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ABSTRACT
Deep Neural Networks (DNN’s) are a widely-used solution for a
variety of machine learning problems. However, it is often nec-
essary to invest a significant amount of a data scientist’s time to
pre-process input data, test different neural network architectures,
and tune hyper-parameters for optimal performance. Automated
machine learning (autoML) methods automatically search the ar-
chitecture and hyper-parameter space for optimal neural networks.
However, current state-of-the-art (SOTA) methods do not include
traditional methods for manipulating input data as part of the algo-
rithmic search space. We adapt the Evolutionary Multi-objective
Algorithm Design Engine (EMADE), a multi-objective evolutionary
search framework for traditional machine learning methods, to
perform neural architecture search. We also integrate EMADE’s sig-
nal processing and image processing primitives. These primitives
allow EMADE to manipulate input data before ingestion into the
simultaneously evolved DNN. We show that including these meth-
ods as part of the search space shows potential to provide benefits
to performance on the CIFAR-10 image classification benchmark
dataset.
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1 INTRODUCTION
Deep Learning methods have been shown to improve state-of-the-
art performance in a variety of tasks, including Natural Language
Processing, Computer Vision, and Speech Processing. This has led
to a flurry of activity in the field, with many different task-specific
model architectures and hyper-parameters being invented. Due
to the wide variety of possible architectures, hyper-parameters,
it is often necessary to spend copious amounts of time tracking
and experimenting with many different architectures and hyper-
parameters for optimal performance. Neural Architecture Search
(NAS) methods help automate this process. Methods treat find-
ing the optimal architecture as a search problem and employ a
variety of strategies in order to solve it. Hyper-parameter search
methodologies also exist, and modern systems incorporate both
hyper-parameters and architectures in the same search space.

Optimal performance can be measured with single or multiple
objectives. For example, LEAF [9], a multi-objective system opti-
mizes for both accuracy and model size. Since each algorithm is
tested on both objectives, end users can select the ideal model based
on their desired compute budget.

One major drawback with current systems is a lack of data pre-
possessing in the search space. Rather, data pre-processing is hand-
designed prior to feeding it into the system. Data pre-processing
is arguably one of the most important pieces of a deep learning
pipeline, and can dramatically affect the quality of the resulting
model.

The Evolutionary Multi-objective Algorithm Design Engine (EM-
ADE) tackles this problem. EMADE, previously introduced as GT-
MOEP [18], includes data processing functions in its primitive set,
allowing it to evolve both traditional machine learners and data
pre-processing algorithms concurrently. Using the Keras API [2] we
extend EMADE to include neural network-relevant primitives and
terminals such as various types of layers, weight initializers, layer-
level parameters, and network-level hyper-parameters. We show
that modifying EMADE to evolve using both data pre-processing
functions and neural network primitives improves accuracy on
CIFAR-10[8], a popular benchmark for NAS frameworks, and can
potentially improve on SOTA algorithms.

2 BACKGROUND AND RELATEDWORK
Neural Architecture Search automates the process of determining
the best combinations of layers and their optimal hyper-parameters
for neural networks by treating it as a classical search problem.
NAS methods comprise three components: a search space, a search
strategy, and a candidate network performance estimation strategy.
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Evolution-based search algorithms have been used widely to
evolve neural networks. NEAT [13] was one of the first genetic
algorithms for neural network topology evolution, created by Stan-
ley & Miikkulainen in 2002. NEAT directly encodes neurons, their
weights, and neuron connections as genomes. Then NEAT cre-
ates a population of genomes which then undergoes a biologically-
inspired evolutionary process. Genomes can mutate (where the
weights and connection values randomly change) and mate (where
portions of two genomes combine to make a new one).

However, direct encoding of neurons to genes is not feasible
at larger scales, due to the amount of memory required to store
millions of neurons. CoDEEPNEAT [10] and HyperNEAT [12] en-
code neural networks indirectly by specifying layer parameters
and sizes rather than individual neurons. This allows NEAT to
be used to evolve larger and deeper neural networks. CoDEEP-
NEAT also performs multi-objective optimization, resulting in a
list of co-dominant networks (called a Pareto front). This allows
CoDEEPNEAT to optimize for metrics such as accuracy and size
simultaneously. Experiments on CoDEEPNEAT were run on a vari-
ety of datasets [9] including CIFAR-10 [10]. LEAF creates networks
from scratch and trains them for 8 epochs during the evolution
process. Once the evolution process is complete, the best network
is re-trained for 300 epochs. LEAF achieves a 7.3% error rate on
CIFAR-10.

EMADE is a automated ML framework based on the DEAP [5]
genetic programming framework. In the DEAP framework, algo-
rithms are expressed as trees, with functions expressed as nodes
and parameters expressed as terminals. When evaluating the tree,
nodes are computed in order of decreasing depth with outputs from
child nodes being passed as inputs into their parent nodes. EMADE
uses vector based genetic programming, where the data passed
between primitives is a vector of elements. EMADE uses high-level
primitives such signal processing and computer vision functions
along with traditional machine learning functions.

Through the evolutionary process EMADE optimizes combi-
nations of these classifiers and pre-processing methods and their
respective hyper-parameters. EMADE’s evolutionary process fol-
lows a similar algorithm to NEAT and other genetic algorithms.
An initial population of individual trees are created and evaluated.
Each generation, 𝑛 trees are selected via a selection function, and
are used to create new trees to add to the population. EMADE uses
NSGA-II [3] as the selection function, and a variety of mating and
mutation operators for tree generation. EMADE has been used for
a variety of domains [6, 17, 19], but has never been used on Deep
Learning applications.

3 METHODS
3.1 Neural Network Modifications
We extend EMADE to include a neural network-based learner prim-
itive, Layer primitives, and neural network-centered mating and
mutation functions.

3.1.1 LayerTree. The LayerTree class is a pre-ordered list repre-
sentation of the neural network tree. Primitives add Keras layers to
this tree, resulting in a tree-structured computational graph.

Table 1: Hyper-parameters for Search Space

Hyper-parameter Used In Range

Output Dimension Core-Layer int
Activation Function Core-Layer [SeLU, ELU, Sigmoid, ReLU, Leaky Relu, Softmax, TanH]
Weight Decay Core-Layer float
Kernel Dimension CNN int
Stride Size CNN int
Padding Style CNN Same or Valid
Batch Size NNLearner int
Optmizer NNLearner [Adam, SGD, RMSprop, Adadelta, Adagrad, Adamax, Nadam, Ftrl]
Dropout Percentage Dropout float

3.1.2 Layer Primitives. It is necessary to encode the neural ar-
chitecture in a way visible to the EMADE framework. Therefore,
a multitude of neural network layer types from the Keras API are
added as EMADE primitives. Keras Layers are added as Layer prim-
itives. Each primitive accepts a LayerTree representation of the
model built from its child node as a parameter. It creates a Keras
layer and adds the layer as the new root, and passes the modified
tree on to its parent node. In creating the Keras Layer, EMADE can
specify various layer parameters via other primitives and terminals.
These parameters are shown in Table 1.

We include Dense and Convolution Layers in the primitive set
since CIFAR-10 is an image classification task, and CNNs have
performed well on this task. We also add layer primitives including
Dropout, BatchNormalization, MaxPooling, GlobalMaxPooling, and
GlobalAveragePooling. Concatenate layers are also necessary for
EMADE to generate tree-based neural networks. These concatenate
a series of previous layers’ outputs, and can be used to condense
two branches of the tree together. Therefore, we add a Concatenate
layer primitive to the set. The primitive takes the output of two
child LayerTrees and concatenates them.

3.1.3 Pre-trained Layer Primitives. Many state-of-the-art image
classification models show that pre-training on ImageNet yields sig-
nificant performance gains [4] [16] [15]. Building off this work, we
incorporated pre-trained models within the evolutionary process.
We add each pre-trained network as a single layer. While it does
not allow EMADE to modify the architecture of the pre-trained
network, EMADE is easily able to add other primitives before or
after these layers. We implement VGG [11], Mobilenet [7], and
Inception [14] architectures, which have been shown to perform
well for image classification tasks. For all of these layers, we used
pre-trained ImageNet weights. However, we do not freeze these
weights, allowing them to be updated during the training regime
for each tree.

3.1.4 NNLearner. The NNLearner takes in data, batch size, op-
timizer, and a LayerTree. It creates a neural network from the
LayerTree specifications using the Keras Functional API. When
evaluating, it trains the network on the train subset of the data, and
validates it based on the validation set of the data. NNLearner uses
early stopping [1] to determine the optimal epoch to stop training
using validation data to determine the early stopping point.

3.2 Image Pre-processing Primitives
EMADE supports over 150 primitives that operate on image data,
many leveraged from OpenCV. These include various filters, trans-
formations, and other image processing techniques. EMADE also
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contains more than 60 signal processing functions leveraged from
Python packages such as numpy, scipy, and scikit-learn.

Together, these primitives enable a large host of well-researched
techniques to be applied to instances of data during the algorithm
design process. Primitives in EMADE tend to fall into two categories,
those that fit to training instances of data and then apply to those
used for scoring (e.g. transforms), and those that apply to each
instance independently (e.g. filters).

Some methods that we expect to be useful in pre-processing for
image classification tasks include primitives such as: histogram
of oriented gradients, hsv histograms, Haralick features, HuMo-
ment features, edge detection filters, blurring filters, gray-scale
conversions, normalizations, thresholds, and spectral representa-
tions such as Fourier transforms, wavelet transforms, and discrete
cosine transforms.

3.3 Mutation Functions
Various mutation functions were added to EMADE’s mutation func-
tion set in order to aid neural network evolution. These mutation
functions include randomly adding a layer to the tree represen-
tation, randomly swapping a layer with another layer, and ran-
domly removing a layer. With these three simple mutation func-
tions, EMADE has the potential to reach any architecture in the
search space. Specific mutation functions were also added to change
the activation function of a layer, the optimizer used, as well as the
pre-trained weights used in the embedding layer.

3.4 Mating Functions
Several newmating functionswere added to EMADE’s existing ones
to improve mating between tree-based neural network algorithms.
One mating function was a single point crossover that operates on
a random point that has an NNLayer output type. This function
allows the creation of a child network whose gene composition
has its first partition of layers from the beginning of one parent
up to the crossover point and the second partition of layers from
the crossover point to the end of the other parent (and vice versa
for the other child) as shown in Figure 1. A modified version of
this function was also added to aid in expanding neural network
size. Instead of replacing the latter half of each network, each child
network has their original layers in addition to the swapped sub-
trees from the parents. Note that this is not a two point crossover.

Figure 1: Single Point Crossover Between Two Trees

Table 2: Experimental Setup

Parameter Small Run Large Run

Seeded Population Size 16
Initial Population Size (with seeded population) 64 512
Walltime 24 hours
Nodes 4
GPU / node 1, 32GB TeslaV100
Evaluations / node 3
Mating - crossover 50%
Mating - crossoverEphemeral 50%
Mating - headlessChicken 10%
Mating - headlessChickenEphemeral 10%
Mutation - insert 5%
Mutation - insert modify 10%
Mutation - ephemeral 25%
Mutation - uniform 5%
Mutation - shrink 5%
Mutation - swap layer 5%
Mutation - remove layer 5%
Mutation - add layer 5%

4 EXPERIMENT
The CIFAR-10 Dataset is a multi-class benchmark dataset for Image
Classification. It contains 60,000 32x32 color images in 10 classes
with 6,000 images per class. Classes consist of different vehicle and
animal types. We separate the images into a 50,000 image train split
and a 10,000 image test split.

We initially seed EMADE’s starting population with 16 hand-
created NNLearners to bias the evolution process to create neural
networks. Each seed is an NNLearner containing a pre-trained
network layer, followed by a single Dense layer with a sigmoid acti-
vation function to act as an output layer. The pre-trained networks
include either a VGG, MobileNet, or Inception architecture. Adam
is set as the optimizer, and batch size differs between 1 to 9. The
remaining individuals in the population are randomly generated.
Using the configurations in Table 2, we performed two separate runs
with the same seeded individuals but with different run sizes. Both
runs were given approximately the same 288 total compute hours.
The small run accomplished 109 generations and evaluated 13,896
individuals. The best individual accuracy was 75.59%. The large run
accomplished 28 generations and evaluated 34,989 individuals. The
best individual accuracy was 73.84%.

5 RESULTS

Figure 2: Final Pareto Fronts

Final Pareto Fronts are shown in Figure 2. Even though the two
runs performed a different number of generations and evaluated a
significantly different amount of individuals the resulting Pareto
Fronts are nearly identical. As seen in Figure 3, the best accuracy
observed in an individual improved over the course of evolution.
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Note that the best individual accuracy improved the most in the
early generations for both runs. Since both runs have the same
accuracy/generation profiles, it seems that EMADE does not take
advantage of the larger population to optimize more quickly. This
similarity may be due to the effects of seeding, since the seeded
portion of the starting population is the same.

Figure 3: Best Accuracy per Generation

An example individual evolved is shown in Figure 4. It takes
advantage of both EMADE pre-processing and NN-based primi-
tives. In this particular example, EMADE optimized the seeded
pre-trained MobileNet network by manipulating the batch size,
switching the optimizer from Adam to SGD, and applying a cosine
window on the data before training/testing on it.

Figure 4: Individual with Pre-processing Primitive(s)

6 CONCLUSION
The paper shows a proof of concept that uses neuroevolution to look
through a search space to find optimal neural network architectures
across different objectives for image classification tasks. By evolving
pre-trained networks and pre-processing techniqueswith the neural
network architectures, we expand on current work to benefit the
performance of the CIFAR-10 image classification dataset. Although
our current results are not yet comparable with human generated
algorithms, it is worth noting that our algorithm was discovered by
the EMADE neural network framework on its own using genetic
programming. There is a lot of potential for machine generated
algorithms to perform at an extremely high level.

We propose this tool to be helpful for other classification tasks
where neural networks are used. There is also ample opportunity for
futurework in improving EMADE’s neural architecture search, such
as supporting skip connections within nodes in trees, investigating

building and preserving tree complexity, and developing ways to
more efficiently evaluate individuals.

When EMADE’s framework is further developed with more
competitive results for the CIFAR-10 dataset, we would like to test
our results against other state-of-the-art algorithms and further
investigate the benefits of manipulating input data as part of the
algorithmic search space. Future research will also include more
rigorous testing with other datasets (especially unbalanced ones)
and drawing comparisons to other AutoML frameworks.
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