens at a different point in each experiment,

such averaging would result in a soft falling curve and would thus

lose information on where the inflections occur. To avoid this, we

fit each of the 100 trajectories with the logistic function, extract the

𝑔0 and 𝑐 , and plot their distributions for comparison between the

two evolutionary strategies.

Fig. 8 and 9 show the distributions of the Inflection Points in

the 100 experiment ensembles for the inheritance algorithms of

Mutation, and Crossover with Mutation, respectively. They are

both fitted with Gaussians to extract the means and standard devia-

tions of these distributions. We note that while Mutation inflects at

512± 68 generations, Crossover with Mutation inflects significantly

earlier at 300 ± 9 generations. Thus, one may say Crossover with

Mutation results in 40% faster learning than just Mutation.

Fig. 10 and 11 show the distributions of the Convergence Points

for Mutation, and Crossover with Mutation, respectively. While
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Figure 8: Distribution of Inflection Points (in generations) in

an ensemble of 100 experiments with the evolutionary strat-

egy of Mutation. The histogram is binned by 150 generations

and fitted with a Gaussian to estimate its mean and standard

deviation.

the distribution for Mutation may be fitted to a simple Gaussian

with mean at 699 ± 5 time-steps, the distribution for Crossover

with Mutation is clearly bi-modal. We fit the latter with the sum

of two Gaussians and find that their means are at 759 ± 25 and

1967 ± 31 time-steps, respectively. This and the lack of a bi-modal

distribution in Fig. 9 imply that in a fair fraction of cases, Crossover

with Mutation converge to a less-than-optimal solution though it

starts the learning process faster. By comparing areas under the

two peaks of the bi-modal distribution, we find that fraction to be

29%. We summarize these results in Table 1.

5 CONCLUSIONS

Spiking neural networks are the third generation of neural networks.

They allow for encoding information in the temporal sequence of

spikes and thus offer higher energy efficiency. Further, the sparse-

ness of spikes make them energy efficient and thus appropriate

for neuromorphic applications. However, training them requires

novel methods. In this paper, we have demonstrated a multi-agent

ER based framework inspired by evolutionary rules and compet-

itive intelligence to train SNNs for performing a task efficiently.

863



Training Spiking Neural Networks with a Multi-Agent Evolutionary Robotics Framework GECCO ’21, July 10–14, 2021, Lille, France

0 500 1000 1500 2000 2500 3000
Inflection Point (generations)

0

0.5

1

1.5

2

N
o
rm

al
iz
ed

F
re
q
u
en
cy

𝜇 = 300 ± 9

𝜎 = 157 ± 18

Figure 9: Distribution of Inflection Points (in generations)

in an ensemble of 100 experiments with the evolutionary

strategy of Crossover and Mutation. The histogram is binned

and fitted identically to Fig. 8
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Figure 10: Distribution of Convergence Points (in time-steps)

in an ensemble of 100 experiments with the evolutionary

strategy of Mutation. The histogram is binned by 100 time-

steps and fitted with a Gaussian to estimate its mean and

standard deviation.
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Figure 11: Distribution of Convergence Points (in time-steps)

in an ensemble of 100 experiments with the evolutionary

strategy of Crossover and Mutation. The histogram is binned

by 100 time-steps. It is bi-modal andfittedwith twoGaussians.

Their means and standard deviations are reported.

Two evolutionary inheritance algorithms, Mutation and Crossover

with Mutation, are demonstrated and their respective performances

are compared over statistical ensembles. We find that Crossover

with Mutation promotes 40% faster learning in the SNN than mere

Mutation with a statistically significant margin. We also note that

Crossover with Mutation results in 29% of experiments converging

to a less-than-optimal solution.

Future directions of this work may lead to the integration of

evolutionary approaches with in-lifetime learning models like rein-

forcement learning. Specifically, evolutionary approaches could be

used to generate the reward mechanism for reinforcement learning

models or learning models that use Spike Timing Dependent Plas-

ticity. Furthermore, it may be interesting to explore the network

topology as a function of evolutionary generations.
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