arXiv:2305.09922v1 [cs.LG] 17 May 2023

A Genetic Fuzzy System for Interpretable and Parsimonious

Reinforcement Learning Policies *

Jordan T. Bishop
The University of Queensland, Australia
j.bishop@uq.edu.au

Marcus Gallagher
The University of Queensland, Australia
marcusg@uqg.edu.au

Will N. Browne
Queensland University of Technology, Australia
will.browne@qut.edu.au

Abstract

Reinforcement learning (RL) is experiencing a resurgence
in research interest, where Learning Classifier Systems
(LCSs) have been applied for many years. However,
traditional Michigan approaches tend to evolve large
rule bases that are difficult to interpret or scale to do-
mains beyond standard mazes. A Pittsburgh Genetic
Fuzzy System (dubbed Fuzzy MoCoCo) is proposed that
utilises both multiobjective and cooperative coevolution-
ary mechanisms to evolve fuzzy rule-based policies for
RL environments. Multiobjectivity in the system is con-
cerned with policy performance vs. complexity. The
continuous state RL environment Mountain Car is used
as a testing bed for the proposed system. Results show
the system is able to effectively explore the trade-off be-
tween policy performance and complexity, and learn in-
terpretable, high-performing policies that use as few rules
as possible.

1 Introduction

Genetics-Based Machine Learning (GBML) [I] has a long
history of being applied to reinforcement learning (RL)
problems where new methods are needed to take advan-
tage of the renewed interest in such domains. Genetic
Fuzzy Systems (GFSs) [2] are a type of GBML that aim
to evolve fuzzy rule-based systems (FRBSs). Also un-
der the umbrella of GBML, Learning Classifier Systems
(LCSs) are a family of evolutionary rule-based systems
that create solutions to machine learning problems.
Within both families, there are two broad types of sys-
tems that represent different ways to solve a problem: the
Michigan and Pittsburgh approaches. Both approaches
utilise population-based evolutionary mechanisms. In a

*@© ACM 2021. This is the author’s version of the work. It
is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in GECCO ’21: Pro-
ceedings of the Genetic and FEvolutionary Computation Conference
Companion, http://dx.doi.org/10.1145/3449726.3463198.

Michigan system, each individual in the population is an
element of the solution; all individuals act in ensemble to
create the entire solution. In contrast, a Pittsburgh sys-
tem treats each individual in the population as an entire
solution to the problem [2[3]. Within GFSs, a wide array
of works have focused on the Pittsburgh approach [2] 4],
while in the LCS literature the predominant paradigm is
Michigan [3].

Both LCSs and GFSs can be applied to RL problems.
LCSs were originally designed to perform RL, and much
work has been done in this area already, particularly in
maze-like environments, e.g. [5, [6]. In contrast, most
GFS work has focused on supervised learning: classifica-
tion or regression [4], with some work being done on “con-
trol” problems, e.g. [7]. However, such control problems
are often not formulated under the RL framework; this
framework prescribes problems that are multi-step, in-
volve delayed rewards, and are characterised by two fun-
damental issues: the explore-exploit dilemma and tem-
poral credit assignment. Michigan and Pittsburgh sys-
tems address these issues at different levels of abstrac-
tion. Michigan systems learn in an online fashion, and
they address both issues at the level of individual state-
action pairs within a stream of experience. Particularly
in problems where exploration is difficult and/or reward
signals are sparse, this can be difficult to achieve. On
the other hand, Pittsburgh systems assign credit to en-
tire solutions, and address the explore-exploit problem
in the more abstract policy parameter space.

Generally, there is a lack of work applying LCSs to
common environments from the RL literature that are
not maze-like, e.g. Mountain Car or Cart Pole [§], an
exception being [9]. Such environments often have con-
tinuous state spaces. Since LCSs prescribe a paradigm of
learning rather than a specific algorithm, they enable the
representation of rule conditions to be flexibly chosen to
suit the problem domain. For continuous domains, there
are a variety of choices available, some examples being
hyperrectangles [0], hyperellipsoids [10], and fuzzy logic
[11]. Fuzzy logic attempts to perform inference in a way

http://dx.doi.org/10.1145/3449726.3463198

that better emulates how a human expert may solve a
problem by including degrees of truth rather than ab-
solute values. It is an attractive representation to use
if the purpose of the system is to produce a human-
understandable explanation of how a problem is solved.

An issue for both LCSs and GFSs is how to deal with
the complexity of rule bases that are evolved in order
to prefer parsimonious (low complexity) models. In the
Michigan approach, a post hoc compaction mechanism
is often employed to remove rules that do not contribute
much to the solution [3]. In contrast, more options are
available for Pittsburgh systems, some being: i) limit-
ing the size of candidate solutions, ii) employing fitness
penalisation based on complexity ([I2] is an approach
that uses the Minimum Description Length principle in
this manner), iii) multiobjective (MO) formulation of so-
lution performance vs. complexity [13, [14]. The third
strategy is particularly attractive if the practitioner de-
sires to understand the trade-off between performance
and complexity; and to understand how many rules are
needed to achieve a given performance value.

Therefore, the first objective of this work is to address
an RL problem that incorporates both 1) difficult explo-
ration, and ii) a continuous state space (a candidate is
Mountain Car, see justification Section. Objective two
is to understand the trade-off between rule base complex-
ity and performance, through employing a Pittsburgh
GFS that performs MO optimisation of FRBSs. Finally,
since an FRBS can be naturally decomposed into a rule
base (RB) and a data base (DB) (see Section [2.2.1), the
third objective is to show that cooperative coevolution
(CoCo) can be employed to jointly optimise the RB and
DB. Thus, the overall aim of this work is to develop a
Pittsburgh GFS that utilises CoCo and MO mechanisms
to produce parsimonious and interpretable policies for
RL problems. As a proof of concept, we show that this
system is able to produce compact and interpretable poli-
cies for the Mountain Car problem.

2 Background

2.1 Reinforcement Learning

In RL, an agent interacts with an (episodic) environ-
ment £ to maximise the expected amount of cumulative
reward it receives. Let & = (S, A, P, R, 7, tmax), Where
S is the state space, A is the action space, P(s'|s,a) is
the transition function, R(s,a, ") is the reward function,
0 < v <1 is the discount factor, and tyax is the maxi-
mum number of episode time steps [8]. In this work, we
assume S is continuous and A is discrete.

The agent takes the form of a policy, which is a map-
ping 7 : S — A. A common way to address RL prob-
lems is for the agent to construct an action-value function
Q@ : S x A — R which represents the expected cumulative
reward obtainable from each state-action pair. A policy

can then be constructed by acting greedily with respect
to Q. This is the approach followed by Michigan systems.

An alternative way to address the problem is to treat
the environment as a black box and perform direct policy
search; an approach taken by Pittsburgh systems. In this
view, the agent receives feedback about its performance
via a collective sum of discounted rewards, termed the
return: G [§]. The task is to construct a policy that
directly maximises the ezpected return, without decom-
posing the return into individual rewards. The expected
return (performance) of a policy is measured over a set
of initial states Z of cardinality n drawn from an initial
state space S; C S. Using this formulation, the per-
formance of a policy, abbreviated perf, can be measured
as:

perf = % > G(2) (1)

z2€EZ

where G(z) is the return yielded by performing a rollout
of the policy, starting at initial state z.

2.2 Fuzzy Rule-Based Systems

We use the following terminology when discussing as-
pects of fuzzy reasoning: Linguistic variable — analo-
gous to an environmental feature; includes both the name
of the feature and a fuzzy partition along its domain. A
fuzzy partition is composed of multiple fuzzy sets. Fuzzy
set — defined by a membership function along the do-
main of a linguistic variable; has an associated name or
linguistic value to linguistically describe the set [2].

2.2.1 FRBS Structure

The specific FRBS type considered is a zero-order
Takagi-Sugeno-Kang system [I5]. The FRBS is com-
posed of two components, that together form the knowl-
edge base: the rule base (RB) and data base (DB) [2].
The rule base contains the fuzzy rules that act in the con-
text of the fuzzy partitions contained in the DB. In the
RB, we use fuzzy rules that are individually expressed
in Conjunctive Normal Form (CNF) [2]. Assuming the
dimensionality of S is d and there are k possible actions
(|A| = k), each rule has the structure:

IF 21 is L, = {Luqyor ...
and Tq is E:i = {L(d,l) or ...
THEN Y = Qq,. ..

or L my)} and ...

or L(d,md)}
s Y = O

where, for i € {1,...,d}:

,xq — components of input vector x; linguis-
tic variables

® Ti,...

e m; — num. linguistic values belonging to i*" lin-
guistic variable
o Liij.J € {1,...,mi} — j" linguistic value of '

linguistic variable

° E — non-empty set of linguistic values for i** lin-
guistic variable

® y1,...,Yyr — components of consequent vector y
® a1,...,ap — voting weights for each action in con-
sequent
aq,...,a are constrained to be either 0 (inactive) or 1

(active), with exactly one weight active in every rule, all
others inactive, i.e. a one-hot encoding. Such a scheme
represents each rule voting (fully) for a single action in
its consequent. When writing rule consequents we simply
specify the action whose weight is active (a is k). This
type of rule allows for flexible levels of generalisation.
Selecting all linguistic values of a linguistic variable is
equivalent to a “don’t care”, denoted by #. Note that it
is not possible to select zero linguistic values; as stated
above the set of linguistic values must be non-empty. As
an example, assuming that d =2, k =2, m; = mgy = 3,
the following CNF rule generalises partially over the first
feature and fully over the second feature:

IF 21 is {L(1,1) or L(1,2y} and x5 is # THEN a is 2

and can be encoded using GABIL encoding [16] as:
110]111)2, where each clause of the antecedent is a bi-
nary mask, followed by the action to vote for, separated
by vertical bars. In the inference engine of the FRBS, we
use fang = min for conjunction (ANDing) and f,, = max
for disjunction (ORing) of membership values. Let n be
the number of rules in the RB. Given an input vector &,
a voting strength g, is calculated for each a € A via:
(@) = S

where y(; o) is the voting weight for action a in the conse-
quent of the i rule, and 7i(8) is the overall antecedent
truth value (rule firing strength) of the i* rule in the
context of Z; calculated through application of f,, and
fana to the membership values computed in the rule an-
tecedent. The action to select is then determined via:

action = arg max g, (%)
ac€A

2.2.2 Measuring FRBS Complexity

There are many possible ways to measure the complex-
ity of an FRBS, including: number of rules in the RB,
longest antecedent of any rule in the RB [13]. We
choose an option that is based on the number of “de-
cision points” represented in the system. For a d-
dimensional feature space, let a fuzzy subspace be de-
fined as the intersection of d fuzzy sets over the features:
(LajN...NLwj),i€{1,...,d},j € {1,...,m;}. Such
an intersection of fuzzy sets represents an elementary
fuzzy rule that is only capable of representing conjunc-
tions, i.e. a single decision point in feature space. A CNF
rule represents possibly many elementary rules, because

disjunctions in such a rule represent generalisations over
fuzzy subspaces. For an RB containing n CNF rules, if
the number of linguistic values specified in the j** clause
of the " rule’s antecedent is given by l(i,j), then the
total number of decision points embodied in the RB is:

n d
complexity = Z H l(i,j)

i=1 j=1

(2)

This is the measure of complexity that we use for an
RB. The complexity of the overall FRBS is equal to the
complexity of its RB.

3 Related Work

Many of the ideas required in this work have been con-
sidered previously in small combinations and in non-RL
domains. The cooperative coevolution architecture orig-
inally described in [I7] has been adopted by GFSs to
jointly evolve FRBS components, where one population
(species) is dedicated to RBs and the other to DBs. For
example, Fuzzy CoCo [I8] used this architecture to ad-
dress the well-known classification problem of Wisconsin
Breast Cancer Diagnosis. This particular system em-
ployed a fitness penalty for RB complexity, and so did not
utilise multiobjectivity. However, it was able to evolve
compact and interpretable FRBSs to address the prob-
lem, and it set a strong example for how CoCo could be
used within a GFS.

A number of Pittsburgh GFSs have been designed to
use MO mechanisms according to a survey conducted
by Ishibuchi [13]. An apposite example is the work
of Ishibuchi et al. [I9], where an MO evolutionary
algorithm evolves FRBSs to address various classifica-
tion problems; finding trade-offs between three objective
functions: i) maximise classification accuracy, ii) min-
imise the number of fuzzy rules, iii) minimise the total
number of fuzzy rule antecedent conditions. These ideas
need development to RL domains, especially adapting to
credit assignment in multi-step problems.

In the broader evolutionary computation context, MO
and CoCo have also been combined in a single system,
such as in the work of Iorio and Li [20]. The validity of
this system was demonstrated on a number of benchmark
function optimisation problems, but not yet RL. Periph-
erally related work includes Michigan style LCSs that use
fuzzy logic rule representations, such as the Fuzzy Clas-
sifier System in [II] and Fuzzy-XCS in [2I]. The former
was applied to multi-step control problems (true RL),
while the latter was only applied to single-step problems
(function approximation and robot control). What is
missing in all of these works is the combination of CoCo,
MO, and FRBSs to address multi-step RL problems, and
the intention of our work is to make a first attempt at
addressing this gap.

4 Mountain Car Environment

In Mountain Car (MC), the agent must push a car out
of a valley to the top of a mountain, as shown in the top
plot of Figure State features are the position of the
car on the horizontal axis: z € [—1.2,0.5], and the hori-
zontal component of the car’s velocity: & € [—0.07,0.07].
A = {1,2}, representing push car 1: Left or 2: Right.
R yields —1 at every time step, with ¢, = 200. Dis-
counting is not used (effectively v = 1). The goal is
reached when « > 0.5. Let S; = {[-0.6,—0.4],0} with
Z constructed by sampling uniformly at random from
S7, such that the agent starts around the bottom of the
valley with zero velocity. n = 30, with samples being
drawn from S using a fixed RNG seed, such that all per-
formance evaluations use the same initial states. These
initial conditions make exploration difficult; if learning
online (Michigan approach), the agent must somehow
explore to the goal in order to learn how to escape the
valley, then reinforce this path over time. In contrast,
Pittsburgh approaches may find the task easier if they
are able to construct coherent policies that escape the
valley, then improve them over successive generations.

The minimum possible performance of a policy in
MC is —200, indicating all n rollouts were unable to
reach the goal within .« steps. To calculate an upper
bound on performance, we obtained a policy that was ap-
proximately optimal, and calculated the expected return
achieved by it. To find this policy, we performed value
iteration on a finely discretised version of MC (1000 bins
per feature), yielding an approximately optimal action-
value function QNQ, then constructed an approximately op-
timal policy 7 by querying @ for each discretised state.
The performance of T was —96 (rounded up to nearest
integer).

5 Cooperation and subspeciation

As previously mentioned, natural decomposition of an
FRBS leads to the concept of a DB cooperating with an
RB. We evolve FRBSs where both the DB and RB are
subject to adaptation via a CoCo algorithm where one
population represents DBs and the other RBs. These
populations are termed species [I7]. We choose to label
the DB species as the first population and the RB species
as the second population, and for the remainder of this
section refer to them as O; and O, respectively.

In implementing this CoCo paradigm we must pri-
marily ask: what kinds of structures are the two species
searching over, and why? A related secondary question
is: how are individuals of each species genetically en-
coded? An answer to the primary question has to take
into account the goal of the evolutionary process. In our
case, we are performing an MO search over performance
and complexity of FRBSs. Since the performance of an
FRBS is governed by its interaction with the environ-

ment (and is outside of our control), diversity in this ob-
jective is a natural consequence of searching over many
possible FRBSs of varying complexity. Therefore, there
must be mechanisms built into the evolutionary process
to support diversity in FRBS complexity. To achieve
this, and to provide an answer to the primary question,
we include a niching mechanism in our algorithm in the
form of subspecies. Since each population represents a
species, a subspecies is a subpopulation.

To explain exactly what a subspecies is, and how it
works in our CoCo paradigm, we have to begin to answer
the secondary question posited above: how are individ-
uals of each species genetically encoded? Let idvy; € Oy
be a DB and idvy € O3 be an RB. In order to form a so-
lution, idvy; must cooperate with idvs; however, it must
actually be possible for these individuals to form a valid
FRBS. For example, assuming d = 2, let there be an idvy
for which m; = mg = 2, i.e. two fuzzy sets defined on
each feature. Next, assume there is an idvs containing
the following rule:

IF zq is L(1,1) and w2 is Lo 3) THEN ...

idvy does not make sense in the context of idvy because
there is no fuzzy set L5 3) defined in idvy; therefore coop-
eration cannot occur. There must be a mechanism in the
algorithm to prevent situations like this from occurring.

To accomplish this, each individual in both popula-
tions is assigned a (non-alterable) subspecies tag o from
a set of possible subspecies tags 3, that indicates what
subspecies it belongs to. A subspecies tag is a tuple of
d integers each > 2 representing the number of fuzzy
sets defined on each of the d feature domains (at least
two on each). For example, the subspecies tag of idvy
from the previous example is (2,2). The subspecies tag
determines the granularity of the fuzzy partitions over
the feature space. Within each possible level of gran-
ularity, many levels of RB complexity are possible, as
we explain in Section [5.2 For a given problem, this
setup allows the evolutionary process to produce FRBSs
with appropriate granularity and complezity to address
the problem. Diversity in granularity drives diversity in
complexity, which enables diversity in performance; thus
subspeciation is a critical mechanism in our MO search.
Subspecies tags are primarily used to coordinate cooper-
ation between individuals of both species. Let idv.o de-
note the subspecies tag of idv. Cooperation is restricted
to be performed intra-subspecies, such that idv, and idvs
can only cooperate if idvi.c = idva.o.

To genetically represent individuals of a given sub-
species, we use a fized-length positional vector encoding,
where the length of an individual’s genotype is dependent
on its subspecies tag. For individuals in O;, the geno-
type encodes “reference coordinates” along each feature
domain that are used to construct fuzzy sets, as described
in Section [5.1] For individuals in O, the genotype en-
codes the advocation of actions in fuzzy subspaces, as
detailed in Section (.21

5.1 DB Genetic Representation

For an individual idv € Oy, each element o; of idv.o rep-
resents the number of fuzzy sets used to partition feature
i. To encode m = o; fuzzy sets, m values are required,
as explained below. Therefore, the length of such an
individual’s genotype is given by:

d
)\1(0’) :Z(Ti (3)

E’ 0.5 | EER|EESS R P == >< ------------------- \>< -------------------
¥ d
0
f ‘min f max
Fruax = fain Funx = Funin Frnax — Fin
3 3 3

Figure 1: Example decoding of alleles from a DB individ-
ual over a single feature domain to produce fuzzy sets.

Since the genotype is a vector, its genes can be logi-
cally split into sections that are responsible for a specific
feature. Alleles in the genotype are real numbers in the
range [0, 1]. Figure|l|depicts an example of genotype de-
coding for an individual in O1, on a single feature domain
[fmins fmax|. This process is repeated with the appropri-
ate alleles for each feature domain to create fuzzy sets
for all linguistic variables. Applicable alleles in this ex-
ample are (%, %, %), shown in orange at the bottom of
the figure. Since there are three alleles, three fuzzy sets
are constructed along the domain; m = 3. The outer two
fuzzy sets on the extremes of the domain are trapezoidal
in shape and the inner fuzzy set is triangular in shape.
In general, for m = 2 there is no inner triangular fuzzy
set and for m > 4, there are multiple inner triangular
fuzzy sets.

First, the domain is split into m equal width subdo-
mains. Next, a fraction w of the center of each subdomain
is marked as a wvalid region (shaded green, red areas are
invalid). We set w = 0.75, i.e. 75% of the middle of
each subdomain is valid, 12.5% on each side (remaining
25%) is invalid. Each allele specifies a relative fraction of
the width of the valid region — measuring from the left
hand side of the region — at which a “reference coordi-
nate” is placed along the domain. m reference coordi-
nates r1,...,T, are placed, shown in orange at the top
of the figure.

Using these reference coordinates, lines are drawn to
construct the fuzzy sets. To construct the outer two
trapezoidal fuzzy sets, lines are drawn between the fol-
lowing pairs of points:

((fmina 1)’ (7’1, 1))7 ((7”1, 1)7 (T27 0)); ((rmfla 0)7 (va 1))a
((va 1), (fmax, 1))

which correspond to lines [l,ls,l5,lg in our example.
Next, lines for the inner triangular membership func-
tions are created: for r;,i € {2,...,m — 1}, lines are
drawn from the point (r;,1) to points (r;_1,0) (positive
gradient) and (r;41,0) (negative gradient), correspond-
ing to lines I3,14 in our example. Because of the concept
of valid/invalid regions, this construction process has the
desirable property of ensuring that there is a minimum
amount of separation between neighbouring fuzzy sets,
which reduces overlap and aids linguistic distinguisha-
bility [2].

5.2 RB Genetic Representation

An individual idvy € O2 must operate in the context of
fuzzy sets specified by an individual idv; € O;. Because
of this, there are only a certain number of fuzzy sub-
spaces in which idvy can advocate actions. The number
of fuzzy subspaces is the number of possible fuzzy set in-
tersections, i.e. the product of the number of fuzzy sets
defined on each feature dimension. The length of idvs’s
genotype is given by this number:

d
Ao (o) = Ho'i

Expressed as a vector, the genes in the genotype are or-
dered in the same order as nested for-loops over the fuzzy
intersections, e.g. for d = 2,m; = 3, my = 2, the geno-
type is of length six with genes specifying the following
fuzzy subspaces:

(Lay N Ley)s (LanN Leg), (Lo N Le),
(Laz N L), (Las N Ley) (Las N Lesg)

Each gene has alleles from the set: A U {0}, which se-
lect the action to advocate in the fuzzy subspace. The
alleles from A are self-explanatory, but the 0 allele sig-
nifies that no action is specified, the fuzzy subspace is
ignored. Thus, it is possible for an RB genotype to be
under-specified in that actions do not have to be advo-
cated in all fuzzy subspaces. Subspaces with a 0 allele are
said to be unspecified, else they are specified. The pos-
sible underspecification of an RB is how different levels
of complexity are achieved. This has important implica-
tions for measuring the performance of an FRBS, as we
expand on in Section [0}

This genetic encoding represents a set of elementary
fuzzy rules that only allow conjunction of fuzzy sets (c.f.
Section‘ However, since we actually use CNF fuzzy
rules in the RB phenotype, there is a mechanism to merge
fuzzy rules together during genotype decoding in order
to create CNF rules where commonalities are “factored
out”. A merge creates a disjunction that generalises over
multiple fuzzy subspaces, and occurs when the binary

(4)

encodings of two rules share the same bits in all but
one clause — the differing clause creates the disjunc-
tion. This process is very similar to how a Karnaugh
map is constructed for simplifying Boolean expressions.
For example, using the same format of genotype as above
and given the following specification of linguistic vari-
ables and their corresponding linguistic values:

Iy - {L(l,l) : L, L(Lz) s M, L(Lg)) H}, T {L(Z,l) .
L, L(2,2) . H}
(0): Input genotype M
B:010[10[1
C':010/01]1
<2,0,1,1,2,1 > E:001/01]1
al o , , A:100[10/2
D:001/10]2
x
(2): Group)
L] 2 1 2 rules by (3): Merge rules in
action order, one at a
L M H time, in each group (4): Repeat
o while more
F :merge(B,C) = 010|11]1 merges
possible
(1): Construct E : unchanged
elementary fuzzy rules
in genotypic order G : merge(4, D) = 101102
A:TF 2y isLand o, is L THEN ais 2 — 100102
(5): Output CNF
B:IF z;isMand z; isLTHEN ais 1 — 010/10/1 fuzzy rules
C:IFz;isMand z is HTHEN ais 1 — 010[01]1 E:001/01]1 — IF z; is Hand 5 is H THEN a is 1
D:IF z;isHand z; is L THEN ais 2 — 001/10[2 F:010[11|1 — IF 2; isMand 2, is # THEN a is 1
E:IFz isHanda, is HTHEN ais 1 — 001[01]1 G :101[10[2 — IF 2, is {L or H} and
k a5 is L THEN a is 2

Figure 2: Example decoding of an RB genotype to pro-
duce a phenotype of CNF fuzzy rules.

Figure |2| depicts how the genotype < 2,0,1,1,2,1 > is
decoded into a phenotype of CNF fuzzy rules. Note that
in this example, only one application of step (3) is nec-
essary, but in general step (3) may need to be repeated
multiple times. Also note that the order of merging in
step (3) is fixed; given our example rule B would always
be merged with rule C, and it is not possible for rule C'
to be merged with rule E (even though this would result
in an equally valid CNF rule).

Why use this encoding; why not just encode CNF
rules directly? There are two good reasons: it is im-
possible to have rules that are over-specified in the sense
of being either i) redundant, or ii) contradictory, since at
most one action can be specified in every fuzzy subspace.
Redundancy occurs when two rules A and B share the
same consequent but rule A has an antecedent that log-
ically subsumes B’s. Contradictions occur when A and
B specify common fuzzy subspace(s) in their antecedents
but their consequents differ [2]. Both of these situations
are problematic, contradictions more so than redundan-
cies. There has been much attention in the literature on
how to deal with these situations; some approaches al-
low them to genetically manifest and phenotypically deal
with them via a conflict resolution procedure when evalu-
ating the rule set, others employ corrections in genotype
space to remove them if they occur [22]. We take the
approach of making them unable to occur.

5.3 Complexity Bounds

In Section we defined how the complexity of an RB
of CNF rules is (phenotypically) calculated. However,
given the RB genotype to phenotype decoding example
shown in Figure[2] it is apparent that RB complexity can
be measured genotypically as the number of specified al-
leles in the RB genotype. In the example, the number of
specified alleles in the genotype is 5, which is exactly the
complexity of the RB of CNF rules: applying Equation 2]
gives 1 x1=1forrule E,1x1=1forrule F,2x1=2
for rule G, 1 + 1+ 2 = 5 total. Therefore we actually
measure RB complexity genotypically.

We use the following bounds for complexity: minimum
complexity for any RB genotype is equal to k (number of
actions in A), meaning we give each RB the opportunity
to advocate at least one rule for each possible action.
Maximum complexity is equal to the maximum possible
number of specified alleles for any RB genotype, equiv-
alent to the length of the longest genotype of any RB
subspecies.

6 Fuzzy MoCoCo

We now present our algorithm for performing multiob-
jective cooperative coevolution of FRBSs. Our algo-
rithm most closely resembles the system used in [20],
in that it uses the same overarching framework for
integrating the cooperative coevolutionary mechanisms
from CCGA [I7] with the Pareto multiobjective and
elitist features of NSGA-IT [23]. Algorithm [1] presents
a top-level overview of our algorithm: Fuzzy MoCoCo
(Multiobjective Cooperative Coevolution). Algorithms
[2H7] detail the main functions used in Algorithm [} In
these algorithms and for the remainder of this paper, the
following notation is used:

e § — a probability mass function (PMF) over sub-
species tags

e P — a parent population
e () — a child population
e R — a combined parent and child population

e O — a population: used in a general sense when any
of (P,Q, R) could be expected

e O;,i€ {1,2} — the i'" population

e 0%, 0 € ¥ — asubpopulation; individuals in O with
subspecies tag o

e O¢ — a subpopulation of the i*" population

e S — a set of solutions (FRBSs)

e <.. — NSGA-II crowded comparison operator; par-
tial ordering based on (Pareto front rank, crowding
distance) pairs

Algorithm 1: Fuzzy MoCoCo

Input: &, ¥
1 01,02 = makeSubspeciesDists(X)
2 P, = initDBPop(d;)
3 P, = initRBPop(d2)

4 Q1 = @
5 Q2 = @
6 gen=20
7 while gen < numGens do
8 X = buildCollabrMap(Py, P, X, gen)
9 if gen == 0 then
10 S =buildSolnSet (P, P, %, X)
11 evalSolnSet(S, &)
12 assignIndivsCredit(P,S)
13 assignIndivsCredit(P;, 5)
14 else
15 S = buildSolnSet(Q1, @2, X, x)
16 evalSolnSet(S,€)
17 assignIndivsCredit(Q1,S)
18 assignIndivsCredit(Qs,S)

19 R1 = P1 U Q1

20 R2 = P2 @] QQ

21 P, = archiveParentPop(Ry,d1, |P1|)
22 | P, = archiveParentPop(Ry,d2, |Ps])
23 ()1 = breedChildren(P;,d1)

24 Q2 = breedChildren(FPs, d2)

25 gen = gen+ 1

26 return (R, R»,5)

Algorithm 2: buildCollabrMap

Input: P, P, 3, gen
1 x = empty mapping of subpop specification pairs
to indivs
2 for (i,0) € ({1,2} x X) do
3 | x[(i,0)] = selectCollabrs(P7, gen)
4 return y

Algorithm 3: buildSolnSet

Input: 0,,02,%,x

S=0

popNums = {1,2}

for (i,0) € (popNums x) do

subpop = OF

j = opposite of ¢ in popNums

collbars = x[(4, 0)]

for (idv, collabr) € (subpop x collabrs) do
soln = makeFRBS(idv, collabr)
S = S U {soln}

return S

© 00 N O oA W N -

[y
o

Algorithm 4: evalSolnSet

Input: S, &
for soln € S do
soln.perf = calcPerformance(soln, &)
soln.comp = calcComplexity(soln)
assignParetoFrontRanks(S)
assignCrowdingDists(S)

[U VN

Algorithm 5: assignIndivsCredit

Input: O, S
1 for idve O do
2 C = set of solns in S that contain idv as a
component
(' = crowdedComparisonSort(C)
best = first soln in C’
idv.perf = best.perf
1dv.comp = best.comp

[<2 B | B)

Algorithm 6: archiveParentPop

Input: R,), numParents

1 R’ = copy of R

2 P=90

3 while |P| < numParents do

o = draw sample from ¢

subpop = R'°

if subpop not empty then
C' = crowdedComparisonSort(subpop)
best = first soln in C'
R = R’ — best

10 P = P U {best}

11 return P

© 0w N o oA

Algorithm 7: breedChildren

Input: P,d

Q=10

while |Q| < |P| do

o = draw sample from §

subpop = P

parentA = selection(subpop)

parentB = selection(subpop)

childA, childB =
crossoverMutate(parentA, parentB)

Q = QU {childA, childB}

return @

N 0 Gk W N

®

©

As input to Algorithm € and ¥ must be speci-
fied. The main generational loop of Algorithm [I| can be
split into two phases: the top half (lines evaluation
phase) builds solutions via cooperation, evaluates these
solutions in the MO space, then assigns credit (objective
values) to individuals based on their participation. The
second half (lines reproductive phase) archives the
best solutions found so far, then breeds new child popu-
lations from these archives.

The reproductive phase is the same for every iteration
of the loop, but the evaluation phase has different be-
haviour for the first vs. subsequent generations. In the
first generation (gen = 0), Q1 and @2 are empty and
so P; must cooperate with P,. This is a bootstrapping
generation, where the initial parents are evaluated. In
every subsequent generation, P, cooperates with Q2 and
P, cooperates with @1, with the purpose of evaluating
individuals in @7 and Q2. This means each individual
is evaluated exactly once: in the first generation for the
initial parents, and in the generation after its conception
for every child. Elitism appears in the form of archiv-
ing individuals from the combined populations R; and
R as parents. The function makeSubspeciesDists (Al-
gorithm [1] line [I)) creates a subspecies PMF for both
populations: d; and d2. These PMF's specify what frac-
tion of the search should be (probabilistically) dedicated
to each subspecies: subspecies with larger search spaces
receive a larger fraction of the available resources. For
i €{1,2},0 € %, §; is initialised as:

ﬁ&'(a)
ZJ/GE 5)\1-(0")

where \;(o) calculates the length of the genotype used
by subspecies ¢ in population i (Equation Equa-
tion [M). B > 1is a hyperparameter that controls dis-
parity in probability mass allocation, larger values of 3
allocate more mass to subspecies with longer genotypes.
P, and P, are initialised in the functions initDBPop
and initRBPop. These functions create dbPopSize and
rbPopSize individuals respectively, determining which
subspecies to create by drawing samples from ¢; and o,
respectively. initDBPop initialises alleles randomly from
U(0,1). For initRBPop, a hyperparameter rbPUnspec
controls the probability of initialising an allele as un-
specified. The remaining alleles (a € A) each have an
initialisation probability of M.

Algorithms [2| and [3] implement cooperation between
individuals as previously described. To select collabora-
tors for cooperation, the function selectCollbars (Al-
gorithm [2} line [3)) has two different behaviours, depend-
ing on the generation counter. During the first genera-
tion there is no information about the objective values
of any individual, so Pareto front ranks and crowding
distances cannot be computed, and <.. cannot be ap-
plied. Therefore two collaborators are randomly selected
in each subpopulation. During subsequent generations,

(51[0'] =

again two collaborators are selected from each subpopu-
lation, but are taken as: i) the best individual according
t0 ¢, 11) a random individual from the remainder of the
subpopulation.

In Algorithm [4 the performance and complexity of
solutions in S is evaluated. Because we allow RBs to
be underspecified (see Section , it is possible that an
FRBS can fail its performance evaluation, i.e. an input
state is reached that is not covered by any rule. This is an
inherent disadvantage of a Pittsburgh system as opposed
to a Michigan system, the latter makes this impossible
via a covering mechanism. If such a scenario is encoun-
tered, the FRBS is assigned a performance equal to the
environmental lower bound (see Section . Evaluation
of complexity is done as per Section [5.3

Following performance and complexity evaluation,
the function assignParetoFrontRanks determines the
Pareto front ranks of solutions in .S, implemented as the
same fast non-dominated sort from NSGA-II. A Pareto
front of rank 7 is denoted by F;, F1 representing the set
of non-dominated solutions on the frontier of the search.
Finally, assignCrowdingDists is used to determine the
crowding distance of solutions, again in the same fash-
ion as NSGA-II. To do this, lower and upper bounds for
both performance and complexity must be known. Per-
formance bounds are a property of £ (see Section .
Complexity bounds are as discussed in Section [5.3

Algorithm [5] assigns credit to individuals in a popula-
tion according to the best solution they participated in.
The notion of best is determined via application of <.
(crowdedComparisonSort function). Algorithm [6] per-
forms an NSGA-II style archiving procedure, selecting a
new P. The distribution of subspecies tags in P is reflec-
tive of §, in that the main loop (lines firstly draws
a subspecies tag from 4. Then, the best individual from
the corresponding subpopulation is archived in P, and
removed from the set of candidate parents R’. This is
repeated until P is full.

Algorithm [7] generates a new child population Q, via
application of a GA on P. The selection operator is tour-
nament selection with a tournament size of 2, using <.
to rank individuals. Like Algorithm [6] ¢ is sampled to
preserve the distribution of subspecies tags in (). Re-
production is done intra-subspecies: the subspecies tag
drawn from § determines the subpopulation to select par-
ents from. We use a real-coded GA on P; (since its
genotypes are vectors of real numbers), with crossover
implemented as line recombination [24], performed with
probability dbPCross. Mutation is Gaussian noise, zero
mean, standard deviation controlled by dbMutSigma.

For P, we use uniform crossover, performed with prob-
ability rbPCross per allele. Mutation allows each allele
(being one of k + 1 values from A U {0}) to switch to
one of the other k alleles, each with probability % The
probability of performing such a mutation is roPMut per
allele. Crossover and mutation probabilities are delib-

w 10%

s
21034
5
S 102 A
3
£ 10! 4
E]
z 100 4

-90
—100
-1104

=120 - -
o —1304 ;
g
S -1404
£ »
5 -1501 @
€ -
9 -1601 & .
-170 "= Subspecies tags
e (2,2
-001 B > (3.3)
-190- = o (44
-200- = ® (55)
T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 10 11 12 13 14
-95.5
~-96.01 m
—~96.5 o - = &3] @ e

Performance
I
©
@
o

Complexity

Figure 3: Middle: scatter plot of merged Fis over thirty
Fuzzy MoCoCo runs on MC. Bottom: zoomed in view
of highlighted region in middle plot. Top: histogram of
complexity values in middle plot.

erately constant across subspecies, inciting more explo-
ration (more frequent crossover and mutation) in sub-
species with longer genotypes. Because we specify a min-
imum RB complexity, we include a repair operator, ap-
plied after mutation in (J5. This operator rectifies situa-
tions where the number of specified alleles in an RB geno-
type is less than the minimum complexity — altering the
genotype to be of minimum complexity by randomly se-
lecting an appropriate number of unspecified alleles and
assigning them random values from A.

7 Results

We conducted thirty independent runs of Fuzzy Mo-
CoCdﬂ on the OpenAl Gym implementation of MCEL in
order to determine if parsimonious, high-performing poli-
cies could be found. Hyperparameters for each run were:
rbPUnspec=0.1, numGens=>50, dbPCross=0.75,

dbMutSigma=0.02, 7o PCross=0.25, rb P Mut=0.05, =30,
¥={(2,2),(3,3),(4,4),(5,5)}, =1.125, dbPopSize=300,
rbPopSize=600. B, dbPopSize, and rbPopSize were set
in tandem to allocate each subspecies approximately ten
times as many individuals as the dimensionality of its
search space. Figure [3| (middle) shows a scatter plot of
F1 yielded by each run (thirty Fis, plotted on one set
of axes). Each solution is plotted as an individual point
with high transparency, giving some indication of solu-
tion density in a particular area. A small amount of jitter
is used on the complexity axis to make individual points

1Source code for algorithm available at: [https://github.com/
jtbish/fuzzy-mococo
“https://gym.openai.com/envs/MountainCar-v0/

in low density areas more visible. Points are coloured by
their subspecies tag. Note that in areas of very high den-
sity (e.g. around (2,—200)), multiple points are plotted
on top p of one another and so cannot be distinguished;
this is a limitation of the plotting technique. The top plot
of the figure shows the frequency of each level of com-
plexity. The bottom plot of the figure shows a zoomed
in view of the magenta area in the middle plot. From
this figure, we observe the following:

1. A large number of solutions are of minimum com-
plexity, minimum performance: (2, —200).

2. Increasing complexity up to 5 provides increased
performance, but from then on provides no improve-
ment.

3. Solutions offering the best tradeoff between perfor-
mance and complexity are of complexity 5, sub-
species (4,4).

The first observation manifests because the minimum
performance attainable in MC is —200, indicating that
no performance rollouts were able to reach the goal. This
can easily occur, via an FRBS that either i) has rules that
do not cooperate enough to reach the goal, or ii) is too
underspecified and so fails its performance evaluation.

We chose one of the solutions from the complexity 5
subspecies (4,4) group as the best solution found by any
run. The performance of this best solution was —96.17,
while the performance of our approximately optimal pol-
icy was —96. This is notable: our algorithm has produced
a policy that has almost attained the upper bound of per-
formance. Due to limited available space, a discussion of
the performance and computational complexity of Fuzzy
MoCoCo vs. other learning approaches is omitted. Such
a discussion is a task for future work.

Figure [4] shows the fuzzy sets used by the best so-
lution (middle, bottom), accompanied by the curva-
ture of the valley (top) to make fuzzy sets over x
easier to interpret. Linguistic values are as follows:
x : {FL: Far Left, L: Left, R: Right, FR: Far Right}, 4 :
{VL: Very Low, L: Low, H: High, VH: Very High}. The
RB used by the best solution is:

(A) IF z is L and & is L THEN a is 1 (Left)
(B) IF zis {FLor Lor FR} and ¢ is H THEN a is 2 (Right)
(C) IF z is R and ¢ is VH THEN a is 2 (Right)

Rule is responsible for pushing the car up the LHS
mountain. Rule pushes the car right when it has a
moderate amount of positive velocity and is either i) on
the LHS mountain, ii) in the valley, or iii) towards the
top of the RHS mountain (almost at the goal). This rule
deliberately omits the case where the car is on the steeper
(lower) part of the RHS mountain, because there is not
enough momentum to reach the goal by pushing right.
Rulecovers this scenario, pushing the car to the right

https://github.com/jtbish/fuzzy-mococo
https://github.com/jtbish/fuzzy-mococo
https://gym.openai.com/envs/MountainCar-v0/

h=0.45-sin(3x) + 0.55

Degree of membership

Degree of membership

0.00 001

X

-0.01

Figure 4: Top: curvature of the MC valley. Middle,
bottom: fuzzy sets used by the best evolved FRBS in
MC.

when it is on the steep part of the RHS mountain if there
is a large amount of positive velocity.

8 Conclusion

We proposed a novel Pittsburgh GFS that utilises both
MO and CoCo mechanisms to learn FRBSs that act as
policies in RL environments. The system was tested on
the Mountain Car environment, as it was a prime candi-
date due to its combination of a continuous state space
and difficult exploration. Results show that the sys-
tem was able to effectively balance resources and explore
the tradeoff between FRBS performance and complexity.
Analysis of a selected “best” (near optimal performance)
FRBS showed that its rules were both interpretable and
parsimonious.

References

[1] T. Kovacs, “Genetics-Based Machine Learning,” in
Handbook of Natural Computing (G. Rozenberg,
T. Béck, and J. N. Kok, eds.), pp. 937-986, Berlin,
Heidelberg: Springer, 2012.

O. Cordédn, ed., Genetic fuzzy systems: evolutionary
tuning and learning of fuzzy knowledge bases. No. 19
in Advances in fuzzy systems, Singapore: World Sci-
entific, 2001.

10

[3] R.J. Urbanowicz and W. N. Browne, Introduction to
learning classifier systems. New York, NY: Springer
Berlin Heidelberg, 2017.

F. Herrera, “Genetic fuzzy systems: taxonomy, cur-
rent research trends and prospects,” Fwvolutionary
Intelligence, vol. 1, pp. 27-46, Mar. 2008.

P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E.
Goldberg, “XCS with computed prediction in mul-
tistep environments,” in Proceedings of the 7th an-
nual conference on Genetic and evolutionary com-
putation, GECCO ’05, (Washington DC, USA),
pp- 18591866, Association for Computing Machin-
ery, June 2005.

D. Loiacono and P. L. Lanzi, “Recursive least
squares and quadratic prediction in continuous mul-
tistep problems,” in Proceedings of the 10th an-
nual conference companion on Genetic and evolu-
tionary computation, GECCO 08, (Atlanta, GA,
USA), pp. 1985-1992, Association for Computing
Machinery, July 2008.

A. Homaifar and E. McCormick, “Simultaneous de-
sign of membership functions and rule sets for fuzzy
controllers using genetic algorithms,” IFEE Trans-
actions on Fuzzy Systems, vol. 3, pp. 129-139, May
1995.

R. S. Sutton and A. G. Barto, Reinforcement learn-
ing: an introduction. Adaptive computation and
machine learning series, Cambridge, MA: The MIT
Press, second edition ed., 2018.

A. Stein, R. Maier, L. Rosenbauer, and J. Hahner,
“XCS classifier system with experience replay,” in
Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, GECCO 20, (New York,
NY, USA), pp. 404-413, Association for Computing
Machinery, June 2020.

M. V. Butz, “Kernel-based, ellipsoidal conditions
in the real-valued XCS classifier system,” in Pro-
ceedings of the 2005 conference on Genetic and evo-
lutionary computation - GECCO 05, (Washington
DC, USA), pp. 1835-1842, ACM Press, 2005.

M. Valenzuela-Rendén, “Reinforcement learning in
the fuzzy classifier system,” FEzpert Systems with
Applications, vol. 14, pp. 237-247, Jan. 1998.

J. Bacardit and J. M. Garrell, “Bloat Con-
trol and Generalization Pressure Using the Min-
imum Description Length Principle for a Pitts-
burgh Approach Learning Classifier System,” in
Learning Classifier Systems (T. Kovacs, X. Llora,
K. Takadama, P. L. Lanzi, W. Stolzmann, and S. W.
Wilson, eds.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 59-79, Springer, 2007.

[13]

[15]

[16]

[17]

[19]

[23]

H. Ishibuchi, “Multiobjective Genetic Fuzzy Sys-
tems: Review and Future Research Directions,” in
2007 IEEFE International Fuzzy Systems Conference,
pp- 1-6, July 2007.

X. Llora and D. E. Goldberg, “Bounding the Effect
of Noise in Multiobjective Learning Classifier Sys-
tems,” Fvolutionary Computation, vol. 11, pp. 279—
298, Sept. 2003.

T. Takagi and M. Sugeno, “Fuzzy identification of
systems and its applications to modeling and con-
trol,” IEEFE Transactions on Systems, Man, and Cy-
bernetics, vol. SMC-15, pp. 116-132, Jan. 1985.

K. A. de Jong, W. M. Spears, and D. F. Gordon,
“Using Genetic Algorithms for Concept Learning,”
Machine Learning, vol. 13, pp. 161-188, Nov. 1993.

M. A. Potter and K. A. D. Jong, “Cooperative Co-
evolution: An Architecture for Evolving Coadapted
Subcomponents,” Fvolutionary Computation, vol. 8,

pp- 1-29, Mar. 2000.

C. Pena-Reyes and M. Sipper, “Fuzzy CoCo: a
cooperative-coevolutionary approach to fuzzy mod-
eling,” IEEE Transactions on Fuzzy Systems, vol. 9,
pp. 727-737, Oct. 2001.

H. Ishibuchi, T. Nakashima, and T. Murata,
“Three-objective genetics-based machine learning
for linguistic rule extraction,” Information Sciences,
vol. 136, pp. 109-133, Aug. 2001.

A. W. Torio and X. Li, “A Cooperative Coevolution-
ary Multiobjective Algorithm Using Non-dominated
Sorting,” in Genetic and Evolutionary Computation
- GECCO 2004 (K. Deb, ed.), Lecture Notes in
Computer Science, (Berlin, Heidelberg), pp. 537—
548, Springer, 2004.

J. Casillas, B. Carse, and L. Bull, “Fuzzy-XCS: A
Michigan Genetic Fuzzy System,” IEEE Transac-
tions on Fuzzy Systems, vol. 15, pp. 536-550, Aug.
2007.

J. Casillas and P. Martinez, “Consistent, Com-
plete and Compact Generation of DNF-type Fuzzy
Rules by a Pittsburgh-style Genetic Algorithm,” in
2007 IEEFE International Fuzzy Systems Conference,
pp- 1-6, July 2007.

K. Deb, A. Pratap, S. Agarwal, and T. Meyari-
van, “A fast and elitist multiobjective genetic algo-
rithm: NSGA-II,” IEEE Transactions on Evolution-
ary Computation, vol. 6, pp. 182-197, Apr. 2002.

S. Luke, FEssentials of metaheuristics: a set of
undergraduate lecture notes. Morrisville, N.C.:
lulu.com, online version, second ed., 2013.

11

	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Fuzzy Rule-Based Systems
	2.2.1 FRBS Structure
	2.2.2 Measuring FRBS Complexity

	3 Related Work
	4 Mountain Car Environment
	5 Cooperation and subspeciation
	5.1 DB Genetic Representation
	5.2 RB Genetic Representation
	5.3 Complexity Bounds

	6 Fuzzy MoCoCo
	7 Results
	8 Conclusion

