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ABSTRACT
A challenging problem in both engineering and computer science is

that of minimising a function for which we have no mathematical

formulation available, that is expensive to evaluate, and that con-

tains continuous and integer variables, for example in automatic

algorithm configuration. Surrogate-based algorithms are very suit-

able for this type of problem, but most existing techniques are

designed with only continuous or only discrete variables in mind.

Mixed-Variable ReLU-based Surrogate Modelling (MVRSM) is a

surrogate-based algorithm that uses a linear combination of recti-

fied linear units, defined in such a way that (local) optima satisfy

the integer constraints. Unlike other methods, it also has a constant

run-time per iteration. This method outperforms the state of the

art on several synthetic benchmarks with up to 238 continuous

and integer variables, and achieves competitive performance on

two real-life benchmarks: XG-Boost hyperparameter tuning and

Electrostatic Precipitator optimisation.

CCS CONCEPTS
•Mathematics of computing→Mathematical optimization;
• Computing methodologies→ Active learning settings; Search
methodologies; • Theory of computation → Mixed discrete-
continuous optimization.
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1 INTRODUCTION
Surrogate modelling techniques such as Bayesian optimisation have

a long history of success in optimising expensive black-box ob-

jective functions [16, 20, 21]. These are functions that have no

mathematical formulation available and take some time or other

resource to evaluate, which occurs for example when they are the

result of some simulation, algorithm or scientific experiment. Often

there is also randomness or noise involved in these evaluations. By

approximating the objective with a cheaper surrogate model, the

optimisation problem can be solvedmore efficiently. This also opens

up possibilities to apply evolutionary algorithms on problems with

expensive objectives, leading to surrogate-assisted evolutionary

algorithms [15].

While most attention in the surrogate modelling literature has

gone to problems in continuous domains, recently solutions for com-

binatorial optimisation problems have started to arise [1, 2, 6, 11, 27].

Yet a significant number of problems [7] contain a mix of continu-

ous and discrete variables, for example material design [14], optical

filter optimisation [30], and automated machine learning [13]. The

literature on surrogate modelling techniques for these types of

problems is even more sparse than for purely discrete problems.

Discretising the continuous variables to make use of a purely dis-

crete surrogate model, or applying rounding techniques to make

use of a purely continuous surrogate model are both seen as com-

mon but inadequate ways to solve the problem [11, 25]. The few

existing techniques that can deal with a mixed variable setting still

have considerable room for improvement in accuracy or efficiency.

When the surrogate model is not expressive enough and does not

model any interaction between the different variables, it might per-

form poorly [3], especially when many variables are involved. On

the other hand, most Bayesian optimisation techniques do model

the interaction between all variables, but use a surrogate model that

grows in size every iteration. This causes those algorithms to be-

come slower over time, potentially even becoming more expensive

than the expensive objective itself.

Our main contribution is a surrogate modelling algorithm called

Mixed-Variable ReLU-based SurrogateModelling (MVRSM) that can

deal with problems with continuous and integer variables efficiently

and accurately. This is realised by using a continuous surrogate

model that:

• models interactions between all variables,
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• does not grow in size over time and can be updated efficiently,

and

• has the guarantee that any local optimum is located in a

point where the integer constraints are satisfied.

The first point ensures that the model remains accurate, even for

large-scale problems. The second point ensures that the algorithm

does not slow down over time, as the number of basis functions

and free parameters of the surrogate model remains fixed. Finally,

the last point eliminates the need for rounding techniques, and also

eliminates the need for repeatedly using integer programming as is

done in [9]. Though the model used by MVRSM does not guarantee

that integer constraints are satisfied everywhere, it is constructed

in such a way that these constraints are satisfied in the local optima

of the model.

Besides the proposed algorithm, the contributions include a proof

that the local optima of the proposed surrogate model are integer-

valued in the intended variables. We also include empirical evidence

of the effectiveness of this method on several large-scale synthetic

benchmarks from related work and two real-life benchmarks: XG-

Boost hyperparameter tuning and Electrostatic Precipitator optimi-

sation.

2 PRELIMINARIES
This work considers the problem of finding the minimum of a

mixed-variable black-box objective function 𝑓 : R𝛾𝑐 × Z𝛾𝑑 → R
that can only be accessed via expensive and noisy measurements

𝑦 = 𝑓 (x𝑐 , x𝑑 ) + 𝜖 . That is, we want to solve

min

x𝑐 ∈𝑋𝑐 ,x𝑑 ∈𝑋𝑑

𝑓 (x𝑐 , x𝑑 ), (1)

where 𝛾𝑐 is the number of continuous variables, 𝛾𝑑 the number

of integer variables, 𝜖 ∈ R is a zero-mean random variable with

finite variance, and 𝑋𝑐 ⊆ R𝛾𝑐 and 𝑋𝑑 ⊆ Z𝛾𝑑 are the bounded

domains of the continuous and integer variables respectively. In

this work, the lower and upper bounds of either 𝑋𝑐 or 𝑋𝑑 for the

𝑖-th variable are denoted 𝑙𝑖 and 𝑢𝑖 respectively. Since 𝑋𝑑 ⊆ Z𝛾𝑑 ,
we call x𝑑 ∈ Z𝛾𝑑 the integer constraints. Expensive in this context

means that it takes some time or other resource to evaluate 𝑦, as is

the case in for example hyperparameter tuning problems [3] and

many engineering problems [5, 27]. Therefore, we wish to treat (1)

using as few queries as possible.

The problem is usually solved with a surrogate modelling tech-

nique such as Bayesian optimisation [21]. In this approach, the

data samples (x𝑐 , x𝑑 , 𝑦) are used to approximate the objective 𝑓

with a surrogate model 𝑔. Usually, 𝑔 is a machine learning model

such as a Gaussian process, random forest or a weighted sum of

nonlinear basis functions. In any case, it has an exact mathematical

formulation, which means that 𝑔 can be optimised with standard

techniques as it is not expensive to evaluate and it is not black-box.

If 𝑔 is indeed a good approximation of the original objective 𝑓 , it

can be used to suggest new candidate points of the search space

𝑋𝑐 × 𝑋𝑑 where 𝑓 should be evaluated. This happens iteratively,

where in every iteration 𝑓 is evaluated, the approximation 𝑔 of 𝑓 is

improved, and optimisation on 𝑔 is used to suggest a next point to

evaluate 𝑓 .

3 RELATEDWORK
The main focus of this work is to evaluate a novel surrogate model

that enforces the integer constraints in the mixed-variable setting

described in the previous section. For this evaluation we utilise a

basic surrogate-based optimisation framework similar to Bayesian

optimisation. In Bayesian optimisation, Gaussian processes are the

most popular surrogate model [21]. On the one hand, these surro-

gate models lend themselves well to problems with only continuous

variables, but not so much when they include integer variables as

well. On the other hand, there have been several recent approaches

to develop surrogate models for problems with only discrete vari-

ables [1, 6, 11, 27].

The mixed-variable setting is not as well-developed, although

there are some surrogate modelling methods that can deal with

this. We start by mentioning two well-known methods, namely

SMAC [12] and HyperOpt [3], followed by more recent work, along

with their strengths and shortcomings. We end this section with

recent work on discrete surrogate models that we make use of

throughout this paper.

SMAC [12] uses random forests as the surrogate model, though

the software also supports Gaussian processes. Random forests

are good at capturing interactions between the variables, but the

main disadvantage is that they are less accurate in unseen parts

of the search space, at least compared to other surrogate models.

HyperOpt [3] uses a Tree-structured Parzen Estimator as the sur-

rogate model. This algorithm is known to be fast in practice, has

been shown to work in settings with over 200 variables, and also

has the ability to deal with conditional variables, where certain

variables only exist if other variables take on certain values. Its

main disadvantage is that complex interactions between variables

are not modelled. Most other existing Bayesian optimisation algo-

rithms have to resort to rounding or discretisation in order to deal

with the mixed variable setting, which both have their disadvan-

tages [11, 25].

More recently, the CoCaBO algorithm was proposed [25], which

is developed for problems with a mix of continuous and categor-

ical variables. It makes use of a mix of multi-armed bandits and

Gaussian processes. Similar ideas are utilised in [22, 28]. Another

interesting new research direction is to combine the advantages of

Gaussian processes and artificial neural networks [17], although

more research is required to make this computationally feasible for

larger problems. Other research groups have focused their attention

on mixed-variable problems with multiple objectives [14, 30].

Most of the methods mentioned here suffer from the drawback

that the surrogate model grows while the algorithm is running,

causing the algorithms to slow down over time. This problem has

been addressed and solved for the continuous setting in the DONE

algorithm [5] and for the discrete setting in the COMBO [27] and

IDONE algorithms [6] by making use of parametric surrogate mod-

els that are linear in the parameters. The MiVaBO algorithm [9] is,

to the best of our knowledge, the first algorithm that applies this

solution to the mixed variable setting. It relies on an alternation

between continuous and discrete optimisation to find the optimum

of the surrogate model.

In contrast with MiVaBO, the IDONE algorithm has the theo-

retical guarantee that any local minimum of the surrogate model
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satisfies the integer constraints, so only continuous optimisation

needs to be used. This is achieved by using a surrogate model con-

sisting of a linear combination of rectified linear units (ReLUs), a

popular basis function in the machine learning community. Us-

ing only continuous optimisation is much more efficient than the

approach used in MiVaBO. However, this theory only applies to

problems without continuous variables.

4 MIXED-VARIABLE RELU-BASED
SURROGATE MODELLING

In this section, we use the theory from the IDONE algorithm to de-

velop a ReLU-based surrogate model for the mixed-variable setting.

This is far from trivial, as a wrong choice of surrogate model might

result in limited interaction between all variables, in not being able

to optimise the surrogate model efficiently, or in not being able to

satisfy the integer constraints.

Below we present the Mixed-Variable ReLU-based Surrogate

Modelling (MVRSM) algorithm. This algorithm makes use of a

surrogate model based on rectified linear units and includes inter-

actions between all variables, is easy to update and to optimise,

and has its local optima situated in points that satisfy the integer

constraints.

4.1 Proposed surrogate model
As in related work [4, 6, 9], we use a continuous surrogate model

𝑔 : R𝛾𝑐+𝛾𝑑 → R:

𝑔(x𝑐 , x𝑑 ) =
𝐷∑
𝑘=1

𝑐𝑘𝜙𝑘 (x𝑐 , x𝑑 ), (2)

with 𝐷 being the number of basis functions. The model is linear

in its own parameters 𝑐 , which allows it to be trained with linear

regression. We choose the basis functions 𝜙 in such a way that all

local optima (x∗𝑐 , x∗𝑑 ) of the model satisfy x𝑑 ∈ Z𝛾𝑑 , as explained
later in this section. This leads to an efficient way of finding the

minimum of the surrogate model for mixed variables. We choose

rectified linear units as the basis functions:

𝜙𝑘 (x𝑐 , x𝑑 ) = max{0, 𝑧𝑘 (x𝑐 , x𝑑 )}, (3)

𝑧𝑘 (x𝑐 , x𝑑 ) = [v𝑇
𝑘
w𝑇
𝑘
]
[
x𝑐
x𝑑

]
+ 𝑏𝑘 , (4)

with v𝑘 ∈ R𝛾𝑐 , w𝑘 ∈ R𝛾𝑑 , and 𝑏𝑘 ∈ R. This causes the surro-

gate model 𝑔 to be piece-wise linear. There are four strategies for

choosing the model parameters v𝑘 ,w𝑘 , 𝑏𝑘 :

• optimise them together with the weights 𝑐𝑘 ,

• choose them directly according to the data samples in a

non-parametric way using kernel basis functions [21, 25],

• choose them randomly once and then fix them [4, 5, 9, 27],

or

• choose them according to the variable domains 𝑋𝑐 , 𝑋𝑑 and

then fix them [6].

The first option is not recommended as nonlinear optimisation

would have to be used, while linear regression techniques can be

used for the parameters 𝑐𝑘 . The second option has the downside

that more and more basis functions need to be added as data sam-

ples are gathered, making the surrogate model grow in size while

the algorithm is running. This is what happens in most Bayesian

optimisation algorithms, which causes them to slow down over

time. The third option fixes this problem, but even though there are

good approximation theorems available for a random choice of the

parameters [5, 23], it does not give any guarantees on satisfying the

integer constraints. The fourth option does, but only for problems

that have no continuous variables. Therefore, we propose to use a

mix of the third and fourth option, getting the best of both options,

as explained below.

We first state the required definitions, followed by our main

theoretical contribution.

Definition 1 (Integer 𝑧-function). An integer 𝑧-function 𝑧𝑘
is chosen according to (4) with v = 0 and withw and 𝑏 having integer
values chosen according to Algorithm 2 from [6]. That means it has
one of the following forms: 𝑧𝑘 (x𝑐 , x𝑑 ) = 𝑧𝑘 (x𝑑 ) = ±(𝑥𝑖 − 𝛼), with 𝑥𝑖
an element from x𝑑 and 𝛼 ∈ Z chosen between 𝑙𝑖 and 𝑢𝑖 (the lower
and upper bounds of 𝑥𝑖 ), or 𝑧𝑘 (x𝑐 , x𝑑 ) = 𝑧𝑘 (x𝑑 ) = ±(𝑥𝑖 − 𝑥𝑖−1 − 𝛼),
for 𝑖 > 1 and 𝛼 ∈ Z chosen between 𝑙𝑖 − 𝑢𝑖−1 and 𝑢𝑖 − 𝑙𝑖−1. This
results in a basis function that depends only on one or two subsequent
integer variables and does not depend on any continuous variables.

By making use of the integer 𝑧-functions that are shaped accord-

ing to the discrete part of the search space, we have a surrogate

model with basis functions that depend on the integer variables

only. If we would add basis functions that depend only on the con-

tinuous variables, the possible interaction between continuous and

integer variables would not be modelled. But if we add randomly

chosen mixed basis functions as in [9], then we might lose the

guarantee that integer constraints are satisfied in local minima. See

Figure 1 (left).

To avoid both problems, we propose to add mixed basis functions

as in [9], but we choose them pseudo-randomly rather than ran-

domly. This benefits from the success that randomly chosen weights

have had in the past [4, 5, 9, 27], while avoiding the problem from

Figure 1 (left).

Definition 2 (Mixed 𝑧-function). A mixed 𝑧-function 𝑧𝑘 is

chosen according to (4) with𝜔𝑘 =

[
v𝑘
w𝑘

]
sampled from a set Ω that

contains 𝛾𝑐 random vectors in R𝛾𝑐+𝛾𝑑 with a continuous probability
distribution 𝑝𝜔 , and 𝑏𝑘 is then chosen from a random continuous
probability distribution 𝑝𝑏 which depends on𝜔𝑘 . This results in a basis
function that depends on all continuous and on all integer variables.

The probability distributions 𝑝𝜔 and 𝑝𝑏 are chosen in such a way

that the mixed 𝑧-functions are never completely outside the domain

𝑋𝑐 × 𝑋𝑑 . (The exact procedure for choosing them can be found in

the technical appendix.) As a result of the definition, all mixed

𝑧-functions will be parallel to one of the 𝛾𝑐 random vectors. See

Figure 1 (right). This gives the following result, which guarantees

the unique property of this continuous surrogate model, i.e., that

all local minima are integer-valued in the intended variables:

Theorem 1. If the surrogate model 𝑔 consists entirely of integer
and mixed 𝑧-functions, then any strict local minimum (x∗𝑐 , x∗𝑑 ) of 𝑔
satisfies x𝑑 ∈ Z𝛾𝑑 .
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𝑧1 (x𝑑 ) = 0

𝑧2 (x𝑑 ) = 0

𝑧3 (x𝑐 , x𝑑 ) = 0

𝑧4 (x𝑐 , x𝑑 ) = 0

x𝑑

x𝑐

1 2 3

1

2
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𝑧1 (x𝑑 ) = 0

𝑧2 (x𝑑 ) = 0

𝑧3 (x𝑐 , x𝑑 ) = 0

𝑧4 (x𝑐 , x𝑑 ) = 0

x𝑑

x𝑐

Figure 1: (left) Example of the problem with mixed basis
functions for 𝛾𝑑 = 1 integer (x𝑑 ) and 𝛾𝑐 = 1 continuous vari-
able (x𝑐 ). All local minima are located in points where two
lines 𝑧𝑘 (x𝑐 , x𝑑 ) = 0 intersect. This works fine for the inter-
sections between the randomly chosen 𝑧-functions 𝑧3, 𝑧4 and
the integer 𝑧-functions 𝑧1, 𝑧2, but not for the intersection of
𝑧3 and 𝑧4, as in that point x𝑑 takes on a non-integer value.
(right) A solution to the problem is to use mixed 𝑧-functions
that are parallel to a number of linearly independent vectors
equal to 𝛾𝑐 . This ensures that all intersections are located in
points where x𝑑 is integer.

This result makes it possible to apply continuous optimisation to

find a minimum of our surrogate model. This is much more efficient

than having to solve a mixed-integer program, as discrete or mixed

optimisation problems are generally more difficult to solve than

continuous optimisation problems [29], and it also avoids having

to resort to rounding which is sub-optimal. As the rectified linear

units are linear almost everywhere, the surrogate model can be

optimised relatively easily with a gradient-based technique such as

L-BFGS [29] or other standard methods.

Before presenting the proof, we state two results that are relevant

to our approach:

Lemma 1. Any strict local minimum of 𝑔 is located in a point
(x∗𝑐 , x∗𝑑 ) with 𝑧𝑘 (x

∗
𝑐 , x∗𝑑 ) = 0 for (𝛾𝑐 + 𝛾𝑑 ) linearly independent func-

tions 𝑧𝑘 [6].

This follows from the fact that 𝑔 is piece-wise linear, so any

strict local minimum must be located in a point where the model is

nonlinear in all directions.

Lemma 2. If 𝑧𝑘 (x𝑑 ) = 0 for 𝛾𝑑 different linearly independent
integer 𝑧-functions 𝑧𝑘 , then x𝑑 ∈ Z𝛾𝑑 .

Proof. The proof follows exactly the same reasoning as the

proof of [6, Thm. 2 (II)]. □

We now show the proof of Theorem 1 below.

Proof of Theorem 1. FromLemma 1 it follows that 𝑧𝑘 (x∗𝑐 , x∗𝑑 ) =
0 for (𝛾𝑐 + 𝛾𝑑 ) linearly independent 𝑧𝑘 . Since all mixed 𝑧-functions

are parallel to one of the 𝛾𝑐 randomly chosen vectors, there can

only be 𝛾𝑐 linearly independent mixed 𝑧-functions. As all other

𝑧-functions are integer 𝑧-functions, this means that there are 𝛾𝑑
linearly independent integer 𝑧-functions. The result now follows

from Lemma 2. □

4.2 MVRSM details
In the proposed algorithm, we first initialise the model by adding

basis functions consisting of integer and mixed 𝑧-functions. The

procedure of generating integer 𝑧-functions is the same as in the ad-

vanced model of [6], which gives𝐷𝑑 = 1+4|𝑋𝑑 |− |𝑋𝑑 [1] |− |𝑋𝑑 [𝛾𝑑 ] |
basis functions in total, with 𝑋𝑑 [𝑖] the domain of the 𝑖-th integer

variable. We then generate 𝐷𝑐 mixed 𝑧-functions as in Def. 2 (see

also the technical appendix). Since our approach allows us to choose

any number of mixed 𝑧-functions without losing the guarantee of

satisfying the integer constraints, computational resources are the

only limiting factor here. We choose 𝐷𝑐 = ⌈𝛾𝑐 · 𝐷𝑑/𝛾𝑑 ⌉ to have the

same number of mixed 𝑧-functions per continuous variable as the

number of integer 𝑧-functions per integer variable.

The algorithm proceeds with an iterative procedure consisting

of four steps: 1) evaluating the objective, 2) updating the model,

3) finding the minimum of the model, and 4) performing an explo-

ration step. Evaluating the objective 𝑓 gives a data sample (x𝑐 , x𝑑 , 𝑦).
The update procedure of the surrogate model is performed with

the recursive least squares algorithm [26], which is possible be-

cause the model is linear in its parameters 𝑐𝑘 . This procedure has

a computational complexity of 𝑂 (𝐷2), where 𝐷 = 𝐷𝑑 + 𝐷𝑐 is the

number of basis functions. Note that this number stays fixed for the

whole duration of the algorithm, which causes the proposed algo-

rithm to have a fixed computation time per iteration. We also add a

regularisation factor of 10
−8

in the recursive least squares update

for numerical stability, using 𝐿2 regularisation. Furthermore, the

weights 𝑐𝑘 from (2) are initialised as 𝑐𝑘 = 1 for the basis functions

corresponding to integer 𝑧-functions, and as 𝑐𝑘 = 0 for the basis

functions corresponding to the mixed 𝑧-functions (see Appendix).

The minimum of the model is found with the L-BFGS method [29],

which is improved by giving an analytical representation of the

Jacobian. For this purpose, we define [ 𝑑
𝑑𝑥

max{0, 𝑥}] (0) = 0.5, as

the rectified linear units are non-differentiable in 0. We run the

L-BFGS method for 20 sub-iterations only. The reason for this is

that the surrogate model is only an approximation of the objective,

so finding a promising area of the search space is more important

than finding the exact minimum of the surrogate model. Since the

number of basis functions in the model stays fixed, the computa-

tional complexity of this step also does not grow over time. Lastly,

we perform an exploration step on the point (x∗𝑐 , x∗𝑑 ) found by the

L-BFGS algorithm, where the point is given a small perturbation

(𝛿𝑐 , 𝛿𝑑 ) so that local optima can be avoided (see technical appendix).

Without such a step, the surrogate model might return the exact

same point multiple times and get stuck in its own local optimum.

Every iteration ends with suggesting the new point for another

evaluation of the objective, until the objective is evaluated 𝑁 times

in total. The whole algorithm is shown in Algorithm 1.

5 EXPERIMENTS
To see if the proposed algorithm overcomes the drawbacks of ex-

isting surrogate modelling algorithms for problems with mixed

variables in practice, we compare MVRSM with different state-of-

the-art methods and random search on several synthetic bench-

marks from related literature, with mixed-variable problems of

up to 238 variables, and on two real-life benchmarks: XGBoost

hyperparameter tuning and Electrostatic Precipitator optimisation.

1854



Black-box Mixed-Variable Optimisation Using a Surrogate Model that Satisfies Integer Constraints GECCO ’21 Companion, July 10–14, 2021, Lille, France

Algorithm 1 MVRSM algorithm

Input Objective 𝑓 , domains 𝑋𝑐 , 𝑋𝑑 , budget 𝑁

Output x(𝑁 )
𝑐 , x(𝑁 )

𝑑
, 𝑦 (𝑁 )

Initialise surrogate 𝑔 with integer and mixed 𝑧-functions

Initialise 𝑐𝑘 = 1 for integer 𝑧-functions and 𝑐𝑘 = 0 for mixed

𝑧-functions, initialise other recursive least squares parameters

for 𝑛 = 1, . . . , 𝑁 do
Evaluate 𝑦 (𝑛) = 𝑓

(
x(𝑛)𝑐 , x(𝑛)

𝑑

)
+ 𝜖

Update the parameters of 𝑔 with data point

(
x(𝑛)𝑐 , x(𝑛)

𝑑
, 𝑦 (𝑛)

)
using recursive least squares

Solvemin𝑔(x𝑐 , x𝑑 ) over domains𝑋𝑐 ,𝑋𝑑 with relaxed integer

constraints using L-BFGS

Explore around the found solution (x∗𝑐 , x∗𝑑 ) by adding random
perturbation (𝛿𝑐 , 𝛿𝑑 ) ∈ R𝛾𝑐 × Z𝛾𝑑 :

(
x(𝑛+1)𝑐 , x(𝑛+1)

𝑑

)
= (x∗𝑐 , x∗𝑑 ) +

(𝛿𝑐 , 𝛿𝑑 )

In the comparison with other methods, we consider state-of-

the-art surrogate modelling algorithms that are able to deal with a

mixed-variable setting, have code available, and are concerned with

single-objective problems. We compare our method with Hyper-

Opt [3] (HO) and SMAC [12] as two popular and established surro-

gate modelling algorithms that can deal with mixed variables, and

we compare with CoCaBO [25] as a more recent method that can

deal with a mix of continuous and categorical variables. As is good

practice in surrogate modelling, we include random search (RS)

in the comparisons as a baseline, as well as a standard Bayesian

optimisation (BO) algorithm, where we use rounding on the integer

variables when calling the objective function.

Though we consider MiVaBO [9] also to be part of the state of

the art, at the time of writing the authors have not made their code

available yet. We still include their benchmarks in the comparison.

As MiVaBO uses a more expensive optimisation method, we expect

MVRSM to outperform MiVaBO in terms of efficiency, but further

research is required to confirm this. We make no comparison with

multi-fidelity methods such as Hyperband [19] or BOHB [10], or

with the multi-objective methods from the related work section, as

we did not find a way to make a fair comparison for single-objective

single-fidelity problems.

5.1 Implementation details
To enable the use of categorical variables in MVRSM, we convert

those variables to integers. To enable the use of integer or binary

variables for CoCaBO, we convert those variables to categorical

variables. For CoCaBO, we chose a mixture weight [25, Eq. (2)] of

0.5 as this seemed to give the best results on synthetic benchmarks.

SMAC is put in deterministic mode instead of the default, as this

improved the results in all of our experiments: the default often

repeats function evaluations at the same location, leading to an

inefficient method. The random search uses HyperOpt’s implemen-

tation. The code for HyperOpt
1
, SMAC

2
, CoCaBO

3
, and MVRSM

4

1
https://github.com/hyperopt/hyperopt

2
https://github.com/automl/SMAC3

3
https://github.com/rubinxin/CoCaBO_code

4
DOI removed for double-blind reviewing

is availabe online. For Bayesian Optimisation we use an existing

implementation
5
which uses Gaussian processes with a Matérn

5/2 kernel and the Upper Confidence Bound acquisition function

` (x𝑐 , x𝑑 )+^𝜎 (x𝑐 , x𝑑 ), with ` and 𝜎 the expected value and standard

deviation of the Gaussian process respectively, and with ^ = 2.576

as a default hyperparameter. Experiments were done in Python on

an Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with 32 GB of RAM,

and each experiment was performed using only a single CPU core.

In line with [25], all methods start with 24 initial random guesses

from a uniform distribution, but these are not shown in the figures.

All methods are compared using the same number of iterations,

and the best function value found at each iteration is reported,

averaged over multiple runs. The standard deviations are indicated

with shaded areas in the relevant figures. The computation time of

the methods is also reported for every iteration.

5.2 Results on relevant synthetic benchmarks
In this section we investigate the drawbacks of other algorithms

that were mentioned in Section 3, and see if MVRSM overcomes

them. The main drawbacks that were mentioned were: algorithms

slowing down over time, limited interaction between variables, and

having to resort to rounding. We make a comparison on several

large-scale synthetic functions from related literature, including

literature on the competing algorithms.

The Ackley functions is a well-known benchmark in the black-

box optimisation community that can be scaled to any dimension
6
.

We choose a dimension of 53, but 50 of the variables were adapted

to binary variables in 𝑋𝑑 = {0, 1}50. The 3 continuous variables

were limited to 𝑋𝑐 = [−1, 1]3. This causes the problem to be of a

similar scale as the problem of variational auto-encoder hyperpa-

rameter tuning after binarising the discrete hyperparameters [9,

Sec. 4.2]. Uniform noise in [0, 10−6] was added to each function

evaluation. We also investigated a publicly available mixed-variable

benchmark function, namely cvxnonsep_psig40 from the MINLP

library
7
. Finally, we investigated a randomly generated synthetic

test function from [9, Appendix C.1, Gaussian weights variant].

We scaled this problem up to have 119 integer and 119 continuous

variables. No bounds were reported for this problem so we set them

to 𝑋𝑑 = {0, 1, 2, 3}119 for the integer variables and 𝑋𝑐 = [0, 3]119
for the continuous variables.

Figures 2-4 show the performance of the different algorithms

on these three benchmarks, both the best found objective at each

iteration (left plots) as well as the computation time used by the

algorithm at each iteration (right plots). Note that the performance

of surrogate modelling algorithms is usually plotted against the

number of function evaluations (iteration), as this is assumed to be

the bottleneck in expensive optimisation problems, but we are still

interested in their computation time as well. MVRSM clearly outper-

forms the other methods in terms of accuracy, and the computation

times of BO and CoCaBO become prohibitively large. Thus, BO and

CoCaBO are not evaluated on all problems. The slowdown of the

other surrogate-based algorithms except SMAC is clearly visible,

with their computation time increasing every iteration. Random

5
https://github.com/fmfn/BayesianOptimization

6
https://www.sfu.ca/~ssurjano/optimization.html

7
https://www.minlplib.org/cvxnonsep_psig40.html
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Figure 2: Results on the Ackley53 benchmark (50 binary, 3 continuous), averaged over 7 runs. Note that the figure has a loga-
rithmic scale. This problem is of a similar scale as variational auto-encoder hyperparameter tuning [9, Sec. 4.2] .

0 200 400 600 800 1000
Iteration

10
1

10
2

10
3

O
bj

ec
tiv

e

RS
HO

SMAC
BO

MVRSM

0 200 400 600 800 1000
Iteration

10
−2

10
−1

10
0

10
1

C
om

pu
ta

tio
n 

tim
e 

[s
]

Figure 3: Results on the cvxnonsep_psig40 benchmark (20 integer, 20 continuous), averaged over 7 runs. The known objective
value at the global optimum has been subtracted from the values in the left plot to allow a logarithmic scale.
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Figure 4: Results on one randomly generated MiVaBO synthetic benchmark [9, Appendix C.1, Gaussian weights variant] (119
integer, 119 continuous), averaged over 7 runs. BO and CoCaBO were not evaluated for this benchmark due to the large com-
putation time. This problem is of a similar scale as feed-forward classification model hyperparameter tuning [3].
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search, while taking negligible computation time, does not have a

good performance if the function evaluations are assumed to be the

bottleneck. The large variance in computation time for SMAC can

be explained by this method’s way of alternating between using

points suggested by its surrogate model and using randomly chosen

points.

The fact that MVRSM outperforms both HO and SMAC even

with a constant runtime per iteration is surprising, considering that

the scale of the largest problem is similar to that of one of HO’s own

benchmarks, while the authors of HO consider SMAC a potentially

superior optimiser [3, p. 8].

5.3 Results on XGBoost hyperparameter
tuning

To see if the good performance of MVRSM on synthetic problems

also holds in a real application, we consider a problem similar to

that of hyperopt-sklearn [18], where hyperparameters for a pre-

processing method as well as for a classifier need to be selected

and tuned simultaneously. The choice of classifier is limited to

the XGBoost method only [8], which has several hyperparameters

of different shapes (continuous, integer, binary, categorical, and

conditional).
8

Conditional variables only exist when other variables take on

certain values. SMAC and HO can both deal with these efficiently,

but for the other methods, including MVRSM, we use a naïve en-

coding where these variables still exist but do not influence the

objective function if other choices are made. Together with the

hyperparameters for preprocessing, there are 7 integer, 11 continu-

ous, and 117 categorical/binary/conditional variables. We included

the possibility to use different preprocessing methods for different

features of the dataset that was used. The preprocessing method

and XGBoost are applied to the steel-plates-faults dataset
9
, and the

objective is the result of a 5-fold cross-validation, multiplied by −1
to make it a minimisation problem. To find not just accurate but

also efficient hyperparameters, we set a time limit of 8 seconds,

chosen roughly equal to twice the time it takes when using default

hyperparameters. If the objective took longer than that to evaluate,

an objective value of 0 was returned. On average, the evaluation of

the objective took just over 3 seconds on our hardware.

Figure 5 shows the results on this benchmark for 200 iterations,

averaged over 7 runs. While HO is an efficient and accurate method

on this problem, MVRSM achieves a similar performance as its

competitors, ending up with an average objective of −0.637. A pair-

wise Student’s T-test on the final iteration shows no significant

difference between MVRSM and the other surrogate-based methods

(𝑝 > 0.05), though it outperforms random search (𝑝 ≈ 0.003).

It is important to note that besides random search, MVRSM is

the only method that has a fixed computation time per iteration.

This is especially important for problems where the evaluation

time of the objective takes a similar time as the surrogate-based

algorithm, e.g. 10 seconds or less for CoCaBO, which is the case for

this hyperparameter tuning problem. In this case it is not possible

anymore to disregard the computation time of the algorithm, even

8
The hyperparameters for XGBoost can be found at https://xgboost.readthedocs.io/en/

latest/parameter.html#learning-task-parameters

9
https://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults

though this is often done in literature. Furthermore, CoCaBO tunes

its own hyperparameters every 10 iterations, which costs even

more computational resources. In contrast, MVRSM has quite a low

number of hyperparameters, and we choose them the same way in

all reported experiments. This makes it much easier to apply than

other methods, or in the case of CoCaBO, much more efficient. The

practical use of this fact should not be underestimated, as especially

on hyperparameter tuning problems one wants to avoid having to

tune the hyperparameters of the surrogate-based algorithm.

6 RESULTS ON ELECTROSTATIC
PRECIPITATOR OPTIMISATION

To test MVRSM on a real-life application from engineering, we ap-

plied it to the ESP problem [24]. This is a real-life industrial problem

where components of a gas cleaning system need to be designed.

The goal is to reduce environmental pollution. The system con-

tains 49 different slots that can each hold one of 8 different types

of metal plates that each influence the gas flow in a different way.

After choosing the configuration of the plates, an expensive com-

putational fluid dynamics simulator calculates the corresponding

objective, taking around 27 seconds on average on our hardware.

This problem has 8 categories for each variable, though 5 of the

categories correspond to ordinal variables, namely the size of holes

in the metal plates.

We have adapted the ESP problem such that the 5 hole sizes are

not restricted to fixed values, but are free to take on different contin-

uous values. This adds 5 continuous variables to the problem with

otherwise only categorical variables, using the same five options

for each slot, as having each slot take on a different value would

substantially increase the manufacturing costs.

Figure 6 shows the results on this benchmark averaged over 7

runs, for 1000 iterations, of which 24 were again used as initial

random guesses. BO and CoCaBO are not included as they con-

tained iterations where the computation time exceeded the time to

evaluate the expensive objective function, making them unsuitable

for such an application.

Again MVRSM has a similar performance as its competitors,

ending up with an average objective of 1.004, and in total it is over

4 times faster than SMAC, the method that achieves the lowest

average objective. A pair-wise Student’s T-test on the final iteration

shows no significant difference between MVRSM and the other

surrogate-based methods (𝑝 > 0.05), though it outperforms random

search (𝑝 ≈ 0.0001). However, it is the only surrogate-based method

with a constant computation time per iteration.

7 CONCLUSION AND FUTUREWORK
We showed how Mixed-Variable ReLU-based Surrogate Modelling

(MVRSM) solves three problems present in methods that can deal

with mixed variables in expensive black-box optimisation. First, it

solves the problem of slowing down over time due to a growing sur-

rogate model. Second, it solves the problem of sub-optimality and

inefficiency that may arise due to the need to satisfy integer con-

straints. Third, it solves the problem of limited interaction between

the mixed variables. MVRSM’s surrogate model, based on a linear

combination of rectified linear units, avoids all of these problems by

having a fixed number of basis functions that contain interaction
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Figure 5: Results on the XGBoost hyperparameter tuning benchmark (7 integer, 11 continuous, 117 categori-
cal/binary/conditional), averaged over 7 runs.

0 200 400 600 800 1000
Iteration

1.0

1.2

1.4

1.6

1.8

O
bj

ec
tiv

e

RS
HO

SMAC MVRSM

0 200 400 600 800 1000
Iteration

10
−4

10
−3

10
−2

10
−1

10
0

10
1

C
om

pu
ta

tio
n 

tim
e 

[s
]

Figure 6: Results on the ESP benchmark (49 categorical, 5 continuous), averaged over 7 runs.

between all variables, while also having the guarantee that any

local optimum is located in points where the integer constraints

are satisfied. This last point is a unique selling point of MVRSM,

as it has only been used in the context of surrogate models once

before, and never for the mixed-variable case. Together, all these

properties cause MVRSM to give competitive performance on two

real-life benchmarks from computer science and engineering, while

outperforming the state-of-the-art in both speed and accuracy on

various synthetic problems. All of this is achieved using the same

hyperparameter settings for MVRSM, while for other methods it

might be necessary to spend some time on finding the right settings.

For future work we will adapt the method to efficiently deal with

constraints, as well as use the theory and insights from this work

to develop a new surrogate-assisted evolutionary algorithm.
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