
Tuning as a Means of Assessing the Benefits of New Ideas in
Interplay with Existing Algorithmic Modules

Jacob de Nobel
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

Diederick Vermetten
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

Hao Wang
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

Thomas Bäck
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

ABSTRACT
Introducing new algorithmic ideas is a key part of the continuous
improvement of existing optimization algorithms. However, when
introducing a new component into an existing algorithm, assessing
its potential benefits is a challenging task. Often, the component is
added to a default implementation of the underlying algorithm and
compared against a limited set of other variants. This assessment
ignores any potential interplay with other algorithmic ideas that
share the same base algorithm, which is critical in understanding
the exact contributions being made.

We introduce a more extensive procedure, which uses hyperpa-
rameter tuning as a means of assessing the benefits of new algorith-
mic components. This allows for a more robust analysis by not only
focusing on the impact on performance, but also by investigating
how this performance is achieved.

We implement our suggestion in the context of the Modular
CMA-ES framework, which was redesigned and extended to in-
clude some new modules and several new options for existing
modules, mostly focused on the step-size adaptation method. Our
analysis highlights the differences between these new modules, and
identifies the situations in which they have the largest contribution.

1 INTRODUCTION
With the continuous increase in interest for the field of optimization,
many new algorithms get introduced every year. A large number
of these algorithms are not completely novel, but instead add new
algorithmic ideas to existing methods. Originally referring to one
particular algorithm, CMA-ES has developed into a whole family
of algorithms that are built around the core design of the original
CMA-ES algorithm from [20]. While this growth of the algorithm
set helps to keep improving the state-of-the-art performance, it
also raises a simple question: “How to assess the benefits of new
algorithmic ideas?”

The naive way of performing such an assessment is to implement
the algorithmic idea into a bare-bones version of the base algorithm,
and to benchmark it against the default (and maybe some other
variants). While this technique does manage to give an indication
of the usefulness of the newly introduced component, the results
are not always practical and hide important information, since
they only consider the idea in isolation. Often, there tends to be

Equal contribution between first and second authors.

an important interplay between algorithmic components, which is
completely missed when doing the type of assessment described
above.

We aim to provide in this work a roadmap for assessing these
algorithmic ideas in a way which takes component interactions into
account. This is achieved by considering the different algorithmic
ideas as modules in a modular framework. Several of these types of
frameworks have been developed over the years [10, 29, 31, 32, 38].
We will work here with the Modular CMA-ES (ModCMA), which
is significantly extended from the existing ModEA framework [32],
by both adding new modules and new options for existing modules
(see Section 2 for details).

With this modular framework, we show in this work how hy-
perparameter tuning can be used to assess the contributions of the
newly implemented components. We illustrate how this approach
gives a detailed perspective on the benefits of new algorithmic ideas,
by not only looking at pure performance metrics, but also consid-
ering the interplay with existing modules. We show, among other
things, that the introduction of new step-size adaptation methods
can be beneficial, but that it requires careful consideration of the
interactions with other modules, such as the recombination weights.
We also discuss the limitations of this approach, and how to best
use it to gain the most understanding about these new algorithmic
ideas.

2 REDESIGNING MODEA TO A MODULAR
CMA-ES FRAMEWORK

Our work relies heavily on the Modular Evolutionary Algorithms
(ModEA) framework introduced in [32]. Since this framework hasn’t
undergone any active development in recent time, we decided to
redesign the framework to our specifications. The modifications
we made rendered the name of the framework no longer befitting,
as only CMA-ES variants can now be created using the frame-
work, whereas the original framework also supported the design
of other evolutionary algorithms. The new framework was dubbed
the Modular CMA-ES (ModCMA) and is available as an open source
Python package within the IOHprofiler [14] environment1 . It is
integrated with the IOHexperimenter, giving access to a broad set
of benchmark problems, including a C++ implementation of the

1https://github.com/IOHprofiler/ModularCMAES

1

ar
X

iv
:2

10
2.

12
90

5v
2

 [
cs

.N
E

]
 2

6
Fe

b
20

21

https://github.com/IOHprofiler/ModularCMAES

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck

BBOB functions [19] from the COCO environment [18]. In addi-
tion, this allows for easy data logging, which can be used directly
with the interactive performance analysis and visualization from
IOHanalyzer [37].

Motivation. The primary goal behind redesigning the framework
was to reduce its complexity, and to only include functionality com-
patible to the CMA-ES and its variants. The reasoning behind this
is the fact that the framework mostly revolves around the CMA-
ES. Other EAs are available in the framework, but are quite un-
derdeveloped w.r.t. the CMA-ES. Moreover, introducing working
interactions between the CMA-ES and operators from other EAs
overly complicates the framework’s structure. For example, ModEA
contains a range of different methods for performing recombina-
tion. However, the canonical CMA-ES does not explicitly perform
recombination. Instead, it updates its mean𝑚 by taking a weighted
average of the individuals in its current population, which it then
uses to sample new individuals from a normal distribution. In other
EAs, recombination occurs in a much more pronounced sense, for
example by crossover. In order to make the modular algorithm of
the CMA-ES function with these other forms of recombination,
its original method for “recombination” had to be adapted. The
CMA-ES however, is still only able to properly function with one
of these recombination methods, the canonical one. As this pattern
could be observed in other parts of the framework as well (i.e.,
mutation, selection), it was decided to remove these other methods
all together and to focus solely on the CMA-ES.

2.1 The Modular CMA-ES
To design the Modular CMA-ES, we use the implementation from
the popular CMA-ES tutorial [17] as a starting point. This work
provides a detailed description of the CMA-ES algorithm, including
a practical guide to its implementation. From this basic design, we
separate the CMA-ES in a number of functionally related blocks, in
order to allow a customization of a specific part of the algorithm.
This allows us to implement algorithmic variants of the CMA-ES as
functional modules. From a user perspective, any of these modules
could then be combined in order create a custom instantiation of
the CMA-ES, by selecting an option for each available module.

In ModEA, eleven of such modules were already implemented.
These were all reimplemented in the Modular CMA-ES, with a few
changes to the structure of the options. Specifically, we removed
the Pairwise Selection as a module.Instead, we incorporated this
option in the Mirrored Sampling module as the option Mirrored
Sampling with Pairwise Selection, converting this module from bi-
nary to ternary. This is done because the pairwise selection method
is not suited for use without mirrored sampling [3].

We implemented a new module for performing boundary cor-
rection (see Section 2.2), and added five alternative options for
performing step size adaptation (see Section 2.3). These two exten-
sions to the framework will be the focus of our analysis through out
this work. This set of changes give us the following list of modules
for the redesigned Modular CMA-ES:

(1) Active Update: Bad candidate solutions are penalized in
the covariance matrix update using negative weights [22].
Note that in [17], this is given as the default version, here
we consider it to be optional.

(2) Elitism: (` + _) - selection instead of (`, _) - selection.
(3) Orthogonal Sampling: All the newly sampled points in

the population are orthonormalized using a Gram-Schmidt
procedure [35].

(4) Sequential Selection: Candidate solution are immediately
ranked and compared with the current best solution. If im-
provement is found, no additional objective function evalua-
tions are performed [11].

(5) Threshold Convergence: A method for balancing explo-
ration with exploitation, scaling the mutation vectors to a
required length threshold, which decays over time [30].

(6) Step-Size Adaptation: Supplementary to the default Cu-
mulative Step size Adaptation (CSA), Two Point step size
Adaption (TPA) [15] is implemented. TPA requires two ad-
ditional objective function evaluations, used for evaluating
both a shorter and a longer version of the population’s cen-
ter of mass. The version which shows the higher objective
function value determines whether the step size should be
increased or decreased. Five newly added mechanism for
performing step size adaptation are implemented. They are
described in detail in Section 2.3.

(7) Mirrored Sampling: For every newly sampled point, its
mirror image is added the population, by reversing its sign [3].
With Pairwise Selection, only the best point of each mirrored
pair is used in recombination.

(8) Quasi-Gaussian Sampling: Instead of performing the sim-
ple random sampling from the multivariate Gaussian, new
solutions can alternatively be drawn from quasi-random
sequences (a.k.a. low-discrepancy sequences) [7]. We imple-
mented two options for this module, the Halton and Sobol
sequences.

(9) Recombination Weights: Three options are implemented;
1) default weights (see [17]), 2) equal weights:𝑤𝑖 = 1/`, and
3)𝑤𝑖 = 1/2𝑖 + 1/(_2_) for 𝑖 = 1, 2, . . . , _.

(10) Restart Strategy: When the optimization process stagnates,
the CMA-ES can be restarted using a restart strategy. Two
strategies are implemented. IPOP [5] increases the size popu-
lation after every restart by a constant factor. BIPOP [16] also
changes the size of the population, but alternates between
larger and smaller population sizes.

(11) Boundary Correction: If candidate solutions are sampled
outside the search domain, they can be transformed back into
the search domain by applying a boundary correction oper-
ation. In Section 2.2, we describe six options for performing
boundary correction which have been implemented.

In Table 1, a detailed overview is given of all currently imple-
mented modules and their options in the Modular CMA-ES frame-
work.

2.2 Boundary Correction
In the original framework, a boundary correction function taken
from [25] was implemented, and always applied after eachmutation.
In some cases, however, this operator can degrade the performance
of the algorithm quite drastically. We therefore decided to make
the boundary correction operation optional, and to implement it
as a module, for it to only be used when beneficial. A number of

2

Assessing the Benefits of New Algorithmic Ideas via Tuning

0 (default) 1 2 3 4 5 6

1 off on - - - - -
2 off on - - - - -
3 off on - - - - -
4 off on - - - - -
5 off on - - - - -
6 CSA TPA MSR PSR xNES m-xNES p-xNES
7 off on on w. PS - - - -
8 off Sobol Halton - - - -
9 default 1

2𝑖
+ 1

2
- - - -

10 off IPOP BIPOP - - - -
11 off UR MCS COTN SCS TCS -

Table 1: The modules available for the Modular CMA-ES.
The numeric index for each module corresponds to the
index used in the text of Section 2.1. Newly added mod-
ules/options are given in bold.

different boundary correction strategies were implemented, taken
from [12]:

(1) None: no correction is applied to infeasible coordinates of
solutions.

(2) Uniform Resample (UR): replaces all infeasible coordi-
nates of a solution with new coordinates sampled uniformly
at random within the search space.

(3) Mirror Correction Strategy (MCS): mirrors all infeasible
coordinates of a solution with respect to its closest boundary.

(4) CompleteOne-tailedNormalCorrection Strategy (COTN):
All infeasible coordinates are replaces to new coordinates
inside the search space according to a rescaled one-sided
normal distribution centered on the boundary.

(5) Saturation Correction Strategy (SCS): All infeasible co-
ordinates is set to the closest corresponding bound.

(6) Toroidal Correction Strategy (TCS): All infeasible coor-
dinates get reflected off the opposite boundary.

2.3 Step-Size Adaptation
In this work, we consider a number of alternative step size adap-
tation mechanisms for new options for the Modular CMA-ES. We
take inspiration from [23], which provides a qualitative evaluation
of multiple step size adaptation mechanisms used in ES. In addition
the CSA and TPA step size adaptation methods, which were already
implemented, we implemented the following procedures:

(1) Median success rule (MSR): TheMSRmechanism [1] adapts
the step-size 𝜎 as follows: it firstly computes a success rate
by checking the number of current individuals that are better
than some user-defined quantile of the function values in the
previous population, then accumulates such success rates in
every iteration, and finally decides to increase the step-size
if the cumulated values is bigger than 1/2 and decrease it
otherwise.

(2) Population success rule (PSR): determines the success
rate of the current population using a rank-based approach.
It firstly sorts all individuals in the current and previous
population together, then retrieves the set of ranks of indi-
viduals belonging to the current iteration and the one for the
previous iteration, and finally calculates the average rank

difference between those two sets as the population success
rate, which controls the step-size updates.

(3) xNES step-size adaptation (xNES): calculates the length
of each standardized mutation vector
and subtracts from it the expected length of the standard
Gaussian vector. The resulting difference is then scalarized
using the same weights used in the recombination, which is
finally fed into an exponential function to generate a multi-
plicative coefficient to modify the step-size.

(4) mean-xNES step-size adaptation (m-XNES): functions
similarly to xNES, with the exception that it takes the stan-
dardized differential vector between current centers of mass
and the one in the previous iteration and compares it to the
expected length of the standard Gaussian vector.

(5) xNES with log normal prior Step size adaptation (p-
xNES): resembles the principle of self-adaptation for step-
sizes, where _ trial step-sizes are generated from a log-normal
distribution which takes the current step-size as its mean
and each trial step-size is used to sample a candidate point.
To determine the new step-size, this method calculates the
weighted sum of the log-transformed trial step-sizes, where
those assigned to their corresponding candidate points in
the recombination.

3 INCREMENTAL ASSESSMENT OF MODULE
PERFORMANCE

With the introduction of these newmodule settings, we have a clear
use-case for the assessment of algorithmic ideas within the CMA-ES
algorithm. Since these options are implemented into a framework
with many existing modules, it will not suffice to look at them
in isolation. Instead, we should carefully consider the potential
interactions with the existing modules and investigate their impact
on the empirical performance of ModCMA. Previous work [33]
used data from a complete enumeration of all module settings to
analyze the contribution of each individual module. However, such
an approach becomes intractable when we are confronted with
a huge set of modules, or more importantly if we aim to obtain
the contribution of some new modules implemented incrementally
to an existing portfolio of modules, which we have investigated
extensively. Besides, this complete enumeration approach ignores
entirely the configuration of continuous strategy parameters, e.g.,
𝑐1, 𝑐` , and 𝑐𝑐 , which have been shown to significantly impact the
per-instance performance of the resulting configurations [9].

To properly address the problem of determining the contribu-
tion of a single module setting to an existing portfolio of modules,
we make use of hyperparameter optimization, which has previ-
ously been shown to achieve results comparable to the complete
enumeration method, while being much more easily extendable to
other hyperparameters [34]. We propose the following roadmap to
formalize this procedure:

(1) Select a modular implementation of the base algorithm to
which the new module has been added, a hyperparamter
optimizer and a performance metric.

(2) Collect a list of the existing modules and relevant hyperpa-
rameters (without the new module to assess). This will be
the search space for the hyperparamter optimization.

3

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck

(3) Run the selected hyperparameter optimizer on this search
space, ideally for a wide set of relevant benchmark functions.
This data will then serve as the baseline performance.

(4) Extend the original search space by including the new mod-
ule to asses, and run the hyperparamter optimization on this
extended search space (using the exact same setup as the
baseline).

(5) Compare the data from the baseline to the experiment with
the extended search space. This should not only be done
from a performance perspective, but also from the resulting
configurations themselves. This allows for the analysis of
potential interactions between modules.

3.1 Performance Measures
In order to compare the different configurations of the ModCMA,
we need to define the ways in which we measure their performance.
Assuming a set of optimization algorithms A = {𝐴1, 𝐴2, . . .}, a
set of objective functions F = {𝑓1, 𝑓2, . . .}, a function evaluation
budget 𝐵, and 𝑁 repeated runs of each algorithm, we denote by
𝑇 (𝐴, 𝑓 , 𝑣, 𝑖), 𝑖 ∈ [1..𝑁], the number of function evaluations con-
sumed by algorithm𝐴 to find in its 𝑖-th run on function 𝑓 a solution
of solution quality at least 𝑣 . Among various methods for quantify-
ing the empirical performance of optimizers, the expected running
time (ERT) [6] is commonly chosen, which estimates the expec-
tation of the number of function evaluations (a.k.a. the running
time) of an optimizer to hit a predefined target value when un-
limited evaluation budget is provided. However, the performance
comparison based on ERT is be largely biased towards the target
value prescribed by the user. This value can be difficult to deter-
mine a-priori for a configuration task on many optimizers and it
also adds another design factor to our experimental setup. Instead,
we propose to take a measure that relies on a set of target values
since it will be less sensitive to the choice of each individual value
therein and could cover more perspectives of the running profile of
optimizers. One of such measures is the the Area Under the ECDF
Curve (AUC) of the running time, defined as follows:

AUC(𝐴, 𝑓 ,V) =
∫ 𝐵

1
𝐹 (𝑡 ;𝐴, 𝑓 ,V)d𝑡,

where 𝐹 (𝑡 ;𝐴, 𝑓 ,V) = 1
𝑁 |V |

∑
𝑣∈V

∑𝑁
𝑖=1 1(𝑇 (𝐴, 𝑓 , 𝑣, 𝑖) ≤ 𝑡) (1 is

the characteristic function). In this work, we evaluate the algorithms
for the target valuesV = {10

10−𝑖
5 : 𝑖 ∈ [1..51]} ⊂ [10−8, 102].

We note that most hyperparameter tuning methods are built
with minimization in mind. As such, we use the Area Over the
Curve (AOC) instead of AUC, since we know AOC(𝐴, 𝑓 ,V) =

𝐵 −AUC(𝐴, 𝑓 ,V).

3.2 Technical Details
The roadmap proposed above is designed to be generic, so that it
can function with any modular algorithm, hyperparameter tuner,
and performance metric. In order to collect the AOC measure from
the runs of the ModCMA, we integrated it into the IOHprofiler [14].
This tool is used because it offers an easy way of accessing the
BBOB-functions, while providing the needed logging functional-
ity to easily calculate the AOC of each run. As our baseline, we
will tune the existing modules from ModCMA, which are shown

(plain text) in Table 1, totalling 6 binary and 4 ternary modules.
In addition, we tune the four continuous hyperparameters 𝑐1, 𝑐` ,
𝑐𝜎 , 𝑐𝑐 , and 𝑐𝜎 , which control the dynamics of the adaption of the
covariance matrix (𝑐1, 𝑐` , and 𝑐𝑐) and of the step-size (𝑐𝜎). We then
run two experiments to assess both the new step-size adaptation
methods and the boundary correction module, as introduced in
Section 2.3 and Section 2.2 respectively. All of the code used in
these experiments, and the resulting data, is available in [13].

Hyperparameter tuning using irace: In this paper, we use
the irace [26, 27] library as our hyperparameter optimizer. Irace2
is based on the principle of iterated racing, in which each race3
repeatedly executes configurations on different problem instances
until there is statistically significant reason to discard enough of
them to move to the next race (thus inherently allocating more
runs to more promising configurations). Using this procedure, one
or more configurations will emerge as the final elites at the end of
the optimization. The number of times irace has evaluated the elite
configurations can differ significantly between two runs. To obtain
a fair comparison, we therefore perform an independent set of 25
validation runs, with the same random seeds for all configurations.
We use the results of these runs to assess the final performance.

BBOB problem suite: We configure irace to use the first in-
stance (iid = 1) of each of the 24 BBOB functions [18, 19], in
5D. While the argument can be made that tuning should be done
over multiple instances, we favoured running more repetitions of
irace over using more instances. Each irace-run is given a budget
of 1 000 algorithm evaluations, which themselves have a budget of
10 000 · 𝐷 function evaluations.

4 RESULTS
Before considering our proposed method, we run a basic bench-
marking experiment on each of the individual module options. This
is similar to the common approach of benchmarking the new mod-
ule against a set of other algorithm variants. We show the resulting
best single-module configurations (a.k.a. the virtual best solver, VBS
for short) relative to the default CMA-ES in Table 2. In this table, we
see that among the newmodules, only two have been selected: MSR
for F23 and m-XNES for F5. We can further look at the over-all con-
tributions of the newly introduced step-size settings by plotting the
ECDF-curves over all functions, as done in Figure 1. In this figure,
we can clearly see that most methods are quite competitive, with
the only exception being xNES, which has a significantly worse
performance than the others. Overall, the MSR method seems to
be quite effective, but there is no strict domination over the other
settings.

4.1 Baseline
To illustrate the usefulness of hyperparameter tuning in the modu-
lar CMA-ES, we conduct a baseline experiment where we tune all
modules (excluding the newly introduced ones) and the selected
hyperparameters. We perform this tuning on each benchmark func-
tion separately , and compare this baseline to the default CMA-ES
as well as the virtual best solver on each function from Table 2.

2Implemented in R, freely available at [28].
3The initial iteration of irace consists of random configurations and the default CMA-ES
setting.

4

Assessing the Benefits of New Algorithmic Ideas via Tuning

Fid VBS AOC of VBS AOC of Default Improvement

1 elitist_True 247 326 24%
2 active_True 1 272 1 659 23%
3 local_restart_BIPOP 38 374 44 518 14%
4 local_restart_IPOP 41 746 44 613 6%
5 step_size_adaptation_m-xnes 43 63 31%
6 elitist_True 655 904 28%
7 step_size_adaptation_tpa 1 312 39 199 97%
8 base_sampler_halton 1 186 4 544 74%
9 base_sampler_sobol 959 2 470 61%
10 active_True 1 309 1 729 24%
11 active_True 1 162 1 749 34%
12 base_sampler_sobol 2 186 2 980 27%
13 active_True 1 627 2 191 26%
14 active_True 601 831 28%
15 local_restart_BIPOP 30 380 43 313 30%
16 local_restart_BIPOP 8 172 34 132 76%
17 threshold_convergence_True 12 464 26884 54%
18 threshold_convergence_True 15 764 33724 53%
19 mirrored_mirrored 33567 36 688 9%
20 threshold_convergence_True 36 482 40691 10%
21 local_restart_IPOP 38 028 40 371 6%
22 mirrored_mirrored 566 8 632 93%
23 step_size_adaptation_msr 11 060 34 433 68%
24 local_restart_IPOP 42 099 44 351 5%

Table 2: Table showing the AOC of the best single-module
configuration for each function (VBS), compared to that of
the default CMA-ES. Note that these values does not in-
clude benefits from tuning the continuous hyperparameters,
which are set to the default values for all configurations in
this table.

1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4 2 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Default step_size_adaptation_lp-xnes step_size_adaptation_m-xnes step_size_adaptation_msr

step_size_adaptation_psr step_size_adaptation_tpa step_size_adaptation_xnes

Function Evaluations

Pr
op

or
tio

n
of

 (r
un

, t
ar

ge
t,

...
) p

ai
rs

Figure 1: ECDF-curve of all single-module stepsize options.
Figure generated using IOHanalyzer [37].

Since we run 4 runs of irace for each function, this results in 4 sets
of elites (each set has up to 5 configurations), for which we then
perform the verification runs. We plot the distribution of the AOC
for each of these configurations in Figure 2. From this figure, it is
clear that the tuning of all parameters at once is much better than
simply selecting a single-module variant, as is to be expected. This
plot also highlights the significant differences in performance of
the final found configurations. There are two main reasons for this
fact: the inherent stochasticity of the CMA-ES itself, and the large
impact of the initially generated configurations of irace. We discuss
these challenges in detail in Section 5.

From this baseline data, we can also study the resulting configu-
rations themselves. This can be done by aggregating the modules
which have been selected in the final elite configurations in the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

102

103

104

AO
C

Default CMA-ES
VBS Single-module CMA-ES

Figure 2: Distribution of the area over the ECDF curve for
the final elite configuration of the baseline irace runs. All
AOC’s are averages of 25 verification runs. The VBS single-
module configurations can be seen in Table 2.

Active
Elitist Orthogonal

Sequential
Threshold

SSA Mirrored
Sampler

Weights
Restart

0

100

200

300

400
M

od
ul

e
Co

un
t

Option 0
Option 1
Option 2

Figure 3: Module counts of all elites found in the baseline-
experiment, over all 24 BBOB-functions. The option num-
bers correspond to those in Table 1

separate irace runs, as is visualized in Figure 3. In this figure, we can
see that there is a large variability in the selected module options,
which seems to indicate that they are all usable for at least some
functions. One notable exception is the weights option “equal”,
which is chosen in less than 1% of configurations.

4.2 Performance analysis
For generating our experimental data, we conduct two hyperpa-
rameter optimization experiments with irace, one where allow the
new SSA methods to be selected, and another including the new
boundary correction methods. Note that in the boundary correction
experiment, the new SSAmethods cannot be selected and vice versa.
We use the same experimental setup for running these experiments
as with the baseline experiment.

Based on these experiments, there are two main approaches to
analyze the contributions of the newly introduced modules: the
performance-perspective and the perspective of the selected mod-
ules. We start by looking at the performance: for each experiment,
we look at the impact on the final performance of the elite configu-
rations found by the irace runs. First, we visualize the distributions

5

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

102

103

104

AO
C

Default CMA-ES
VBS Single-module CMA-ES
baseline_cs
ssa_cs
bounds_cs

Figure 4: Distribution of the single best elites from the base-
line and the tuningwith the additionalmodules. AOCvalues
are the result of averaging over 25 verification runs.

100 1 0.01 1e−4 1e−6 1e−8

2

3

4

5

6

7

8

9
1e+3

2

3

Baseline_c60 SSA_c63

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 5: Comparison of the Expected Running Time of the
best configurations found on F12 by both the baseline and
the SSA experiments. Shaded areas indicate the outer quan-
tiles (20-80).

of the AOC of the single best configuration found in each run of
irace (based on the verification runs) in Figure 4.

In this plot, we can see that the effect of introducing the new
modules is quite mixed. For some functions, the performance even
worsens significantly (e.g., on F8) after introducing new modules,
while for others we see the desired improvement (e.g. on F23)

In order to better show these differences, we plot in Figure 6
the AOC from the single best configurations found in both the SSA
and bound-experiments relative to the best configuration from the
baseline. We see that the general trend of performance is somewhat
negative, with some outliers in both directions. This seems to indi-
cate that these new modules are not always beneficial to the final
performance. For example, we can consider F12, where the configu-
ration found by the baseline has an average AOC of 1 159, while
the best configuration found when including the new SSA-methods
in the search space reaches an average AOC of 1 480. We show the
expected running time of thes two configurations in Figure 5, where
we can clearly see this difference. However, it is also clear that the
variance in between runs is significant, which can partly explain
poor performance. Indeed, if we look at the average AOC during the
irace runs, the difference between these two configurations is only

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

−0.4

−0.2

0.0

0.2

0.4

Im
pr

ov
em

en
t o

ve
r B

as
el

in
e

Bounds
SSA

Figure 6: The relative improvements per function of the best
configuration found by irace relative to the baseline experi-
ment’s best configuration.

7%. This leads to an important observation about the assessment
of the new algorithmic modules: when judging results purely from
the average performance measures, it is necessary to also consider
the overall variability of the experiment, as well as the inherent
stochasticity of the base algorithm.

We perform the same procedure to the boundary correction
methods. The impact of this module is expected to be smaller, since
for most of the “easier” functions, the boundary condition is rarely
violated. For some of the more challenging functions however, the
penalty value given by BBOB function itself might not be sufficient
to “guide” the algorithm back in bounds, but an explicit boundary
correction could be beneficial in these cases. We can see that this
seems to indeed be the case in Figure 6, where on the more com-
plex functions, e.g., F21, the performance is improved when the
boundary correction module is tuned. We also see that for these
functions, the “None” option is rarely selected, which confirms that
the algorithm jumping out of bounds without being corrected has
negative impact on the performance.

In Figure 6, we also see that, the inclusion of the new step-size
adaptation methods does manage to improve the overall perfor-
mance for some functions. As an example, on F23 we saw an im-
provement of 17.1% over the best baseline configuration. If we
consider all four elite configurations and compare the average per-
formance differences, the average improvement is even higher, at
22.3%. The stability of this improvement is promising, but in order
to fully grasp how the inclusion of the new step-size adaptation
mechanisms leads to this improvement, we need to analyze the
selected modules across these different experiments.

4.3 Module Analysis
We have seen that the performance of the elite configuration found
on F23 improves when we include the new step-size adaptation
modules in the search space. In order to identify what this perfor-
mance can tell us about the new modules themselves, we should
study the configurations in more detail. The obvious way to see
the difference is by looking at how often the new module options
have been selected in the final elite configurations. Over 20 elites,
the PSR update was selected 14 times, MSR once, and CSA five
times. This shows that these new modules are indeed used in the
successful configurations. To see how the inclusion of these module

6

Assessing the Benefits of New Algorithmic Ideas via Tuning

Active
Elitist Orthogonal

Sequential
Threshold

Mirrored
Sampler

Weights
Restart

AOC

Off

On

ssa_cs
baseline_cs

4526.0

Opt0

Opt1

Opt2

16970.0

Figure 7: Combined module activation plot for the elites
found in the baseline and SSA experiments, for function 23.
The lower the line, the better its performance, scaled within
each band according to the AOC. The option numbers corre-
spond to those in Table 1.

options changes the interactions with the other modules, we look
at the combined module activation plot, which is shown in Figure 7.
From this figure, we can see that there are some interesting dif-
ferences between the two sets of configurations: the options for
the restart and mirrored module are not as uniform when using
the new step-size adaptation methods, and the weights option is
changed completely. These observations show that there is a clear
interplay between these modules.

Next to the module activations, we can also look into the distri-
butions of configured continuous hyperparameters. To illustrate
this, we study F3, and plot the pairwise relations between the four
continuous hyperparamters and the final AOC value in Figure 11.
From the marginal distribution (shown on the diagonal), we can
see that the optimized setting of 𝑐𝜎 differs the most across the
SSA, boundary correction, and the baseline experiments. This is
a direct result of the introduction of the new step-size adaptation
methods, each of which prefers slightly different settings for this
parameter. This indicates that even though the final performance
of the elite configurations is similar between the baseline and the
SSA-experiment, the inclusion of new step-size adaptation methods
significantly alters the found elite configurations.

We can extend this module analysis to all functions by aggregat-
ing the most important differences found between the baseline and
SSA-experiments. First, we can plot how often each new module
option is selected in the elites for each function, as is done in Fig-
ure 8. We can use the same principle to study the interaction with
the other modules. For the binary modules, we can directly capture
the module difference by looking at which modules occur more or
less often in the final set of elites, as is visualized in Figure 9. While
this does not directly generalize to modules with more settings,
we can create a similar plot for the other modules by considering
the overlap in selected module distributions. This is visualized in
Figure 10. From these figures, it becomes clear that the elites on
some functions are barely affected by the inclusion of the new mod-
ules, while others require completely different module settings to
properly exploit the changed search space.

We should note that only considering the final elite configu-
rations does not tell the full story of a modules contribution. As

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

CSA
TPA

MSR
xNES

m-xNES
lp-xNES

PSR
None

SCS
UR

COTN
TCS
MCS 0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Heatmap showing the fraction of the elite config-
uration in which each of the options for either SSA (top) or
boundary correction (bottom) are active.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

Active
Elitist

Orthogonal
Sequential
Threshold

−0.50

−0.25

0.00

0.25

0.50

Figure 9: Heatmap showing difference in the fraction of the
elite configuration in which each the of the binary modules
are active, between the baseline and the SSA experiment.
Positive values indicate a module is turned on more often
in the SSA experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

SSA
Mirrored
Sampler
Weights
Restart

0.00

0.25

0.50

0.75

1.00

Figure 10: Heatmap showing difference in the distribution
of the ternary modules selected in the final elites, between
the baseline and the SSA experiment. 0 indicates that the
distribution is identical, while 1 indicates that there is no
overlap at all.

briefly noted previously, introducing a new module increases the
size and complexity of the search space, which has a large impact
on the hyperparameter tuning. If a module is very dependent on
the settings of other hyperparameters, this can lead to deterioration
of the final results, since the initially sampled configurations are
likely to have worse performance than those in the baseline. This
is visualized in Figure 12, where this is clearly seen on function F5.
This is a linear slope function, but the BBOB-specification does not
include a sufficient penalty for leaving the search space. As a result,
an algorithm which quickly leaves the search space will reach the
required objective value very quickly. Thus, when adding bound-
ary correction methods, 5/6 random configurations are not able to
abuse this loophole, leading to a worse initial performance. While
for F5, the function is simple enough that the good configurations
can still be found (and the inclusion of the default CMA-ES settings
in the initial population means that there is always at least one
good configuration present), the same issue exists to a lesser extent
in other functions. Figure 12 also shows that the “tunability” of

7

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck

0.0

0.1

c1

0.5

1.0

cc

0.0

0.2

cm
u

0.5

1.0

cs

0.0 0.2
c1

20000

40000

AO
C

0 1
cc

0.000.25
cmu

0 1
cs

25000 50000
AOC

Type
bounds_cs
baseline_cs
ssa_cs

Figure 11: Distribution of the continuous hyperparameters
from the elite configurations found in all three experiments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Fid

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

AO
C

im
pr

ov
em

en
t o

ve
r d

ef
au

lt

Type
bounds
ssa
baseline

Figure 12: Distribution of the relative AOC values found in
the initial race of irace (relative to the default CMA-ES con-
figuration; positive values equate to lower AOC.)
modules on different functions varies widely. For instance, on func-
tions F16 - F18, the spread of AOC values are significantly larger
than those on functions F19 - F21, suggesting that it is relatively
more difficult to tune the modules in the latter since the tuner will
very likely take a considerably larger budget to identify optimal
configurations. Also, while on some functions it is trivial to get
improvement (e.g., F7) over the default CMA-ES, it is a lot more
challenging on others, for example on functions F16 - F18.

5 CHALLENGES
We discuss three key challenges for the module assessment pro-
cedure based on on hyperparameter optimization that we have
identified in this work.

Influence and stochasticity of the hyperparameter tuning:
While we showed that assessing the impact of an algorithmic com-
ponent by using a hyperparameter tuning approach provides useful
insights, there are several factors which can complicate this ap-
proach. Since hyerparameter tuning is a very challenging problem,

with many different approaches to solving it, the kind of tuner used
will have a large impact on the resulting assessment. In this paper,
we used irace, which tends to focus on converging to a single con-
figuration, instead of covering a large set of different solutions. This
necessitates running multiple repetitions of the irace procedure
itself, as the initialization might otherwise have too much impact on
the final configurations. This can quickly become computationally
expensive.

Algorithm-inherent stochasticity: As we discussed in the re-
sults, we need to take care when drawing conclusions from the
performance of the different CMA-ES configurations. Since CMA-
ES is inherently stochastic, the amount of variance of the config-
urations on a certain function has a large impact on the search
procedure of irace. Since we end up selecting elites based on the
average performance, we are inherently underestimating the AOC
of the final configuration. Even though irace largely mitigates this
by using statistical testing in the races to decide when to discard
configurations, there will always be some degree of underestima-
tion of the performance (the median performance in the verification
runs is 3.4% worse than predicted from the irace runs). Limits of
the per-instance analysis: In the current setup, the performance
measures are only done on an per-instance basis. While this is often
preferred over tuning for large sets of functions/instances, it does
have some drawbacks. Specifically, if a module is designed to have
a good performance over a wide set of functions, but other settings
exist for each individual function which outperform it, this new
module would not be seen as beneficial. Because of this, we ar-
gue that module assessment by hyperparameter tuning should not
replace the traditional assessments, but rather complement it for
more in-depth, per-instance analysis. We can identify this for the
step-size adaptation module by looking at the ECDF-curve of the
single-module variants, as previously shown in Figure 1. To assess
the impact of a new algorithmic component in a robust manner,
tuning across a whole benchmark set of possibly diverse problems
can be performed, and compared to a tuned variant of the same
modular framework without this module.

6 DISCUSSION AND FUTUREWORK
We introduced a roadmap for assessing the performance of individ-
ual algorithmic ideas, which takes into account the interplay with
other existing settings by comparing the results of hyperparameter
tuning. Since this approach requires a modular design to function
as intended, we use the Modular CMA-ES framework, which we
have extended with new modules. Our analysis showed that the
newly added step size adaptation mechanisms are not always useful,
but do provide clear benefits in several functions. The results also
showed that step-size adaptation is most useful when combined
with a different weights option.

The current version of the Modular CMA-ES framework is a
good step in the direction of complete modularization of the CMA-
ES algorithm, but some further enhancements can still be made.
This would allow for even more precise control over each of the
individual components, leading to an ideal testbed for new algorith-
mic ideas, which can then be evaluated using the approach outlined
in this paper. However, since this can be computationally intensive,
we should aim to share and reuse data as much as possible, by

8

Assessing the Benefits of New Algorithmic Ideas via Tuning

developing and maintaining a well-organized repository for this
type of benchmark data. This does not only reduce the amount of
computation needed to test newmodules, but it also gives rise to the
possibility of testingmethods to re-use data from other experiments,
since the search spaces have large overlap. Ideally, this would allow
for the usage of methods from transfer learning to significantly
shorten the time needed to assess a modules performance, even
within a large modular search space.

Additionally, we note that while the proposed module assess-
ment is inherently dependent on the used hyperparameter tuning
method, the overall procedure remains the same no matter which
tuner is used. As a result, the analysis of the results should take
into account the particularities of the tuner, such as the way config-
urations are generated. Further research should still be done into
different hyperparameter optimization methods (e.g., SMAC [21],
MIP-EGO [36], SPOT [8], GGA [2], hyperband [24], etc.) to deter-
mine exactly how they differ in this modular algorithm context.
Additionally, an analysis pipeline for this type of benchmarking
could be designed within existing tools like the IOHanalyzer [37],
which would greatly reduce the amount of effort needed to assess
new algorithmic ideas.

Acknowledgements
This work was supported by the Paris Ile-de-France Region.

REFERENCES
[1] Ouassim Ait Elhara, Anne Auger, and Nikolaus Hansen. 2013. A Median Success

Rule for Non-Elitist Evolution Strategies: Study of Feasibility. GECCO 2013 -
Proceedings of the 2013 Genetic and Evolutionary Computation Conference (07
2013). https://doi.org/10.1145/2463372.2463429

[2] Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin
Tierney. 2015. Model-based Genetic Algorithms for Algorithm Configuration. In
Proc. of International Conference on Artificial Intelligence (IJCAI’15). AAAI Press,
733–739.

[3] Anne Auger, Dimo Brockhoff, and Nikolaus Hansen. 2011. Mirrored Sampling in
Evolution Strategies with Weighted Recombination. In GECCO. ACM, 861–868.
https://doi.org/10.1145/2001576.2001694

[4] Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Tea Tušar, and Konstantinos
Varelas. 2020. Data from BBOB-workshops and competitions on 24 noiseless
functions. https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob.

[5] Anne Auger and Nikolaus Hansen. 2005. A restart CMA evolution strategy with
increasing population size. In Proc. of Congress on Evolutionary Computation
(CEC’05). 1769–1776. https://doi.org/10.1109/CEC.2005.1554902

[6] Anne Auger and Nikolaus Hansen. 2005. A restart CMA evolution strategy with
increasing population size. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2005, 2-4 September 2005, Edinburgh, UK. IEEE, 1769–1776.
https://doi.org/10.1109/CEC.2005.1554902

[7] Anne Auger, Mohammed Jebalia, and Olivier Teytaud. 2005. Algorithms (X, sigma,
eta): Quasi-random Mutations for Evolution Strategies. In Artificial Evolution.
Springer, 296–307. https://doi.org/10.1007/11740698_26

[8] Thomas Bartz-Beielstein. 2010. SPOT: An R Package For Automatic and Interac-
tive Tuning of Optimization Algorithms by Sequential Parameter Optimization.
CoRR abs/1006.4645 (2010). arXiv:1006.4645 http://arxiv.org/abs/1006.4645

[9] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. 2017. Per
instance algorithm configuration of CMA-ES with limited budget. In Proc. of
Genetic and Evolutionary Computation (GECCO’17). ACM, 681–688. https://doi.
org/10.1145/3071178.3071343

[10] Mauro Birattari, Luis Paquete, and Thomas Stützle. 2003. Classification of Meta-
heuristics and Design of Experiments for the Analysis of Components. https://
www.researchgate.net/publication/2557723_Classification_of_Metaheuristics_
and_Design_of_Experiments_for_the_Analysis_of_Components. Technical
report.

[11] Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V. Arnold, and Tim Hohm.
2010. Mirrored Sampling and Sequential Selection for Evolution Strategies. In
PPSN. Springer, 11–21. https://doi.org/10.1007/978-3-642-15844-5_2

[12] Fabio Caraffini, Anna V. Kononova, and David Corne. 2019. Infeasibility and
structural bias in differential evolution. Inf. Sci. 496 (2019), 161–179. https:
//doi.org/10.1016/j.ins.2019.05.019

[13] Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas
Bäck. 2021. Data and Code from: Tuning as a means of assessing the benefits of
new ideas in interplay with existing algorithmic modules. https://doi.org/10.
5281/zenodo.4524959

[14] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck.
2018. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Opti-
mization Heuristics. arXiv e-prints:1810.05281 (Oct. 2018). arXiv:1810.05281
https://arxiv.org/abs/1810.05281 The BBOB datasets from [4] are available in the
web-based interface of IOHanalyzer at http://iohprofiler.liacs.nl/.

[15] Nikolaus Hansen. 2008. CMA-ES with Two-Point Step-Size Adaptation.
arXiv:0805.0231 [cs] (May 2008). http://arxiv.org/abs/0805.0231 arXiv: 0805.0231.

[16] Nikolaus Hansen. 2009. Benchmarking a BI-Population CMA-ES on the BBOB-
2009 Function Testbed. In Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers (Montreal,
Québec, Canada) (GECCO ’09). Association for Computing Machinery, New York,
NY, USA, 2389–2396. https://doi.org/10.1145/1570256.1570333

[17] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. CoRR
abs/1604.00772 (2016). arXiv:1604.00772 http://arxiv.org/abs/1604.00772

[18] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. 2020. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software (2020), 1–31.

[19] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Defi-
nitions. Technical Report RR-6829. INRIA. https://hal.inria.fr/inria-00362633/
document

[20] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159–195. https://doi.org/10.1162/106365601750190398

[21] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In LION. Springer, 507–
523.

[22] Grahame A. Jastrebski and Dirk V. Arnold. 2006. Improving Evolution Strategies
through Active Covariance Matrix Adaptation. In CEC. 2814–2821. https://doi.
org/10.1109/CEC.2006.1688662

[23] Oswin Krause, Tobias Glasmachers, and Christian Igel. 2017. Qualitative and
Quantitative Assessment of Step Size Adaptation Rules. In Proceedings of the
14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (Copenhagen,
Denmark) (FOGA ’17). Association for Computing Machinery, New York, NY,
USA, 139–148. https://doi.org/10.1145/3040718.3040725

[24] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560 (2016).

[25] Rui Li. 2009. Mixed-Integer Evolution Strategies for Parameter Optimization and
Their Applications to Medical Image Analysis. Theses. Leiden University.

[26] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birat-
tari, and Thomas Stützle. 2016. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives 3 (2016), 43 – 58.
https://doi.org/10.1016/j.orp.2016.09.002

[27] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Birat-
tari. 2011. The irace package, Iterated Race for Automatic Algorithm Configuration.
Technical Report TR/IRIDIA/2011-004. IRIDIA, Université Libre de Bruxelles,
Belgium. http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

[28] Manuel López-Ibáñez and Leslie Pérez Cáceres. [n.d.]. The irace Package: Iterated
Race for Automatic Algorithm Configuration. http://iridia.ulb.ac.be/irace/..

[29] Nuno Lourenço, Francisco Pereira, and Ernesto Costa. 2012. Evolving Evolu-
tionary Algorithms. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA,
51–58. https://doi.org/10.1145/2330784.2330794 bibtex: lourenco_evolving_2012.

[30] Alejandro Piad-Morffis, Suilan Estévez-Velarde, Antonio Bolufé-Röhler, James
Montgomery, and Stephen Chen. 2015. Evolution strategies with thresheld
convergence. In CEC. 2097–2104. https://doi.org/10.1109/CEC.2015.7257143

[31] Jorge Tavares, Penousal Machado, Amílcar Cardoso, Francisco B. Pereira, and
Ernesto Costa. 2004. On the Evolution of Evolutionary Algorithms. In Genetic
Programming (Lecture Notes in Computer Science), Maarten Keijzer, Una-May
O’Reilly, Simon Lucas, Ernesto Costa, and Terence Soule (Eds.). Springer, 389–398.
https://doi.org/10.1007/978-3-540-24650-3_37

[32] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.
Evolving the structure of Evolution Strategies. In SSCI. 1–8. https://doi.org/10.
1109/SSCI.2016.7850138

[33] Sander van Rijn, Hao Wang, Bas van Stein, and Thomas Bäck. 2017. Algorithm
Configuration Data Mining for CMA Evolution Strategies. In GECCO. ACM,
737–744. https://doi.org/10.1145/3071178.3071205

[34] Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck. 2020. In-
tegrated vs. sequential approaches for selecting and tuning CMA-ES vari-
ants. In GECCO ’20: Genetic and Evolutionary Computation Conference, Can-
cún Mexico, July 8-12, 2020, Carlos Artemio Coello Coello (Ed.). ACM, 903–912.
https://doi.org/10.1145/3377930.3389831

9

https://doi.org/10.1145/2463372.2463429
https://doi.org/10.1145/2001576.2001694
https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1109/CEC.2005.1554902
https://doi.org/10.1007/11740698_26
https://arxiv.org/abs/1006.4645
http://arxiv.org/abs/1006.4645
https://doi.org/10.1145/3071178.3071343
https://doi.org/10.1145/3071178.3071343
https://www.researchgate.net/publication/2557723_Classification_of_Metaheuristics_and_Design_of_Experiments_for_the_Analysis_of_Components
https://www.researchgate.net/publication/2557723_Classification_of_Metaheuristics_and_Design_of_Experiments_for_the_Analysis_of_Components
https://www.researchgate.net/publication/2557723_Classification_of_Metaheuristics_and_Design_of_Experiments_for_the_Analysis_of_Components
https://doi.org/10.1007/978-3-642-15844-5_2
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.5281/zenodo.4524959
https://doi.org/10.5281/zenodo.4524959
https://arxiv.org/abs/1810.05281
https://arxiv.org/abs/1810.05281
http://iohprofiler.liacs.nl/
http://arxiv.org/abs/0805.0231
https://doi.org/10.1145/1570256.1570333
https://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772
https://hal.inria.fr/inria-00362633/document
https://hal.inria.fr/inria-00362633/document
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1109/CEC.2006.1688662
https://doi.org/10.1145/3040718.3040725
https://doi.org/10.1016/j.orp.2016.09.002
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
http://iridia.ulb.ac.be/irace/
https://doi.org/10.1145/2330784.2330794
https://doi.org/10.1109/CEC.2015.7257143
https://doi.org/10.1007/978-3-540-24650-3_37
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1109/SSCI.2016.7850138
https://doi.org/10.1145/3071178.3071205
https://doi.org/10.1145/3377930.3389831

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas Bäck

[35] Hao Wang, Michael Emmerich, and Thomas Bäck. 2014. Mirrored Orthogonal
Sampling with Pairwise Selection in Evolution Strategies. In SAC. ACM, 154–156.
https://doi.org/10.1145/2554850.2555089

[36] Hao Wang, Michael Emmerich, and Thomas Bäck. 2018. Cooling Strategies for
the Moment-Generating Function in Bayesian Global Optimization. In CEC. 1–8.
https://doi.org/10.1109/CEC.2018.8477956

[37] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
2020. IOHanalyzer: Performance Analysis for Iterative Optimization Heuristic.

CoRR abs/2007.03953 (2020). https://arxiv.org/abs/2007.03953 IOHanalyzer is
available at CRAN, on GitHub, and as web-based GUI, see https://iohprofiler.
github.io/IOHanalyzer/ for links.

[38] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2012. Evaluating
Component Solver Contributions to Portfolio-Based Algorithm Selectors. In Proc.
of Theory and Applications of Satisfiability Testing (SAT’12) (Lecture Notes in
Computer Science, Vol. 7317). Springer, 228–241. https://doi.org/10.1007/978-3-
642-31612-8_18

10

https://doi.org/10.1145/2554850.2555089
https://doi.org/10.1109/CEC.2018.8477956
https://arxiv.org/abs/2007.03953
https://iohprofiler.github.io/IOHanalyzer/
https://iohprofiler.github.io/IOHanalyzer/
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/978-3-642-31612-8_18

	Abstract
	1 Introduction
	2 Redesigning ModEA to a Modular CMA-ES Framework
	2.1 The Modular CMA-ES
	2.2 Boundary Correction
	2.3 Step-Size Adaptation

	3 Incremental Assessment of Module Performance
	3.1 Performance Measures
	3.2 Technical Details

	4 Results
	4.1 Baseline
	4.2 Performance analysis
	4.3 Module Analysis

	5 Challenges
	6 Discussion and Future Work
	References

