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ABSTRACT
Many real-world problems are notoriously multi-objective and NP-
hard. Hence, there is a constant striving for optimizers capable of
solving such problems effectively. In this paper, we examine the
Multi-Objective Parameter-less Population Pyramid (MO-P3). MO-
P3 is based on the Parameter-less Population Pyramid (P3) that was
dedicated to solving single-objective problems. P3 employs linkage
learning to decompose the problem and uses this information dur-
ing its run. P3 maintains many different linkage information sets,
which is the key to effectively solve the problems of the overlap-
ping nature, i.e., the problems whose variables form a large and
complicated network of dependencies rather than additively sep-
arable blocks. MO-P3 inherits the features of its predecessor and
employs both linkage learning and linkage diversity maintenance
to effectively solve hard multi-objective problems, which includes
both: well-known test problems and NP-hard real-world problems.
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1 INTRODUCTION
In this paper, we consider binary-encoded multi-objective optimi-
sation (MO) problems. We are to minimize𝑚 objective functions
𝑓𝑖 (𝑥), 𝑖 ∈ {0, 1, . . . ,𝑚− 1}. For each binary solution vector 𝑥 , we ob-
tain the objective value vector 𝑓 (𝑥) = (𝑓0 (𝑥), 𝑓1 (𝑥), . . . , 𝑓𝑚−1 (𝑥)).
We say that 𝑥1 dominates 𝑥2 if and only if 𝑓𝑖 (𝑥1) ≤ 𝑓𝑖 (𝑥2) ∀𝑖 ∈
{0, 1, . . . ,𝑚 − 1} and 𝑓 (𝑥1) ≠ 𝑓 (𝑥2). If a solution is not dominated
by another solution, it is called a Pareto-optimal solution. A set
of all Pareto-optimal solutions P𝑆 may be large or even infinite
(the latter in case of real-coded search spaces). Therefore, usually
in MO, the objective is to find a satisfiable approximation of the
Pareto-optimal front P𝐹 that is a set of objective value vectors of
all Pareto-optimal solutions.

In single-objective optimization of discrete problems, many state-
of-the-art Genetic Algorithms (GAs) employ linkage learning (LL)
[1, 3, 7]. LL is supposed to discover an underlying problem structure.
This knowledge is then used to improve the evolutionary search.
As shown in [6], the quality of the problem decomposition may
be crucial to solving GA-hard problems effectively. However, in
MO, the use of LL is a more challenging task. For instance, in bi-
objective optimization, we may consider only the first or only the
second objective, or we can use the weight vector to combine two
objectives and produce a single-objective problem. Each of these
problems may have a different underlying structure. Thus, each
of these problems may require different problem decomposition
information (linkage).

The above difficulties are one of the reasons why a problem de-
composition is not a frequent choice for improving the effectiveness
of MO-dedicated methods. In [4], the Multi-objective Gene-pool Op-
timal Mixing Evolutionary Algorithm (MO-GOMEA) is proposed.
In each iteration, MO-GOMEA clusters its population based on
the individuals’ distances in the objective space. For each of such
subpopulations, linkage is discovered separately. As shown in [4],
an LL-enhanced GA may obtain excellent results while applied to
solving MO problems. Therefore, in this paper, we analyze MO-P3
that was originally proposed in [5].



GECCO ’21 Companion, July 10–14, 2021, Lille, France

25 50 100 200 400102

103

104

105

106

107

Problem size

(a) Trap-Inv. Trap

25 50 100 200 400102

103

104

105

106

107

Problem size

(b) LOTZ

6 12 25 50101

102

103

104

105

106

107

Problem size

(c) MAXCUT

100 250 500 750101
102
103
104
105
106
107
108

Problem size

(d) Knapsack

92 184 276 368 460 552
0

0.2

0.4

0.6

0.8

1 ·10−3

Problem size

(e) MOBCPP

MO-P3 MO-GOMEA MOEA/D NSGA-II

Figure 1: Scalability of MO-P3 and competing methods (Fig.1a-1c - median FFE until optimal PF; Fig.1d and 1e - median IGD)

2 MO-P3
MO-P3 is based on P3 [3] that is its single-objective predecessor.
In P3, the population structure resembles a pyramid. At each iter-
ation, a new individual is added to the first level of a population
pyramid. Then, the new individual is mixed with the individuals on
the subsequent pyramid levels using Optimal Mixing (OM) [4, 5].
Whenever OM improves the individual, its improved copy is added
to the higher pyramid level. Thus, we may say that the new indi-
vidual climbs up the pyramid. Each pyramid level has its separate
linkage. During OM, P3 uses the linkage that refers to the level of
the individual the new individual is mixed with.

The general procedure of MO-P3 is similar to P3. At the begin-
ning of each iteration, MO-P3 randomly chooses the weight vector
and transforms the MO problem into a single-objective one. Then,
an individual climbs up the pyramid in the same way as in P3.
Thanks to the maintenance of many linkages (inherited from P3),
MO-P3 is capable of supporting high linkage diversity [7]. This issue
has been recently identified as crucial for the effective optimization
of so-called overlapping problems [5, 7]. MO-P3 inherits this fea-
ture from P3, but it also uses it differently. Instead of dividing the
population into different clusters (e.g., MO-GOMEA [4]), in MO-P3,
we assume that at least some part of the various linkages main-
tained by MO-P3 is good enough to successfully mix the individual
that is heading towards the part of Pareto front (PF) defined by the
weight vector chosen at the beginning of the iteration. The results
presented in the next section show that MO-P3 is competitive to
the state-of-the-art methods.

3 RESULTS
To check the performance of MO-P3, we compare it with MO-
GOMEA, NSGA-II [2], and MOEA/D [8]. We employ the same theo-
retical problems as in [4] and the Multi-Objective Bulk Commodity
Production Problem (MOBCPP) from [5]. As quality measures, we
use the number of Fitness Function Evaluations (FFE) necessary to
find an optimal PF (Fig.1a-1c) and the Inverted Generational Dis-
tance (IGD, Fig.1d and 1e) [4, 5]. The lower values of these measures
refer to the results of a higher quality.

As presented in Fig. 1, MO-P3 outperforms the competing meth-
ods for trap-inverted trap problem, Leading Ones Trailing Zeroes

(LOTZ) and MAXCUT. For all these problems, MO-P3 requires the
lowest FFE to find an optimal PF. Note that some of the compet-
ing methods cannot find the optimal PF even for small instances
of the considered benchmarks. MO-P3 is outperformed only for
the MO-knapsack problem and only by MO-GOMEA (the second
considered MO-dedicated GA that employs LL). Finally, for the
MOBCPP, both LL-using methods significantly outperform both
the remaining competing GAs. Note that MO-P3 performs better
than MO-GOMEA, especially for the larger problem sizes.

4 CONCLUSION
MO-P3 is a novel MO-dedicated GA that employs LL and is com-
petitive to other state-of-the-art GAs. The experiments show that
the use of problem-decomposition techniques in MO is a promising
direction for obtaining the high-quality results.
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