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Abstract

Addressing a complex real-world optimization problem is a challenging task.

The chance-constrained knapsack problem with correlated uniform weights plays

an important role in the case where dependent stochastic components are consid-

ered. We perform a runtime analysis of a randomized search algorithm (RSA) and

a basic evolutionary algorithm (EA) for the chance-constrained knapsack problem

with correlated uniform weights. We prove bounds for both algorithms for produc-

ing a feasible solution. Furthermore, we investigate the behavior of the algorithms

and carry out analyses on two settings: uniform profit value and the setting in

which every group shares an arbitrary profit profile. We provide insight into the

structure of these problems and show how the weight correlations and the different

types of profit profiles influence the runtime behavior of both algorithms in the

chance-constrained setting.

1 Introduction

Evolutionary algorithms are bio-inspired randomized optimization techniques and have

been shown to be very successful when applied to various stochastic combinatorial

optimization problems [11, 26, 24]. A significant challenge for real-world applications

is that one must often solve large-scale, complex, and uncertain optimization problems

where constraint violations have extremely disruptive effects.

In recent years, evolutionary algorithms for solving dynamic and stochastic combi-

natorial optimization problems have been theoretically analyzed in a number of articles

[10, 15, 25, 19]. The techniques that used in runtime analysis has significantly in-

creased understanding of bio-inspired approaches in theoretical field [6, 2, 12, 21, 13].
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When tackling new problems, such studies typically begin with basic algorithms such

as Randomized Local Search (RLS) and (1+1) EA, which we also investigate in this

paper.

An important class of stochastic optimization problems is chance-constrained opti-

mization problems [3, 23]. Chance-constrained programming has been carefully stud-

ied in the operations research community [8, 9, 4]. In this domain, chance constraints

are used to model problems and relax them into equivalent nonlinear optimization prob-

lems which can then be solved by nonlinear programming solvers [14, 22, 29]. Despite

its attention in operations research, chance-constrained optimization has gained com-

paratively little attention in the area of evolutionary computation [16].

The chance-constrained knapsack problem is a stochastic version of the classical

knapsack problem where the weight of the items are stochastic variables. The goal

is to maximize the total profit under the constraint that the knapsack capacity bound

is violated with a probability of at most a pre-defined tolerance α. Recent papers

[27, 28] study a chance-constrained knapsack problem where the weight of the items

are stochastic variables and independent to each other. They introduce the use of suit-

able probabilistic tools such as Chebyshev’s inequality and Chernoff bounds to estimate

the probability of violating the constraint of a given solution, providing surrogate func-

tions for the chance constraint, and present single- and multi-objective evolutionary

algorithms for the problem.

The research of chance-constrained optimization problems associated with evolu-

tionary algorithms is an important new research direction from both a theoretical and

a practical perspective. Recently, Doerr et al. [5] analyzed the approximation behavior

of greedy algorithms for chance-constrained submodular problems. Assimi et al. [1]

conducted an empirical investigation on the performance of evolutionary algorithms

solving the dynamic chance-constrained knapsack problem.

From a theoretical perspective, Neumann et al. [18] worked out the first runtime

analysis of evolutionary multi-objective algorithms for chance-constrained submodu-

lar functions and proved that the multi-objective evolutionary algorithms outperform

greedy algorithms. Neumann and Sutton [20] conducted a runtime analysis of the

chance-constrained knapsack problem, but only focused on the case of independent

weights.

In this paper, analyze the expected optimization time of RLS and the (1+1) EA on

the chance-constrained knapsack problem with correlated uniform weights. This vari-

ant partitions the set of items into groups, and pairs of items within the same group have

correlated weights. To the best of our knowledge, this is a new direction in the research

area of chance-constrained optimization problems. We prove bounds on both the time

to find a feasible solution, as well as the time to obtain the optimal solution which has

both maximal profit and minimal probability of violating the chance-constrained. In

particular, we first prove that a feasible solution can be found by RLS in time bounded

by O(n logn), and by the (1+1) EA in time bounded by O(n2 logn). Then, we in-

vestigate the optimization time for these algorithms when the profit values are uniform

which has been study in the deterministic constrained optimization problems [7]. How-

ever, the items in our case are divided into different groups and need to take the number

of chosen items from each group into account, and the optimization time bound for RLS

becomes O(n3) and O(n3 log n) for the (1+1) EA. After that, we consider the more
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general and complicated case in which profits may be arbitrary as long as each group

has the same set of profit values. We show that an upper bound of O(n3) holds for RLS

and O(n3(log n+logpmax)) holds for the (1+1) EA where pmax denotes the maximal

profit among all items.

This paper is structured as follows. We describe the problem and the surrogate

function of the chance constraint in Section 2 as well as the algorithms. Section 3

presents the runtime results for different algorithms produce a feasible solution, and

the expected optimization time for different profit setting of the problem present in

Section 4 and Section 5. Finally, we finish with some conclusions.

2 Preliminaries

The chance-constrained knapsack problem is a constrained combinatorial optimization

problem which aims to maximize a profit function and subjects to the probability that

the weight exceeds a given bound is no more than an acceptable threshold. In previous

research, the weights of items are stochastic and independent of each other. We in-

vestigate the chance-constrained knapsack problem in the context of uniform random

correlated weights.

Formally, in the chance-constrained knapsack problem with correlated uniform

weights, the input is given by a set of n items partitioned to K groups of m items

each. We denote as eij the j-th item in group i. Each item has an associated stochas-

tic weight. The weights of items in different groups are independent, but the weights

of items in the same group k are correlated with one another with a shared covari-

ance c > 0, i.e., we have cov(ekj , ekl) = c, and cov(ekj , eil) = 0 iff k 6= i. The

stochastic non-negative weights of items are modeled as n = K ·m random variables

{w11, w12, . . . , w1m, . . . , wKm} where wij denotes the weight of j-th item in group i.
Item eij has expected weight E[wij ] = aij , variance σ2

ij = d and profit pij .

The chance-constrained knapsack problem with correlated uniform weights can be

formulated as follows:

maximize p(x) =

K
∑

i=1

m
∑

j=1

pijxij (1)

subject to Pr(W (x) > B) ≤ α. (2)

The objective of this problem is to select a set of items that maximizes profit subject to

the chance constraint, which requires that the solution violates the constraint bound B
only with probability at most α.

A solution is characterized as a vector of binary decision variables x = (x11, x12,
. . . , x1m, . . . , xKm) ∈ {0, 1}n. When xij = 1, the j-th item of the i-th group is

selected. The weight of a solution x is the random variable

W (x) =
K
∑

i=1

m
∑

j=1

wijxij , (3)
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with expectation

E[W (x)] =
K
∑

i=1

m
∑

j=1

xij , (4)

and variance

V ar[W (x)] = d

K
∑

i=1

m
∑

j=1

xij + 2c

K
∑

i=1

∑

1≤j1<j2≤m

(xij1xij2 ). (5)

Definition 2.1. Among all solutions with exactly ℓ one bits, we call a search point

x; |x|1 = ℓ a balanced solution, denoted by ℓb if it selects
⌊

ℓ
K

⌋

items from K −
(

ℓ−
⌊

ℓ
K

⌋

·K
)

groups and
⌊

ℓ
K

⌋

+ 1 items from the remaining ℓ −
⌊

ℓ
K

⌋

· K groups.

This solution has covariance

sbℓ = c
{[

K −
(

ℓ−
⌊

ℓ
K

⌋)] ⌊

ℓ
K

⌋ (⌊

ℓ
K

⌋

− 1
)

+
(

ℓ−
⌊

ℓ
K

⌋) (⌊

ℓ
K

⌋

+ 1
) ⌊

ℓ
K

⌋}

.

Solutions with exactly ℓ bits that are not balanced solutions are called unbalanced

solutions.

Among all unbalanced solutions, we call the following one the most unbalanced

solution denoted by ℓub, which selects exactlym items from
⌊

ℓ
m

⌋

groups and
(

ℓ−
⌊

ℓ
m

⌋

·m
)

items from another group. Since m is the maximal number of items in each group, in

the most unbalanced solution, there are
⌊

ℓ
m

⌋

full groups and one other group containing

the remaining items. This solution has covariance

subℓ = c

[⌊

ℓ

m

⌋

m(m− 1) +

(

ℓ−

⌊

ℓ

m

⌋

m

)(

i−

⌊

ℓ

m

⌋

m− 1

)]

.

We calculate the upper bound of the covariance of acceptable solutions according

to Chebyshev’s inequality for all solutions with ℓ one bits. Denote by

sℓ = 2c

K
∑

i=1

∑

1≤j1<j2≤m

(xij1xij2 )

the covariance of the solution x and ℓ denotes the number of one bits in solutions.

Then, the bound according to Chebyshev’s inequality gives

ℓd+ sℓ
ℓd+ sℓ + (B − aℓ)2

≤ α (6)

⇐⇒ℓd+ sℓ ≤ α(ℓd+ sℓ + (B − aℓ)2) (7)

⇐⇒sℓ ≤
(B − aℓ)2α

1− α
− ℓd. (8)

Therefore, the covariance of feasible solutions with exactly ℓ one bits is bounded above

by
(B−aℓ)2α

1−α
− ℓd.

4



Algorithm 1: Randomized Local Search (RLS)

1: Choose x ∈ {0, 1}n to be a decision vector.

2: while stopping criterion not met do

3: Choose b ∈ {0, 1} randomly.

4: if b = 0 then

5: choose i ∈ {1, . . . , n} randomly and define y by flipping the ith bit of x.

6: else

7: choose (i, j) ∈ {(k, l)|1 ≤ k < l ≤ n} randomly and define y by flipping

the ith and the jth bit of x.

8: end if

9: if f(y) ≥ f(x) then

10: x← y ;

11: end if

12: end while

Algorithm 2: (1+1) EA

1: Choose x ∈ {0, 1}n to be a decision vector.

2: while stopping criterion not met do

3: y ← flip each bit of x independently with probability of 1
n

;

4: if f(y) ≥ f(x) then

5: x← y ;

6: end if

7: end while

In this paper, we assume the weights of items are correlated uniformly, and its hard

to calculate the exact probability of violating the chance constraint. Similar to recent

work on the uncorrelated problem [27], we use the one-sided Chebyshev’s inequality

(cf. Theorem 2.2) to construct a usable surrogate of the chance constraint (2).

Theorem 2.2 (One-sided Chebyshev’s inequality). Let X be a random variable with

expectation E[X ] and variance V ar[X ]. Then for any k ∈ R
+,

Pr(X > E[X ] + k) ≤
V ar[X ]

V ar[X ] + k2
. (9)

For the chance-constrained knapsack problem with correlated uniform weights, we

define the surrogate function β over decision vectors as

β(x) =
V ar[W (x)]

V ar[W (x)] + (B − E[W (x)])2
. (10)

It is clear by Theorem 2.2 that Pr(W (x) ≥ B) ≤ β(x), and therefore every x such

that β(x) ≤ α is also feasible.

We study the runtime of RLS and the (1+1) EA defined in Algorithm 1 and Algo-

rithm 2 for optimization of the chance-constrained knapsack problem with dependent
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weights. RLS starts with a randomly initialized solution and iteratively improves it by

applying a series of mutations. In each mutation step, it applies either one- or two-bit

mutation with equal probability. Specifically, with probability 1/2, it selects a single

index uniformly at random from {1, . . . , n} an flips the corresponding bit in the current

solution. Otherwise, it selects two distinct indexes uniformly at random to flip. The

(1+1) EA also starts with a randomly initialized solution, but generates new candidate

solutions by flipping each bit of the current solution with a probability of 1/n, where n
is the length of the bit string. In the selection step, both algorithms accept the offspring

if it is at least as good as the parent. We are interested in finding the optimal solution

which is the feasible solution with maximal profit. We define the optimization time of

RLS and the (1+1) EA as the number of necessary steps until such an optimal solu-

tion is constructed. By considering the surrogate function obtained by the one-sided

Chebyshev’s inequality, we employ the fitness function

f(x) := (p′(x), β′(x)), (11)

where p′(x) = −1 iff β′(x) > α and p′(x) = p(x) otherwise, β′(x) = β(x) iff

E[W (x)] < B and β′(x) = 1 + E[W (x)] − B otherwise. We optimize f in lexico-

graphic order where the goal is to maximize p′(x) and minimize β(x), i.e. we have

f(x) � f(y)

⇐⇒ p′(x) > p′(y) (12)

or (p′(x) = p′(y) ∧ β(x) ≤ β(y)) .

Since selection is monotone, once a feasible solution is located, neither algorithm

will subsequently accept an infeasible solution. Therefore, the process of finding an

optimal solution can be separated into two parts: in the first part, the algorithm may

first need to find a feasible solution. In the second part, it must find the highest profit

among all feasible solutions.

3 Obtaining feasible solutions

In this section, we analyze the expected time for RLS and the (1+1) EA to find feasible

solutions.

Lemma 3.1. Starting with an arbitrary initial solution, the expected time until RLS

has obtained a feasible solution is O(n log n).

Proof. Adding a new item to the selected set will increase both the total expected

weight and the probability of violating the chance constraint. Since all items have the

same expected weight a, the sum of expected weight can be simply represented by the

number of ones in the solution.

The fitness function is defined in such a way that the total expected weight of a

solution will never increase as long as no feasible solution has been obtained. This

implies that RLS never accepts mutations that increase the number of ones, and only

accepts a decrease in the number of ones. RLS cannot accept any single bit flips that

flip a one to zero, or 2-bit flips that flip two one-bits to zeros.
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Therefore, at any solution x; |x|1 = ℓ, there are ℓ one bits to decrease, and the

probability to decrease the number of ones is at least ℓ
2n . Hence, the expected waiting

time until RLS constructs a feasible solution is bounded above by 2n
(

1 + · · ·+ 1
n

)

=
O(n logn).

Lemma 3.2. Starting with an arbitrary initial solution, the expected time until the

(1+1) EA obtains a feasible solution is O(n2 logn).

Proof. According to the definition of the fitness function in Equation (11), before find-

ing a solution with expected weight less than B, the (1+1) EA never accepts a solution

that increases the number of one bits. Therefore, before producing such a solution, the

algorithm only accepts mutations that reduce the number of one bits, and thus behaves

identically to the optimization of the classical OneMax problem. The expected time for

the (1+1) EA to find a solution x with E[W (x)] < B is thus bounded by O(n log n),
i.e., its expected running time on OneMax [17].

After finding a solution with expected weight less than B, the (1+1) EA always ac-

cepts the solution with smaller constraint-violation probability according to the Cheby-

shev’s inequality. We construct a potential function h : {0, 1}n as the sum of the

variance and covariance of a solution,

h(x) = dℓ+ 2c

K
∑

i=1

∑

1≤j1<j2≤m

(xijixij2 ), (13)

where ℓ denotes the number of items selected by solution x, |x|1 = ℓ and E[W (x)] <
B.

For a solution x with ℓ one bits, the (1+1) EA can reduce the potential h(x) and the

violation probability when flipping any one of the ℓ one bits to zero. Let the solution

y; |y| = ℓ− 1 be an offspring generated from x by flipping a one bit to zero. Then, we

have h(y) < h(x) and β(y) < β(x). Let x′ be the next possible acceptable solution for

the (1+1) EA with ℓ one bits, then solution x′ should be better than solution y according

to the fitness function. We have β(x′) ≤ β(y) < β(x) and h(x′) ≤ h(y) < h(x)
according to the Chebyshev’s inequality.

Given solution x, we consider all steps that flipping a 1-bit the algorithm generates

solution y after finding the solution x′ which reduces the value of the potential function.

Let {r1, . . . , rK}, where 0 ≤ ri ≤ m denotes the number of items in group i selected

by x. Assume x′ is generated from x by flipping a one bit from group i to zero. Then,

the reduction in potential for this mutation is the sum of the variance of this item and

the difference of the covariance between ri elements and ri − 1 elements. That is,

d+ c(ri(ri − 1)− (ri − 1)(ri − 2)) = d+ 2c(ri − 1).

In group i, there are ri single bit flips that achieve this reduction, so the total contribu-

tion for group i is

dri + 2cri(ri − 1) ≥ dri + 2c
ri(ri − 1)

2
.
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Summing over all groups we have

K
∑

i=1

dri + 2cri(ri − 1) ≥ h(x). (14)

Therefore, after producing all single bit flips where each one bit of ℓ bits in x has

been flipped to zero once, the sum of gains with respect to the potential function should

be as least as large as h(x).
For all t ∈ N , let x(t) be the search point of the (1+1) EA for the problem at time t

and X(t) = h(x). Then

X(t) −X(t+1) = h(x(t))− h(x(t+1)).

Let x ∈ {0, 1}n be a fixed nonempty solution, and let the points y1, . . . , yℓ be the ℓ
different search points in {0, 1}n generated from x by first flipping one of the different

ℓ one bit to zero. Thus, we have by h(yi) ≤ h(x) for all i ∈ {1, . . . , ℓ} and inequality

(14) that

ℓ
∑

i=1

(h(x)− h(yi)) ≥ h(x). (15)

Since the yi’s are generated from x by a single bit flip each, we have

Pr(x(t+1) = yi | x
(t) = x) =

(

(

1−
1

n

)(n−1)(
1

n

)

)

≥
1

en
(16)

for all i ∈ {1, . . . , ℓ}. Furthermore

E[X(t) −X(t+1) | x(t) = x, x(t+1) = yi] = h(x)− h(yi) (17)

holds for all i ∈ {1, . . . , ℓ}.
The (1+1) EA never increases the current h-value of a search point, that is, X(t) −

X(t+1) is non-negative. Therefore, we have

E[X(t) −X(t+1) | x(t) = x] ≥
k
∑

i=1

(h(x)− h(yi))
1

en
(18)

and therefore, we have for all x ∈ {0, 1}n that

E[X(t) −X(t+1) | x(t) = x] ≥
h(x)

en
=

X(t)

en
.

Therefore, the drift on X(t) is at least
h(x)
en

, and since the algorithm starts with

h(x) ≤ hub
ℓ where hub

ℓ denotes the sum of variance and covariance of the most unbal-

anced solution from the same level of x, and the minimum value of h before reaching

h = 0 is 1, by multiplicative drift analysis, we find the expected time of at most

1 + log(hub
ℓ )

1
en

= O(n log n) (19)
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to reach a solution with the number of one bits less than the starting search point. Let

ℓ denote the number of one bits for the starting point, and the probability value of this

solution is better than the best probability value for any solution with ℓ ones.

Furthermore, there is at most n levels in the search space, and it takes O(n log n)
steps for the (1+1) EA to produce all possible solutions in each level. Altogether, the

expected time of (1+1) EA to search for a feasible solution is at most O(n2 log n).

4 Uniform Profits

In this section, we assume the algorithms have produced a feasible solution and analyze

the expected time that the (1+1) EA and RLS require to find the optimal solution. We

begin our study with the case that the deterministic profits are uniform. Since the actual

value of profits does not affect the analysis, it is convenient to use unit profits.

Instance 4.1. Given K groups, each group has m items. There are n = K ·m items

in total, the capacity of the knapsack is bounded by B. For 1 ≤ i ≤ K , 1 ≤ j ≤ m,

let pij = 1, aij = a, σ2
ij = d, where d > 0 is a constant. The covariance of items

within any group is c, i.e., we have cov(eij , ekl) = c iff i = k and cov(eij , ekl) = 0
otherwise.

Definition 4.2. Let r = max{|x|1 | ∃x ∈ {0, 1}n with β(x) ≤ α} and partition the

feasible search space by L0, L1, . . . , Lr such that

Li = {x ∈ {0, 1}
n : |x|1 = i with β(x) ≤ α}. (20)

We further bi-partition each partition Li into two sets Siγ and Siζ such that Siγ ∪
Siζ = Li and Siγ ∩ Siζ = ∅ as follows.

The set Siγ ⊆ Li contains all feasible solutions where no extra item can be added

without violating the chance constraint and Siζ ⊆ Li is the set containing all feasible

solutions where at least one extra item can be added to obtain a feasible solution with

at least i+ 1 ones.

Lemma 4.3. Starting with an arbitrary initial solution, the expected optimization time

of RLS on the chance-constrained knapsack problem with correlated uniform weight is

O(n3).

Proof. Due to Lemma 3.1, RLS finds a feasible solution in expected time O(n log n).
Also, since all feasible solutions dominate any infeasible solution, the algorithm does

not return to the infeasible region.

Let x ∈ Lℓ. If x ∈ Sℓζ , then there is at least one additional item that can be

feasibly selected. This selection occurs with probability 1/2n. Otherwise, only a 2-bit

flip changing a zero and a one to a zero is accepted if it reduces the covariance of the

solution without changing the profit until the algorithm produces a balanced solution

on the same level.

According to Definition 2.1, the balanced solution in each level has the smallest

covariance and number of items selected from each group. Let li(x), 1 ≤ i ≤ K be

9



the number of elements chosen by x from group i. Assume, without loss of generality,

that the groups are sorted in increasing order with respect to the li(x). Furthermore, let

s(x) =

K−(ℓ−⌊ ℓ
K ⌋·K)

∑

i=1

max

{

0,

⌊

ℓ

K

⌋

− li(x)

}

+

K
∑

K−(ℓ−⌊ ℓ
K ⌋·K)+1

max

{

0,

⌊

ℓ

K

⌋

+ 1− li(x)

}

(21)

be the number of items that belong to an arbitrary balanced solution, but not chosen by

x, and let

t(x) =
K
∑

i=K−(ℓ−⌊ ℓ
K ⌋·K)+1

max

{

0, li(x) −

(⌊

ℓ

K

⌋

+ 1

)}

+

K−(ℓ−⌊ ℓ
K ⌋·K)

∑

i=1

max

{

0, li(x) −

⌊

ℓ

K

⌋}

(22)

be the number of items chosen by x, but do not belong to a balanced solution. Note

that s(x) should be equal to t(x) for any feasible solution in Lℓ. Let g = s(x) = t(x).
As there are exactly ℓ 1-bits in the solution x, and s(x) is a fixed value, this implies

that there are at s(x) 1-bits which can be swapped with an arbitrary 0-bit of the missing

g elements in order to reduce the covariance of x. Hence, the probability of such

swapping is at least g2/2n2. Since g cannot increase and g ≤ ℓ, it suffices to sum up

these expected waiting times, and the expected time until reaching g = 0 is

ℓ
∑

g=1

(2n2/g2) = O
(

n2(1− 1/i)
)

.

There are at mostn level ofLℓ which implies that the expected time until an optimal

solution has been achieved is

n
∑

i=ℓ−1

(n2 − n2/i) = O(n3 − n2 logn) = O(n3),

which completes the proof.

Lemma 4.4. Let x ∈ Sℓγ , then there exists some q ∈ {1, . . . , n − 1} such that q
different accepted 2-bit flips of the (1+1) EA reduce the covariance the solution. The

expected one-step change of the (1+1) EA is X(t)

en2 .

Proof. Let x ∈ Sℓγ , |x|1 = ℓ and let sx denote the covariance of x. Then according

to the inequality (8), sx is bounded by
(B−ai)2α

1−α
− dℓ. Let x′ ∈ Siζ , |x′|1 = ℓ be the

balanced solution which take
⌈

ℓ
K

⌉

elements from the first ℓ−
⌊

ℓ
K

⌋

K groups and take
⌊

ℓ
K

⌋

elements from the last K − ℓ−
⌊

ℓ
K

⌋

K groups.
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We assume that the K groups in solution x are sorted in increasing order with

respect to the number of elements chosen by x. Then, let q denote the Hamming

distance between x and x′, and I = max{x − x′, 0} denotes the set different of the

elements chosen by x but not by x′, and I ′ = max{x′ − x, 0} be the set different of

element chosen by x′ but not by x. The number of elements in set I and I ′ should be

the same and equal to q. A 2- bit flip flipping bit i ∈ I from 1 to 0 and bit j ∈ J
from 0 to 1 can reduce the covariance of the problem which leads to the reduction of

probability. As there are q elements in set I and I ′ separately, they can be matched

into q pairs. Performing all such q 2-bit flip can reduce the covariance of solution and

simultaneously changes x into x′.

Now, we have the reduction of covariance that flip i ∈ I to zero denoted by 2c(ri−
1), where ri is the number of selected items of the group that i belong to. There are

ri −
⌈

ℓ
K

⌉

one bits need to be flipped in this group that achieve this reduction to attend

balance, and ri >
⌈

ℓ
K

⌉

, so the total contribution for this group is

2c(ri − 1)

(

ri −

⌈

ℓ

K

⌉)

≥ c(ri − 1)ri − c

(⌈

ℓ

K

⌉

− 1

)⌈

ℓ

K

⌉

. (23)

Similarly, we have the increase of covariance when flip a bit j ∈ J denoted by

2crj , where rj is the number of selected items of x in the group that j belong to. There

are
⌊

ℓ
K

⌋

− r′j zero bits flip in this group to attend balance and the total contribution for

group k′ is

2c(r′j)

(⌊

ℓ

K

⌋

− r′j

)

≤ c

(⌊

ℓ

K

⌋

− 1

)⌊

ℓ

K

⌋

− c(r′j − 1)r′j . (24)

Define the total reduction of covariance from x to x′ by inequalities (23) and (24) as

q
∑

i=1

2c(ri − 1)−

q
∑

j=1

2cr′j

≥c(ri − 1)ri − c
(⌊

ℓ
K

⌋

− 1
) ⌊

ℓ
K

⌋

−
(

c
(⌊

ℓ
K

⌋

− 1
) ⌊

ℓ
K

⌋

− c(r′j − 1)r′j
)

=sx − sbℓ (25)

Therefore performing all q 2-bit flips simultaneously changes x into x′ and leads

to a covariance decrease at least as large as sx − sbℓ, where sbℓ denotes the covariance

of the balanced solution with exactly i one bits.

For all t ∈ N, let x(t) ∈ Li be a fixed, non-empty solution generated at time t by

the (1+1) EA, and let X(t) = sx(t) − sbi . Then

X(t) −X(t+1) = sx(t) − sx(t+1) . (26)

Let Y = {y1, . . . , yq} with q ∈ {1, . . . , n} be the set of q different search points that

on the same level of x in the search space generated from x by one of the q acceptable

different 2-bit flips. We have syi
≤ sx for all i ∈ {1, . . . , q} and

q
∑

i=1

(sx − syi
) ≥ sx − sbi . (27)
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Since each yi is generated from x by one of the q 2-bit flip,

Pr[x(t+1) ∈ Y |x(t) = x] = q

(

1−
1

n

)n−2
1

n

2

≥
q

en2
(28)

of the (1+1) EA. Furthermore,

E[X(t) −X(t+1)|x(t) = x, x(t+1) ∈ Y ] =
sx − sbi

q
=

X(t)

q
. (29)

The algorithm cannot accept an offspring on the same level that increases the co-

variance, that is, Xt −Xt+1 is non-negative. Thus, we have by (28) and (29) that

E[X(t) −X(t+1)|x(t) = x] ≥
X(t)

en2
. (30)

Lemma 4.5. The expected time for the (1+1) EA to transform a solution in Siγ to a

solution in Siζ ∪ Lj where j > i is bounded by O(n2 logn).

Proof. According to Lemma 4.4, the drift on X(t) is at least X(t)

en2 for the (1+1) EA.

Therefore, since the both algorithms start with X(t) ≤ si = O(n2) and the minimum

value of X(t) before reaching X(t) = 0 is 1, by multiplicative drift analysis, the ex-

pected time is at most O(n2 logn) to reach a solution in Siζ . Then, if i < r, it is

possible for the (1+1) EA to generate a feasible in Li+1 with probability 1/en. The

total expected time of the (1+1) EA until an solution in Siζ ∪ Lj is generated is thus

bounded by O(n2 logn).

Theorem 4.6. The expected time until the (1+1) EA working on the fitness function

(11) constructs the optimal solution to Instance 4.1 is bounded by O(n3 logn).

Proof. By Lemmas 3.2 and 4.5, for all i < r, it is sufficient to investigate the search

process after having found a feasible solution x ∈ Siζ , and after that, the algorithms

can only accept an offspring with a larger number of one bits. It is possible for the

(1+1) EA to generate a feasible solution in Li+1 by mutating exactly one zero bit to

one. This event occurs with probability 1
en

for the (1+1) EA.

Therefore, it will takes O(n2 logn+en) steps to produce a feasible solution in level

Lr+1 when started from a random feasible solution in Lr. Altogether, the expected

optimization time is bounded by

O(n2 logn) +

r−1
∑

i=0

(n2 logn+ en) = O(n3 logn), (31)

where r < n.
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5 Arbitrary profits mirrored by each group

We now turn our attention to the more complicated case where a single group has

arbitrary profits, but this set of profits is the same for each of the K groups. This

resembles the case of general linear functions, but the chosen function is the shared by

all groups.

Instance 5.1. Given K groups, each group has m items. There are n = K ·m items

in total, the capacity of knapsack is bounded by B. For 1 ≤ i ≤ K , 1 ≤ j ≤ m, let

aij = a, σ2
ij = d are constants, and let pi1 ≥ pi2 ≥ . . . ≥ pim for i ∈ {1, . . . ,K} and

piℓ = pkℓ for each i, k ∈ {1, . . . ,K}, 1 ≤ ℓ ≤ m. The covariance of items in groups

is c, i.e. we have cov(eij , ekl) = c iff i = k and cov(eij , ekl) = 0 otherwise.

Theorem 5.2. Starting with an arbitrary initial solution, the expected optimization

time of RLS on the chance-constrained knapsack problem with correlated uniform

weights is O(n3) on Instance 5.1.

Proof. By Lemma 3.1, RLS finds a feasible solution in expected time O(n log n).
Also, since all feasible solutions dominate infeasible solutions, the algorithm does not

switch back to the infeasible region again. By the definition of Instance 5.1 that items

in a group have different profit and the same weight, it is possible to have more than

one balanced solution in each level of this case, but only one balanced solution with

maximum profit, where we ignore the order of groups.

We order all items regarding to their profit as p11 = p21 = . . . = pK1 ≥ p12 =
p22 = . . . = pK2 ≥ . . . ≥ p1m = p2m = . . . = pKm.

For a given solution x, we call the multi-set P (x) = {pi | xi = 1} the profit profile

of x, i.e., the multi-set of profit values selected by x. We say that a profit profile P
is contained in P (x) if P ⊆ P (x). Let x be a feasible solution whose profit profile

contains Pj = {p1, . . . , pj} (but which does not contain Pj+1). We claim that RLS

does not accept a solution whose profit profile does not contain Pj . An operation

flipping a single 1-bit that flips a 1 to 0 is clearly not accepted, as it reduces the profit

and therefore cannot lead to a solution not containingPj . A 2-bit flip is only accepted if

it does not decrease the profit, and therefore also cannot create a solution whose profit

profile does not contain Pj , as Pj contains the j-largest profits of the given input.

We analyze the time to transform a solution x containing profit profile Pj = {pi |
1 ≤ i ≤ j} into a solution x′ containing profit profile Pj+1. Consider the profit pj+1

in the group with the smallest number of elements whose bit xi is set to 0. Flipping

xi adds the profit pj+1 to the profile Pj . Assume that bit xi belongs to group r ∈
{1, . . . ,K}, i.e., xi = xrs. If there is another item selected in group r (selected

by xrs′ = 1) whose profit is less than pj , then flipping both xrs and xrs′ leads to

an accepted solution x′ with Pj+1 ⊆ P (x′). This happens with probability 1/2n2.

Assume now that there is no such item in group r. Then pj+1 is the largest non selected

profit in group r.

Let S be the set of groups with the largest number of items selected and p̂ the

smallest selected profit from these groups. Assume that xi is not in one of the groups

in S. Then flipping xi to 1 and setting the bit corresponding to p̂ to 0 is accepted and

leads to a solution containing profit profile Pj+1. If xi is in one of the groups in S,
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then there is another item selected in S with a profit smaller than pj+1 or the solution

x is already optimal.

Altogether, to produce a solution x′ containing Pj+1 from a solution with Pj , RLS

needs at most O(n2) steps, and since there are at most n items in any solution, the

expected optimization time of RLS is O(n3).

Let pmax = pi1, i ∈ {1, . . .K} be the maximal profit of the given input.

Theorem 5.3. Starting with an arbitrary initial solution, the expected optimization

time of the (1+1) EA on the chance constrained knapsack problem with correlated

uniform weight is O(n3(logn+ log pmax)) on Instance 5.1.

Proof. According to Lemma 3.2, the expected time to reach a feasible solution is

O(n2 logn). Therefore it is sufficient to start the analysis with a feasible solution,

after which the (1+1) EA will never sample an infeasible solution during the remainder

of the optimization process.

For our analysis, we consider the set of all solutions Lj = {x | |x|1 = j;β(x) ≤
α} containing exactly j 1-bits. For each j we show that the expected number of off-

spring created from an individual in Lj is O(n2(logn + log pmax). After this many

iterations, either the optimal solution (contained in Lj) has been created, or a feasi-

ble solution y with p(y) > maxx∈Lj
p(x) has been produced, which implies that the

algorithm will not accept any solution in Lj afterwards.

We now show that the expected number of offspring created from solutions in Lj

is O(n2(log n + log pmax)). Let x ∈ Lj be the current solution, and let xj,max =
argmaxx∈Lj

p(x) be an arbitrary feasible solution in Lj with the largest possible

profit. Denote the loss by

l(x) =
n
∑

i=1

pix
j,max
i (1− xi),

that is, the sum of the profits chosen by xj,max but not chosen by x. Denote the surplus

by

s(x) =

n
∑

i=1

pi(1− xj,max
i )xi,

that is, the sum of the profits chosen by x but not chosen by xmax,j . Define the total

increase in profit from x to xj,max as

g(x) = p(xj,max)− p(x) = l(x)− s(x).

Let r =
∑n

i=1 x
j,max
i (1 − xi) be the number of indexes set to 1 by xj,max and 0

by x. We give a set of r accepted 2-bit flips where the sum of the increases in profit is

g(x).
We consider the K groups and w.l.o.g. assume that they are sorted in increasing or-

der with respect to the number of elements chosen by x = (x11, x12, . . . , x1m, . . . , xKm).
Let ℓi(x), 1 ≤ i ≤ K be the number of elements chosen by x in group i. We have

ℓ1(x) ≤ . . . ≤ ℓK(x). We consider the solution x̂j,max of maximal profit in Lj for
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which ℓ1(x̂
j,max) ≤ . . . ≤ ℓK(x̂j,max) and ℓK(x̂j,max) ≤ ℓ1(x̂

j,max) + 1 holds. This

implies that x̂j,max is a balanced solution having the smallest variance in Lj . Note that

such a solution exists as we may reorder the groups as each group contains the same

(multi-)set of profits.

We have
k
∑

i=1

ℓi(x) ≤
k
∑

i=1

ℓi(x̂
j,max), 1 ≤ k ≤ K (32)

as both solutions contain j elements and the groups are sorted in increasing order of

the number of elements chosen by x.

This implies

k
∑

i=1

ℓi(x− x̂j,max) ≤
k
∑

i=1

ℓi(x̂
j,max − x), 1 ≤ k ≤ K (33)

as the intersection of x̂j,max and x contributes the same to each summand. Here x−y =
max{x− y, 0} denotes the set different of the elements chosen by x but not by y.

Therefore, the number of elements chosen by x̂j,max but not by x is greater than

or equal to the number of elements chosen by x but not x̂j,max for each of the first k
groups.

We then define our set of r 2-bit flips. The ith 2-bit flip flips the ith 0-bit of x (in the

order given by the bit string x = (x11, x12, . . . , x1m, . . . , xKm)) set to 1 in x̂j,max− x
and the ith 1-bit in x− x̂j,max.

Consider operation i and let p′i be the profit introduced and p′′i be the profit to be

removed. As per construction we have
∑r

i=1 p
′
i = l(x) and

∑r

i=1 p
′′
i = s(x) which

implies that the total gain of the set of r 2-bit flips is g(x) = l(x) − s(x). It remains

to show that each of these r 2-bit flips is accepted by the algorithm. Consider the ith
operation. We show that β(x) does not increase. Let r′ be the group that p′i belongs

to and r′′ be the group that p′′i belongs to. We have r′ ≤ r′′ due to Equation (33) and

therefore ℓr′(x) ≤ ℓr′′(x). This implies that the 2-bit flip leads to a solution y with

β(y) ≤ β(x). We also have p′i ≥ p′′i as otherwise we could improve the profit of x̂j,max

which contradicts that x̂j,max is a feasible solution of maximal profit in Lj .

Given the set of r accepted 2-bit flips, the expected increase in profit is at least

r/(en2) · g(x)/r = g(x)/(en2),

as the probability of the (1+1) EA to produce such a 2-bit flip is r/en2, and the average

gain of this flip is g(x)/r.

For any non-maximal solution x ∈ Lj , we have 1 ≤ g(x) ≤ j · pmax. Using

multiplicative drift analysis, the expected number of offspring created from a solution

x ∈ Lj before having obtained a feasible solution x∗ with p(x∗) ≥ p(xj,max) is

therefore O(n2(log n+ log pmax). Moreover, x∗ is as better as the best solution in Lj ,

x∗ contains the top j elements regarding to the profits of items, this implies that x∗ has

the same construction as xj,max and is a balanced solution that has smallest probability

in Lj .

If x∗ is not optimal, then there exists a 1-bit flip adding an additional element

and strictly improving the profit. There are at most n level Lj which implies that the
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expected time until an optimal solution has been achieved is O(n3(logn+ log pmax).

6 Conclusions

The chance-constrained knapsack problem with correlated uniform weights plays a

key role in situations where dependent stochastic components are involved. We have

carried out a theoretical analysis on the expected optimization time of RLS and the

(1+1) EA on the chance-constrained knapsack problem with correlated uniform weights

in this paper. We are interested in minimizing the probability that our solution will vi-

olate the constraint. We prove the bounds for both algorithms for producing a feasible

solution. Then we carried out analyses of two settings for the problem, the one with

uniform profits and the groups in the second case has the same profits profile. Our

proofs are designed to provide insight into the structure of these problems and to reveal

new challenges in deriving runtime bounds in the chance-constrained setting with the

general type of stochastic variables.
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