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Kurzfassung

Das Paint-Shop-Schedling-Problem, abgekürzt PSSP, ist ein kürzlich vorgestelltes praxis-
nahes Planungsproblem. Das Ziel dieses Problems ist es, einen optimierten Zeitplan für
das Lackieren von Autoteilen zu finden. Autoteile, welche lackiert werden sollen, werden
auf Trägervorrichtungen platziert. Die Träger werden wiederum mittels Förderband in
die Lackiererei transportiert, wo mehrere Lackierroboter die Autoteile lackieren. Das
PSSP ist ein anspruchsvolles NP-hartes Problem. Beim Erstellen des Zeitplans müs-
sen weitere Bedingungen beachtet werden, beispielsweise die vorhandenen Materialien
und Träger, verbotene Träger- und Farbfolgen, Fälligkeitstermine, usw. Für viele der
Probleminstanzen wurden noch keine optimalen Ergebnisse gefunden.

Die bestehende wissenschaftliche Literatur für das PSSP befasst sich mit exakten Lösungs-
verfahren und lokaler Suche. Allerdings wurden noch keine evolutionären Algorithmen
zur Lösung des PSSP herangezogen. In dieser Diplomarbeit stellen wir einen memetischen
Algorithmus zur Lösung des PSSP vor. Unser Algorithmus folgt der typischen Vorlage
eines memetischen Algorithmus. Es wird zuerst eine initiale Bevölkerung generiert, gefolgt
von stetiger Evolution. Selektions-, Rekombinations-, Mutations- und lokale Verbesse-
rungsoperatoren werden auf jede Generation der Bevölkerung angewandt. Wir stellen
drei neuartige Rekombinationsoperatoren vor, welche mit problemspezifischem Wissen
arbeiten. Abschließend konfigurieren wir unseren Algorithmus mittels automatischem
und manuellem Parametertuning.

Für die experimentelle Analyse unseres Algorithmus verwenden wir öffentlich verfügbare
Probleminstanzen. Unser memetischer Algorithmus generiert konkurrenzfähige Lösungen
für kleine und mittelgroße Probleminstanzen. Wir schaffen es für 8 der 24 Instanzen neue
obere Schranken zu finden.
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Abstract

The Paint Shop Scheduling Problem is a recently introduced real-life scheduling problem
from the automotive industry. Car parts, which need to be painted, are placed upon
carrier devices. These carriers are placed on a conveyor belt and moved into painting
cabins, where painting robots paint the parts. The aim is to find an optimized production
schedule for the painting of car parts. The Paint Shop Scheduling Problem is a challenging
NP-hard problem that imposes constraints like due dates, forbidden carrier and color
sequences, maximum and minimum block lengths, and material availability. While the
problem has been tackled in literature, there are many problem instances for which the
optimal solutions are still unknown.

Existing literature is focused on solving the Paint Shop Scheduling Problem with exact
and local search approaches. However, population-based algorithms have not yet been
applied to solve this problem. In this thesis, we propose a memetic algorithm to solve
the Paint Shop Scheduling Problem. Our algorithm follows the typical template of a
memetic algorithm. An initial population is generated, followed by the constant evolution
of generations. Selection, crossover, mutation, and local improvement operators are
applied in each generation. We design three novel crossover operators that consider
problem-specific knowledge. Finally, we carefully configure our algorithm, including
automated and manual parameter tuning.

Using a set of available real-life benchmark instances from the literature, we perform an
extensive experimental evaluation of our algorithm. The experimental results show that
our memetic algorithm yields competitive results for small- and medium-sized instances
and is able to set new upper bounds for some of the problem instances.
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CHAPTER 1
Introduction

Each day, large amounts of synthetic material pieces need to be painted in the automotive
supply industry’s paint shops. As the process of painting is costly and time-consuming,
the industry’s paint shops are highly automated. Material pieces are placed on carrier
devices, which in turn are placed on a conveyor belt. The carrier devices are moved to
painting cabins, where several painting robots paint the material pieces.

Usually, for such problems, human planners are constructing the production schedules.
Due to the usually long planning horizons and the tight due dates, as well as a lot of
other constraints, it takes a lot of time for human planners to create the schedules, and
they are normally not able to find optimal solutions. Therefore, there is a strong need
for automated approaches to generate effective schedules for this challenging problem.

In literature, this scheduling problem has recently been introduced by Winter et al.
[2019], and is called the Paint Shop Scheduling Problem, abbreviated as PSSP. It is a
complex combinatorial problem, and the decision variant of the problem was shown to
be NP-complete by Winter and Musliu [2019a].

The PSSP is a challenging problem since it imposes a number of constraints in addition
to due dates. Those include a limited amount of materials and carrier devices, forbidden
color and carrier sequences, limited capacities per scheduling round, and minimum and
maximum block sizes for carriers of the same type. The combined complexity of these
constraints separates the PSSP from other scheduling problems in literature. The PSSP
has a multi-objective cost function with two main objectives - to minimize the number
of color changes and the number of carrier device changes per round. Peaks of these
changes should not appear in the schedule. Therefore changes per rounds are squared,
which penalizes peaks and balances changes over the scheduling horizon.

Different approaches have been considered in literature to solve the PSSP (Winter and
Musliu [2019b], Winter et al. [2019]). Exact approaches have shown to work well for
small instances. For some of the smaller instances, optimal solutions have been found

1
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1. Introduction

by Winter and Musliu [2019b]. However, for large instances, optimal solutions are not
known yet.

Heuristics can generate feasible solutions in a reasonable time - Winter et al. [2019]
achieved good results with simulated annealing. As of yet, it is not clear how metaheuris-
tics other than simulated annealing - for example evolutionary algorithms - perform for
this specific problem. To the best of our knowledge, the problem has not yet been tackled
with memetic algorithms. As memetic algorithms have been successfully applied to other
scheduling problems (e.g. Burke et al. [1995], Liu et al. [2007], Liu et al. [2013]), the
investigation of a memetic approach for the PSSP is an interesting research question and
could possibly lead to improved results.

1.1 Aims of this Thesis

The main objectives of this thesis are:

• Investigation of solution techniques for the PSSP with regards to memetic algorithms.
Design of a memetic problem representation, several memetic operators, and various
population construction strategies.

• Implementation of a parameterizable memetic algorithm for the PSSP, including
different memetic operators and population construction strategies.

• Statistical evaluation of our proposed algorithm. This includes the use of automated
parameter tuners and subsequent manual parameter tuning.

• Comparison to state-of-the-art results.

1.2 Main Results

The main contributions of this thesis are:

• We design a memetic representation of the PSSP. Further, we design three novel
crossover operators and different population construction strategies.

• We implement an algorithm based on the concepts of Moscato [1989]. At first,
a population of individuals is created. We propose several strategies for this
process. Then, memetic evolution takes place - new individuals are created by
applying memetic operators and local improvement methods. The algorithm is
highly parameterizable, which helps in evaluating the performance of the different
construction strategies and memetic operators.

• We experimentally evaluate the algorithm’s performance on problem instances from
the literature. Via automated-parameter-tuning, we try to optimize our algorithm’s
performance. We analyze the performance impact of different algorithm parameters.

2
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1.3. Organization

• We compare our algorithm’s results with the best literature results. We achieve
competitive results for many of the problem instances and can improve upper
bounds for 8 of the 24 instances.

1.3 Organization

The thesis is structured as follows. In Chapter 2, we give a formal definition of the PSSP
take a look at related work in literature. The concepts of genetics and memetics are
examined in Chapter 3. Memetic algorithms are explained, and memetic algorithms
for related problems from the literature are investigated. Our algorithm is extensively
described in Chapter 4. This chapter includes subsections for each step of the algorithm,
like the memetic operators, the construction strategies, and the local improvement phase.
In Chapter 5, we compare different parameter settings for our algorithm. We evaluate
our algorithm’s performance and compare it to literature results. Finally, we present our
conclusions as well as remarks on possible future research in Chapter 6.
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CHAPTER 2
The Paint Shop Scheduling

Problem

The Paint Shop Scheduling Problem has recently been introduced by Winter et al. [2019].
It is a challenging problem - in fact, Winter and Musliu [2019a] have proven that the
problem’s decision variant is NP-complete. A detailed textual description and a formal
problem description can be found in the work of Winter et al. [2019]. In this chapter, we
will describe the PSSP, its hard constraints, and its objective function. Further, we take
a look at different approaches that have been used for solving the PSSP in literature, as
well as related problems.

2.1 Problem Description

In this section, a problem description based on the work of Winter et al. [2019] is given.
In the automotive supply industry’s paint shops, a large number of car parts need to be
painted each day. A paint shop usually supplies different car manufacturers. Thus many
different car parts have to be painted, such as engine covers, bumpers, and wheel rims.
Just-in-time manufacturing (Sugimori et al. [1977]) is a commonly used concept in the
car industry, which forces suppliers to adhere to tight due-dates. Therefore, the main
goal of the PSSP is the construction of feasible production sequences.

Figure 2.1 outlines a paint shop’s layout. Carrier devices are placed on a conveyor belt.
Each carrier may transport well-defined combinations of raw material parts, as can be
seen in Figure 2.2. Paint shop employees load the carrier devices with raw material
pieces. Then, carriers are moved to the painting cabins, where the raw material parts are
painted by several painting robots. After the carriers return from the painting cabins, the
painted parts are unloaded by paint shop employees. The empty carrier may be removed
from the conveyor belt or reused and loaded with raw material parts.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. The Paint Shop Scheduling Problem

Material Gate

Carrier Gate (In)Carrier Gate (Out)

Carriers (Unpainted) Carriers (Painted)

Painting Cabins

Figure 2.1: A typical layout of an auto-
motive paint shop. A conveyor belt moves
the carriers through the paint shop. After
completing a round, carriers can be re-
moved, or new carriers can be added. The
figure is taken from Winter et al. [2019].

Figure 2.2: Schematic representation of
three carriers. The two carriers on the left
are from the same type, but loaded with
different material configurations. The car-
rier on the right is a different carrier type.
The figure is taken from Winter et al.
[2019].

The PSSP has a multi-objective cost function with two main objectives - to minimize
the number of color changes and the number of carrier device changes per round. The
practical benefit of these objectives is to reduce waste and save costs. A good schedule
should group requests with similar colors to reduce costs. Besides, it is preferential to
keep the number of carrier changes as low as possible, since they may lead to delays
in the schedule. Therefore, as many carrier devices as possible should be reused in the
schedule’s following round - this will be explained in the following paragraphs.

R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .

A1

A1

A2

B1

B2

A2

A2

C1

B2

B3

C1

C2

C3

B1

B2

R1 R2

1 a a

2 a a

3 a a

A

B

C

C

A

B

Feasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Infeasible

R1 R2

a a

a a

a a

A

B

C

C

A

B

Optimal

Figure 2.3: A PSSP schedule in tabular
form for three rounds. Columns depict
rows of the schedule, while cells depict car-
rier, carrier configuration, and color. The
figure is taken from Winter et al. [2019].

Figure 2.4: Three ways to reuse carrier
devices in consecutive rounds. The left
option, while viable, is not optimal. The
middle option is infeasible since carrier C
cannot be reused and placed before carrier
B. The right option is the optimal solution
- which means that the LCS of the two
rounds’ sequences is ’AB’. The figure is
taken from Winter et al. [2019].
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2.1. Problem Description

Because of the paint shop’s circular layout, the schedule is organized in rounds. A
schedule can be represented in tabular form, where columns are rounds, and table cells
represent carrier type, carrier configuration, and the proposed color. Figure 2.3 depicts
such a schedule. Carrier devices can be inserted and removed between rounds. However,
if carrier devices of the same type are scheduled in consecutive rounds, it may be possible
to reuse some of them, depending on the two rounds’ order. The minimum amount
of carrier changes between two consecutive rounds can be calculated by determining
the LCS (longest common subsequence, Hirschberg [1977]) between the two sequences.
Figure 2.4 sketches the schedules of two consecutive rounds and different ways in which
carrier devices could be reused.

2.1.1 Hard Constraints

As mentioned above, a schedule for the PSSP has to fulfill a number of hard constraints
to be considered feasible:

• All demands must be satisfied within time (overproduction is allowed).

• Carrier availability must be respected in each round.

• The minimum round capacity must be fulfilled in each round. If the maximum
round capacity is not used, unplanned carrier positions must be scheduled last.

• Minimum and maximum carrier block length restrictions must be fulfilled.

• Forbidden carrier type sequences must not appear in the schedule.

• Forbidden color sequences must not appear in the schedule.

2.1.2 Objective function

As stated above, the PSSP’s objective function has two minimization objectives. It aims
to minimize the number of color change costs (cc) and carrier changes (sc). The objective
function is shown in Equation 2.1. Each round’s color change costs (ccr) and carrier
changes (scr) are squared, to balance the required changes over the scheduling horizon.
This is done to avoid peaks of such changes within a single round, which could lead to
delays in the schedule.

minimize
∑

r∈{0,...,n−1}

sc
2

r +
∑

r∈R

cc
2

r

where R is the set of rounds, and n is the schedule’s number of rounds.

(2.1)
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2. The Paint Shop Scheduling Problem

2.2 Related Work

Not too much work has been done on the PSSP since it is a relatively new problem.
Winter and Musliu [2019b] tried to solve the problem with an exact method - constraint
programming. Their approach works well for small instances, and they have been able
to find optimal solutions for most of them. But they were not able to solve any large
problem instances within a runtime limit of 6 hours. Winter et al. [2019] proposed a
metaheuristic approach based on local search. They use a simulated annealing-based
move acceptance function, which takes the search progress into account. Further, they use
a tabu list to prevent the selection of recently performed moves. They propose a greedy
construction heuristic to generate an initial solution for local search. This allows them
to solve the largest instances within time constraints. The best results were achieved
with the following combination of techniques: The initial solution was created with a
greedy heuristic and passed to simulated annealing, where the neighborhood was built
via min-conflicts heuristic. With this combination of techniques, they were able to find
feasible solutions, even for the largest problem instances, within a time limit of one hour.
In their work, they also introduce 24 real-life problem instances. We describe those
instances in detail in Section 5.2.1, and use them to evaluate our algorithm.

While the PSSP has just recently been introduced in the literature, there is quite some
work on the production scheduling problems of the automotive industry. The Car
Sequencing Problem (CSP) is a related problem, where cars have to be sequenced along
the production line, fulfilling a number of constraints. This problem also tackles the
minimization of color changes. The CSP is a popular problem in literature, and has been
tackled with different approaches, like constraint programming (Dincbas et al. [1988]),
integer linear programming (Prandtstetter and Raidl [2008]), ant colony (Boysen and
Fliedner [2007]) and a follow-up sequencing algorithm (Bysko and Krystek [2019]). Solnon
et al. [2008] give an overview of state-of-the-art methods for this problem.

Spieckermann et al. [2004] also deal with the sequential ordering in automotive paint
shops. The objective of the presented problem is to maximize the average color batch
size. They present a branch&bound algorithm to solve the problem.

The work of Wang et al. [2011] focuses on reducing energy consumption in the automotive
production process by optimizing schedules. The proposed problem is to reduce energy
consumption over peak demand periods on a group of production lines of an automotive
factory, while also obeying time and resource constraints. They use an evolutionary
algorithm to solve the problem. Starting from a population of random schedules, they
apply local transformations to create offspring. The best individuals of the union set of
parents and children are selected for survival for the next generation.

Dörmer et al. [2015] consider the Master Production Scheduling Problem (MPS) in
the context of the automotive industry. The customization of final products in the
automotive industry involves large numbers of optional parts, which leads to a huge
variety of operation times at the various stations of the assembly line. They develop
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2.2. Related Work

a mathematical model formulation for the MPS and propose several heuristic solution
procedures to solve this problem, which focus on minimizing the workload variability.

The PSSP is different from the automotive scheduling problems discussed above since
it does not deal with cars as a whole, but with car parts placed on carrier devices. It
also has the uniqueness of a multi-objective quadratic cost function, taking the whole
scheduling horizon into consideration, and punishing peaks in color and carrier device
changes.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 3
Memetics

In this chapter, the terminology and scientific background of genes and memes is discussed.
We look at the differences between genetic and memetic evolution and give a real-life
example of memetic evolution. Furthermore, we highlight the differences between genetic
and memetic algorithms and discuss their applications in the field of meta-heuristics.
Finally, we examine state-of-the-art memetic algorithms for scheduling problems.

3.1 Concepts and Terminology

The basics of genes and memes are essential to understand memetic algorithms.

A gene is a replicable biological unit hosted by an individual. In Darwin’s breakthrough
work On the Origin of Species (Darwin [1859]) a new evolutionary concept - natural
selection - is introduced.

In nature, individuals are pressured to extinct by selection. The fittest individuals with
the best genes have the highest chance of reproduction. This is called "survival of the
fittest". Genes are replicated through heredity from one generation to another. As a
consequence, better genes are more likely to survive the evolutionary process and multiply.
But this is a slow process, and it takes hundreds of thousands of years for species to
evolve since the speed of evolution is (amongst others) limited by the generation time -
the time between two consecutive generations (Sarich and Wilson [1973]). Mutation of
genes also occurs randomly during the process, though mostly at the point of fertilization.

The term meme was first introduced by Dawkins [1976]. A meme is a cultural unit. Thus
it can be a catchy tune, a specific greeting, a belief in a certain god, a way to dress, the
human rights, etc. Multiple memes together form cultural constructs like music genres,
cultures, religions, fashions, political views.

In various science disciplines like anthropology (Atran [2002]), psychology (Blackmore
and Blackmore [2000]), and architecture/urban theory (Salingaros and Mehaffy [2006])
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3. Memetics

research has been done based on the concepts of memetic evolution. Metaheuristic
techniques like memetic algorithms are just one of the use cases of memetics.

Genes have been the replicators on our planet for billions of years. They are passed from
body to body via sperms and eggs. Memes, just like genes, are replicable units hosted by
individuals. Memes are new kinds of replicators, passed from brain to brain. Genetic
evolution provided the brains, which are the foundation for the new replicators: the
memes. The evolution of memes is a process with many similarities to genetic evolution,
but orders of magnitude faster.

Memes are replicated by communication (spoken, written) and constantly mutated by
misunderstandings or deliberate adaptions. Only the best memes "survive" the selection
and are passed on to other individuals.

The process of replication of memes - how they are copied from brain to brain - is called
imitation. Dawkins [1976] proposed several qualities on which the survival of memes
depends: longevity, fecundity, and copying-fidelity.

• Longevity of a single copy of a meme is limited by the lifespan of the person, which
is the same as it is for genes.

• Fecundity of memes is more important than longevity. Some memes have great
short time success (e.g. pop songs), while other memes have long-term success (e.g.
religious belief). This is also similar to gene pools, where some genes have short
and some long term success.

• The biggest difference between memes and genes is in their copying-fidelity. Genes
have an all-or-nothing transmission. Memes, on the other hand, are exposed to a
process of constant blending and mutation.

In genetics, genes are competing with their allele, which is the genetic counterpart.
Memes, on the other hand, have no allele. The competition between memes is for brain
time. Successful memes acquire more brain time, and thus are able to supersede weaker
memes.

3.1.1 Real-Life Example

Let us discuss a real-life example of memetic evolution. We have the cultural entity
"Formula 1 car engineering" consisting of the memes "type of drive", "engine type", and
"aerodynamics". There are several memes competing for each of those properties. For
example, engines can be electric, hybrid, naturally aspirated, turbocharged, have different
amounts of cylinders, engine placement, fuel type, etc. There are infinite options for each
of those memes. Each day, engineers have new ideas - and those memes are competing
with all other memes. The consequence is that the whole cultural entity is evolving
rapidly.
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3.2. From Memetics to Memetic Algorithms

In the early years of Formula 1, the cars’ shape was as streamlined as possible. In 1968,
the Lotus engineers were the first to fit wings on their car in the Monaco Grand Prix.
They were the fastest and won the race, alerting the other teams. The next race, Ferrari
engineers equipped their car with wings and were faster than the other teams by a few
seconds. The very next race, almost all cars were fitted with wings. In this example
replication took place. The idea of putting wings on a race car replicated from the
engineers of team Lotus to the other teams’ engineers. This highlights how fast memetic
evolution takes place compared to genetic evolution. The replication of the successful
meme took only a few weeks.

When the Renault team pioneered turbocharged engines in Formula 1 in 1977, those
engines were extremely powerful but also very unreliable and difficult to drive due
to the turbo lag. For some years, only Renault used turbocharged engines, and with
improved reliability and driveability, they became increasingly successful. More and more
competitors switched to a turbocharged engine each year, and from 1983 to their ban in
F1 in 1988, all of the top teams used turbocharged engines. The turbocharged engine
meme had mutated several times until it successfully superseded the naturally aspirated
engine meme.

Several times through Formula 1 history, teams and their engineers tried to use four-wheel
drive (4WD) cars. The first and most successful was the Ferguson P99 raced in 1961,
which even won an F1 event. Only seven other cars were built in the following years with
4WD, but none of them achieved much success. The 4WD meme thus extincted. It was
not fit enough to survive the requirements of F1 engineering.

In the examples above, we can observe some of the differences between genetic and
memetic evolution. Individuals (engineers) are constantly trying to improve the cultural
entity as a whole. They are able to independently modify any of their memes. Due
to high replication rates, the speed of evolution is magnitudes faster than the speed of
genetic evolution.

3.2 From Memetics to Memetic Algorithms

3.2.1 Genetic algorithms

Genetic algorithms that try to mimic the biological mechanisms of evolution have first
been proposed by (Holland [1992]). They are used to tackle optimization problems of
all kinds. At the start, a population of candidate solutions is created. Each of these
individuals has some properties (genes), which are altered and mutated during the process.
Genes can be binary encoded, i.e. they can be represented by 0 or 1. During runtime,
the population evolves towards better solutions by mimicking biological evolution.

After the initialization, there are three different operators, which are repetitively applied
to the population: selection, crossover, and mutation. The operators are inspired by
biological evolution. Fitter individuals have a higher chance of selection. Once two
individuals are selected for reproduction, the crossover operator is executed. A crossover
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3. Memetics

function takes parts of the information of both parent individuals to create a new
individual. The other genetic operator, which alters one individual, is the mutation
operator. It is used to improve genetic diversity.

3.2.2 Memetic Algorithms

Memetic algorithms - like genetic algorithms - are population-based, evolutionary meta-
heuristics (Moscato [1989]). The survey of Moscato and Cotta [2019] provides an excellent
overview of different techniques applied by memetic algorithms. The difference to genetic
algorithms is that they mimic cultural instead of biological evolution. Again everything
starts with a population of solution candidates. But the candidates’ properties are memes,
not genes. Memes are larger units than genes.

The basic idea of the memetic operators is the same as for genetic operators. Crossover
operators do not have the limitations of biological reproduction, thus a child can have
an arbitrary number of parents. A subset of each generations’ individuals is selected
to be improved via local search techniques. Selection, duration, and frequency of local
improvement are all subject to parametrization.

The paragraph above captures the ideas of basic memetic algorithms, as proposed by
Moscato [1989]. Some more recent approaches employ (Chen and Ong [2012], Smith
[2005]) what is called memetic computing. As opposed to the basic memetic algorithms,
all memetic operators act on meme basis. In fact, there is an explicit representation of
memes alongside solutions, and those memes evolve as well. Selection is done on meme
level, as memes compete with each other. Different features of the memes can be assessed.
For example, memes with better fitness values have a higher chance to be selected. The
local refinement step is also performed on meme level. Meta-Lamarckian learning and
adaptive hyperheuristics are related approaches since they also work that way - i.e. a
collection of memes is available, and a mechanism decides which one to apply.

The most recent developments in the field of memetic algorithms yielded co-evolving
(Smith [2007]) and multimemetic algorithms (Nogueras and Cotta [2014]). Those memetic
algorithms co-evolve memes that encode additional information, for example, definitions
of local search operators. This may lead to more optimal choices of local search operators,
depending on the state of the search process.

3.2.3 Designing a Memetic Algorithm

When designing a memetic algorithm for a specific problem, lots of aspects have to be
considered. First of all, representations of genes, memes, individuals, as well as a fitness
function to evaluate individuals or memes must be defined. These representations are
the foundations of the algorithm.

For each phase of the memetic algorithm, a lot of decisions have to be made. The first
phase is the construction of the initial population. Regarding the construction strategy,
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3.2. From Memetics to Memetic Algorithms

we have to make some decisions. For example, if a random construction of solutions is
sufficient or a specific heuristic should be used.

For the genetic part of the algorithm, suitable memetic operators have to be chosen. For
this step, the representation of memes and individuals has to be kept in mind. When
deciding upon the concrete implementation of the memetic operators, we have to consider
some questions. Which memetic operators should be used? How often should these
operators be applied? How are the parent individuals selected, and by which criteria?
How does the interaction between the selected parents work? Do we need to repair the
child solutions after creating them? How often shall individuals undergo mutation?

Memetic algorithms utilize local refinement its population. Again, there are a lot of design
choices to be made for this part of the algorithm. Should exact methods or heuristics
be used? If we use a local search heuristic, which neighborhood should be used? Which
solution acceptance should be applied? Hill climbing? Simulated annealing? Should a
tabu list be used?

Some algorithms also have another selection step at the end of each generation. Anew,
this raises some questions. Should all generated children be part of the next generation,
or is there another selection process? Should some individuals of the current generation
survive? What should we do with duplicate solutions?

Some of the options presented above may be controlled by algorithm parameters. In
Chapter 4 we present the implementation of our algorithm, including the memetic
representation. Configurable parameters of our algorithm are listed in Section 5.2.3.

In the next section, we take a look at some state-of-the-art memetic algorithms from
literature and summarize the authors’ answers to the questions we posed above.

3.2.4 State-of-the-art of Memetic Algorithms

Memetic algorithms are flexible metaheuristic approaches (Cotta et al. [2018]). This
means that they are higher-level procedures, and can be applied to solve a variety of
problems. They are especially suited for NP-hard problems, which exact methods often
cannot solve in reasonable time. Memetic algorithms have been applied to many NP-hard
problems, including timetabling (Burke et al. [1995]), traveling salesperson problem (Gong
et al. [2019]), break scheduling (Widl and Musliu [2010] and Widl and Musliu [2014]),
graph coloring (Lü and Hao [2010]), graph partitioning (Benlic and Hao [2011]), job shop
scheduling (Liu et al. [2013]), bin packing (Spencer et al. [2019]), and multidimensional
knapsack (Puchinger et al. [2005]).

To the best of our knowledge, no research has been done on solving the Paint Shop
Scheduling Problem (Winter et al. [2019]) with memetic algorithms. However, memetic
algorithms have been used to successfully solve other scheduling problems. In the
following, we will give two examples to illustrate how a popular scheduling problem - the
Job Shop Scheduling Problem - is solved in literature with memetic algorithms.
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3. Memetics

In the Job Shop Scheduling Problem, n jobs have to be scheduled on m different machines.
Each job consists of a set of operations, and each operation requires a different machine.
Each operation has a processing time, which may vary from machine to machine. The
jobs’ operations must be processed in order. The makespan, which is the time between
the start and the end of the schedule, has to be minimized.

Memetic algorithm for the Job Shop Scheduling Problem

In their work, Hasan et al. [2009] examine the performance of a genetic algorithm and
three different memetic algorithms on the Job Shop Scheduling Problem. In their version,
each job is performed on a machine exactly once, so each job has one operation per
machine.

In their representation, a chromosome is mapped to a job pair-relationship-based binary
string. For each job pair (ju, jv), there are m (number of machines) bits. The bit for
machine mx is 1, if ju precedes job jv on this machine, and 0 otherwise.

The phenotype (the observable characteristics, so the actual order of jobs for each
machine) is derived from the chromosome with an algorithm called local harmonization.
The resulting solution is then repaired.

The applied genetic operators are a simple two-point crossover and bit-flip mutation.
Selection of the parent individuals is done by randomly choosing one parent from the elite
class (top 15%) of individuals. The other parent is selected by performing a tournament
between two individuals of the bottom 85% of the population. After the crossover
operator is applied, the solution is repaired, s.t. it is feasible again.

The three memetic algorithms use different local search techniques. They introduce three
priority rules: partial reordering (PR), gap reduction(GR), restricted swapping (RS). The
best combination they found is GR and RS. GR is applied to every individual, while RS
is only applied to 5% of randomly selected individuals each generation. This is because
the role of RS is mostly to increase population diversity.

A solution found by local search is accepted if it improves the individual’s fitness. It may
still be accepted if its fitness is above a certain threshold.

To improve population diversity they vary mutation rates. If more than 50% of the elite
class are the same solution, a higher mutation rate is employed.

The memetic algorithm outperforms the genetic algorithm considerably while also reducing
computational time. In the experiments conducted by the authors, the memetic algorithm
outperformed all other algorithms from the literature.

Memetic algorithm for the Multiobjective Flexible Job Shop Scheduling

Problem

Yuan and Xu [2015] investigate the use of a memetic algorithm for the Multiobjective
Flexible Job Shop Scheduling Problem (FJSP). The FJSP is a generalization of the
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3.2. From Memetics to Memetic Algorithms

classical JSP. Each operation may be processed by any machine from the given set, rather
than one specified machine. For this problem, three minimization objectives have to be
achieved: minimizing the makespan, total workload, and critical workload. The problem
is addressed in a Pareto manner, and the aim is to find Pareto-optimal solutions.

A chromosome consists of two vectors: a machine assignment vector and an operation
sequence vector. The machine assignment vector u is an integer vector. Its length is
equal to the number of operations O - it assigns operations to machines. If o1 is executed
on the machine with the ID 7, then the first element of the vector is 7. The operation
sequence vector v is also an integer vector with the length O. This vector orders the
operations by their priority. If o3 is the operation with the highest priority, then the first
element of the vector is 3.

There are two genetic operators - one for each chromosome vector. The crossover operator
for vector u chooses a random set of vector positions first. Two children are generated
by swapping values of the selected positions between parents. For vector v a modified
order crossover is used. Two positions of the vector are randomly picked. The operations
between the two positions are copied from one parent to the corresponding positions of
the child. The empty positions in the child’s vector are filled with the missing operations
in the same order they appear in the second parent’s vector. The second child is created
by executing the same procedure and swapping parents. Finally, the child solutions are
repaired, since infeasible operation sequences may occur.

The selection process is done by holding a tournament. For each tournament, a weight
vector is randomly chosen from a set of 300 weight vectors. This vector is applied to the
fitness function of the individuals.

They employ a hierarchical local search strategy to handle the three objectives.

It is interesting to note that they use NSGA-II (Deb et al. [2002]) as a framework for their
memetic algorithm. They actively eliminate duplicates in the population by mutating
them during each iteration. Not all offspring may be part of the next population, and
some parents may survive the generation. The new population is created by choosing
the best N individuals from the merged sets of old population, individuals created by
memetic operations, and individuals created by local improvement.
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CHAPTER 4
Solving the PSSP with Memetic

Algorithms

In this chapter, we solve the Paint Shop Scheduling Problem with memetic algorithms.
We propose a memetic algorithm based on the concepts discussed in Chapter 3. Different
memetic representations and novel crossover operators are outlined. All phases of our
memetic algorithm - including initialization, selection, crossover, mutation, and local
search - will be explained in detail. After outlining the basic structure of our memetic
algorithm, its steps are described in detail. In Chapter 5, the fitness of the solutions
obtained by the various crossover operators is evaluated and compared.

4.1 Definitions

In the following chapters, we think of a solution as a sequence of rounds. Figure 4.1 is an
example of the representation we use in the following chapters. Of course, each of the
rounds still consists of a sequence of carrier devices.

Figure 4.1: Visual representation of a solution. Rounds are labeled R1 - R8. Round
contents (carrier devices, their configuration, and the selected color) are not shown in
detail since they are not relevant for our memetic representations.
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4. Solving the PSSP with Memetic Algorithms

The base algorithm is shown in Algorithm 4.1. It is basically the same skeleton used by
most memetic algorithms. The only notable difference is that we have another selection
step at the end of the algorithm, which includes shrinking of the population to the base
population size.

The different parts of the algorithm are described in detail in the following chapters.

Algorithm 4.1: Memetic base algorithm

Input: generation strategy gs, population size ps, crossover population size cps,
Output: Fittest solution found

1 P ← generateInitialPopulation(gs)
2 while time is left do

// 1. selection (elitism and k-tournament)

3 E ← fittest P ∈ P
4 M← selectParentsForMemeticOperations(cps)

// 2. crossover and mutation

5 N ← performMemeticOperations(M)

// 3. local search

6 N ← improvePopulation(N )

// 4. selection (shrinking)

7 P ← shrinkPopulation(N ,P, ps)
8 P ← P ∪E

9 end

10 return fittest P ∈ P

4.2 Crossover Operators and Memetic Representations

Crossover operators are an essential part of population-based algorithms.

Crossover operators may have a significant influence on the solution’s quality (hereinafter
called fitness). Finding effective crossover operators for the Paint Shop Scheduling
Problem is not a trivial task, since partial solutions (memes) cannot be evaluated
separately. This is because of multiple reasons:

• Costs caused by a single round or a group of rounds cannot be calculated without
the neighboring rounds. This is because the carrier device sequencing is calculated
by looking at the different carrier devices in between two consecutive rounds.
However, carrier device sequencing is critical for a solution’s costs - costs can grow
fast because of its quadratic calculation.

• Demands must be fulfilled - those are hard constraints. But again, we cannot
evaluate them for partial solutions.
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4.2. Crossover Operators and Memetic Representations

Figure 4.2: Vertical crossover. Parent solutions A and B are cut vertically. A child
solution is created by merging those parts together.

• Between the last carrier device of a round, and the first carrier device of the next
round, all constraints must still be met. A round could, for example, have an
insufficient amount of carrier devices of type A at the end of the round, but if
the next round has enough carrier devices of type A at its start, the constraint is
fulfilled. Basically, the rounds are just a way of dividing the whole schedule, but
the rounds cannot be viewed independently.

• Rounds do not have a fixed size; their size only has to be within a certain range.
When evaluating partly solutions, smaller rounds usually have fewer constraint
violations and lower costs than larger rounds.

These points make it difficult to evaluate and improve memes. Thus, for the first two
crossover operators (vertical and horizontal crossover), full solutions are evaluated and
selected as parents. We also do not improve the memes during the local search phase,
but instead solutions as a whole.

4.2.1 Vertical Crossover

For this crossover operator rounds are taken from two parent solutions to create a new
child solution. The solutions are cut in vertical direction - that’s where the name comes
from. A meme, therefore, is one round of the solution. Whether a round is taken from
parent A or parent B is randomly chosen. Figure 4.2 depicts an example of such a
crossover.

This crossover operator’s main idea is to introduce a crossover operator that - while as
simple as possible - still performs well. The operator uses one of the problem’s natural
units - the round - as its memes. A round is not too big and not too small to be a meme.
Carrier device and color sequences are preserved. We do not have to worry about the
round capacity constraints (too few/too many carrier devices in the round) or the carrier
device availability constraint (too many carrier devices of one type used in the same
round). Since we are merging rounds of different solutions together, some of the problems
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4. Solving the PSSP with Memetic Algorithms

Figure 4.3: Horizontal crossover. In the first step, the parents are divided into blocks of
rounds. Then, for each of those blocks, a horizontal cutting point is chosen. The upper
and lower parts of the block are taken from different parents at random. Eventually, all
of those selected block parts are merged together to create the offspring solution.

mentioned above can occur - such as higher costs due to carrier sequences of successive
rounds or hard constraints being violated (demands, carrier device sequences, etc.).

4.2.2 Horizontal Crossover

This crossover operator cuts the solutions in horizontal direction. Again, two parent
solutions are taken, cut, and a child solution is created by merging the pieces together.

First, the solution is split into round blocks of length l: l ∈ [log3 R, log2 R], where R is
the number of rounds in the instance. We choose a logarithmic block size since the round
number can vary a lot between the instances. If we have an instance with just a few
rounds, we still want to have a few cuts. However, for a problem instance with ten times
as many rounds, we do not want ten times more cuts. Instead, we want the number of
blocks - and thus the number of memes - to be more consistent for different instances.

For each of these round blocks, a horizontal cutting point is chosen. The horizontal
cutting point h is randomly chosen: h ∈ [r ∗ 0.25, r ∗ 0.75], where r is the minimum
round length, i.e. the minimum number of carrier devices allowed per round. A meme
is equivalent to one of the halves of such a block. The cutting point h is chosen from
this interval to obtain blocks of various sizes, while at the same time avoiding blocks
consisting of just a few carrier devices. Figure 4.3 illustrates a horizontal crossover.

This crossover operator aims to keep carrier device sequence costs low, since those are vital
for a solution’s fitness. The blocks ensure that we have a longer sequence of consecutive
"half" rounds, thus helping us to achieve this goal. Many constraints, like the min/max
block constraint or the forbidden color/block sequence constraint, depend on the sequence
of blocks. The color costs also depend on the block sequence. Those constraints/costs
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4.2. Crossover Operators and Memetic Representations

Figure 4.4: Cost and demand crossover. Blocks are selected for all parents except the
base parent (A). The different blocks must be non-intersecting. Between these blocks
must be a buffer zone with a minimum length of one round. Offspring is created by
merging the blocks and the base solution together. Then, local search is conducted, but
is only allowed to modify (i.e. repair) the buffer zones.

suffer from switching between solutions, which occurs now twice as often compared to
the vertical crossover. Again, since we are merging different solutions together, some of
the problems mentioned at the start of the chapter may occur.

4.2.3 Costs and Demand Crossover

This crossover operator is far more complex than the two crossover operators described
above. The first difference is that the number of parents is not fixed at two, but is
arbitrary (> 2). The second difference is that we conduct local search to repair the
solution at the merging point.

There is one base parent solution. Blocks of rounds are chosen from different other parent
solutions replacing those rounds in the base solution - those are the memes. Between the
selected blocks must be a buffer zone. This buffer zone consists of rounds of the base
solution and has a minimum size of one round. The size of the blocks is randomly chosen
from the interval [log3 l, log2 l], where l is the instance length. It’s the same block size as
the horizontal crossover, chosen for the same reasons stated there. The crossover’s name
comes from the fact that those blocks are chosen by their costs (color + carrier device
sequence) and by a score of demand fulfillment.

The calculation of a block’s costs is done in two steps. First, for each material, a scarcity
score is calculated, as shown in Algorithm 4.2. The scarcity is calculated by contrasting
the demanded material amount with the estimated amount, which can be held by the
available carrier devices. Eventually, we have a score for each material, which is then
normalized in the interval [0.3, 1]. This score is independent of the solution and depends
only on the instance. Therefore it is only calculated once.
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4. Solving the PSSP with Memetic Algorithms

Algorithm 4.2: Material scarcity calculation

Input: Instance I
Output: An array mapping material to its normalized scarcity

1 maximumMaterial← initialize array with 0 for each material id
2 foreach carrier C in I.carriers do

3 foreach configuration CO in C.configurations do

4 foreach material capacity MC in CO.materialCapacities do

5 maximumMaterial[MC.materialId] +=
∑

(C.availabilities) *
MC.capacity

6 end

7 end

8 end

9 demandsByMaterial← summed demand by material
10 materialScarcity ← []
11 foreach demand D in demandsByMaterial do

12 materialScarcity[D.materialId]←
√

D
maximumMaterial[D.materialId]

13 end

14 normalizedMaterialScarcity ← normalize materialScarcity in interval [0.3, 1],
where higher score means higher scarcity

15 return normalizedMaterialScarcity

The second step is the calculation of the demand fulfillment and the final score for the
block. Algorithm 4.3 depicts the implementation. The materials’ scarcity calculated in
step 1 is used here. For each of the carrier devices in the block’s rounds, we look at
the demands that this carrier device can fulfill. A carrier device gets a higher score if it
fulfills urgent demands. This score gets divided by the material scarcity calculated in
step 1. The score for the whole block is the average of all the carrier devices’ scores.

The block’s final costs are the block’s color and carrier device change costs multiplied
with the score from step 2.

After creating the child solution by merging the base solution and the other parent
solutions’ blocks together, a special local search operator is conducted. The operator is
only allowed to manipulate the buffer zones. There is a higher chance in these zones than
in the blocks for possible improvement since the blocks have been chosen for their low
cost. Also, when merging parts of different solutions, constraints can easily be violated.
The local search operator is stopped if no improvement is found for 6 cycles, or if the
time limit of 1 second is passed.

4.3 Algorithm

All steps of the base algorithm depicted in 4.1 are illustrated in this chapter.
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4.3. Algorithm

Algorithm 4.3: Cost and demand crossover cost calculation

Input: A block of rounds B, the materials’ scarcity MS, the block’s costs c

Output: The block’s costs multiplied with the demand and scarcity score.
1 demandImportance = []
2 foreach round R in B do

3 foreach carrier C in R do

4 foreach material M on C do

5 ND ← most urgent demand affected by M

6 if ND is empty then

7 importance ← 0
8 else

9 importance ← 1−rounds until ND
rounds until end∗MS[M.id]

10 end

11 demandImportance[] ← importance

12 end

13 end

14 end

// score is in [0, 1], lower score means more important block

15 score =
∑

(demandImportance)

demandImportance.length

16 return c ∗ (1− score)

4.3.1 Selection

Selection of solutions is done at different stages of the algorithm.

• Selection of the elitist.

The elitist is selected at the start of each generation, by choosing the individual
with the best fitness (line 3 in Algorithm 4.1). It is selected to survive the current
round. The elitist can still be selected as a parent for crossover operators or for
mutation. Those operators are immutable, i.e. they do not modify the parents.
Thus, the elitist will never be changed during this phase.

• Selection of individuals for crossover operators via k-tournament (see Miller and
Goldberg [1996]).

Crossover operators use memes of parents to create child individuals. The parents
are chosen by running a k-tournament (line 4 in Algorithm 4.1). The k-tournament
operator takes k < |P| individuals from the current generation and performs a
k-tournament. The fittest individual out of the k competitors wins, and thus is
selected. But there are different fitness functions for the various crossover operators
- since for the cost and demand crossover blocks are competing to be selected
instead of full individuals. The number of times a k-tournament is run likewise
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4. Solving the PSSP with Memetic Algorithms

depends on the crossover operator. For binary crossover operators, two parents
are selected, while more parents are selected for the cost and demand. The k-
tournament operator is also used for the mutation operator - where it only needs
to be executed once.

• Selection of the current generation’s survivors (shrinking).

This selection is only performed if the algorithm is configured to execute more
crossover and mutation operators and thus create more offspring than there are
members in the initial population (N > |P| − 1).

In our implementation, the population size always stays the same. So only a certain
number of created children can survive the current generation. The best p = |P|−1,
which are non-duplicates, are selected for survival (line 7 in Algorithm 4.1). If
there are too many duplicates in the new generation (> 10% of the population),
we include individuals of the old generation for survival (i.e. the parents). This is
done to prevent the population from converging towards the elitist, which would
frequently happen before introducing this change. Eventually, the elitist is added
to the new population.

4.3.2 Crossover and Mutation

Offspring is created by applying memetic operators to the population, like crossover and
mutation operators. Mutation is done with probability m, while crossover operators
are executed with probability 1−m. The parents for the crossover operators, as well
as the individuals to be mutated, are selected via a k-tournament operator. m and
the probabilities for the different crossover operators are passed as parameters to the
algorithm (see Chapter 5 for a list of all parameters).

Our mutation operator chooses and executes a random local search move (insert/delete/swap
block). The move is selected randomly and does not have to be at a conflict’s position.
The randomness of the move is on purpose - it is a move the local search algorithm would
probably not make, thus promotes diversity in the population.

4.3.3 Local Search

The local search algorithm we use for improving the selected individuals is taken from
Winter et al. [2019].

Local search is conducted on a few selected individuals l ≤ |P| each generation (line
6 in Algorithm 4.1). The number of individuals selected for local search depends on
the parameter ilf (individual learning frequency): l = |P| ∗ ilf . Child solutions are
selected randomly for local search - fitness is not taken into account. The time reserved
for local search is controlled by the parameter ili (individual learning intensity), denoted
in seconds.

Local search specific parameters like the temperature are saved and passed to the next
local search call. We save those local search parameters since the population converges
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4.3. Algorithm

together. For a population consisting of rather fit individuals, the temperature thus will
already be lower. If no improvements are found for a certain amount of time, reheating
is used to escape local optima.

The local search algorithm eliminates violated hard constraints first, due to the cost
function penalizing them heavily. For one hard constraint violation, a cost penalty
equaling the maximum objective value is added.

There are three neighborhood moves: insertion, deletion, and swapping of carriers. All
these moves can be done as block moves (modifying successive carriers).

The neighborhood is generated via min-conflicts heuristic. Positions involved in constraint
violations and positions missing carriers are tracked. Some of those positions are randomly
selected, and fitting moves are generated. A simulated annealing move acceptance
function decides whether a move should be accepted (see Kirkpatrick et al. [1983]). The
temperature function also supports reheating - a technique to escape local maxima in
case no improvements can be found for a certain amount of iterations.

4.3.4 Initialization

The fitness and diversity of the initial population have a big influence on genetic and
memetic algorithms’ performance. There is a trade-off between execution time, quality,
and population diversity when creating the initial population. We implemented three
construction strategies. They are vastly different in terms of the qualities mentioned
above.

Random Construction

The random construction is the fastest one of the three construction strategies. This
strategy yields completely random solutions. Due to the fact that carriers and colors are
randomly chosen, population diversity is very high.

Random Greedy Construction

This is another very fast construction strategy. Its implementation is outlined in Algo-
rithm 4.4. Carriers and colors are again chosen randomly, but they cannot violate some
of the constraints. Carrier block size constraints are always met, and only permitted
color/carrier sequences are used. The population diversity is again very high since we
choose carriers and colors randomly. The difference is that we try to avoid conflicts of
minimum/maximum block size and of forbidden color/carrier sequences.

Greedy Construction

The third construction strategy is taken from Winter et al. [2019]. This construction
strategy is a lot slower than the first two - and a lot more sophisticated. It is needed to
achieve feasible results for the largest instances - see Chapter 5 for details.
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4. Solving the PSSP with Memetic Algorithms

Algorithm 4.4: Random greedy construction

Input: The history round H, the number of rounds R
Output: A solution without block size, block transition, color transition

violations.
1 solution = H
2 blockSize = 0
3 color = last color in history round
4 foreach round r in R do

5 roundlength← random in interval [min., max. round length]
6 for pos = 1 to roundlength do

7 if blocksize == 0 then

8 currentCarrier ← random carrier with allowed transition from last
carrier

9 blockSize← random blocksize in [min block size, max block size]

10 end

11 if random ∈ [0, 1] > 0.5 then

12 color = random color with allowed transition from last color
13 end

14 solution[r][pos] = newCarrier(currentCarrier, color)

15 end

16 end

17 return solution

The greedy construction heuristic is a two-phase algorithm. In the first phase, the round
layout is constructed. In this step, carrier configurations and colors are assigned to the
rounds, but not yet put in sequence, while considering the problem’s hard constraints.

In the second phase, the carrier sequence for each round is determined. Hard constraints
concerning sequencing are taken into consideration while trying to keep the amount of
carrier and color changes low.

Once the greedy construction terminates and yields a single solution, we have to generate
a full population from this one solution because of time constraints - for the largest
instances, the construction can take up to 20 minutes. Therefore, for each additional
population member, we modify the yielded solution. 3% of the carriers are modified by
random local search moves. Afterwards, local search is conducted for 5 seconds to repair
some of the conflicts introduced by the modifications.

4.4 Crossover Delta Evaluation

Evaluating solutions is a task which takes a lot of computation power. The costliest part
of a local search algorithm is often the evaluation of the new solutions. A technique
to speed up solution evaluation is delta evaluation. We can calculate the fitness of a
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4.4. Crossover Delta Evaluation

child solution s by using the fitness of its parent solutions p1, ..., pn, some cached data
structures, and information about the genetic differences caused by the crossover or
mutation operator.

Suppose we have a solution and its fitness. When applying a move, we would normally
evaluate the modified solution from scratch. With delta evaluation, we can just evaluate
the differences in the part of the solution that has changed. If our move adds additional
carriers, we just need to consider how those carriers affect the various constraints - which
the Paint Shop Scheduling Problem has many of (see Chapter 2). For example, for
the delta evaluation of the demand constraint, we cache (among others) the number
of scheduled pieces until a round. The move’s impact on the demand constraint can
easily be calculated by using this cache and information about the performed move, thus
avoiding iterating through all the solution’s rounds.

4.4.1 Full delta evaluation for crossover operators

For local search moves (insert/delete/swap blocks), Winter et al. [2019] already imple-
mented delta evaluation. Based on their implementation, we add delta evaluation logic
for each of our crossover operators.

One problem with this approach is that a lot of large data structures have to be cached.
We also have to create a deep copy of those data structures for new population members.
This is due to the fact that we cannot just modify one of the parent solutions and create
the child by applying the crossover operator. Parents need to be immutable since they
could be

1. selected as a parent for another crossover operator.

2. selected for mutation.

3. taken over into the next round (if there are too many duplicates).

For each new child solution, all the data structures need to be copied. Creating offspring is
an essential task of a memetic algorithm, making this copy process very costly. Ultimately,
copying those data structures makes the delta evaluation slower than just evaluating
each solution from scratch.

4.4.2 Caching the carrier change costs

To improve the performance of the delta evaluation, we completely changed the approach.
Via profiling, we identified the most time-consuming constraint evaluators. The constraint
which takes (depending on the instance) 60% to 95% of the evaluation’s runtime is the
carrier change constraint. This is because, for this constraint, the longest common
sub-sequence between each pair of consecutive rounds has to be calculated. Instead of
deep copying the large data structures for each new child solution, we just cache the costs
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4. Solving the PSSP with Memetic Algorithms

of carrier changes per round directly in the solution. This simplifies the cost calculation
a lot.

Let’s assume we have a vertical crossover operator and take rounds 1 to 5 from solution
A, and rounds 6 to 10 from solution B to create child solution C. We already know the
carrier change costs from 9 of the 10 rounds for C and can just copy them from A and
B’s cache. We only need to calculate the carrier change costs for the "cutting" point, i.e.
round 5.

Just by adding this simple improvement, the costs of evaluating child solutions have been
reduced by 50% to 80%. For the largest instance available (instance-200R, runtime 1
hour, population of 10, no local search), the performance gained is especially impressive.
Before, the algorithm only managed to create 6 generations while after the improvement,
43 generations could be created within the same runtime.
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CHAPTER 5
Empirical Evaluation

In this chapter, we evaluate our memetic algorithm presented in Chapter 4. As memetic
algorithms are often highly parameterizable, we configure many parameters for our
algorithm, which may have an influence on the solutions’ fitness. We use a state-of-the-
art automated parameter tuning algorithm to find efficient parameter configurations.
We then compare the automatically tuned configurations to a set of manually tuned
configurations and evaluate their results statistically. Finally, we compare the solutions
obtained by our algorithms to the best literature results.

5.1 Methodology

Since our algorithm is non-deterministic, 10 stochastic runs are executed for each pa-
rameter configuration. The result of those runs is used to calculate the mean, best, and
worst fitness, and the standard deviation for the parameter configuration. All cost values
listed in this chapter are averaged values if not specified otherwise.

Assessing performance differences between parameter settings may be hard when just
considering the absolute solution costs for the different instances. To compare results
between different benchmark instances, we use relative performance measures like Relative
Percentage Deviation (RPD) and Relative Deviation Index (RDI).

Equation 5.1 shows the calculation of the Relative Percentage Deviation (RPD). For each
instance I and solution S a relative cost is calculated. A lower score means that the
solution’s fitness is better. The best solution has a score of 0. A score of 0.5 for example
means that the solution’s fitness is 50% worse than the best solution’s fitness.

RPDI,S =
costI,S − bestI

bestI

(5.1)
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5. Empirical Evaluation

The second measure we use to calculate relative performance of configurations is the
Relative Deviation Index (RDI) (see Equation 5.2). The difference to RPD is that the
scores are scaled in the interval [0, 1]. This time, a score of 0.5 means that the solution’s
fitness lies exactly in the middle between the best and the worst solution’s fitness.

RDII,S =
costI,S − bestI

worstI − bestI

(5.2)

We use the Wilcoxon signed-rank test as statistical method to assess whether the means
of solution costs of two parameter settings differ significantly. It tests the null hypothesis
that two related paired samples x and y come from the same distribution. In particular,
it tests whether the differences x− y follow a symmetric distribution around zero. It’s a
non-parametric version of the paired T-test.

5.2 Setup

5.2.1 Instances

The problem instances we use for benchmarking our algorithm are taken from Winter
et al. [2019]. They provide 24 problem instances based on real life planning scenarios of
the automotive industry. The instances have recently been used as benchmark instances
for this problem. All instances are publicly available for download.1

The instances have six different planning horizons of 7, 20, 50, 70, 100, 200 rounds. For
each of the planning horizons, there are two instances - one of them imposes forbidden
color and carrier sequences. There are 12 big instances and 12 small instances. Small
instances were created by scaling down big instances, via random selection of roughly 5
percent of the carrier devices, demands, materials, colors.

The instance set features a wide variety in instance size and complexity, which is ideal
for spotting strengths and weaknesses of our algorithm and of certain parameter settings.

5.2.2 Testing Environment

We impose a time limit of one hour for every run. Each parameter setting needs to be
tested for all instances of a type (small/big). To get a representative result, we repeat
each run 10 times with different random seeds. This means that 120 hours of CPU time
are needed to test a parameter configuration on one of the instance sets.

Since we have many different parameter settings to test, a lot of computation time is
needed. We used a Intel Xeon E5-2650 v4 2.20GHz CPU for our benchmarks. The CPU
has 12 cores and 24 threads. A run is executed on a single thread of the CPU. The whole
system has 256 GB of RAM, so one thread has about 10 GB of RAM available. We had a
cluster of 12 of those machines at disposal thanks to the DBAI institute of the TU Wien.

1https://dbai.tuwien.ac.at/staff/winter/ps_instances.zip
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5.2. Setup

Since we got the original code for the algorithm from the authors of Winter et al. [2019]
we could repeat the experiments on the same hardware for comparison. This allows a
fair comparison of their approach with our memetic algorithm. We note here that the
variant we use in this section slightly differs from the version that Winter et al. [2019]
used for their experiments. Thus results may be different from literature results. The
results of the repeated experiments are used in many tables and plots in the following
sections. They are marked with the identifier SA (or SA_G, if the greedy construction
was executed as well).

5.2.3 Parameters

There are various parameters for our memetic algorithm and the local improvement step
of the algorithm. The memetic algorithm can be controlled via the following parameters:

• Population size p: A small population size can lead to a less diverse population
and not enough memetic material. However, with a big population size fewer
generations will be generated.

• Construction strategy c: Sets the strategy to construct the initial population.
The different strategies are presented in Section 4.3.4. All of them have different
strengths and weaknesses.

• K-tournament competitors k: The number of competitors for the k-tournament in
the selection phase of the algorithm. Must be in the interval [1, p].

• Individual learning frequency ilf : This parameter controls the number of individuals
to be improved in the local search phase of the algorithm. It lies in the interval
[0, 1]. To get the number of individuals which are improved, it is multiplied with
the population size p.

• Individual learning intensity ili: Determines how long local search is conducted for
each selected individual. Specified in seconds.

• Mutation frequency mf : The share of individuals to be mutated each generation is
specified by this parameter. Must be in the interval [0, 1].

• Vertical crossover frequency vcf : Specifies the crossover frequency for the vertical
crossover operator. It is in the interval [0, 1]. The sum of all crossover operator
frequencies must be 1 (vcf + hcf + cdcf = 1).

• Horizontal crossover frequency hcf : Specifies the crossover frequency for the
horizontal crossover operator. It is the interval [0, 1].

• Costs and demand crossover frequency cdcf : Specifies the crossover frequency for
the costs and demand crossover operator. It is the interval [0, 1].
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5. Empirical Evaluation

• Crossover population size cp: This parameter controls the population size generated
by application of crossover operators - in other words the amount of new offspring
which is generated. It must be greater or equal to the population size (cp ≥ p). For
a detailed description on this parameter’s influence on the shrinking part of the
algorithm, see Section 4.3.1.

For the local improvement step, we use the simulated annealing approach that uses an
additional tabu list as it was configured by Winter et al. [2019].

Therefore, the local search default parameters used in our benchmarks were the following:

• Move acceptance method: simulated annealing.

• Move exploration method: min-conflicts.

• Neighbor selection method: tabu search.

• Initial temperature for simulated annealing: 0.025

• Relative tabu list length: 0.001

• Cooldown rate for simulated annealing: 0.95

5.3 Automated Parameter Tuning

Finding efficient parameters for an algorithm is very challenging if a large number of
parameters are available. This is because the resulting combinatorial space of parameter
settings is extremely large. Parameter tuning, if performed manually by hand, is tedious
work. And if the number of parameters grows, the combinatorial space of parameter
settings is too large to be explored manually.

There are several tools in literature to solve this algorithm configuration problem, like
irace (López-Ibáñez et al. [2016]), SPOT (Bartz-Beielstein [2010]), ParamILS (Hutter
et al. [2009]), and spearmint (Snoek et al. [2012]). Hutter et al. [2011] proposed SMAC
(sequential model-based algorithm configuration). SMAC is one of the state-of-the-
art automated parameter tuning algorithms and is applicable for general algorithm
configuration problems.

SMAC constructs a random forest model to predict the algorithm’s performance for
different parameter configurations. With that model, promising configurations are
selected. The random forest is created by sub-sampling the data T times and fitting
T regression trees. For each of those trees, a prediction for the configuration is made.
Finally, the empirical mean and variance across all predictions are taken.

This selection process uses an approach the authors call "aggressive racing". Racing
stands for executing few runs for poor and many runs for good configurations. Poor
configurations are aggressively rejected - this can often already be done after a single run.
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5.3. Automated Parameter Tuning

The selected parameters are then passed to the algorithm. On completion, the selected
configuration is compared to the incumbent, and the incumbent is updated if needed.
The models are also updated after each run.

SMAC has further been developed, and we use the latest version SMAC3 Lindauer et al.
[2017]. SMAC has to be supplied with the following data about the algorithm and its
parameters:

• The executable.

• A list of problem instances.

• A list of parameters. This list includes the parameter type (nominal, ordinal,
integer, float), and the corresponding allowed values or ranges.

• A default configuration that SMAC uses as a starting point to explore the parameter
configuration space.

5.3.1 SMAC configuration

Our algorithm can be supplied with many continuous parameters, which would lead to a
large parameter configuration space (PCS). To reduce the complexity of the PCS, we
declare the continuous parameters as ordinal parameters and pass a sequence of permitted
reasonable values. Those values, as well as the default configuration, are selected by
manual tuning.

Our parameter configuration is shown in Table 5.1.

Parameter Scale of measure Value sequence Default value

Population size p Ordinal [2, 5, 10, 15, 30] 10

Crossover population size cp* Ordinal [1.0, 1.2, 1.4, 2] 1.4

K tournament competitors k* Ordinal [0.0, 0.15, 0.35, 0.5] 0.15

Individual learning frequency ilf Ordinal [0.0, 0.15, 0.35, 0.5] 0.15

Individual learning intensity ili Ordinal [3, 8, 20, 45] 20

Mutation frequency mf Ordinal [0.0, 0.1, 0.2, 0.4] 0.2

Crossover probabilities cop* Nominal
[<1.0, 0.0, 0.0>, <0.0, 0.0, 1.0>,

<0.5, 0.0, 0.5><0.4, 0.3, 0.3>, <0.5, 0.0, 0.5>,
<0.5, 0.25, 0.25>, <0.25, 0.25, 0.5>]

Table 5.1: Parameter configuration space (PCS) supplied to SMAC.

Since no dependencies between parameters can be modeled (e.g. cp ≥ p), several
parameters had to be adapted (tagged with *). We add an option for SMAC to supply cp

as a multiplier for p, thus avoiding invalid parameter configurations. k is also defined as
multiplier for p, since the dependency k < p cannot be modeled. The sum of all crossover
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5. Empirical Evaluation

probabilities must be 1. Therefore we defined them as a 3-tuple with the order: vertical
crossover, horizontal crossover, cost and demand crossover.

The benchmarks were executed on one of the machines of the cluster described in Section
5.2.2. Since SMAC supports parallel execution, we were able to utilize all 24 threads of
the machine concurrently.

As runtime, we defined 30 minutes for each call of our algorithm. We performed parameter
tuning for the small and the big instance set separately. Each of those had a runtime of
one week - which means that SMAC was able to execute 8064 runs in that time.

For the small instance set, we used random construction. The greedy construction
strategy was used for big instances. This was done for two reasons. Firstly, to reduce
the PCS. Secondly, because valid solutions cannot be attained within time constraints
when starting with random solutions for the biggest instances. The results obtained by
different construction strategies are presented in Section 5.4.1.

5.3.2 SMAC results

Rank ID p cp k ilf ili mf cop Estimated costs

1 P15_R1_S 15 1.0 0.5 0.15 8 0.0 0.5, 0.0, 0.5 2221

2 P2_R2_S 2 2.0 0.0 0.35 45 0.2 0.5, 0.0, 0.5 2272

3 P10_R3_S 10 1.0 0.5 0.35 8 0.2 0.5, 0.0, 0.5 2314

Table 5.2: Best three incumbents found by SMAC for the set of small instances.

Table 5.2 depicts the three best incumbent configurations found by SMAC for the small
instance set. The estimated costs column depicts SMAC’s performance measure for this
configuration, based on our cost function.

Vertical crossover and cost and demand crossover are the preferred memetic operators.
When examining the configurations, we can see that all three configurations use local
search on few individuals and for a short time. The second configuration has a population
of 2. Therefore this configuration minimizes crossover operators and maximizes local
search time.

Rank ID p cp k ilf ili mf cop Estimated costs

1 P2_R1_B 2 1.0 0.15 0.5 45 0.6 0.5, 0.0, 0.5 10657626190750

2 P2_R2_B 2 1.2 0.0 0.5 45 0.4 0.25, 0.25, 0.5 10707040649979

3 P2_R3_B 2 1.0 0.0 0.5 45 0.4 1.0, 0.0, 0.0 10786331184502

Table 5.3: Best three incumbents found by SMAC for the set of big instances.
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5.3. Automated Parameter Tuning

The best three incumbents for big instances are shown in Table 5.3. All three configura-
tions have a population size of 2. This has multiple reasons:

• As we will see in Section 5.4.1, a run with a bigger population may yield solutions
with better fitness, but sometimes fails to yield feasible solutions for the largest
instances. Runs with a smaller population often don’t have this problem of not
finding a feasible solution. Because they are able to produce more generations,
the local improvement step is also executed more often. Hence we assume that
local search excels in making solutions viable. It does so in a shorter time than
the memetic operators, which get executed more often for solutions with a bigger
population.

• If solutions violate any hard constraints, a severe penalty is added to their costs. The
penalty added for each hard constraint violation is equal to a solution’s maximum
possible costs for the current instance. Thus a configuration achieving mediocre
costs, but never validating a hard constraint violation, is ranked far better than a
configuration achieving good costs but violating hard constraints once.

• As stated earlier, each run for a certain instance and parameter configuration
has a limited runtime of 30 minutes. For large instances, the greedy construction
strategy is used. This strategy takes a relatively long time. For an instance with
7 rounds, it takes 2 minutes. For the largest instance with 200 rounds, it takes
almost 30 minutes. Thus, for some instances, the majority of time is consumed by
the construction, and not enough time is left to make the solutions valid. This also
explains the large cost values in the column "Estimated costs".

For the reasons stated above, the configurations with the least hard constraint violations
win for large instances.

The configurations ranked first and third for small instances are able to achieve competitive
solutions - for both small and big instances. There are some configurations in the list
of incumbents for big instances, which have a population size of 10 or 15. These
configurations are very similar to those found for small instances, in the way that they
have a small individual learning frequency and a small individual learning intensity.
Those configurations also mostly use either vertical crossover, cost and demand crossover,
or a mix of both.

For future work, we could rerun SMAC parameter tuning with a longer runtime.

Detailed Results for the Incumbent Parameter Configurations

Table 5.4 depicts the results of the three incumbent parameter configurations for small
instances, and compares them to the simulated annealing approach by Winter et al.
[2019]. As stated in Section 5.1, the table contains averaged costs over 10 runs.
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5. Empirical Evaluation

Instance SA P15_R1_S P2_R2_S P10_R3_S

7R-small 899.7 802.1 860.5 783.9
7R-HC-small 963.3 873.5 925.1 853.4
20R-small 996.4 1014.4 1014.7 1009.5
20R-HC-small 1106.8 1043.9 1045.1 965.1
50R-small 591.1 711.0 647.6 681.5
50R-HC-small 883.6 934.2 917.2 922.6
70R-small 1056.7 1391.3 1143.0 1295.2
70R-HC-small 2314.3 1912.5 1934.9 1885.7
100R-small 2362.9 1841.3 1888.6 1729.7
100R-HC-small 1156.2 1192.5 1154.0 1157.5
200R-small 5749.8 4288.5 4993.5 4692.8
200R-HC-small 5699.1 4997.6 5935.7 5159.5

Table 5.4: Average costs of the three incumbent parameter configurations for small
instances. Costs in column SA are from the simulated annealing experiments executed
on the same hardware.

Method #feasible #best Average std. dev. σ

SA 120/120 4/12 36293.9
P15_R1_S 120/120 2/12 23020.6
P2_R2_S 120/120 0/12 24591.1
P10_R3_S 120/120 6/12 17985.6

Table 5.5: Comparison of results of the three incumbent parameter configurations for
small instances. The number of feasible solutions yielded by each configuration is shown
in column #feasible. Column #best depicts for how many of the 12 instances the
configuration achieved the best solution.

For many instances, the configurations P15_R1_S and P10_R3_S perform better than
P2_R2_S or SA (the simulated annealing experiments executed on the same hardware).
The main difference between configurations P15_R1_S, P10_R3_S and P2_R2_S is
the population size. A bigger and diverse population can be crucial to escape local
optima. We will analyze the population size’s influence on the solution quality in Section
5.4.1. A possible reason for the selection of an incumbent configuration with a population
of 2 is, as mentioned above, the lower runtime of 30 minutes for SMAC runs.

Figure 5.1 depicts a box plot of the incumbents’ RDI values. We can observe that the
means of P15_R1_S and P10_R3_S are lower than the means of the other methods.
This shows that they are competitive. Table 5.5 also shows the competitiveness of those
two configurations. The average standard deviation σ is lower for more reliable methods,
i.e. the 10 repeated experiments per instance yield solutions with more similar costs.
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5.3. Automated Parameter Tuning

Instance SA_G P2_R1_B P2_R2_B P2_R3_B P10_R3_S P15_R1_S

7R 109556.6 114334.6 106799.1 107067.7 95310.8 91742.4
7R-HC 137216.0 131741.1 182162.2 128012.9 116966.9 106817.7
20R 281695.6 431467.8 371706.9 372942.5 328070.0 268998.8
20R-HC 328517.6 569607.4 568695.5 402294.1 325420.7 299419.8
50R 670416.9 910490.8 981004.1 867114.9 682281.4 647324.6
50R-HC 993294.6 1215625.8 1219386.9 1275473.2 928278.5 853311.8
70R 970832.7 1178815.4 1497888.5 1259019.4 976475.3 914746.7
70R-HC 1447172.7 1799967.7 1740843.1 1819032.7 1441404.4 1323317.0
100R 1714292.1 1915701.0 1840881.1 1814413.3 1586410.8 1494116.8
100R-HC 2602394.9 2587197.3 2610775.5 2549148.4 2106735.0 2071116.4
200R 3027137.3 3100780.3 3123140.0 3095737.5 3853381.5 -

200R-HC 4231962.1 4299495.9 4419954.5 4178882.1 - -

Table 5.6: Average costs of different parameter configurations for big instances. Costs
in column SA_G are from the simulated annealing + greedy construction experiments
executed on the same hardware. The first three parameter settings are incumbents
configurations found by SMAC. The two configurations with population 10 and 15 are
incumbent configurations from the small instance set.

Method #feasible #best Average std. dev. σ *

SA 120/120 1/12 44378095687.7
P2_R1_S 120/120 0/12 117254390700.1
P2_R2_S 120/120 0/12 113645887621.0
P2_R3_S 120/120 1/12 89950322274.4
P10_R3_S 110/120 0/12 2627687699.9
P15_R1_S 100/120 10/12 2020348345.6

Table 5.7: Comparison of results of the three incumbent parameter configurations and
two configurations with a bigger population size for big instances. (*) Standard deviation
for the instances 200R and 200R-HC is not taken into account, since not all methods
yield valid solutions for these instances.
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5. Empirical Evaluation

Figure 5.1: RDI values of incumbents
configurations for the small instance set.

Figure 5.2: RDI values of incumbents
configurations for the big instance set
without the instances 200R and 200R-
HC.

Table 5.6 shows the mean solution costs for incumbent configurations on the big instance
set. All three incumbents found by SMAC have a population of two, and therefore rely
mostly on local search. To gain insights on how a memetic algorithm with a proper
population performs on this instance set, we also executed the experiments with two of
the incumbent configurations found by SMAC for the small instance set (P10_R3_S
and P15_R1_S).

The three incumbent configurations P2_R1_B, P2_R2_B, and P2_R3_B perform
worse than Winter et al.’s local search algorithm. Interestingly, the two configurations
P10_R3_S and P15_R1_S manage to outperform the three incumbent configurations
as well as the local search algorithm on all instances bar 200R and 200R-HC. For those
two instances, the configurations struggle to find valid solutions. That is also why SMAC
treats configurations with population size of 2 preferential for this instance set.

RDI values for the different configurations are shown in Figure 5.2. They also show
that the two configurations taken from the small instance set outperform the other
four configurations. Note that the instances 200R and 200R-HC were excluded when
calculating the RDI values.

We also tested the statistical significance between the results achieved with different
parameter configurations. The Mann-Whitney-Wilcoxon test using a confidence level
of 0.95 showed that our memetic algorithm yields significantly improved results with
configurations P15_R1_S and P10_R3_S, when compared to the results of the three
configurations with population 2 (P2_R1_B, P2_R2_B, P2_R3_B).

5.4 Manual parameter tuning

In this section, we assess the performance of some of the parameters presented in
Section 5.2.3. SMAC incumbent parameter configurations are used as a starting point
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5.4. Manual parameter tuning

Configuration p k m vcf hcf cdcf ilf ili

P10_* 10 5 0.4 0 0 1 0.15 8
P15_* 15 7 0.0 0.5 0 0.5 0.15 8
P45_* 45 7 0.0 0.5 0 0.5 0.05 3
P100_* 100 7 0.0 0.5 0 0.5 0.02 3
P200_* 200 7 0.0 0.5 0 0.5 0.01 3

Table 5.8: Base parameter configurations with different population sizes used to compare
construction strategies.

Instance SA P2_G P10_G P15_G P45_G P100_G P200_G

7R-small 899.7 820.9 782.5 799.3 787.9 785.3 778.5
7R-HC-small 963.3 875.1 851.2 871.7 847.3 843.7 844.2
20R-small 996.4 1022.7 1018.2 1019.4 1024.6 1013.6 992.7
20R-HC-small 1106.8 1054.9 967.5 993.1 994.1 973.2 947.7
50R-small 591.1 653.7 644.3 676.2 681.2 695.4 812.5
50R-HC-small 883.6 918.0 915.1 922.8 928.4 922.9 1171.7
70R-small 1056.7 1142.8 1259.4 1355.2 1371.5 1369.8 2187.7
70R-HC-small 2314.3 1910.4 1842.5 1898.6 1788.9 1907.4 3984.1
100R-small 2362.9 1846.3 1762.0 2229.2 1902.2 1845.2 4988.5
100R-HC-small 1156.2 1153.0 1154.0 1157.2 1168.2 1162.0 1504.3
200R-small 5749.8 4892.0 4141.5 3599.9 2878.5 2375.7 16268.9
200R-HC-small 5699.1 6643.5 5655.1 5388.2 4523.0 3751.1 23377.0

Table 5.9: Average solution costs for the small instance set when using greedy construction.

for the parameter tests. The experiments in this section are conducted to find even
better parameter configurations and to gain insights on the impact of parameters on the
solutions’ fitness.

5.4.1 Construction Strategies and Population

The different available construction strategies are presented in Section 4.3.4. When
analyzing SMAC’s results, we could not find feasible results for all problem instances.
Therefore we decided to implement a new construction strategy - warm start. The new
construction strategy is a combination of the greedy construction strategy and local
search. Local search is conducted on the solution generated by the greedy construction
until this solution is valid. Only then, a population of solutions is generated, and the
memetic algorithm is started.

One of the most influential parameters of a memetic algorithm is the population size.
For a population of 2 - as found by SMAC - most of the algorithm’s time gets spent by
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5. Empirical Evaluation

Instance SA P2_RG P10_RG P15_RG P45_RG P100_RG P200_RG

7R-small 899.7 839.6 781.1 805.8 791.4 782.5 781.9
7R-HC-small 963.3 908.3 850.6 868.0 873.7 864.1 855.9
20R-small 996.4 1023.8 1005.1 1012.2 1005.4 999.2 990.6
20R-HC-small 1106.8 1081.2 966.9 989.6 1017.0 1015.8 976.4
50R-small 591.1 673.3 682.4 674.7 702.7 703.0 701.5
50R-HC-small 883.6 916.1 921.2 910.9 932.6 923.2 917.1
70R-small 1056.7 1141.6 1313.3 1276.5 1434.2 1399.7 1411.8
70R-HC-small 2314.3 2193.9 1996.2 1900.1 2021.4 2081.2 1893.5
100R-small 2362.9 2199.3 1966.5 1755.5 2328.3 2366.0 2340.1
100R-HC-small 1156.2 1153.5 1156.6 1154.4 1185.0 1154.9 1132.6
200R-small 5749.8 4779.6 3793.9 4013.2 2512.1 2202.9 2157.7
200R-HC-small 5699.1 6796.8 5869.5 5550.2 3774.9 2933.8 2374.7

Table 5.10: Average solution costs for the small instance set when using random greedy
construction.

Instance SA P2_R P10_R P15_R P45_R P100_R P200_R

7R-small 899.7 860.5 783.9 802.1 797.5 782.7 791.0
7R-HC-small 963.3 925.1 853.4 873.5 864.7 856.2 858.3
20R-small 996.4 1014.7 1009.5 1014.4 1021.2 1006.6 1007.1
20R-HC-small 1106.8 1045.1 965.1 1043.9 1047.2 1023.0 1006.7
50R-small 591.1 647.6 681.5 711.0 710.5 701.7 700.3
50R-HC-small 883.6 917.2 922.6 934.2 931.3 923.8 923.4
70R-small 1056.7 1143.0 1295.2 1391.3 1364.4 1381.7 1395.6
70R-HC-small 2314.3 1934.9 1885.7 1912.5 1925.8 1932.8 1897.7
100R-small 2362.9 1888.6 1729.7 1841.3 1864.7 1878.3 1887.1
100R-HC-small 1156.2 1154.0 1157.5 1192.5 1171.7 1150.2 1145.5
200R-small 5749.8 4993.5 4692.8 4288.5 3255.0 2571.1 2425.7
200R-HC-small 5699.1 5935.7 5159.5 4997.6 4007.2 3712.1 4124.6

Table 5.11: Average solution costs for the small instance set when using random con-
struction.
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5.4. Manual parameter tuning

Instances SA_G P2_R1_R P2_R1_RG P10_R P10_RG

Instance-7R 109556.6 2236287.4 2150328.9 2212757.2 2106256.8
Instance-7R-HC 137216.0 2333154.8 2288932.0 2285751.7 2249209.4
Instance-20R 281695.6 8720835.7 8556915.2 9015126.1 8591958.3
Instance-20R-HC 328517.6 8971367.2 8891543.0 9240520.4 8997510.5
Instance-50R 670416.9 24730978.8 24612496.1 - 24955543.0
Instance-50R-HC 993294.6 25403611.4 25575222.8 - 26620642.5
Instance-70R 970832.7 36094142.3 35518433.8 - 37527371.5
Instance-70R-HC 1447172.7 36703137.2 36933203.8 - 39487911.2
Instance-100R 1714292.1 - 53098478.2 - -

Instance-100R-HC 2602394.9 - 55642887.5 - -

Instance-200R 3027137.3 - - - -

Instance-200R-HC 4231962.1 - - - -

Table 5.12: Average solution costs for the big instance set when using random and random
greedy construction. Larger populations were omitted because they yield fewer feasible
solutions than configurations P10_R and P10_RG.

Instances SA_G P2_R1_G P10_G P15_G P45_G P100_G

Instance-7R 109556.6 114334.6 95310.8 91742.4 90281.3 99649.1
Instance-7R-HC 137216.0 131741.1 116966.9 106817.7 108663.4 122050.6
Instance-20R 281695.6 431467.8 328070.0 268998.8 240431.7 251082.7
Instance-20R-HC 328517.6 569607.4 325420.7 299419.8 278706.4 283974.6
Instance-50R 670416.9 910490.8 682281.4 647324.6 645720.8 727030.1
Instance-50R-HC 993294.6 1215625.8 928278.5 853311.8 813142.0 1095052.7
Instance-70R 970832.7 1178815.4 976475.3 914746.7 891067.7 -

Instance-70R-HC 1447172.7 1799967.7 1441404.4 1323317.0 1454055.1 -

Instance-100R 1714292.1 1915701.0 1586410.8 1494116.8 1816630.7 -

Instance-100R-HC 2602394.9 2587197.3 2106735.0 2071116.4 - -

Instance-200R 3027137.3 3100780.3 3853381.5 - - -

Instance-200R-HC 4231962.1 4299495.9 - - - -

Table 5.13: Average solution costs for the big instance set when using greedy construction.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Empirical Evaluation

Figure 5.3: RDI values of parameter configurations with various construction strategies
for the small instance set.

local improvement and not by memetic operators. We want to test the impact of larger
population sizes on the solutions’ quality.

The parameter configurations compared in this chapter are based on SMAC’s incumbent
configurations. Table 5.8 lists base configurations for the different construction strategies.
The suffix of the configuration name depicts the construction strategy (greedy = G, warm
start = WS, random = R, random greedy = RG).

For small instances, the differences between the construction strategies are very small,
as can be seen in Tables 5.9, 5.10, and 5.11. For some small instances, the greedy
construction strategy yields slightly worse results than random construction. We assume
that’s because the resulting population is less diverse. Interestingly, there are some
instances (50R-small, 70R-small) where the local search approach from Winter et al.
outperforms our algorithm, regardless of the construction strategy or population size.
For other instances (200R-small, 200R-HC-small) the memetic algorithm outperforms
the local search approach. When analyzing RDI values from Figure 5.3, we can see that
all population sizes greater or equal to 15 are competitive.

For the big instance set, either the greedy or the warm start construction strategy is
necessary to achieve competitive and valid solutions. Otherwise, when starting from a
random solution, for most big instances, there is simply not enough time to fulfill all
hard constraints, as can be seen in Table 5.12. Even though the algorithm may spend
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5.4. Manual parameter tuning

Instances SA_G P2_R1_WS P10_WS P15_WS P45_WS P100_WS

Instance-7R 109556.6 133731.6 93810.4 88741.6 89551.1 96930.9
Instance-7R-HC 137216.0 163854.9 110059.4 105752.8 107845.0 119882.9
Instance-20R 281695.6 326556.0 255032.0 265804.9 267976.6 287578.3
Instance-20R-HC 328517.6 377448.8 292760.6 282509.3 302009.0 314397.9
Instance-50R 670416.9 752485.7 654113.0 657234.2 670240.7 702853.2
Instance-50R-HC 993294.6 1075940.1 959462.7 931522.9 957272.4 1060115.6
Instance-70R 970832.7 1224215.9 1107169.9 1132818.2 1111575.6 1290850.3
Instance-70R-HC 1447172.7 1576620.1 1405283.2 1392171.5 1416751.5 1638643.1
Instance-100R 1714292.1 1717952.2 1576961.2 1548580.0 1595445.3 1886488.5
Instance-100R-HC 2602394.9 2692828.2 2433705.3 2480865.7 2613455.8 3122616.2
Instance-200R 3027137.3 4028357.1 3159701.4 3849725.8 4342757.7 4526237.1
Instance-200R-HC 4231962.1 5280047.0 4246989.5 5064482.0 5276129.5 5813151.3

Table 5.14: Average solution costs for the big instance set when using warm start
construction.

up to 20 minutes in the construction phase when using the greedy construction strategy,
it is still vital for the solutions’ quality. Tables 5.13 and 5.14 show the results for the
greedy and the warm start construction strategies.

Figure 5.4 depicts RDI values for the various configuration strategies on the big instance
set. Interestingly, the greedy construction strategy yields slightly better results if a
feasible solution is found. The larger the population and the bigger the instance, the
harder it is for the configurations with the greedy construction strategy to generate
feasible solutions. Population sizes between 10 and 45 yield good results.

Table 5.15 compares the number of generations, which could be generated by our algorithm
within the time constraints, for the different parameter configurations. We can clearly
see that the number of generations for large instances and for larger population sizes
is very small. We assume that this is the cause for the worse performance of the
configuration P100_WS for almost all instances, and of configuration P45_WS for the
biggest instances. Note that the number of generations for configuration P2_WS is quite
consistent between the different instances. This is due to the low population size, as well
as the high individual learning intensity (local search gets executed for 45 seconds after
each generation on one individual).
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5. Empirical Evaluation

Figure 5.4: RDI values of parameter configurations with various construction strategies
for the big instance set. Note that the instances 200R, 200R-HC, and 100R-HC were
omitted since, for some parameter settings, no valid solutions could be found for those
instances.

Instance P2_WS P10_WS P45_WS P100_WS

7R 77 383 326 210
7R-HC 76 380 313 201
20R 70 280 160 97
20R-HC 70 274 161 89
50R 63 232 92 33
50R-HC 63 207 85 30
70R 61 186 60 21
70R-HC 59 172 55 20
100R 57 167 48 18
100R-HC 55 153 41 15
200R 45 67 18 6
200R-HC 40 62 13 3

Table 5.15: Number of generated generations for different configurations.
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5.4. Manual parameter tuning

5.4.2 Genetic Algorithm (ilf = 0)

An interesting research question is how the algorithm performs without local search,
making it a genetic algorithm. Table 5.16 illustrates the different parameter configurations.
All of the configurations have a mutation rate of 20%. Otherwise, no new genetic material
would be produced during the evolutionary process.

Some instances are harder to solve than others for the genetic algorithm, as can be seen
in Table 5.17. For the instances 70R-HC-small and 100R-small, none of the runs yield
any feasible solutions. Figure 5.5 shows the corresponding RDI values. The population
size does not have a big impact on the results’ costs. The cost and demand crossover
yields the best results, either alone or combined with the vertical crossover. In conclusion,
the genetic algorithm struggles to find feasible solutions for some of the instances. If
feasible solutions are found, the results are competitive when compared to the local
search approach, albeit worse than the solutions found by our memetic algorithm.

For the big instance set, the greedy construction strategy was used for our experiments.
The average solution costs can be seen in Table 5.18. The results are quite similar
to the results of the small instance set, as the same crossover operator combinations
yield the best results. Only crossover combinations, which include the cost and demand
crossover, yield feasible solutions for instances with a planning horizon of more than 7
rounds. It seems like a little bit of local search is needed, albeit just in the form of the
repair, which is done by our cost and demand crossover operator. The configurations
P15_C and P15_VC yield quite competitive results, although they are unable to find
feasible solutions for instances with a planning horizon of 200 rounds. The larger the
population size, the harder it is for the genetic algorithm to find feasible solutions within
time constraints.
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5. Empirical Evaluation

Configuration p k m vcf hcf cdcf ilf

P15_VH 15 3 0.2 0.5 0.5 0 0
P15_VC 15 3 0.2 0.5 0 0.5 0
P15_C 15 3 0.2 0 0 1 0
P30_VH 30 5 0.2 0.5 0.5 0 0
P30_VC 30 5 0.2 0.5 0 0.5 0
P30_C 30 5 0.2 0 0 1 0
P45_VH 45 7 0.2 0.5 0.5 0 0
P45_VC 45 7 0.2 0.5 0 0.5 0
P45_C 45 7 0.2 0 0 1 0
P100_VH 100 7 0.2 0.5 0.5 0 0
P100_VC 100 7 0.2 0.5 0 0.5 0
P100_C 100 7 0.2 0 0 1 0
P200_VH 200 7 0.2 0.5 0.5 0 0
P200_VC 200 7 0.2 0.5 0 0.5 0
P200_C 200 7 0.2 0 0 1 0

Table 5.16: Parameter configurations without local search, effectively resulting in a
genetic algorithm
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5.4. Manual parameter tuning

Instance SA P15_C P15_VH P15_VC P30_C P30_VH P30_VC P45_C P45_VH

7R-small 899.7 784.4 802.0 785.6 811.2 878.9* 785.4 786.5 936.7*
7R-HC-small 963.3 860.1 910.3 854.8 859.7 959.6* 866.2 889.0 911.8
20R-small 996.4 991.5 983.2 1015.0 1002.8 1044.8 1033.0 1013.7 1093.9
20R-HC-small 1106.8 974.7* 1036.2* 989.2* 975.4* 1046.1* 971.4* 974.3* 1107.3*
50R-small 591.1 726.2 1142.7 752.3 735.0 1303.4 789.8 750.3 1428.3
50R-HC-small 883.6 951.8 1070.5 966.0 961.6 1166.4 1008.6 980.5 1238.3
70R-small 1056.7 1693.5 3559.8 1905.8 1774.6 3769.7 1921.7 1737.2 3799.1
70R-HC-small 2314.3 - - - - - - - -
100R-small 2362.9 - - - - - - - -
100R-HC-small 1156.2 1254.6 2401.2 1302.9 1224.6 2642.9 1291.0 1255.7 2935.1
200R-small 5749.8 4290.6 - 5549.0 3635.7 - 5491.4 - -
200R-HC-small 5699.1 5990.4 - 8582.7 4505.1 - 7680.0 - -

Instance SA P45_VC P100_C P100_VH P100_VC P200_C P200_VH P200_VC

7R-small 899.7 790.5 792.2 883.1 791.3 793.4 872.3* 791.5
7R-HC-small 963.3 927.1 869.6 958.2* 898.5 863.0 923.4* 882.6
20R-small 996.4 1013.9 1007.5 1113.0 1008.3 989.2 1120.6 999.8
20R-HC-small 1106.8 1007.7* 977.4* 1170.2* 989.8* 1000.6* 1161.7* 1000.6*
50R-small 591.1 795.4 735.5 1389.0 758.1 741.6 1392.2 753.8
50R-HC-small 883.6 1011.3 983.1 1232.8 1009.5 980.7 1238.5 1010.6
70R-small 1056.7 1921.6 1699.7 3805.3 1905.2 1678.2 3968.3 1915.2
70R-HC-small 2314.3 - - - - - - -
100R-small 2362.9 - - - - - - -
100R-HC-small 1156.2 1276.7 1206.8 2989.4 1271.4 1174.5 3198.5 1253.4
200R-small 5749.8 5007.1 - - 4800.0 - - 4613.5
200R-HC-small 5699.1 7810.1 - - 8058.9 - - 10793.3

Table 5.17: Average solution costs of different parameter configurations without local
search for the small instance set.
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5. Empirical Evaluation

Figure 5.5: RDI values of parameter configurations without local search for the small
instance set. Note that the instances 200R, 200R-HC, 100R, 70R-HC were omitted, since
for some parameter settings no valid solutions could be found for those instances.
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5.4. Manual parameter tuning

Instance SA_G P15_C P15_VH P15_VC P30_C P30_VH P30_VC P45_C P45_VH

7R 109556.6 95151.8 153028.0 101946.5 97122.0 153130.3 105840.3 96082.9 152662.0
7R-HC 137216.0 112101.8 185812.1 124943.6 115584.9 184921.9 126863.0 117209.5 183910.6
20R 281695.6 234967.2 - 259506.9 231014.5 - 239301.0 228162.8 -
20R-HC 328517.6 254619.9 - 276750.1 254856.3 - 261157.5 255127.7 -
50R 670416.9 577941.6 - 582197.9 659541.5 - 593720.1 669332.2 -
50R-HC 993294.6 680482.5 - 700410.2* 814730.4 - 710528.7* 874762.7* -
70R 970832.7 792308.6 - 819109.4* 942587.7* - 880101.7 1005156.0* -
70R-HC 1447172.7 1096920.1 - 1123514.0 - - 1317347.6 - -
100R 1714292.1 1424454.4* - 1432806.5* - - 1617781.4* - -
100R-HC 2602394.9 2033819.2* - 2035732.6* - - 2289221.5* - -
200R 3027137.3 - - - - - - - -
200R-HC 4231962.1 - - - - - - - -

Instance SA_G P45_VC P100_C P100_VH P100_V_C P200_C P200_VH P200_VC

7R 109556.6 103409.4 105544.3 152727.6 108223.4 116815.0 152825.6 118440.2
7R-HC 137216.0 125606.5 127802.6 185946.5 132798.5 141271.1 184746.6 148290.4
20R 281695.6 237256.9 235716.9 - 240985.8 254353.6 - 248576.4
20R-HC 328517.6 260334.4 259323.8 - 258791.1 296305.5 - 278941.3
50R 670416.9 614266.4 761657.5 - 728574.2 - - -
50R-HC 993294.6 749935.0 - - 958620.0 - - -
70R 970832.7 942675.2 * - - - - - -
70R-HC 1447172.7 - - - - - - -
100R 1714292.1 - - - - - - -
100R-HC 2602394.9 - - - - - - -
200R 3027137.3 - - - - - - -
200R-HC 4231962.1 - - - - - - -

Table 5.18: Average solution costs of different parameter configurations without local
search for the big instance set.
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5. Empirical Evaluation

5.4.3 Crossover Operators

In this section, we compare the performance of our three novel crossover operators.
Different combinations of the crossover operators mixed with different population sizes
are tested.

Table 5.19 depicts the results for the small instance set. We can observe that the horizontal
crossover operator performs the worst, especially for larger populations. The vertical
crossover operator yields competitive results, while the best results are generated by the
cost and demand crossover operator. Figure 5.6 shows the corresponding RDI values.
Configuration P10_CDCO has the lowest median of all configurations. Interestingly, a
bigger population can lead to improved solution quality for the small instance set’s larger
instances, as can be seen by configuration P45_CDCO and P100_CDCO.

For the large instance set, we tried all different combinations of crossover operators. The
results are shown in Table 5.20. All configurations used the warm start construction
strategy - that’s why all configurations yielded feasible solutions. Looking at the RDI
values in Figure 5.7, three combinations yield the best results: vertical crossover only,
cost and demand crossover only, and a combination of both.

As we could already observe in Section 5.4.1, a population larger than 45 yields worse
results for this instance set.

Instance SA P10_HCO P10_VCO P10_CDCO P15_HCO P15_VCO P15_CDCO P45_HCO P45_VCO

7R-small 899.7 795.5 793.0 789.8 806.9 842.6 802.9 803.1 839.8
7R-HC-small 963.3 861.5 882.5 855.5 858.1 886.8 872.2 860.7 910.1
20R-small 996.4 1044.1 1037.6 1012.3 1073.9 1022.9 1028.2 1082.8 1033.0
20R-HC-small 1106.8 1020.5 1047.8 962.5 1092.7 1117.7 1022.3 1038.4 1109.2
50R-small 591.1 732.3 704.6 694.1 808.7 726.0 713.1 909.8 730.7
50R-HC-small 883.6 950.8 937.2 930.5 997.3 942.8 933.9 1075.0 944.1
70R-small 1056.7 1380.0 1311.5 1286.5 1809.9 1378.1 1347.2 2180.8 1464.5
70R-HC-small 2314.3 2036.2 1994.7 1955.4 1962.1 2046.2 1869.3* 2349.4 2023.7
100R-small 2362.9 1871.8 1891.8 1690.6 2100.0 1912.9* 1667.6* 3960.0 1918.1*
100R-HC-small 1156.2 1265.1 1199.1 1166.2 1463.1 1227.9 1182.3 1761.4 1233.0
200R-small 5749.8 5910.4 5145.0 4695.4 8061.5 5320.0 3487.7 13198.0 5305.3
200R-HC-small 5699.1 8439.6 6424.6 5483.9 13744.7 7164.5 4387.8 25979.8 6565.9

Instance SA P45_CDCO P100_HCO P100_VCO P100_CDCO P200_HCO P200_VCO P200_CDCO

7R-small 899.7 797.6 808.5 848.4 797.2 806.1 837.2 798.9
7R-HC-small 963.3 872.2 854.9 879.6 871.3 858.1 880.5 856.6
20R-small 996.4 1021.6 1119.6 1032.9 1011.7 1115.5 1019.5 1001.1
20R-HC-small 1106.8 1069.8 1046.5 1127.4 1063.5 1099.9 1116.7 1144.6
50R-small 591.1 718.5 1055.1 746.8 703.0 1344.4 734.0 689.3
50R-HC-small 883.6 932.1 1167.7 948.7 924.3 1299.3 947.1 923.1
70R-small 1056.7 1403.0 2693.3 1440.0 1398.7 2913.6 1506.5 1378.9
70R-HC-small 2314.3 2054.1* 3963.0* 2023.7* 1934.6 10818.0* 1999.6 1832.3
100R-small 2362.9 3261.0* 17840.0* 1861.8* - - 2071.2* -
100R-HC-small 1156.2 1159.2 2514.0 1249.4 1139.1 3654.4 1256.2 1125.0
200R-small 5749.8 2700.4 20590.3 5264.2 2310.2 31102.8 5491.0 2542.3
200R-HC-small 5699.1 3177.9 38840.6 7087.2 3168.1 58164.1 8047.5 14269.4

Table 5.19: Average solution costs of different parameter configurations with different
crossover rates for the small instance set.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.4. Manual parameter tuning

Figure 5.6: RDI values of parameter configurations with various crossover combinations
for the small instance set. Note that the instance 100R was omitted since, for some of
the parameter settings, no feasible solutions could be found for those instances.
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5. Empirical Evaluation

Instance SA_G P10_HCO P10_VCO P10_CDCO P10_VCO_HCO P10_HCO_CDCO P10_VCO_CDCO P10_ALL_CO

7R 109556.6 135642.2 93105.9 93152.5 110468.3 104585.1 93810.4 97165.0
7R-HC 137216.0 167003.3 110987.2 110494.7 138360.0 132110.9 110059.4 127252.0
20R 281695.6 328693.4 261162.7 255376.4 302999.6 281116.5 255032.0 276357.4
20R-HC 328517.6 377825.9 302050.3 289103.5 344110.0 333667.4 292760.6 324622.4
50R 670416.9 733951.5 669079.2 654702.5 720228.4 694859.5 654113.0 690538.2
50R-HC 993294.6 1024209.0 957397.6 968996.0 1040150.5 982231.8 959462.7 1023048.0
70R 970832.7 1304480.3 1212560.6 1265530.8 1052881.9 985031.6 1107169.9 981908.4
70R-HC 1447172.7 1501652.9 1421057.1 1403349.3 1533526.6 1527990.8 1405283.2 1477004.5
100R 1714292.1 1661287.6 1589935.4 1579101.4 1668809.3 1692507.3 1576961.2 1684134.3
100R-HC 2602394.9 2608581.0 2495065.8 2628438.3 2597431.6 2442762.9 2433705.3 2542330.8
200R 3027137.3 3503080.1 3137690.2 3179761.1 3219991.0 3296270.1 3159701.4 3219566.5
200R-HC 4231962.1 4910667.4 4444151.8 5205527.1 4738519.2 4522788.7 4246989.5 4435883.4

Instance SA_G P45_HCO P45_VCO P45_CDCO P45_VCO_HCO P45_HCO_CDCO P45_VCO_CDCO P45_ALL_CO

7R 109556.6 152475.2 90164.4 96947.8 104317.2 98157.1 89551.1 95862.3
7R-HC 137216.0 184911.8 109788.7 112059.0 134653.0 128654.8 107845.0 121311.4
20R 281695.6 339813.4 269510.4 274122.3 296303.3 281794.0 267976.6 271063.9
20R-HC 328517.6 390865.5 310270.2 316762.5 346898.2 339625.5 302009.0 317877.3
50R 670416.9 875924.0 694628.4 671001.7 725505.6 697110.5 670240.7 695690.4
50R-HC 993294.6 1239611.6 968045.8 954519.6 1017658.7 1035095.6 957272.4 985147.2
70R 970832.7 1501527.6 1106568.1 1232144.8 1036757.3 1021789.1 1111575.6 998564.4
70R-HC 1447172.7 1846585.6 1468425.7 1392912.5 1575908.3 1554761.2 1416751.5 1503233.5
100R 1714292.1 1986713.8 1610142.1 1645387.8 1724689.1 1857470.2 1595445.3 1698460.5
100R-HC 2602394.9 3442106.3 2666641.8 2647671.5 2813913.1 2724071.6 2613455.8 2710678.9
200R 3027137.3 4525252.0 4387568.8 4328163.6 4417552.8 4381828.3 4342757.7 4362582.2
200R-HC 4231962.1 6238531.3 5473032.0 5244989.6 6087839.1 5673768.6 5276129.5 5343972.9

Instance SA_G P100_HCO P100_VCO P100_CDCO P100_VCO_HCO P100_HCO_CDCO P100_VCO_CDCO P100_ALL_CO

7R 109556.6 155931.2 99123.5 103970.6 115968.6 107622.4 96930.9 101828.1
7R-HC 137216.0 188316.6 121068.3 123659.3 148927.0 138601.7 119882.9 130068.7
20R 281695.6 372682.9 286167.8 288563.8 308775.4 288852.4 287578.3 299929.9
20R-HC 328517.6 432128.3 332108.0 318858.7 358282.3 328627.1 314397.9 337041.7
50R 670416.9 963243.0 702439.5 732589.3 785873.0 789500.2 702853.2 734749.8
50R-HC 993294.6 1593627.6 1014651.3 1012751.2 1216248.5 1150727.3 1060115.6 1179139.2
70R 970832.7 1685128.1 1374260.8 1273585.2 1217511.2 1175248.4 1290850.3 1141051.2
70R-HC 1447172.7 1961685.3 1660917.0 1695412.4 1875432.6 1857122.6 1638643.1 1765103.5
100R 1714292.1 2060625.2 1880970.6 1872636.2 2012602.2 2015313.9 1886488.5 1897992.2
100R-HC 2602394.9 3484677.5 3165547.8 3195025.0 3164394.6 3179831.2 3122616.2 3108416.3
200R 3027137.3 4510174.4 4551343.6 4500226.5 4517915.6 4528130.5 4526237.1 4505046.4
200R-HC 4231962.1 5809987.0 5789046.2 6121776.5 5912601.4 5535146.8 5813151.3 5715534.5

Table 5.20: Average solution costs of parameter configurations with different crossover
rates for the big instance set.
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5.4. Manual parameter tuning

Figure 5.7: RDI values of parameter configurations with various crossover combinations
for the big instance set.
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5. Empirical Evaluation

5.5 Comparison to Literature Results

Configuration p cp k m vcf hcf cdcf ilf ili c

P100_G 100 1.0 7 0.0 0.5 0 0.5 0.01 3 Greedy
P200_RG 200 1.0 7 0.0 0.5 0 0.5 0.02 3 Random Greedy
P10_WS 10 1.0 5 0.1 0.5 0 0.5 0.15 8 Warm Start
P45_G 45 1.0 7 0.0 0.5 0 0.5 0.05 3 Greedy

Table 5.21: Best parameter configurations found by manual tuning.

This section compares the results obtained by runs of our algorithm with the best
parameter configurations to literature results. We take our best result out of 10 runs
for each instance for the comparison. Table 5.21 depicts parameter values of our best
configurations.

We note that, in this section, we use a slightly modified greedy construction strategy
that yields slightly better results than the strategy used in previous sections. There is a
small difference in the configuration of the greedy construction strategy controlling color
change constraints. Thus, our results for the big instance set may be different from the
previous sections’ results.

Results for the columns LS, LS/G and LS/G/T are taken from Winter et al. [2019].
Those are the results of different configurations for their simulated annealing local search
approach. They use the same runtime limit of 1 hour. The CPU used by the authors for
their experiments is an Intel Xeon E5345. Publicly available CPU benchmarks 2 show
that our CPU’s single-thread performance is about 1.7 times faster. Results from the
constraint programming approach from Winter and Musliu [2019a] are shown in column
CP. With constraint programming, only instances from the small instance set could be
solved. For their experiments, they used a time limit of 6 hours.

5.5.1 Small Instance Set

The results from literature approaches and our best configurations for the small instance
set are shown in Table 5.23. Our algorithm is able to set new upper bounds for the
instances 200R-small and 200R-HC-small. Interestingly, when comparing our results
to the simulated annealing approaches, our algorithm achieves similar results for most
instances apart from those two. We suspect that the large population sizes are beneficial
for the small instance set, especially for those two problem instances.

Figure 5.8 illustrates RDI values for this comparison. We can see that the medians of the
configurations P200_RG and P100_G are smaller than the other approaches’ medians.

2https://www.cpubenchmark.net/compare/Intel-Xeon-E5-2650-v4-vs-Intel-Xeon-E5345/

2797vs1230
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5.5. Comparison to Literature Results

As can be seen in Table 5.22, the population size’s influence on the number of generations
is quite small for this instance set - which means that memetic operators are fast to
compute. This comparison is particularly interesting when comparing it to the big
instance set in Table 5.24, as for this instance set, the population size has a big influence
on the number of generations.

Instance P100_G P200_RG Relative Change

7R-small 499 541 -7.8%
7R-HC-small 502 561 -10.5%
20R-small 497 549 -9.5%
20R-HC-small 463 495 -7.9%
50R-small 465 501 -7.2%
50R-HC-small 478 512 -6.6%
70R-small 438 448 -2.2%
70R-HC-small 456 455 2.2%
100R-small 417 424 -1.7%
100R-HC-small 420 419 -22.0%
200R-small 327 302 -10.6%
200R-HC-small 270 224 46.0%

Table 5.22: Average number of generated generations for our two best configurations for
the big instance set. The relative change is the percentage difference between the number
of generations from P100_G and P200_WS. The number of generations for P100_G is
lower for some instances because of the greedy construction strategy’s setup time.

5.5.2 Big Instance Set

For the big instance set, we compare the results in Table 5.25. We are able to set new
upper bounds for six of the instances: 7R, 7R-HC, 20R, 20R-HC, 50R-HC, and 70R-HC.
Analyzing the cost differences between our two best configurations, P45_G only performs
better for the smallest instance. The gap between the two configurations gets bigger
for increasing instance sizes. For the largest four instances, our algorithm performed
significantly worse than the local search approaches.

RDI values of the various methods for the big instance set are shown in Figure 5.9. The
median for our configuration P10_WS is smaller than the literature approaches’ median,
which indicates very good performance.

To gain insights on the causes of the differences in performance between our two best
configurations, we took a look at the number of generations that could be generated
within the limited time, as can be seen in Table 5.24. It seems that the computation
of memetic operators for large problem instances is too slow. A sufficient number of
generations, which seems to be needed for good results, can only be achieved with a
smaller population. The relative difference in generations between our two configurations
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5. Empirical Evaluation

Instance LS LS/G LS/G/T CP P100_G P200_RG

7R-small 1028 844 882 775* 781 776
7R-HC-small 868 932 927 842* 842 844
20R-small 990 992 994 961* 995 976
20R-HC-small 1016 975 1050 918* 962 937
50R-small 616 593 599 530* 655 672
50R-HC-small 887 891 895 842* 909 906
70R-small 1084 1088 1137 844* 1272 1353
70R-HC-small 1871 1834 2553 1237* 1683 1657
100R-small 1767 1735 2421 975* 1500 2230
100R-HC-small 1262 1243 1269 964 1137 1113
200R-small 6298 5476 6439 - 2240 2070

200R-HC-small 5723 7916 8274 - 3172 2069

Table 5.23: Comparison of literature results with results from our algorithm for the small
instance set. The best result achieved out of 10 runs is shown in columns P100_G and
P200_RG. Columns with a *, denote proven optimal solutions. Bold values are upper
bounds from literature. Bold and underlined values are new upper bounds found by
our memetic algorithm.

gets bigger with increasing instance size. For the biggest problem instance, the number
of generations is very small. Thus the worse results of our memetic algorithm compared
to the local search approaches are not surprising.
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5.5. Comparison to Literature Results

Figure 5.8: RDI values of the best configurations and literature results for the small
instance set. Methods are only plotted if they are able to provide feasible solutions for
all small instances.

Instance P10_WS P45_G Relative Change

7R 380 317 19.9%
7R-HC 371 310 19.7%
20R 286 161 77.6%
20R-HC 254 154 64.9%
50R 223 81 175.3%
50R-HC 211 69 205.8%
70R 183 63 190.5%
70R-HC 129 41 214.6%
100R 164 40 310.0%
100R-HC 118 29 306.9%
200R 72 16 350.0%
200R-HC 54 13 315.4%

Table 5.24: Average number of generated generations for our two best configurations for
the big instance set. The relative change is the percentage difference between the number
of generations from P45_G and P10_WS.
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5. Empirical Evaluation

Instance LS LS/G LS/G/T P10_WS P45_G

7R 2097235 116235 123830 80121 79526

7R-HC 1985513 118628 130552 116504 120946
20R 8159361 180863 172679 162012 178251
20R-HC 8621490 262252 262897 254127 266444
50R 23320626 421777 455321 509188 538880
50R-HC 23947097 581021 606917 535031 546846
70R 34294393 555829 576225 576450 595859
70R-HC 34713814 930564 927822 870889 916365
100R - 917955 957854 1031698 1087649
100R-HC - 1128716 1142530 1450234 1680627
200R - 1889804 1884125 2209354 2711918
200R-HC - 2086450 - 2312213 2822476

Table 5.25: Comparison of literature results with results from our algorithm for the big
instance set. The best result achieved out of 10 runs is shown in columns P10_WS and
P45_G. Bold values are upper bounds from literature. Bold and underlined values
are new upper bounds found by our memetic algorithm.
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5.5. Comparison to Literature Results

Figure 5.9: RDI values of the best configurations and literature results for the big instance
set. Without instance 200R-HC, since for this instance not all configurations yield feasible
solutions.
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CHAPTER 6
Conclusions and Future Work

In this thesis, we proposed a memetic algorithm to solve the recently introduced Paint Shop
Scheduling Problem. We first designed a memetic representation and proposed different
population construction strategies. As the algorithm is based on memetic evolution, we
designed memetic operators for selection, mutation, and three novel crossover operators,
which consider problem-specific knowledge.

The different steps of our memetic algorithm are highly parameterizable. To explore the
parameter configuration space effectively, we use SMAC, a state-of-the-art parameter
tuning algorithm. Based on SMAC’s incumbent parameter configurations, we conducted
manual parameter tuning to increase our algorithm’s performance further and gain
insights on different parameters’ influence.

The insights of these experiments were the following:

• A large population yields good results for the small instance set, while smaller
population sizes are preferred for the big instance set.

• A combination of the two crossover operators vertical crossover and cost and
demand crossover is preferential for most instances.

• Construction strategies for the initial population have a massive influence on the
result. For the big instance set, sophisticated construction strategies are needed to
generate feasible results within time constraints.

• The genetic algorithm performs worse than the memetic algorithm. Feasible
solutions can still be obtained for many instances, but the costs are significantly
higher.

We compared the results we obtained by using the best parameter configuration to the
best literature results, using a set of publicly available real-life instances. Our memetic
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6. Conclusions and Future Work

algorithm’s results are competitive for the small instance set, as well as for small instances
of the big instance set. We managed to obtain new upper bounds for 8 of the 24 instances.

Our experiments highlighted the correlation between the initial population’s quality and
the result’s quality for the set of big instances. Therefore, more sophisticated construction
strategies could still improve the results for those problem instances. Another interesting
research topic would be the design and evaluation of different memetic representations. For
example, there could be two chromosomes - one representing the color and one representing
the carrier sequence. Memetic operators could operate on those chromosomes, thus only
improving one of these aspects of a solution. Our evaluation demonstrates that our
algorithm struggles to generate many generations for bigger population sizes for large
problem instances. A variable population size could help to achieve more competitive
results by starting with a smaller population and increasing population size once solutions
reach a better quality. Since the generation of instances, as well as most of the algorithm’s
steps done in the generational loop, are independent, parallelization would be an easy
way to increase the algorithm’s performance.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Figures

2.1 A typical layout of an automotive paint shop. . . . . . . . . . . . . . . . . 6
2.2 Schemtic representation of three carriers. . . . . . . . . . . . . . . . . . . 6
2.3 A PSSP schedule in tabular form for three rounds. . . . . . . . . . . . . . 6
2.4 Three ways to reuse carriers in consecutive rounds. . . . . . . . . . . . . . 6

4.1 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Vertical crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Horizontal crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Cost and demand crossover . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 RDI values of incumbents configurations for the small instance set. . . . 40
5.2 RDI values of incumbents configurations for the big instance set without the

instances 200R and 200R-HC. . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 RDI values of parameter configurations with various construction strategies

for the small instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 RDI values of parameter configurations with various construction strategies

for the big instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 RDI values of parameter configurations without local search for the small

instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 RDI values of parameter configurations with various crossover combinations

for the small instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 RDI values of parameter configurations with various crossover combinations

for the big instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 RDI values of the best configurations and literature results for the small

instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.9 RDI values of the best configurations and literature results for the big instance

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Tables

5.1 Parameter configuration space (PCS) supplied to SMAC. . . . . . . . . . 35
5.2 Best three incumbents found by SMAC for the set of small instances. . . 36
5.3 Best three incumbents found by SMAC for the set of big instances. . . . 36
5.4 Average costs of the three incumbent parameter configurations for small

instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 Comparison of results of the three incumbent parameter configurations for

small instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Average costs of different parameter configurations for big instances. . . . 39
5.7 Comparison of results of the three incumbent parameter configurations and

two configurations with a bigger population size for big instances. . . . . . 39
5.8 Base parameter configurations with different population sizes used to compare

construction strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.9 Average solution costs for the small instance set when using greedy construction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.10 Average solution costs for the small instance set when using random greedy

construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.11 Average solution costs for the small instance set when using random construc-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.12 Average solution costs for the big instance set when using random and random

greedy construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.13 Average solution costs for the big instance set when using greedy construction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.14 Average solution costs for the big instance set when using warm start con-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.15 Number of generated generations for different configurations. . . . . . . . 46
5.16 Parameter configurations without local search, effectively resulting in a genetic

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.17 Average solution costs of different parameter configurations without local

search for the small instance set. . . . . . . . . . . . . . . . . . . . . . . . 49
5.18 Average solution costs of different parameter configurations without local

search for the big instance set. . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.19 Average solution costs of different parameter configurations with different

crossover rates for the small instance set. . . . . . . . . . . . . . . . . . . 52

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.20 Average solution costs of parameter configurations with different crossover
rates for the big instance set. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.21 Best parameter configurations found by manual tuning. . . . . . . . . . . 56
5.22 Average number of generated generations for our two best configurations for

the small instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.23 Comparison of literature results with results from our algorithm for the small

instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.24 Average number of generated generations for our two best configurations for

the big instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.25 Comparison of literature results with results from our algorithm for the big

instance set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Algorithms

4.1 Memetic base algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Material scarcity calculation . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Cost and demand crossover cost calculation . . . . . . . . . . . . . . . . 25

4.4 Random greedy construction . . . . . . . . . . . . . . . . . . . . . . . . 28

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

Scott Atran. In gods we trust: The evolutionary landscape of religion. Oxford University
Press, 2002.

Thomas Bartz-Beielstein. Spot: An r package for automatic and interactive tuning
of optimization algorithms by sequential parameter optimization. arXiv preprint
arXiv:1006.4645, 2010.

Una Benlic and Jin-Kao Hao. A multilevel memetic approach for improving graph
k-partitions. IEEE Trans. Evol. Comput., 15(5):624–642, 2011.

Susan Blackmore and Susan J Blackmore. The meme machine, volume 25. Oxford
Paperbacks, 2000.

Nils Boysen and Malte Fliedner. Comments on "solving real car sequencing problems
with ant colony optimization". Eur. J. Oper. Res., 182(1):466–468, 2007. doi: 10.1016/
j.ejor.2006.07.012. URL https://doi.org/10.1016/j.ejor.2006.07.012.

Edmund K. Burke, James P. Newall, and Rupert F. Weare. A memetic algorithm for
university exam timetabling. In PATAT, volume 1153 of Lecture Notes in Computer
Science, pages 241–250. Springer, 1995.

Sara Bysko and Jolanta Krystek. Follow-up sequencing algorithm for car sequencing
problem 4.0. In Roman Szewczyk, Cezary Zielinski, and Malgorzata Kaliczynska,
editors, Automation 2019 - Progress in Automation, Robotics and Measurement Tech-
niques, outcomes of the international conference AUTOMATION 2019, 27-29 March,
2019, Warsaw, Poland, volume 920 of Advances in Intelligent Systems and Com-
puting, pages 145–154. Springer, 2019. doi: 10.1007/978-3-030-13273-6\_15. URL
https://doi.org/10.1007/978-3-030-13273-6_15.

Xianshun Chen and Yew-Soon Ong. A conceptual modeling of meme complexes in
stochastic search. IEEE Trans. Syst. Man Cybern. Part C, 42(5):612–625, 2012.

Carlos Cotta, Luke Mathieson, and Pablo Moscato. Memetic algorithms. In Handbook of
Heuristics, pages 607–638. Springer, 2018.

Charles Darwin. On the origin of species, 1859. Routledge, 1859.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1016/j.ejor.2006.07.012
https://doi.org/10.1007/978-3-030-13273-6_15


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Richard Dawkins. The selfish gene. Oxford university press, 1976.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197,
2002.

Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-sequencing
problem in constraint logic programming. In ECAI, pages 290–295. Pitmann Publishing,
London, 1988.

Jan Dörmer, Hans-Otto Günther, and Rico Gujjula. Master production scheduling and
sequencing at mixed-model assembly lines in the automotive industry. Flexible Services
and Manufacturing Journal, 27(1):1–29, 2015.

Guiliang Gong, Qianwang Deng, Raymond Chiong, Xuran Gong, and Hezhiyuan Huang.
An effective memetic algorithm for multi-objective job-shop scheduling. Knowl. Based
Syst., 182, 2019.

S. M. Kamrul Hasan, Ruhul A. Sarker, Daryl Essam, and David Cornforth. Memetic
algorithms for solving job-shop scheduling problems. Memetic Comput., 1(1):69–83,
2009.

Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM,
24(4):664–675, 1977.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT Press, 1992.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils: An
automatic algorithm configuration framework. J. Artif. Intell. Res., 36:267–306, 2009.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In LION, volume 6683 of Lecture
Notes in Computer Science, pages 507–523. Springer, 2011.

Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simmulated
annealing. Sci., 220(4598):671–680, 1983.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, Stefan Falkner, André
Biedenkapp, and Frank Hutter. Smac v3: Algorithm configuration in python. https:
//github.com/automl/SMAC3, 2017.

Bo Liu, Ling Wang, and Yihui Jin. An effective pso-based memetic algorithm for flow
shop scheduling. IEEE Trans. Syst. Man Cybern. Part B, 37(1):18–27, 2007.

Bo Liu, Juan-Juan Xu, Bin Qian, Jian-Rong Wang, and Yan-Bin Chu. Probabilistic
memetic algorithm for flowshop scheduling. In Memetic Computing, pages 60–64. IEEE,
2013.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives, 3:43–58, 2016.

Zhipeng Lü and Jin-Kao Hao. A memetic algorithm for graph coloring. Eur. J. Oper.
Res., 203(1):241–250, 2010.

Brad L. Miller and David E. Goldberg. Genetic algorithms, selection schemes, and the
varying effects of noise. Evol. Comput., 4(2):113–131, 1996.

Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Caltech concurrent computation program, C3P Report,
826:1989, 1989.

Pablo Moscato and Carlos Cotta. An accelerated introduction to memetic algorithms. In
Handbook of Metaheuristics, pages 275–309. Springer, 2019.

Rafael Nogueras and Carlos Cotta. An analysis of migration strategies in island-based
multimemetic algorithms. In PPSN, volume 8672 of Lecture Notes in Computer Science,
pages 731–740. Springer, 2014.

Matthias Prandtstetter and Günther R. Raidl. An integer linear programming approach
and a hybrid variable neighborhood search for the car sequencing problem. Eur. J.
Oper. Res., 191(3):1004–1022, 2008.

Jakob Puchinger, Günther Raidl, and Martin Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. na, 2005.

Nikos Angelos Salingaros and Michael W Mehaffy. A theory of architecture. UMBAU-
VERLAG Harald Püschel, 2006.

Vincent M Sarich and Allan C Wilson. Generation time and genomic evolution in
primates. Science, 179(4078):1144–1147, 1973. Publisher: JSTOR.

JE Smith. The co-evolution of memetic algorithms for protein structure prediction. In
Recent advances in memetic algorithms, pages 105–128. Springer, 2005.

Jim E. Smith. Coevolving memetic algorithms: A review and progress report. IEEE
Trans. Syst. Man Cybern. Part B, 37(1):6–17, 2007.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of
machine learning algorithms. In NIPS, pages 2960–2968, 2012.

Christine Solnon, Van-Dat Cung, Alain Nguyen, and Christian Artigues. The car
sequencing problem: Overview of state-of-the-art methods and industrial case-study of
the roadef’2005 challenge problem. Eur. J. Oper. Res., 191(3):912–927, 2008.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Kristina Yancey Spencer, Pavel V. Tsvetkov, and Joshua J. Jarrell. A greedy memetic
algorithm for a multiobjective dynamic bin packing problem for storing cooling objects.
J. Heuristics, 25(1):1–45, 2019.

Sven Spieckermann, Kai Gutenschwager, and Stefan Voß. A sequential ordering problem in
automotive paint shops. International journal of production research, 42(9):1865–1878,
2004. Publisher: Taylor & Francis.

Y Sugimori, K Kusunoki, F Cho, and SJTIJOPR UCHIKAWA. Toyota production system
and kanban system materialization of just-in-time and respect-for-human system. The
international journal of production research, 15(6):553–564, 1977.

Junwen Wang, Jingshan Li, and Ningjian Huang. Optimal vehicle batching and sequencing
to reduce energy consumption and atmospheric emissions in automotive paint shops.
International Journal of Sustainable Manufacturing, 2(2-3):141–160, 2011.

Magdalena Widl and Nysret Musliu. An improved memetic algorithm for break scheduling.
In Hybrid Metaheuristics, volume 6373 of Lecture Notes in Computer Science, pages
133–147. Springer, 2010.

Magdalena Widl and Nysret Musliu. The break scheduling problem: complexity results
and practical algorithms. Memetic Comput., 6(2):97–112, 2014.

Felix Winter and Nysret Musliu. Constraint Based Modeling for Scheduling Paint Shops in
the Automotive Supply Industry (under submission). Technical report, TU Wien, 2019a.
URL https://dbai.tuwien.ac.at/staff/winter/cd-tr-2019-1.pdf.

Felix Winter and Nysret Musliu. Exact Methods for a Paint Shop Scheduling Problem
from the Automotive Supply Industry. 2019b. URL https://dbai.tuwien.ac.

at/staff/winter/cpaior_2019_full.pdf.

Felix Winter, Nysret Musliu, Emir Demirovic, and Christoph Mrkvicka. Solution ap-
proaches for an automotive paint shop scheduling problem. In ICAPS, pages 573–581.
AAAI Press, 2019.

Yuan Yuan and Hua Xu. Multiobjective flexible job shop scheduling using memetic
algorithms. IEEE Trans Autom. Sci. Eng., 12(1):336–353, 2015.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://dbai.tuwien.ac.at/staff/winter/cd-tr-2019-1.pdf
https://dbai.tuwien.ac.at/staff/winter/cpaior_2019_full.pdf
https://dbai.tuwien.ac.at/staff/winter/cpaior_2019_full.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of this Thesis
	Main Results
	Organization

	The Paint Shop Scheduling Problem
	Problem Description
	Related Work

	Memetics
	Concepts and Terminology
	From Memetics to Memetic Algorithms

	Solving the PSSP with Memetic Algorithms
	Definitions
	Crossover Operators and Memetic Representations
	Algorithm
	Crossover Delta Evaluation

	Empirical Evaluation
	Methodology
	Setup
	Automated Parameter Tuning
	Manual parameter tuning
	Comparison to Literature Results

	Conclusions and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

