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ABSTRACT
In this paper we address the Euclidean Steiner tree problem in the
plane in the presence of soft and solid polygonal obstacles. The Eu-
clidean Steiner tree problem is a well-known NP-hard problem with
different applications in network design. Given a set of terminal
nodes in the plane the aim is to find a shortest-length intercon-
nection of the terminals allowing further nodes, so-called Steiner
points, to be added. In many real-life scenarios there are further
constraints that need to be considered. Regions in the plane that
cannot be traversed or can only be traversed at a higher cost can
be approximated by polygonal areas that either need to be avoided
(solid obstacles) or come with a higher cost of traversing (soft ob-
stacles). We propose a genetic algorithm that uses problem-specific
representation and operators to solve this problem and show that
the algorithm can solve various test scenarios of different sizes.
The presented approach appears to outperform current heuristic
approaches for the Steiner tree problem with soft obstacles and was
evaluated on larger test instances as well.
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• Applied computing → Mathematics and statistics; • Com-
putingmethodologies→ Randomized search; •Mathematics of
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1 INTRODUCTION
The Euclidean Steiner tree problem (ESTP) without the consider-
ation of any obstacles was first introduced by the mathematician
Gergonne in 1811 [10] and is a well-known NP-hard optimisation
problem [8]. Similarly to finding a minimum spanning tree, the
aim is to connect a number of nodes (called terminals) in the plane
minimising the total distance. Additionally, the Euclidean Steiner
minimum tree allows for further intersection points (Steiner points)
to be added. The additional task of considering obstacles that either
need to be avoided or can only be traversed with a penalty per inter-
secting unit (soft obstacles) makes the problem even more complex.
While there are several approaches to the standard Steiner tree prob-
lem, the literature on the this problem with soft obstacles is limited.
Approaches that consider the Euclidean Steiner tree problem with
some kind of constraints mostly use a discretised structure of the
plane or the obstacles at some point to reduce the complexity of the
problem (see [3, 7, 9] etc.). That is why we propose an evolutionary
approach that is adapted to the specific problem structure of the
ESTP and exploits its geometric properties. A two-part chromosome
with a combination of a fixed and variable length part is introduced
and the crossover and mutation operators are adapted accordingly.
Furthermore, the separation between the genotype and phenotype
of the chromosome is noteworthy in this case. While the genotype
only contains information of Steiner and obstacle corner points, the
phenotype represents the interconnected Steiner minimum tree.

1.1 The ESTP
Despite the ESTP stating no further requirements, Euclidean Steiner
minimum trees have several interesting geometric characteristics
(see e.g. [2]). Some of those are summarised in the following:

Properties 1. Consider the ESTP with 𝑛 terminals. A solution
to this problem is called Euclidean Steiner Minimum Tree (ESMT or
SMT) and is a tree in the plane with the following properties:

(1) There are at most 𝑛 − 2 Steiner points.
(2) Terminals are connected to at most three other nodes and

Steiner points are adjacent to exactly three other nodes (degree
condition).

(3) Each pair of edges in the tree meets at an angle of at least
2𝜋/3 and the three edges at the Steiner point meet exactly at
an angle of 2𝜋/3 (angle condition).
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The problem of finding a minimal length connection between
a set of nodes has several applications, for example in the area of
electricity, communication and computer chip network design, or
in parallel computing (e.g. [6], [1] [11]). In most real-world applica-
tions though further constraints apply. Planning an infrastructure
network for example, such as an electricity or road networks, the
presence of restricted regions, like nature reserves, private prop-
erty, risk prone areas or other constraints, can make it infeasible to
interconnect the nodes via a standard Steiner tree. That is why the
obstacle-avoiding Steiner tree is considered. In the planar obstacle-
avoiding Euclidean Steiner tree problem, restricted regions can be
represented as non self-intersecting polygons. The polygons are
considered solid obstacles in the graph that cannot have any inter-
section with a resulting Steiner minimum tree. However, in some
real-life cases a region does not necessarily need to be avoided,
instead intersecting it comes at a higher risk or cost. In terms of
graphs, these regions are called soft obstacles. In this paper, we
consider the Euclidean Steiner tree problem with polygonal soft ob-
stacles with a homogeneous weight per unit length. We formulate
this problem as follows:

Definition 1.1. Consider a set of 𝑛 terminals and 𝑜 simple polyg-
onal obstacles with crossing weights𝑤𝑜 in the plane.
Find a connected network 𝑇 that spans all terminals and has mini-
mal total weighted length but can include further nodes.

If an edge of the tree intersects with the inside of a soft obstacle,
the length of the intersecting part is multiplied with the crossing
weight𝑤𝑜 of this obstacle. In case of a solid obstacle the traversed
obstacle causes a high penalty cost. Going along the the edges or
only touching the boundary of an obstacle comes at no higher cost.
Equation 1 in Section 3 outlines this in more detail. An example
for a Euclidean Steiner tree problem instance with soft and solid
obstacles and ten terminals is portrayed in Figure 1.

Figure 1: Example of a Steiner tree problem instance with
soft (light orange) and solid (red) obstacles

In the case of obstacles in a Euclidean Steiner tree problem, it can
be observed that Properties 1 for a minimum Steiner tree solution
still hold locally, where there is no obstacle boundary.

Observation 1. Consider a solution to a Euclidean Steiner tree
problem with 𝑛 terminals and soft or solid obstacles with a total
number of 𝑘 obstacle corners.

(1) We distinguish between three types of Steiner points: Steiner
points that lie either inside or outside an obstacle but not on
any obstacle boundary, Steiner points that are on the boundary
of an obstacle but not a corner point and obstacle corner points
(hereinafter not called Steiner points in this paper).

(2) Steiner points in- or outside of obstacles have a degree of ex-
actly 3 and the three incident edges meet at an angle of 2𝜋/3
(compare Property 1.3), while Steiner points on the boundary
or obstacle corner points can have degree 2.

(3) If the problem instance only contains solid obstacles a Steiner
minimum tree contains Steiner points of degree 3 and obstacle
corner points only.

Some of the above mentioned properties are encoded in the
chromosome representation and operators of the proposed genetic
algorithm to avoid exploring many infeasible solutions.

2 LITERATURE REVIEW
The Steiner tree problem with obstacles or other constraints has
several real-world applications. The paper by Fletcher et al. [6]
for example deals with connecting electricity consumers and sub-
stations in an electricity distribution network in geographically
constrained rural areas using a genetic algorithm. The constrained
areas are represented as a rasterised map and a shortest path algo-
rithm is used to determine the connection between terminals. A
genetic algorithm then alters the connections by adding a Steiner
point connecting three selected terminals, removing Steiner points,
or reconnecting nodes to a different part of the graph. While this
approach appears to create feasible solutions for the specific appli-
cation, it does not aim to find the optimal solution for a minimum
Steiner tree problem with obstacles. Another application to a power
distribution network was presented by Duan et al. [5]. Their "ge-
netic shortest-path" algorithm does not consider the Steiner tree
problemwith obstacles but includes complex-flows on the networks
branches and voltage constraints. The authors translate their appli-
cation into the capacitated Steiner tree problem in graphs. Most of
the approaches for solving the Euclidean Steiner tree problem deal
with solid obstacles only. For example, Provan et al. [18] developed
an approximation scheme on a visibility graph to find a Steiner
tree solution considering solid obstacles. By constructing a visi-
bility graph first, the problem is transformed into the Steiner tree
problem in graphs. The authors of [16] present a polynomial-time
approximation scheme for the Steiner tree problem with polyno-
mial solid obstacles based on a similar idea. They also make use
of the visibility graph and then place a grid locally around each of
its edges to find Steiner candidate points. Weng et al. [20] propose
an algorithm for the Euclidean Steiner tree problem with one solid
obstacle only and further restricting conditions. Their approach
is based on Melzak’s algorithm [14] for the Steiner tree problem
without obstacles.

Despite several areas of application, the literature on the Eu-
clidean Steiner tree problem with soft obstacles is sparse. Garrote
et al. [9] consider the Euclidean Steiner tree problem for Communi-
cation networks where disaster-prone areas are represented as soft
obstacles. The authors claim to be the first to consider the ESTP
with soft obstacles and suggest a deterministic approach. Their al-
gorithmmakes use of Dijkstra’s shortest path algorithm to calculate
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the shortest connection between terminals while discretising the
boundaries of included obstacles. Further Steiner points are then
added at angles of less than 2𝜋/3 using a local search procedure
considering soft obstacles. The authors test their algorithm on a
range of solid obstacle instances and compare their results to the
ones computed by an exact method by Zachariasenet al.[21]. Some
of them are used as a comparison in this paper as well.

3 METHODOLOGY
To determine a minimised connection of terminal nodes in the
presence of solid and/or soft obstacles in the plane, we propose a
genetic algorithm with problem-specific chromosome representa-
tion and mutation and crossover operators. The presented GA finds
solutions to the (Euclidean) Steiner tree problem with soft and solid
obstacles by using a mix of adapted mutations and some of the
properties described in Section 1 and is hereinafter called StOBGA.
The details of the algorithm are described in the following:

3.1 GA for the ESTP with Soft Obstacles
The StOBGA is an adaptive genetic algorithm that uses three types
of mutations with changing probability and one-point crossover
to determine a minimised connection of terminals in the plane.
Assuming an ESTP with 𝑛 terminal nodes and soft or solid obstacles
with a total number of𝑘 obstacle corner nodes. An example is shown
in Figure 1. The aim for the StOBGA is to determine the number and
location of Steiner points needed as well as which obstacle corner
points should be used in the solution such that the total distance of
the tree connecting all the terminals is minimised. Each possible
solution can be evaluated using its fitness value, which is in this
case the total (weighted) distance of the tree that is to be minimised.
Once the Steiner and obstacle corner points of a possible solution
are established the Steiner tree can be determined using a weighted
minimum spanning tree algorithm, such as Prim’s algorithm [17].
The weight of each edge connecting two nodes represents the
Euclidean distance between these nodes and a multiplied penalty
cost per unit for crossing obstacles. To avoid infeasible solutions
the weight is set to infinity if the edge intersects the inside of a
solid obstacle. This forces the algorithm to avoid even very small
intersections with any solid obstacle. In case of the edge crossing a
soft obstacle, the weight is determined by

edge weight = 𝑑𝑖𝑠𝑡𝑜𝑢𝑡 +
∑
𝑜𝑏

𝑑𝑖𝑠𝑡𝑜𝑏 · 𝑐𝑜𝑏 , (1)

where 𝑑𝑖𝑠𝑡𝑜𝑢𝑡 is the length of the edge’s part that lies outside of any
obstacle and 𝑑𝑖𝑠𝑡𝑜𝑏 is the length of the part that lies inside an obsta-
cle 𝑜𝑏. Multiplication with the crossing factor 𝑐𝑜𝑏 (> 1.0) penalises
traversing through soft obstacles. Going along an obstacles edge
or touching the obstacles boundary is not penalised. Connecting
nodes using the boundary of an obstacle comes with no higher cost.
Each generation the genetic algorithm evolves through crossover
and mutations. Tournament selection (see e.g. [15]) is used to de-
cide which of the population’s chromosomes are chosen to produce
offspring as well as to select which chromosomes will die. First, for
each tournament the fittest solution is selected as the parent chro-
mosomes to produce offspring. After creating offspring through
mutation and crossover, tournament selection is used again. For
each tournament the least fit solution is selected to die such that the

population size remains the same. A tournament size greater than
two therefore guarantees that the fittest solution always survives.
When the fittest solution does not improve over a certain number
of generations the StOBGA has converged and the algorithm stops.

3.1.1 Representation and Initialisation. Each chromosome in the
algorithm represents a possible Steiner tree solution that belongs
to a given Steiner tree problem with obstacles. Therefore, the
chromosome has access to the given terminals and obstacles and
stores information on the Steiner point locations and obstacle cor-
ners to build the Steiner tree. The StOBGA uses a chromosome
representation that consists of two parts: One of variable length
and a binary part with fixed length. The first part stores a list of
Steiner points, which contain the x- and y-coordinates of the points
(< 𝑥1, 𝑦1 >, < 𝑥2, 𝑦2 >, . . . ). This list varies in length and can also
be empty if no Steiner points are used in the represented solution.
The second part consists of a binary string of fixed length that rep-
resents whether an obstacle corner node is included in the possible
solution. Therefore, each chromosome has the following structure:

{< 𝑥1, 𝑦1 >, < 𝑥2, 𝑦2 >, . . . } + [0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0]
The chromosome can be translated to represent an interconnected
Steiner tree by connecting all terminals, Steiner points and included
obstacle corners using a weighted MST algorithm like Prim’s algo-
rithm [17]. The weights of each straight-line connection between
the points is calculated as described above.

Figure 2: Initial chromosome example with soft (light or-
ange) and solid (red) obstacles

In addition to the representation of a chromosome in a genetic
algorithm, the way the first generation is initialised can also play a
crucial role in the success of the algorithm. An unfavourably chosen
initial population could for example lead to early convergence to a
local minimum. Different initialisation techniques have therefore
been considered (see e.g. [13]). In our case it is important that
the initial population is diverse but also that at least some of the
initial Steiner point placements are not "too far away" from their
optimal location. In case of solid obstacles being included, an initial
population starting with only infeasible solutions, i.e. at least one
of the edges crosses a solid obstacle, can lead to a slow start or in
the worst case to convergence to an infeasible solution. Therefore,
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we have chosen three different types of initial chromosomes that
start the first generation:

(1) The first one uses the Delaunay triangulation [4] of all termi-
nals and obstacle corner nodes combined. For each triangle
we add a Steiner point located in the triangle’s centre un-
less this would cause a Steiner point positioned inside of a
solid obstacle. The second part of the chromosome is set to
a binary string with all zeros, i.e. no obstacle corner points
are included. An initial type of Steiner tree for the instance
example introduced in Figure 1 is shown in Figure 2.

(2) The second type of chromosome contains 𝑛+𝑘 Steiner points
with random positions, where 𝑛 is the number of terminals
and 𝑘 is the number of obstacle corners. Again, placement
inside of solid obstacle is excluded.

(3) The third one leaves the list of Steiner points empty and
instead randomly flips some of the genes in the second binary
part of the chromosome.

After filling part of the initial population with the three chromo-
some types described above, the remaining elements are added by
creating offspring of the already included chromosomes through
crossover and mutation. These operators are described in detail in
the following paragraph.

3.1.2 Mutation and Crossover Operators. To ensure sufficient ex-
ploration of the fitness landscape three different types of mutations
and one crossover operator are used to create offspring. Out of
those chromosomes that were selected to evolve, two parent chro-
mosomes are chosen randomly to create two children by using
one-point crossover (𝑝𝑐𝑟𝑜𝑠𝑠 = 1.0). The child chromosomes then
undergo one of the three mutations with adapting probability. For
the crossover operation the width of the problem instance, includ-
ing terminals only, is calculated and a random point on the x-axis
inside of this range is chosen. A vertical line on this point splits the
parent chromosomes into two parts as shown in Figure 3. The first
child inherits all Steiner points and all included obstacle corners
on the left of the split line from the first parent and all Steiner
and obstacle corner points on the right of the line from the second
parent chromosome. The second child is created vice-versa.

parent chromosomes:

offspring:

Figure 3: Crossover of StOBGA

Having produced the offspring, each child chromosome performs
one of three mutations (visualised in Figure 4). In a standard GA a
mutation typically consists of flipping each gene in the chromosome
with a small probability 𝑝𝑔𝑒𝑛𝑒 < 1.0. In our case a gene is either
one of the Steiner points or one of the bits in the binary string.
Considering a chromosome with 𝑠 Steiner points for a problem
instance with 𝑘 obstacle corners, there are 𝑠 +𝑘 genes. The problem-
specific mutations are described as follows:

• The flipMove mutation: Going through each gene and with
probability 𝑝𝑔𝑒𝑛𝑒 = 1/(𝑠+𝑘) either moving it, if it is a Steiner
point, or flipping it, if it is a bit of the second chromosome
part. The move action alters the Steiner point coordinates by
small values ± 𝑥𝑚𝑜𝑣𝑒 and ± 𝑦𝑚𝑜𝑣𝑒 , which are random val-
ues between 0 (exclusive) and a certain move range𝑚𝑟𝑎𝑛𝑔𝑒 .
The range for the move action is initially set to the average
Euclidean distance between terminals but decreases with
increasing number of generations (𝑛𝑜𝑔𝑒𝑛) as follows:

𝑚𝑟𝑎𝑛𝑔𝑒 = 𝑎𝑣𝑔𝐷𝑖𝑠𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 ∗max
{
1 −

𝑛𝑜𝑔𝑒𝑛

1000
, 0.01

}
(2)

• The addSteiner mutation: For this mutation we need to cal-
culate the weighted minimum spanning tree of the current
chromosome. Then each node in the tree is checked for an
angle that is less than 2𝜋/3. One randomly selected node is
determined including the two neighbours building the small
angle. The Steiner point position between the three adjacent
nodes is calculated and the new Steiner point is added to the
offspring. If there is no small angle in the graph, a Steiner
point at a random position (avoiding placement inside of
solid obstacles) is created and added.

• The removeSteiner mutation: Throughout the algorithm some
Steiner points might not be needed anymore and havemoved
close to a straight line. Since unnecessary Steiner points in
the chromosome will slow down the convergence of the
algorithm the third mutation removes a Steiner point of de-
gree two, such that the two adjacent nodes can be connected
directly (see Figure 4c).

(a) flipMove (b) addSteiner (c) removeSteiner

Figure 4: Mutations of StOBGA

The decreasing move range for the flipMove mutation follows
the idea that the Steiner points move closer to their optimal position
over time. Initially, a Steiner point move might need to be large
enough to change the topology of the graph and get to its correct
place. Once it is close to its optimal position the small move range
is helpful to find the exact location.

Just like the move range the probabilities for choosing each
mutation (𝑝 𝑓 𝑙𝑖𝑝𝑀𝑜𝑣𝑒 , 𝑝𝑎𝑑𝑑 , and 𝑝𝑟𝑒𝑚𝑜𝑣𝑒 ) adapt over time as well.
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The probability of the first mutation is initially set high (𝑝𝑚𝑎𝑥 ) while
the other two mutations are initially performed with only a small
probability. Since one of the mutations must be performed and to
reduce the number of parameters the probabilities are determined
in the following way:

𝑝 𝑓 𝑙𝑖𝑝𝑀𝑜𝑣𝑒 = max
{
𝑝𝑚𝑎𝑥 ∗

(
1 −

𝑛𝑜𝑔𝑒𝑛

1000

)
, 𝑝𝑚𝑖𝑛

}
(3)

𝑝𝑎𝑑𝑑 = 𝑝𝑟𝑒𝑚𝑜𝑣𝑒 = 1 −
𝑝 𝑓 𝑙𝑖𝑝𝑀𝑜𝑣𝑒

2
(4)

The reason for adapting the probabilities is that the different types
of mutations are more or less valuable depending on how much
of a potential optimal solution is already determined. For instance,
removing Steiner points of degree two too early might cause the
removal of too many Steiner points that through the evolutionary
process would have become necessary Steiner points in a different
position. Using a high probability 𝑝 𝑓 𝑙𝑖𝑝𝑀𝑜𝑣𝑒 for the flipMove mu-
tation initially and then increasing the probabilities for the other
mutation operators have shown to be most successful. Table 1 lists
the parameter values for the StOBGA that were chosen to be fixed
for the range of different problem instances. These values were
found by performing a grid search over different parameter values.

Table 1: Parameters used for the StOBGA

parameter value

population size ` 500
offspring size _ 1

3 ∗ `
tournament size 5

𝑝𝑚𝑎𝑥 for flipMove mutation 0.99
𝑝𝑚𝑖𝑛 for flipMove mutation 0.60

Finally, when the StOBGA has converged one additional chromo-
some is added to the final population. This last step performs only
fine adjustments to the location of some Steiner points. Given three
fixed coinciding nodes, finding the exact position of the Steiner
point becomes the Fermat-Torricelli problem. The exact position
can be calculated using Simpson lines (see [19], [12]). Therefore, the
lastly added chromosome has each Steiner point of degree three
moved to its calculated exact position assuming its three neighbours
are fixed. When added to the final population the chromosome is
compared to the previously best solution and the best result is
returned.

3.2 Iterative Insertion of Steiner points
A simplified iterative algorithm was implemented for a baseline
comparison to the StOBGA results. The basic idea can be described
as follows: Starting with a solid obstacle-avoiding spanning tree,
Steiner points are added where two edges meet with an angle
of less than 2𝜋/3 if this can reduce the total length of the tree.
The aim was to build a relatively fast method that creates feasible
solutions avoiding solid obstacles and considering the intersection
of soft obstacles when favourable. The spanning tree is determined
again by using a combination of Prim’s and Dijkstra’s shortest
path algorithms to determine the weights. This method has also
been described by Garrote et al. [9]. The possible Steiner point

locations are then calculated as above for each occurrence of three
nodes building an angle of less than 2𝜋/3. Once the coordinates are
calculated there are four possible cases:

– case 1: The Steiner point is added at its calculated position
and the two edges are removed.

– case 2: The angle occurs at a Steiner point of degree three.
Instead of adding another Steiner point the position of this
one is adjusted using the three adjacent nodes to calculate
the Fermat-Torricelli coordinates.

– case 3: The angle occurs at a Steiner point of degree three.
The Steiner point and its edges are removed and the two
edges are added to connect the three adjacent nodes directly.

– case 4: The current state remains unchanged.
The outcome for each of these cases is determined and the one with
the lowest weighted distance is performed. This step is repeated
until no changes would improve the total weighted distance.

4 EXPERIMENTAL RESULTS
The StOBGA was tested on a total number of 43 instances with
soft obstacles (or a mix of soft and solid obstacles) and 40 instances
with solid obstacles only. The instances contain a range of differ-
ent obstacle shapes and combinations that will be discussed in
greater detail later on. Additionally, the instances include a range
of different sizes, i.e. various number of terminals that need to be
connected. While the above mentioned paper [9] showed results
of their heuristic method on small problem instances with up to
30 terminals and with a maximum of around 40 obstacle corner
points, the StOBGA has also been tested on some larger instances
with 500 and up to 1000 terminals as well as some test cases with a
larger number of obstacle corner points, up to 150. The 18 problem
instances with solid obstacles from Zachariasen et al. [21] that were
used as a comparison by Garrote et al. [9] could be approximated
and the StOBGA was run 30 times on each instance. It could on
average outperform the previous heuristic method for soft obstacles
showing an average error to the exact solution of 0.044% over all
runs and all instances. For most problem cases all of the runs could
approximate the exact solution within three decimal places and
only three instances showed a worst run error of more than 1%, the
overall worst run error on one instance being just under 4%. The
example in Figure 5 shows the solution computed by the StOBGA
to one of the 18 instances used in the paper discussed above. While
the heuristic method developed by Garrote et al. leads to an error
of around 10% on this instance the StOBGA has an average error
of less than 0.2% and a worst case error of 4% over 30 runs on this
instance.

The 83 problem instances that we created to test the StOBGA
can be used to test with other methods that solve the ESTP with
soft (and solid) obstacles1. To make results comparable the original
instance numbers are used throughout this paper.

4.1 Solid Obstacles
As the StOBGA can be applied to both, cases with soft and solid ob-
stacles, a range of problem instances with solid obstacles in various
numbers and shapes have been constructed. The results computed

1https://github.com/ManouRosenberg/SteinerTreeProblemWithSoftObstacles
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Figure 5: Solution computed by the StOBGA to one of the
instances used in [9].

by the StOBGA for some of these are exemplified in Figure 6. The
solved instances demonstrate that the algorithm effectively finds
Steiner point locations and uses obstacle corners to avoid crossing
any part of the solid obstacles.

(a) Solid Instance 7 (b) Solid Instance 10

(c) Solid Instance 20

Figure 6: Some examples with solid obstacles solved by the
StOBGA

Figure 7 illustrates how the algorithm evolves over the genera-
tions. The three lines display the total distance of the best solution
of each generation for the three problem instances in Figure 6. Since
the chosen test cases include different number of obstacles and ter-
minals the algorithm obviously results in solutions of differently
weighted length but the behaviour for each instance is similar. In
the first 50 generations the total distance decreases rapidly while
the later generations show almost no improvement, meaning the
algorithm has converged to a minimised solution. The results in
numbers are presented in Table 2.

Figure 7: Convergence of the StOBGA for some solid prob-
lem instances

Table 2: The STOBGA on some example instances with solid
obstacles

inst. 7 inst. 10 inst. 20

# terminals 8 10 20
# obstacle corners 37 48 15

Total Distance
(best out of 30 runs) 2.3102 2.4211 2.8023
# Steiner points used 3 4 7
# obstacle corners used 11 4 2

4.1.1 Comparison to iterative approach. The iterative method that
was described in Section 3.2 is a simplified heuristic approach for
the ESTP with soft and solid obstacles. As Figure 9 shows, a solution
found by the iterative method still avoids crossing solid obstacles
but can clearly be further optimised in several parts by finding bet-
ter Steiner point locations and integrating more obstacle corners. In
fact, on almost all of the tested instances the StOBGA could deter-
mine a Steiner tree that had a shorter total length than the solution
provided by the iterative method. In only some simple problem
cases both algorithms could reach the same solution. However, the
brief comparison outlined in Table 3 indicates that the iterative
method is significantly faster than the StOBGA and for this exam-
ple case the difference in the total length is less than 5%. Therefore,
the iterative method might be an alternative when a solution must
be found in a timely manner and lower quality solutions can be
accepted.

4.2 Soft Obstacles
Similar to the problem instances with solid obstacles we have devel-
oped a number of different test cases with soft obstacles only and a
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(a) weight: 1.1 (b) weight: 1.25 (c) weight: 1.5 (d) weight: 1.75 (e) weight: 5.0

Figure 8: The StOBGA for soft obstacles with varying obstacle weights

(a) Iterative method (b) StOBGA result

Figure 9: Comparison of the StOBGA and the iterative
method

Table 3: Example case with 10 terminals and 20 obstacle Cor-
ners

Iterative Method StOBGA

# Steiner points 3 4
# included obstacle corners 2 6

Total Distance 2.7540 2.6261
Time [s] 0.066 33.29

mix of both, soft and solid obstacles. Furthermore, we examined dif-
ferent Steiner tree solutions as a result of varying obstacle weights
while the number and position of terminals and obstacles are the
same. A problem instance with four soft obstacles with increasing
crossing weight ranging from 1.1 to 5.0 has been used. The five
different solutions developed by the StOBGA are shown in Figure 8.
In the case displayed in Figure 8a, which has the lowest obstacle
crossing weight, the resulting Steiner tree crosses the obstacles
with a large part of its edges only avoiding an obstacle when the
distance added by the way around the obstacle is small. In case of
a high crossing weight, as used for the obstacles in Figure 8e, the
resulting Steiner tree only intersects an obstacle where a terminal
inside of the obstacle must be connected. Figure 10 outlines how
the algorithm evolves for the different obstacle crossing weights.
While all of the curves look similar, the different lengths of the lines
indicate that the StOBGA needs less generations to find its final
solution when the obstacle weights are either low or high. Low
obstacle weights allow the algorithm to partly ignore the obstacles,
while high obstacle weights causes the algorithm to avoid potential

intersections with the obstacle. In both cases, this limits the number
of possibilities that need to be considered by the StOBGA.

Figure 10: Similar rate of convergence for different obstacle
weights

4.3 Instances of Different Sizes
Finally, the proposed algorithm is also tested on instances of varying
size. The size of an instance of the ESTP with obstacles comprises
two aspects: the number of terminals and the number of obstacle
corners. To be able to scale a problem instance but also keep it
comparable, we choose a fixed set of obstacles and consider the
behaviour of the StOBGA over an increasing number of terminals
ranging from 10 to 100. The test scenarios were developed for solid
and soft obstacles separately but to avoid repetition we illustrate
the results on the soft obstacle cases only. The optimised Steiner
tree for the first and last instance are shown in Figure 11. For each
of the 10 instances the algorithm was run 30 times recording the
total length of the final chromosome, the time and the number of
fitness evaluations of each run. While the time that the algorithm
needs before it converges to a final solution appears to increase
exponentially with the size of the problem instance, the number of
fitness evaluations fluctuates. The length of the error bars included
in Figure 12 also indicate more diverse values within the 30 runs
on each instance.
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(a) 10 terminals (b) 100 terminals

Figure 11: Increasing number of terminals with fixed soft
obstacles

(a) Time [s] (b) Number of fitness evaluations

Figure 12: Increasing number of terminals with fixed soft
obstacles

To show that the StOBGA also generates feasible solutions for
larger problem instances, Figure 13 demonstrates the solutions to
an instance with soft obstacles including 150 corner nodes and
a solution to a solid obstacle instance with 500 terminals. While
the computed solution for the latter does not intersect any of the
obstacles’ boundaty edges, Figure 14 outlines that the algorithm
converges significantly slower in the case of such a large instance.
Depending on the application, this might not necessarily be a prob-
lem. When computing a Steiner minimum tree with obstacles for
planning an electricity network (as in [6]) or for example when
constructing a communication network (see [9]) the planning phase
can take several years, so the algorithm’s slower run time on large
instances does not pose a restriction.

(a) Instance with 150 obstacle cor-
ners

(b) Instance no. 501 with 500 ter-
minals

Figure 13: Examples with large numbers of terminals or ob-
stacle corners

Figure 14: Slower convergence for larger instance

5 CONCLUSIONS
The Euclidean Steiner tree problem with soft and solid obstacles has
several potential real-life applications. Despite its useful properties
the problem has not been approached much yet. In the 2019 paper
by Garrote et al. [9], the authors claim that they are the first to
attempt this problem. While there are some approaches attempting
to solve the Euclidean Steiner tree problem with solid obstacles
the literature on this problem for soft obstacles indeed remains
sparse. The complexity of the problem comes with increased diffi-
culty for deterministic methods to obtain good solutions. In cases
like this evolutionary algorithms have been applied successfully in
the past due to their adaptive nature and flexibility. Therefore, a
genetic algorithm (StOBGA) with problem-specific representation
and operators was introduced to solve the ESTP with soft and solid
obstacles. We have shown that the proposed algorithm performs
well on a range of different scenarios with soft and solid obstacles. It
has also successfully been applied to larger problem instances with
up to 1000 terminals. A versatile range of test instances has been
created to allow future approaches to this problem to be tested and
compared. This set of test instances could potentially be extended to
also contain problem instances of obstacles with non-homogeneous
weight. These obstacles could for example represent different land-
scapes in an infrastructure network planning problem. Testing and
potentially adapting the StOBGA on these problems with more
complex soft obstacles may be interesting to investigate in the
future.
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