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Figure 1: Gradient flows of the Rastrigin function and its isotropic Gaussian relaxation.

ABSTRACT
In stochastic optimization, particularly in evolutionary computa-

tion and reinforcement learning, the optimization of a function

𝑓 : Ω → R is often addressed through optimizing a so-called relax-

ation \ ∈ Θ ↦→ E\ (𝑓 ) of 𝑓 , where Θ resembles the parameters of a

family of probability measures on Ω. We investigate the structure of

such relaxations by means of measure theory and Fourier analysis,

enabling us to shed light on the success of many associated sto-

chastic optimization methods. The main structural traits we derive

and that allow fast and reliable optimization of relaxations are the

consistency of optimal values of 𝑓 , Lipschitzness of gradients, and

convexity. We emphasize settings where 𝑓 itself is not differentiable

or convex, e.g., in the presence of (stochastic) disturbance.

CCS CONCEPTS
•Mathematics of computing→Mathematical optimization;
• Theory of computation → Theory of randomized search
heuristics.
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1 INTRODUCTION
The idea of an optimization problem is to find minima (or maxima)

of a function 𝑓 : Ω → R in a set of possible candidates Ω. Given a

𝜎-algebra A on Ω we can understand a probability measure Pr on

(Ω,A) as a generalized candidate of 𝑓 . A generalized candidate Pr

induces a functional to which we assign its expected value E(𝑓 ). A
parameterization Pr· : Θ → M+

1
(Ω,A) of (a subset of) the gener-

alized candidates, where Θ is the parameter set and M+
1
(Ω,A) is

the set of probability measures on (Ω,A), results in what is called

a stochastic relaxation \ ∈ Θ ↦→ E\ (𝑓 ). In this paper, we inves-

tigate the central structural properties of relaxed problems that are

of interest to optimization: consistency, smoothness, and convexity.

Algorithms. Our work applies to a broad range of optimization al-

gorithms, including several randomized search heuristics (variants

of estimation of distribution methods) for discrete and continuous

search spaces. The second half of our paper is heavily influenced by

applications in gradient-based optimization, covering in particular

information geometric optimization [12]. The two most important

https://doi.org/10.1145/3450218.3477307
https://doi.org/10.1145/3450218.3477307
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use-cases in the regime of gradient-based optimization are the fol-

lowing:

• Θ is an open subset of R𝑛 and the measures have \ -differen-

tiable densities with respect some measure `, i.e. Pr\ = 𝑘\ `.

• Ω = Θ = R𝑛 ,A is the Borel𝜎-algebra ofR𝑛 , i.e.,A = B(R𝑛),
𝑓 is differentiable, and Pr\ ◦𝜓\ = Pr0, where 𝜓\ : R𝑛 →
R𝑛, 𝑥 ↦→ 𝑥 + \ .

Under mild regularity assumptions, which we will cover, we have

the identity

∇\ E· (𝑓 ) ≡ E· (𝑓 ∇\ ln𝑘 ·)

in the first case and

∇\ E· (𝑓 ) ≡ E· (∇𝑥 𝑓 )

in the second. In both cases, the gradient of the relaxation can,

therefore, be approximated by numerical integration.

Motivation and Related Work. Stochastic relaxations have long
provided a powerful approach to optimization problems where non-

local structure is significant, problem representations are not easy

to manipulate (e.g., through differentiation), or robust solutions are

desired. In recent literature, there has been considerable progress

on qualitative and quantitative assessment of optimization meth-

ods of such relaxations’ parameter spaces, particularly concerning

their convergence on problems where local structure is instructive

[1, 6, 11, 16]. Even before, there have been numerous proposals of

frameworks that guide the principled design of optimization meth-

ods for a wide range of discrete and continuous problems [7, 12, 15].

The use of stochastic relaxations, however, has been motivated

by invariance of solutions under transformations [12], biological

plausibility of evolutionary computation [15], program simplicity,

as well as practical utility [11, 13], or by experiment [3, 13]. Yet

the favorable structure of stochastic relaxations for optimization

itself has received a rather incidental treatment in favor of different

questions. Outstanding from the rest of the literature, [4, 9, 10]

derive insightful and principled properties of special relaxations

under decay and convexity conditions that arguably deviate from

the classical setting in optimization. Furthermore, deep connections

of Gaussian relaxations and approximation have been established

in [8]. Surprisingly, much of the referenced prior work seems to

have been compiled in virtually independent communities.

In this work, we investigate the relation between a problem and

its stochastic relaxations and derive a systematic understanding

of why stochastic relaxations are favorable for fast and reliable

optimization in practice.

Outline. In Section 2, we showcase the structure of a stochastic

relaxation of the Rastrigin function, a popular highly multi-modal

benchmark problem in optimization. We also introduce the general

problem definition covering discrete and continuous spaces. In Sec-

tion 3, a criterion for the consistency of optimal function values and

the location of optima is established. In Section 4, we derive repre-

sentations of derivatives of stochastic relaxations. Among this we

cover the transfer of (Lipschitz) differentiability from parameterized

densities to the stochastic relaxation. Here we tie together many

notions of differentiability that are used in practice. In Section 5,

we derive insightful sufficient conditions under which functions on

R𝑛 have a convex stochastic relaxation based on a notion of weak

convexity and Fourier analysis.

2 TRANSFORMING AN OPTIMIZATION
PROBLEM

In this section, we will demonstrate by example, what we will es-

tablish in later sections for more general cases and what can be

understood as the driving factors for the success of stochastic relax-

ations. We chose a popular benchmark problem from optimization

literature, the Rastrigin function, and multivariate isotropic normal

distributions as parameterized probability measures. This setting

is typical in stochastic optimization, particularly with evolution

strategies. More concretely, we want to illustrate the following

traits of this particular stochastic relaxation:

• Consistency of the minimum of the original problem,

• Lipschitz continuity of gradients, and

• convexity.

The above traits will serve to guide our intuition in the subsequent

sections.

Example 2.1. Consider the Rastrigin function

𝑥 ∈ R𝑛 ↦−→ 𝑓 (𝑥) := ∥𝑥 ∥2 −
𝑛∑
𝑗=1

𝑎 𝑗 cos(b 𝑗𝑥 𝑗 ) ,

where b 𝑗 , 𝑎 𝑗 > 0 for all 𝑗 ∈ N≤𝑛 . Let Pr\,𝜎 ∼ N(\, 𝜎2𝐼 ), where
\ ∈ R𝑛 and 𝜎 > 0. Rastrigin’s function is an example of a highly
multi-modal optimization problem. Its global minimum is found at
the origin, while an exponentially large (in the problem dimension)
number of local minima represent distractors to local optimization
methods.

We will now look at the structure of the function

\ ∈ R𝑛 ↦−→ E\,𝜎 (𝑓 ) ,

which we interpret as a relaxation on the original candidate space R𝑛

of 𝑓 . We find the following traits.

• We can pick a small 𝜎 such that we can approximate the value
of 𝑓 (𝑥) with E𝑥,𝜎 (𝑓 ) with arbitrary precision—in particular,
at the global minimum of 𝑓 at 0.

• Structural traits such as the smoothness of the density of the
normal distribution are transferred to E· (𝑓 ). Moreover, the
gradients of \ ↦→ E\,𝜎 (𝑓 ) are Lipschitz for all 𝜎 > 0.

• As the following arguments will show, we can pick 𝜎∗ such
that \ ↦→ E\,𝜎 (𝑓 ) is strictly convex for all 𝜎 > 𝜎∗.

In our specific example we obtain the traits in terms of handy closed-
form formulas:
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(1) Let _ denote the Lebesgue measure of R𝑛 . For all \ ∈ R𝑛 and
𝜎 > 0, we have

E\,𝜎 (∥·∥2) =
∫
R𝑛

𝑛∑
𝑘=1

𝑥2
𝑘

1√
(2𝜋𝜎2)𝑛

exp

(
− 1

2𝜎2
∥\ − 𝑥 ∥2

)
_(d𝑥)

(definitions)

=

𝑛∑
𝑘=1

∫
R𝑛

𝑥2
𝑘

1√
(2𝜋𝜎2)𝑛

exp

(
− 1

2𝜎2
∥\ − 𝑥 ∥2

)
_(d𝑥)

(linearity)

=

𝑛∑
𝑘=1

∫
R
𝑥2
𝑘

1√
2𝜋𝜎2

exp

(
− 1

2𝜎2
(\𝑘 − 𝑥𝑘 )2

)
_(d𝑥𝑘 )

(Fubini, linearity, and probability measure)

= 𝑛𝜎2 + ∥\ ∥2 . (Steiner’s Theorem)

(2) Let 𝑗 ∈ N≤𝑛 and define Ξ𝑗 := b 𝑗𝑒 𝑗 , then, using the representa-
tion of the characteristic function of the multivariate normal
distribution in the third equality, we obtain

E\,𝜎 (cos(b 𝑗 (·) 𝑗 )) =
∫
R𝑛

Re

(
𝑒𝑖 ⟨Ξ𝑗 ,𝑥 ⟩

)
Pr\,𝜎 (d𝑥) (definitions)

= Re

( ∫
R𝑛

𝑒𝑖 ⟨Ξ𝑗 ,𝑥 ⟩
Pr\,𝜎 (d𝑥)

)
(definition of the complex integral)

= Re

(
exp

(
𝑖⟨Ξ𝑗 , \⟩ − 1

2
𝜎2

Ξ𝑗

2))
(characteristic function of the multivariate normal)

= Re

(
exp(𝑖b 𝑗\ 𝑗 )

)
exp

(
− 1

2
𝜎2b2𝑗

)
(definitions and exponential rule)

= cos(b 𝑗\ 𝑗 ) exp
(
− 1

2
𝜎2b2𝑗

)
. (definition of cos)

Therefore, by linearity of the integral, we have

E\,𝜎 (𝑓 ) = 𝑛𝜎2 + ∥\ ∥2 −
𝑛∑
𝑗=1

𝑎 𝑗 cos(b 𝑗\ 𝑗 ) exp
(
− 1

2
𝜎2b2𝑗

)
.

Now, we can check strict convexity by looking at the Hessian. The
second partial derivatives of the relaxation are given by

𝜕\ 𝑗 ,\𝑘 E\,𝜎 (𝑓 ) = 𝛿 𝑗𝑘 ·
(
2 + 𝑎 𝑗 b

2

𝑗 cos(b 𝑗\ 𝑗 ) exp
(
− 1

2
𝜎2b2𝑗

) )
,

where 𝛿 𝑗𝑘 is the Kronecker delta. Thus, the Hessian is diagonal with
strictly positive values at \ ∈ R𝑛 if and only if for all 𝑗 ∈ N≤𝑛

−2 < 𝑎 𝑗 b
2

𝑗 cos(b 𝑗\ 𝑗 ) exp
(
− 1

2
𝜎2b2𝑗

)
.

As cos (b 𝑗\ 𝑗 ) ≥ −1, we know that this is the case at least if

2 > 𝑎 𝑗 b
2

𝑗 exp
(
− 1

2
𝜎2b2𝑗

)
⇐⇒ 2

b2
𝑗

log

(𝑎 𝑗 b
2

𝑗

2

)
< 𝜎2 .

Picking 𝜎∗2 > max𝑗 ∈N≤𝑛
2

b2
𝑗

log

(𝑎 𝑗 b
2

𝑗

2

)
, we obtain the result.

The above result outlines the very structure that can be exploited

for optimization by first-order optimization methods [2]. In some

practical settings, a gradient method on the mean parameter \

may be augmented by a manipulation of the standard deviation 𝜎 .

However, keeping 𝜎 large improves robustness.

What follows is the general setting used throughout the work.

To this end, let L1 (Ω,A, Pr\ ) denote the at least once Lebesgue
integrable, real-valued functions on the measure space (Ω,A, Pr\ ).

Definition 2.1 (Stochastic Relaxation). Given
• a family of probability measures {Pr\ : \ ∈ Θ} on a measure
space (Ω,A),

• an optimization problem min

𝑥 ∈Ω
𝑓 (𝑥) , where 𝑓 : Ω → R , and

• 𝑓 ∈ L1 (Ω,A, Pr\ ) , ∀\ ∈ Θ,
we call the problem

min

\ ∈Θ
E\ (𝑓 ) = min

\ ∈Θ

∫
Ω
𝑓 dPr\ ,

the stochastic relaxation of 𝑓 for whichwewrite (𝑓 ,Ω,A, (Pr\ )\ ∈Θ) .
In case Ω has a metric 𝑑 such that B(𝑑) = A we write
(𝑓 , 𝑑,Ω,A, (Pr\ )\ ∈Θ).1

Remark 2.1. In principle, there is no need for requiring the mea-
sures (Pr\ )\ ∈Θ to be non-negative. One could define a relaxed problem
analogously by allowing signed measures. In this case however, the
relation of the relaxed problem and the original problem in Section 3
or the results of Section 5 will in general not hold.

Inspired by the previous example, we will now aim to generalize

the traits of Example 2.1 to fit the picture of the practical use of

stochastic relaxations.

3 CONSISTENCY IN THE CODOMAIN
Manipulating an optimization problem raises the question ofwhether

solutions or the cost of solutions will relate to those of the original

optimization problem defined by a function 𝑓 : Ω → R.
We can observe that some distinguished generalized candidates

can be associated with a set of close-to-optimal candidates of 𝑓

by their function value and mass distribution in candidate space.

Formally, we define the following.

Definition 3.1 (𝑓 -consistent). Let (𝑓 , 𝑑,Ω,A, (Pr\ )\ ∈Θ) be a
relaxation as defined in Definition 2.1 and let 𝑓 : Ω → R have a
unique global minimum at 𝑥∗. We call the relaxation 𝑓 -consistent if

∀𝑥 ∈ Ω , 𝑥 ≠ 𝑥∗ : ∃\∗ ∈ Θ : E\ ∗ (𝑓 ) < 𝑓 (𝑥) .

We will learn that requiring the Dirac measure at the global

optimum of 𝑓 to be a limit candidate of the relaxation in conjunction

with a bounding attribute of 𝑓 is sufficient for a relaxation to be 𝑓 -

consistent. A concise way of treating the problem based on measure

theory is presented in this section. The results cover a general

setting that includes the candidate spaces Ω ∈ {Z𝑛,R𝑛}.

Definition 3.2 (𝑓 -Y-𝛿-concentrated, 𝑓 -concentrated). Let
(𝑓 , 𝑑,Ω,A, (Pr\ )\ ∈Θ) be a relaxation as defined in Definition 2.1. If
Y, 𝛿 > 0 , the measure Pr\ is called 𝑓 -Y-𝛿-concentrated at 𝑥 ∈ Ω if∫

Ω−𝑈𝛿 (𝑥)
max{|𝑓 | , 1} dPr\ < Y , (CON)

where𝑈𝛿 (𝑥) denotes the 𝛿-ball centered at 𝑥 . Moreover, probability
measures (Pr\ )\ ∈Θ are called 𝑓 -concentrated at 𝑥 ∈ Ω if

∀Y, 𝛿 > 0 : ∃\ ∈ Θ : Pr\ is 𝑓 -Y-𝛿 concentrated at 𝑥 .

A general approximation result will pave the way toward ap-

proximation at a global optimum of 𝑓 .

1
We denote the Borel 𝜎-algebra of a topological space Ω by B(Ω) . If Ω admits a

metric 𝑑 , we also write B(𝑑) .
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Lemma 3.1 (Approximation). Let (𝑓 , 𝑑,Ω,A, (Pr\ )\ ∈Θ) be a re-
laxation as defined in Definition 2.1, where (Pr\ )\ ∈Θ are 𝑓 -concentrated
at 𝑥 ∈ Ω and 𝑓 is continuous at the same 𝑥 ∈ Ω. We have

∀𝛾 > 0 : ∃\ ∈ Θ : |E\ (𝑓 ) − 𝑓 (𝑥) | < 𝛾 .

Proof. Let 𝛾 > 0 . Due to continuity of 𝑓 at 𝑥 ∈ Ω, we pick

𝛿 > 0 such that

𝑑 (𝑥,𝑦) < 𝛿 =⇒ |𝑓 (𝑥) − 𝑓 (𝑦) | < 𝛾
3
. (1)

As (Pr\ )\ ∈Θ are 𝑓 -concentrated at 𝑥 , we pick \∗ such that

Pr\ ∗ is 𝑓 -Y-𝛿-concentrated at 𝑥 , (2)

where Y := min

{𝛾
3
,

𝛾

3 |𝑓 (𝑥) |
}
.

It follows, that

|E\ ∗ (𝑓 ) − 𝑓 (𝑥) |

=

���� ∫
Ω−𝑈𝛿 (𝑥)

𝑓 dPr\ ∗ +
∫
𝑈𝛿 (𝑥)

𝑓 dPr\ ∗ − 𝑓 (𝑥)
���� (additivity)

≤
∫
Ω−𝑈𝛿 (𝑥)

|𝑓 | dPr\ ∗ +
���� ∫

𝑈𝛿 (𝑥)
𝑓 dPr\ ∗ − 𝑓 (𝑥)

����
(triangle inequality)

<
𝛾

3

+
���� ∫

𝑈𝛿 (𝑥)
𝑓 dPr\ ∗ − 𝑓 (𝑥)

���� (Equation (2))

=
𝛾

3

+
���� ∫

𝑈𝛿 (𝑥)
𝑓 − 𝑓 (𝑥) dPr\ ∗ + 𝑓 (𝑥)Pr\ ∗

(
Ω −𝑈𝛿 (𝑥)

) ����
(additivity)

≤ 𝛾

3

+
∫
𝑈𝛿 (𝑥)

|𝑓 − 𝑓 (𝑥) | dPr\ ∗ + |𝑓 (𝑥) | Pr\ ∗
(
Ω −𝑈𝛿 (𝑥)

)
(triangle inequality)

≤ 𝛾

3

+ 𝛾

3

Pr\ ∗
(
𝑈𝛿 (𝑥)

)
+ |𝑓 (𝑥) | Pr\ ∗

(
Ω −𝑈𝛿 (𝑥)

)
(Equation (1))

<
𝛾

3

+ 𝛾

3

+ 𝛾

3

= 𝛾 (probability measure and Equation (2))

□

Remark 3.1. In general, we can not relax the requirement of 𝑓 -
concentration as specified by (CON) and still fulfill the approximation
property given in Lemma 3.1. Consider the following examples.

(1) Let 𝑓 : R→ R, 𝑥 ↦→ 𝑥2, 𝛿𝑥 denote the Dirac measure at 𝑥 ∈ R,
and

(Ω,A, Pr\ )
!

=
(
R,B(R), (1 − \ )𝛿0 + \𝛿1/\

)
, ∀\ ∈ (0, 1) .

Clearly, we have a concentration of measure at 𝑥 = 0, as

Pr\ (Ω − {0}) = \ , ∀\ ∈ (0, 1) .
However, we can not approximate 𝑓 at 0 as in Lemma 3.1, since
for all \ ∈ (0, 1) , we have

E\ (𝑓 ) = 1

\
> 1 > 0 = 𝑓 (0) .

(2) Let 𝑓 : R→ R, 𝑥 ↦→ − exp

(
− 𝑥2

)
and

(Ω,A, Pr\ )
!

= (R,B(R), 𝛿\ ) , ∀\ ∈ (1,∞) .
Clearly, the 𝐿1-norm of our function outside of 0 can be arbi-
trarily small, i.e.,

∀Y > 0 : ∃\ ∈ (1,∞) :
∫
Ω−{0}

|𝑓 | d𝛿\ ≤ exp

(
− \2

)
< Y .

However, we can not approximate 𝑓 at 0 as in Lemma 3.1, since
for all \ ∈ (1,∞) , we have

E\ (𝑓 ) = − exp

(
− \2

)
> − 1

𝑒 > −1 = 𝑓 (0) .

Theorem 3.1 (Consistency). Let (𝑓 , 𝑑,Ω,A, (Pr\ )\ ∈Θ) be a re-
laxation as defined in Definition 2.1 and let 𝑓 : Ω → R be con-
tinuous at its unique global minimum at 𝑥∗. Furthermore, assume
that (Pr\ )\ ∈Θ are 𝑓 -concentrated at 𝑥∗. Then, the relaxation is 𝑓 -
consistent.

Proof. Pick 𝑥 ∈ Ω such that 𝑥 ≠ 𝑥∗. Define

𝛾 := 𝑓 (𝑥) − 𝑓 (𝑥∗) , (3)

which is strictly positive as 𝑥∗ is the unique global minimum of 𝑓 .

By assumption, (Pr\ )\ ∈Θ are 𝑓 -concentrated at 𝑥∗. Thus, by
Lemma 3.1 we find \∗ ∈ Ω such that��E\ ∗ (𝑓 ) − 𝑓 (𝑥∗)

�� < 𝛾 . (4)

Applying Equation (3) in the first step, Equation (4) in the second

step and the fact that 𝑥∗ is a global minimum of 𝑓 in the third, we

obtain the result

𝑓 (𝑥) = 𝛾 + 𝑓 (𝑥∗)
>
��E\ ∗ (𝑓 ) − 𝑓 (𝑥∗)

�� + 𝑓 (𝑥∗)
= E\ ∗ (𝑓 ) − 𝑓 (𝑥∗) + 𝑓 (𝑥∗)
= E\ ∗ (𝑓 ) .

□

A consistent relaxation ensures that minimizing the relaxation

results in function values arbitrarily close to those of the 𝑓 at its

optimum 𝑥∗ ∈ Ω. Therefore, we find Pr\ with an arbitrarily close-

to-one probability of an arbitrarily low regret. In the limiting case,

we can also observe the following immediate result.

Corollary 3.1.1. In the setting of Theorem 3.1, if the relaxation
has a minimum, it is unique at the Dirac measure of the minimum of
𝑓 , that is, at 𝛿𝑥∗ .

4 IMPOSING DIFFERENTIABILITY
In this section, we derive gradient representations of relaxations.

The results in Theorem 4.2 and Corollary 4.2.1 cover cases where

the objective function transformed by the relaxation may not be

differentiable or no differentiable structure of the candidate space

Ω is specified.

First, however, let us look at the simple case where the candi-

date space Ω = Θ = R𝑛 , the objective function 𝑓 : Ω → R is

continuously differentiable, and there is a distinguished probability

measure Pr on (Ω,B(Ω)). We can construct a family of probability

measures by setting

Pr\ (𝐴) := Pr (𝐴 − \ )
for all \ ∈ Θ and for all 𝐴 ∈ A := B(Ω). This case is critical in
practice and particularly interesting due to the following property.

Theorem 4.1 (Preserving Differentiability). Let a relaxation
as defined in Definition 2.1 be given by (𝑓 ,R𝑛,B(R𝑛), (Pr\ )\ ∈R𝑛 )
with

• Pr\ (𝐴) = Pr0 (𝐴 − \ ) for all \ ∈ R𝑛 and for all 𝐴 ∈ B(R𝑛)
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• 𝑓 : R𝑛 → R is continuously differentiable, and
• there exists Y > 0 such that 𝑥 ∈ R𝑛 ↦→ max | (𝜕𝑟 𝑓 ) (𝑈Y (𝑥)) |
has a Pr0-integrable upper bound for all 𝑟 ∈ N≤𝑛 .

We have ∇\ E· (𝑓 ) ≡ E· (∇𝑥 𝑓 ). If ∇𝑥 𝑓 is Lipschitz/uniformly contin-
uous, then ∇\ E· (𝑓 ) is as well.

Remark 4.1. The third assumption deviates from the standard
assumption of Leibniz’s integral rule, as we have to restrict the pa-
rameter set to some neighborhood around any parameter to obtain a
bound that fits Leibniz’s integral rule. As differentiability is a local
property, this still suffices for the statement of the theorem.

Proof. Let 𝜓 (\, 𝑥) := 𝜓\ (𝑥) := 𝑥 + \ for all 𝑥 ∈ R𝑛 and for all

\ ∈ R𝑛 , then∫
Ω
𝑓 dPr\ =

∫ ∞

0

Pr\ ({𝑥 ∈ R𝑛 | 𝑓 (𝑥) > 𝑡}) d𝑡
(definition Lebesgue integral)

=

∫ ∞

0

Pr0

(
𝜓−1
\

({𝑥 ∈ R𝑛 | 𝑓 (𝑥) > 𝑡})
)
d𝑡 (assumption)

=

∫ ∞

0

Pr0 ({𝑥 ∈ R𝑛 | (𝑓 ◦𝜓\ ) (𝑥) > 𝑡}) d𝑡
(definition inverse)

=

∫
Ω
𝑓 ◦𝜓\ dPr0 . (definition Lebesgue integral)

Due to the last assumption, we can apply Leibniz’s integral rule

[14, p. 91, Theorem 11.5], and get

∇\
∫
Ω
𝑓 ◦𝜓\ dPr0 =

∫
Ω
(∇\ 𝑓 ◦𝜓 ) (\, 𝑥) Pr0 (d𝑥)

(Leibniz integral rule)

=

∫
Ω
(∇𝑥 𝑓 ) (𝑥 + \ ) Pr0 (d𝑥) (definition𝜓 )

=

∫
Ω
(∇𝑥 𝑓 ) dPr\ . (above equation)

Combining the results, we obtain for all \ ∈ R𝑛 , that

∇\ E\ (𝑓 ) = E\ (∇𝑥 𝑓 ) .

In case the gradient of 𝑓 is also Lipschitz with constant 𝐿, we have

∥∇\ E\ ′ (𝑓 ) − ∇\ E\ (𝑓 )∥

≤
∫
Ω

(∇𝑥 𝑓 ) (𝑥 + \ ′) − (∇𝑥 𝑓 ) (𝑥 + \ )

Pr0 (d𝑥)

(above derivation)

≤
∫
Ω
𝐿
\ ′ − \


Pr0 (d𝑥) (Lipschitzness of 𝑓 )

= 𝐿
\ ′ − \

 . (Lebesgue integral & probability measure)

By an analogous derivation, we obtain continuity of ∇\ E· (𝑓 ) if
∇𝑥 𝑓 is continuous. □

We will now look again at the abstract, general setting for re-

laxations. A transfer of smoothness from the probability measures

{Pr\ | \ ∈ Θ} to E· (𝑓 ) is also central to applications. Tying to-

gether many notions of differentiability, e.g., for parameter-free

distributions, we consider pullbacks using 𝛾 : 𝑈 ⊆ R𝑛 → Θ to

describe the transfer of (Lipschitz) differentiablity.

Theorem 4.2. Let (𝑓 ,Ω,A, (Pr\ )\ ∈Θ) be a relaxation as defined
in Definition 2.1 and let 𝛾 : 𝑈 → Θ be a function for some open
𝑈 ⊆ R𝑛 .
(Partial Differentiability) If

• there exists a measure ` on (Ω,A) s.t. for all 𝑡 ∈ 𝑈 there
exists a density 𝑘𝛾 (𝑡 ) of Pr𝛾 (𝑡 ) w.r.t. `,

• for all 𝑥 ∈ Ω the partial derivatives of 𝑡 ∈ 𝑈 ↦→ 𝑘𝛾 (𝑡 ) (𝑥)
exist, and

• for all 𝑟 ∈ N≤𝑛 there exists 𝑔𝑟 ∈ L1 (Ω,A, `) s.t. for all
(𝑡, 𝑥) ∈ 𝑈 × Ω we have���𝑓 (𝑥)𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥)��� ≤ 𝑔𝑟 (𝑥) , 2

then the partial derivatives of 𝑡 ∈ 𝑈 ↦→ E𝛾 (𝑡 ) (𝑓 ) exist and

𝜕𝑟 E𝛾 (𝑡 ) (𝑓 ) =
∫
Ω
𝑓 𝜕𝑟𝑘𝛾 (𝑡 ) d` .

(Continuous Differentiability) If in addtion, for all 𝑟 ∈ N≤𝑛 and for
all 𝑥 ∈ Ω, 𝑡 ∈ 𝑈 ↦→ 𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥) is continuous, then 𝑡 ∈ 𝑈 ↦→
E𝛾 (𝑡 ) (𝑓 ) is continuously differentiable.

(Lipschitz Differentiability) If in addition, for all 𝑟 ∈ N≤𝑛 and for all
𝑥 ∈ Ω, there exists 𝐿𝑟 (𝑥) ∈ R s.t. for all 𝑡 ′, 𝑡 ∈ 𝑈���𝜕𝑟𝑘𝛾 (𝑡 ′) (𝑥) − 𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥)

��� ≤ 𝐿𝑟 (𝑥)
𝑡 ′ − 𝑡


and 𝑓 𝐿𝑟 ∈ L1 (Ω,A, `) ,

then 𝑡 ∈ 𝑈 ↦→ ∇E𝛾 (𝑡 ) (𝑓 ) is Lipschitz with constant
𝑛∑
𝑟=1

∫
Ω
|𝑓 | 𝐿𝑟 d` .

Proof.

(Partial Differentiability) To obtain the first result, we apply Leib-

niz’s integral rule [14, p. 91, Theorem 11.5]. The requirements

are fulfilled as per the following arguments.

(a) For all 𝑡 ∈ 𝑈 , we have

𝑥 ∈ Ω ↦→ 𝑓 (𝑥)𝑘𝛾 (𝑡 ) (𝑥) ∈ L1 (Ω,A, `)

as 𝑓 ∈ L1 (Ω,A, Pr𝛾 (𝑡 ) ) and 𝑘𝛾 (𝑡 ) ` = Pr𝛾 (𝑡 ) `-almost

everywhere.

(b) For all 𝑥 ∈ Ω, the function 𝑡 ∈ 𝑈 ↦→ 𝑓 (𝑥)𝑘𝛾 (𝑡 ) (𝑥) is
partially differentiable as 𝑡 ∈ 𝑈 ↦→ 𝑘𝛾 (𝑡 ) (𝑥) is partially
differentiable.

(c) In each coordinate this requirement is directly fulfilled by

our initial assumptions.

As𝑈 is open in R𝑑 , we can apply Leibniz’s integral rule to

each coordinate direction.

(Continuous Differentiability) To obtain the second result, we ap-

ply the Lebesgue dominated convergence theorem, e.g., see

[14, p. 89], to an arbitrary convergent sequence (𝑡 𝑗 ) 𝑗 ∈N →
𝑡 ∈ 𝑈 . Clearly, for all 𝑟 ∈ N≤𝑛 and for all 𝑥 ∈ Ω

𝜕𝑟𝑘𝛾 (𝑡 𝑗 ) (𝑥)
𝑗→∞
−−−−→ 𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥)

=⇒ 𝑓 (𝑥)𝜕𝑟𝑘𝛾 (𝑡 𝑗 ) (𝑥)
𝑗→∞
−−−−→ 𝑓 (𝑥)𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥) .

The left side of the above statement is fulfilled by our addi-

tional continuity assumption. The boundedness requirement

2
The operator 𝜕𝑟 refers to the partial derivative with respect to the 𝑟 -th argument of

the function 𝛾 .
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is fulfilled by the assumption of the first statement. There-

fore, the Lebesgue dominated convergence theorem tells us

for all 𝑟 ∈ N≤𝑛

lim

𝑗→∞

∫
Ω
𝑓 𝜕𝑟𝑘𝛾 (𝑡 𝑗 ) d` =

∫
Ω
𝑓 𝜕𝑟𝑘𝛾 (𝑡 ) d` .

Combined with the first result we get that for all 𝑟 ∈ N≤𝑛

lim

𝑗→∞
𝜕𝑟 E𝛾 (𝑡 𝑗 ) (𝑓 ) = 𝜕𝑟 E𝛾 (𝑡 ) (𝑓 ) ,

i.e., continuity of the partial differentials. This implies conti-

nuity of the differential.

(Lipschitz Differentiability) To obtain the third result, we observe

that for all 𝑟 ∈ N≤𝑛 , for all 𝑥 ∈ Ω, and for all 𝑡 ′, 𝑡 ∈ 𝑈���𝜕𝑟𝑘𝛾 (𝑡 ′) (𝑥) − 𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥)
��� ≤ 𝐿𝑟 (𝑥)

𝑡 ′ − 𝑡


=⇒
���𝑓 (𝑥)𝜕𝑟𝑘𝛾 (𝑡 ′) (𝑥) − 𝑓 (𝑥)𝜕𝑟𝑘𝛾 (𝑡 ) (𝑥)

��� ≤ |𝑓 (𝑥) | 𝐿𝑟 (𝑥)
𝑡 ′ − 𝑡

 .
The left side of the above statement is fulfilled by our ad-

ditional Lipschitz assumption. Using the result of the first

statement and the triangle inequality this implies that for all

𝑡 ′, 𝑡 ∈ 𝑈∇E𝛾 (𝑡 ′) (𝑓 ) − ∇E𝛾 (𝑡 ) (𝑓 )
 = ∫

Ω
𝑓 ∇𝑘𝛾 (𝑡 ′) − 𝑓 ∇𝑘𝛾 (𝑡 ) d`


≤
∫
Ω

𝑓 ∇𝑘𝛾 (𝑡 ′) − 𝑓 ∇𝑘𝛾 (𝑡 )
 d`

≤
∫
Ω

𝑛∑
𝑟=1

���𝑓 𝜕𝑟𝑘𝛾 (𝑡 ′) − 𝑓 𝜕𝑟𝑘𝛾 (𝑡 )
��� d`

≤
∫
Ω

𝑛∑
𝑟=1

|𝑓 | 𝐿𝑟
𝑡 ′ − 𝑡


d`

=

( 𝑛∑
𝑟=1

∫
Ω
|𝑓 | 𝐿𝑟 d`

) 𝑡 ′ − 𝑡
 .

□

Remark 4.2. In Theorem 4.2, we may relax the requirements to
hold for all 𝑥 ∈ Ω `-almost everywhere only.

From Theorem 4.2, we can derive the following well-known

result, which is useful for gradient-based optimization methods.

Corollary 4.2.1. Let (𝑓 ,Ω,A, (Pr\ )\ ∈Θ) be a relaxation as de-
fined in Definition 2.1, with the properties

• Θ is an open subset of R𝑛 ,
• the measures have \ -Lipschitz differentiable densities with
respect some measure `, i.e. Pr\ = 𝑘\ ` for all \ ∈ Θ, and

• the regularity assumptions of Theorem 4.2 with 𝛾 ≡ idΘ are
fulfilled.3

Then, ∇\ E· (𝑓 ) ≡ E` (𝑓 ∇\𝑘 ·) ≡ E· (𝑓 ∇\ ln𝑘 ·) is Lipschitz.

3
idΘ denotes the identity map of Θ.

Proof. This result is an application of the "log-likelihood trick".

∇\ E· (𝑓 ) ≡
∫
Ω
𝑓 (𝑥)∇\𝑘 · (𝑥) ` (d𝑥) (by Theorem 4.2)

≡
∫
supp𝑘·

𝑓 (𝑥) (∇\𝑘 ·) (𝑥)
𝑘· (𝑥)
𝑘· (𝑥) ` (d𝑥) (

𝑘· (𝑥 )
𝑘· (𝑥 ) ≡ 1)

≡
∫
supp𝑘·

𝑓 (𝑥) (∇\ ln𝑘 ·) (𝑥)𝑘 · (𝑥) ` (d𝑥)

(log-likelihood trick)

≡
∫
supp𝑘·

𝑓 (𝑥) (∇\ ln𝑘 ·) (𝑥) Pr· (d𝑥)

(by definition 𝑘·` ≡ Pr·)

≡ E· (𝑓 ∇\ ln𝑘 ·)
(definition expected value, ln 0 := 0 on null sets)

□

Especially in black-box, noisy, or unstructured problems 𝑓 the

optimization of E· (𝑓 ) using gradient-based methods is a reasonable

alternative to finite-difference methods. The transfer of Lipschitz-

ness of gradients can be exploited for improved convergence guar-

antees [2]. In the literature, the properties derived in this section

have been observed experimentally for many algorithms employ-

ing stochastic relaxations at their core, specifically in the setting of

Example 2.1.

5 WEAK CONVEXITY
The notion of convexity of a function is central to continuous op-

timization. Non-convex optimization problems are much harder

to solve in general. However, for families of translated probability

measures—including multivariate normal distributions—we show

that a function’s convexity is preserved in its relaxation. More

importantly, we provide conditions under which non-convex func-

tions result in convex stochastic relaxations. To this end, consider

the following class of functions 𝑓 in case of Ω = Θ = R𝑛 .

Definition 5.1 (Weak Convexity). Let a relaxation as defined
in Definition 2.1 be given by (𝑓 ,R𝑛,B(R𝑛), (Pr\ )\ ∈R𝑛 ) with

Pr\ (𝐴) = Pr0 (𝐴 − \ ) for all \ ∈ R𝑛 and for all 𝐴 ∈ B(R𝑛).

We call 𝑓 (strictly/ m-strongly) Pr0-weakly convex if there is 𝜎∗ > 0

such that for all 𝜎 > 𝜎∗

Pr\
𝜎 (𝐴) := Pr0 (𝜎−1 (𝐴 − \ )) for all \ ∈ R𝑛 and for all 𝐴 ∈ B(R𝑛)

gives a (strictly/ m-strongly) convex relaxation \ ∈ R𝑛 ↦→ E\,𝜎 (𝑓 ).

As a direct result, we obtain the following by substitution.

Lemma 5.1. In the setting of Definition 5.1, if the probability mea-
sure Pr0 has a density 𝑘0 with respect to the Lebesgue measure _, then
for all 𝜎 > 0, for all \ ∈ R𝑛 , and for all 𝐴 ∈ B(R𝑛), we have

Pr\
𝜎 (𝐴) = Pr0 (𝜎−1 (𝐴 − \ )) (definition Pr\

𝜎
)

=

∫
𝜎−1 (𝐴−\ )

𝑘0 d_ (definition density)

=

∫
𝐴

𝜎−𝑛𝑘0 (𝜎−1 (· − \ )) d_ . (substitution)

That is, 𝑘\,𝜎 := 𝜎−𝑛𝑘0 (𝜎−1 (· − \ )) is a Lebesgue density of Pr\𝜎 .
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The goal for the rest of the section will be the derivation of a

weak convexity property for stochastic relaxations. The approach

we take will be based on Fourier analysis and will work with a

relaxation of the superposition 𝑓 = 𝑟 + 𝑔 : R𝑛 → R based on a

class of densities that are rapidly decreasing. The function 𝑟 will

be assumed to be strongly convex, and 𝑔 can be understood as a

disturbance. While in Example 2.1, 𝑔 was a finite sum of cosines

and the densities were isotropic Gaussian, we aim to find a general

setting that provides interpretation for the success of stochastic

relaxations in global and robust optimization.

Theorem 5.1 (Preserving Convexity). Let a relaxation as de-
fined in Definition 2.1 be given by (𝑓 ,R𝑛,B(R𝑛), (Pr\ )\ ∈R𝑛 ) with

• Pr\ (𝐴) = Pr0 (𝐴 − \ ) for all \ ∈ R𝑛 and for all 𝐴 ∈ B(R𝑛),
and

• 𝑓 is strongly convex, i.e., there exists𝑚 > 0 such that for all
𝑣,𝑤 ∈ R𝑛 and for all 𝑡 ∈ [0, 1]

𝑓 (𝑡𝑣 + (1 − 𝑡)𝑤) ≤ 𝑡 𝑓 (𝑣) + (1 − 𝑡) 𝑓 (𝑤) − 1

2
𝑚𝑡 (1 − 𝑡) ∥𝑣 −𝑤 ∥2 .

Then, the relaxation \ ∈ R𝑛 ↦→ E\ (𝑓 ) is𝑚-strongly convex.

Proof. Let 𝜓 (\, 𝑥) := 𝜓\ (𝑥) := 𝑥 + \ for all 𝑥 ∈ R𝑛 and for all

\ ∈ R𝑛 . Further let 𝑣,𝑤 ∈ R𝑛 and 𝑡 ∈ [0, 1], then

E𝑡𝑣+(1−𝑡 )𝑤 (𝑓 ) =
∫
R𝑛

𝑓 dPr𝑡𝑣+(1−𝑡 )𝑤 (definition expected value)

=

∫ ∞

0

Pr𝑡𝑣+(1−𝑡 )𝑤 ({𝑥 ∈ R𝑛 | 𝑓 (𝑥) > 𝑡}) d𝑡
(definition Lebesgue integral)

=

∫ ∞

0

Pr0

(
𝜓−1
𝑡𝑣+(1−𝑡 )𝑤 ({𝑥 ∈ R𝑛 | 𝑓 (𝑥) > 𝑡})

)
d𝑡

(assumption)

=

∫ ∞

0

Pr0 ({𝑥 ∈ R𝑛 | (𝑓 ◦𝜓𝑡𝑣+(1−𝑡 )𝑤) (𝑥) > 𝑡}) d𝑡
(definition inverse)

=

∫
R𝑛

𝑓 (𝑥 + 𝑡𝑣 + (1 − 𝑡)𝑤) Pr0 (d𝑥)
(definition Lebesgue integral)

=

∫
R𝑛

𝑓 (𝑡 (𝑥 + 𝑣) + (1 − 𝑡) (𝑥 +𝑤)) Pr0 (d𝑥)
(𝑥 = 𝑡𝑥 + (1 − 𝑡 )𝑥 )

≤
∫
R𝑛

𝑡 𝑓 (𝑥 + 𝑣) + (1 − 𝑡) 𝑓 (𝑥 +𝑤)

− 1

2
𝑚𝑡 (1 − 𝑡) ∥𝑣 −𝑤 ∥2 Pr0 (d𝑥)

(third assumption)

= 𝑡

∫
R𝑛

𝑓 (𝑥 + 𝑣) Pr0 (d𝑥)

+ (1 − 𝑡)
∫
R𝑛

𝑓 (𝑥 +𝑤) Pr0 (d𝑥)

− 1

2
𝑚𝑡 (1 − 𝑡) ∥𝑣 −𝑤 ∥2

(linearity, probability measure)

= 𝑡 E𝑣 (𝑓 ) + (1 − 𝑡) E𝑤 (𝑓 ) − 1

2
𝑚𝑡 (1 − 𝑡) ∥𝑣 −𝑤 ∥2 .

(first steps reversed)

□

Remark 5.1. Preservation also holds for (strictly) convex functions.

The following result is developed in preparation of Theorem 5.2.

To retain the generality of this section and obtain a convexity result

similar to Example 2.1, the distributional formulation of the Fourier

transform is needed. This result will pave the way for very practical

corollaries at the end of this section.

Lemma 5.2. Let _ be the Lebesgue measure

• 𝑔 : R𝑛 → R measurable with 𝑇𝑔 ∈ 𝑆 ′(R𝑛),4
• F (𝑇𝑔) (𝜑) = 0 for all 𝜑 ∈ 𝐶∞

𝑐 (𝑈Y (0)) for some Y > 0, and

Given ℎ ∈ S(R𝑛) and 𝜎 ∈ R, then for all 𝑦 ∈ R𝑛 uniformly

𝑇𝑔
(
𝜎−𝑛ℎ(𝜎−1 (·−𝑦))

)
=

∫
R𝑛

𝑔(𝑥)𝜎−𝑛ℎ(𝜎−1 (𝑥−𝑦)) _(d𝑥) 𝜎→∞−−−−−→ 0 .

Proof. Applying general properties of the Fourier transform,

we get the identity

𝑇𝑔
(
𝜎−𝑛ℎ(𝜎−1 (· − 𝑦))

)
= (F −1 (F𝑇𝑔))

(
𝜎−𝑛ℎ(𝜎−1 (· − 𝑦))

)
(Fourier inversion for distributions)

= (F𝑇𝑔)
(
F −1𝜎−𝑛ℎ(𝜎−1 (· − 𝑦))

)
(definition inverse transform)

= (F𝑇𝑔)
(
𝑒𝑖 ⟨𝑦, ·⟩𝜎−𝑛F −1 (ℎ(𝜎−1·))

)
(shift and linearity)

= (F𝑇𝑔)
(
𝑒𝑖 ⟨𝑦, ·⟩F −1 (ℎ) (𝜎 ·)

)
. (scaling)

The Fourier transform is an automorphism on Schwartz space, there-

fore 𝑠 := F −1 (ℎ) is a Schwartz function. Now, due to continuity of

F𝑇𝑔 , we would like to have

𝑒𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·) 𝜎→∞−−−−−→ 0 for all 𝑦 ∈ R𝑛 uniformly in S.

This, however, does not hold in general. We need the assumption

F𝑇𝑔 |𝑈Y (0) ≡ 0.

To this end, consider a smooth partition of unity 𝑢1, 𝑢2 : R
𝑛 → R

with 𝑢1 + 𝑢2 ≡ 1 such that supp𝑢1 ⊆ 𝑈Y (0) and supp𝑢2 ⊆ R𝑛 \
𝑈Y/2 (0) and see that

F𝑇𝑔
(
𝑒𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·)

)
≡ F𝑇𝑔

(
(𝑢1 + 𝑢2)𝑒𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·)

)
(definition 𝑢1, 𝑢2)

≡ F𝑇𝑔
(
𝑢1𝑒

𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·)
)
+ F𝑇𝑔

(
𝑢2𝑒

𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·)
)

(linearity)

≡ 0 + F𝑇𝑔
(
𝑢2𝑒

𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·)
)
. (assumption)

Due to 𝑠 being a Schwartz function and

��𝑒𝑖 ⟨𝑦, ·⟩ �� ≡ 1 for all 𝑦 ∈ R𝑛 ,
we have

𝑢2𝑒
𝑖 ⟨𝑦, ·⟩𝑠 (𝜎 ·) 𝜎→∞−−−−−→ 0 for all 𝑦 ∈ R𝑛 uniformly in S.

By continuity of F𝑇𝑔 this implies the statement of the theorem. □

Now, we will describe a setting for which the relaxed problem is

convex when the original cost function may not be. As described

previously, we consider the case where the function 𝑓 is a strongly

convex function superimposed with a disturbance, impairing con-

vexity and thus global optimization.

4𝑇𝑔 denotes the functional 𝜑 ↦→
∫
R𝑛

𝑔𝜑 d_. This property ensures that the integral

exists. Continuity and linearity is generally fulfilled. S denotes the Schwartz space

and S′
its dual space.
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Theorem 5.2 (Filtering). Let _ be the Lebesgue measure and
𝑓 : R𝑛 → R be a function that admits a decomposition

𝑓 ≡ 𝑟 + 𝑔

such that
• 𝑟 is𝑚-strongly convex,
• F (𝑔) |𝑈Y (0) ≡ 0 in the distributional sense for some Y > 0, and
• 𝑟𝑠, 𝑔𝑠 ∈ L1 (R𝑛) for all Schwartz functions 𝑠 ∈ S(R𝑛).

Then for every non-negative, somewhere non-zero Schwartz function
𝑘 ∈ S(R𝑛) with 𝑐𝑘 :=

( ∫
R𝑛

𝑘 d_
)−1 and𝑚∗ < 𝑚, 𝑓 is𝑚∗-strongly

(𝑐𝑘𝑘)_-weakly convex, i.e., there exists 𝜎∗
𝑘
such that for all 𝜎 > 𝜎∗

𝑘

\ ∈ R𝑛 ↦−→ E\,𝜎 (𝑓 ) =
∫
R𝑛

𝑓 (𝑥)𝑐𝑘𝜎−𝑛𝑘 (𝜎−1 (𝑥 − \ )) _(d𝑥)

is𝑚∗-strongly convex.

Proof. Pick a non-negative, somewhere non-zero Schwartz func-

tion 𝑘 ∈ S(R𝑛). For all 𝜎 > 0 and for all \ ∈ R𝑛 , we have

E\,𝜎 (𝑓 ) = E\,𝜎 (𝑟 ) + E\,𝜎 (𝑔)

and we know by direct application of Theorem 5.1 that \ ∈ R𝑛 ↦→
E\,𝜎 (𝑟 ) is strongly convex with the same constant as 𝑟 for all 𝜎 > 0.

We prove the result by showing that for all Y > 0 there exists 𝜎Y
such that all partial second derivatives of E\,𝜎Y (𝑔) are uniformly

bounded by Y. To see why this is, observe the following arguments.

• For all 𝑖, 𝑗 ∈ N≤𝑛 , 𝜎 > 0, \ ∈ R𝑛 , and 𝑥 ∈ R𝑛 there is the

identity

𝜕\𝑖 ,\ 𝑗
𝑘 (𝜎−1 (𝑥 − \ )) = 𝜎−2 (𝜕𝑖 𝑗𝑘) (𝜎−1 (𝑥 − \ )) .

• By Theorem 4.2, we have

𝜕\𝑖 ,\ 𝑗
E\,𝜎 (𝑔) = 𝜎−2

∫
R𝑑

𝑔(𝑥)𝜎−𝑛𝑐𝑘 (𝜕𝑖 𝑗𝑘) (𝜎−1 (𝑥 − \ )) _(d𝑥) .

• The function 𝑥 ∈ R𝑛 ↦→ 𝑐𝑘 (𝜕𝑖 𝑗𝑘) (𝑥) is again a Schwartz

function and together with 𝑔 fulfills the assumptions of

Lemma 5.2 for all 𝑖, 𝑗 ∈ N≤𝑛 . This provides a uniform bound

of Y for all 𝜎 > 𝜎Y,𝑖, 𝑗 on∫
R𝑑

𝑔(𝑥)𝜎−𝑛𝑐𝑘 (𝜕𝑖 𝑗𝑘) (𝜎−1 (𝑥 − \ )) _(d𝑥)

and thereby due to the factor 𝜎−2 and without loss of gener-

ality on 𝜕\𝑖 ,\ 𝑗
E\,𝜎 (𝑔).

• By picking 𝜎∗Y , the largest of (𝜎Y,𝑖, 𝑗 )𝑖, 𝑗 ∈N≤𝑛 , one obtains a

uniform bound of Y on all second partial derivatives of \ ∈
R𝑛 ↦→ E\,𝜎∗

Y
(𝑔).

It remains to be shown that if 𝜎 is picked large enough, this implies

strong convexity for an arbitrary parameter𝑚∗
smaller than the

convexity parameter of 𝑟 , namely 𝑚. For all 𝑥 ∈ R𝑛 we want to

have

𝑥𝑇 (𝐻 (E·,𝜎 (𝑟 )) −𝑚∗𝐼𝑛 + Y1𝑛)𝑥 ≥ 0 ,

where 𝐻 (E·,𝜎 (𝑟 )) denotes the Hessian of E·,𝜎 (𝑟 ), 𝐼𝑛 is the identity,

and 1𝑛 is a matrix such that��
1𝑛,𝑖 𝑗

�� ≤ 1 for all 𝑖, 𝑗 .

Y1𝑛 corresponds to the Hessian of E·,𝜎 (𝑔). We have

𝑥𝑇 (𝐻 (E·,𝜎 (𝑟 )) −𝑚𝐼𝑛)𝑥 ≥ 0

by Theorem 5.1 and, therefore, we show

𝑥𝑇 ((𝑚 −𝑚∗)𝐼𝑛 + Y1𝑛)𝑥 ≥ (𝑚 −𝑚∗)max

𝑖
|𝑥𝑖 |2 − Y𝑛2max

𝑖
|𝑥𝑖 |2

= max

𝑖
|𝑥𝑖 |2 (𝑚 −𝑚∗ − Y𝑛2) ≥ 0 .

Which is true for Y ≤ 𝑚−𝑚∗

𝑛2
. □

Theorem 5.2 suggests non-trivial sufficient conditions for func-

tions on the reals whose stochastic relaxations turn out to be con-

vex functions when paired with probability measures that have

Schwartz densities. There are a number of handy results we obtain

with Theorem 5.2.

Corollary 5.2.1 (Deterministic Cosine Disturbance). Let
𝑓 = 𝑟+𝑔 : R𝑛 → R be the sum of a polynomially bounded,𝑚-strongly
convex function 𝑟 and for all 𝑥 ∈ R𝑛

𝑔(𝑥) =
∞∑
𝑗=1

𝑎 𝑗 cos(⟨b 𝑗 , 𝑥⟩ +𝜓 𝑗 )

with

• 𝑎 𝑗 ∈ R with
∑

𝑗 |𝑎 𝑗 | < ∞, and
• b 𝑗 ∈ R𝑛 such that there exists Y > 0 with

b 𝑗  ≥ Y for all
𝑗 ∈ N.

Let Pr𝑘 be a probability measure with a rapidly decreasing Lebesgue
density 𝑘 and𝑚∗ < 𝑚. Then, 𝑓 is𝑚∗-strongly Pr𝑘 -weakly convex.

Proof. We prove that 𝑔 fulfills F (𝑔) |𝑈Y (0) ≡ 0 in the distribu-

tional sense and apply Theorem 5.2. We have for all 𝑗 ∈ N

cos(⟨b 𝑗 , 𝑥⟩ +𝜓 𝑗 ) =
𝑒𝑖 ( ⟨b 𝑗 ,𝑥 ⟩+𝜓 𝑗 ) + 𝑒−𝑖 ( ⟨b 𝑗 ,𝑥 ⟩+𝜓 𝑗 )

2

=
𝑒𝑖𝜓 𝑗 𝑒𝑖 ⟨b 𝑗 ,𝑥 ⟩ + 𝑒−𝑖𝜓 𝑗 𝑒𝑖 ⟨−b 𝑗 ,𝑥 ⟩

2

. (5)

Therefore, for all Schwartz functions 𝜑 ∈ S(R𝑛), we get

F𝑇𝑔 (𝜑) = 𝑇𝑔 (F𝜑) =
∫
R𝑛

𝑔F𝜑 d_

(definition distributional Fourier transform)

=

∞∑
𝑗=1

𝑎 𝑗

∫
R𝑛

cos(⟨b 𝑗 , 𝑥⟩ +𝜓 𝑗 )F𝜑 _(d𝑥)

(definition 𝑔, linearity)

=

∞∑
𝑗=1

𝑎 𝑗

2

(
𝑒𝑖𝜓 𝑗

∫
R𝑛

𝑒𝑖 ⟨b 𝑗 ,𝑥 ⟩F𝜑 _(d𝑥)

+ 𝑒−𝑖𝜓 𝑗

∫
R𝑛

𝑒𝑖 ⟨−b 𝑗 ,𝑥 ⟩F𝜑 _(d𝑥)
)

(Equation (5), linearity)

=

∞∑
𝑗=1

𝑎 𝑗

2

(
𝑒𝑖𝜓 𝑗F −1 (F𝜑) (b 𝑗 ) + 𝑒−𝑖𝜓 𝑗F −1 (F𝜑) (−b 𝑗 )

)
(definition inverse Fourier transform)

=

∞∑
𝑗=1

𝑎 𝑗

2

(
𝑒𝑖𝜓 𝑗𝜑 (b 𝑗 ) + 𝑒−𝑖𝜓 𝑗𝜑 (−b 𝑗 )

)
(Fourier inversion theorem)
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This implies F𝑇𝑔 =
∑∞

𝑗=1

𝑎 𝑗

2

(
𝑒𝑖𝜓 𝑗 𝛿b 𝑗 + 𝑒−𝑖𝜓 𝑗 𝛿−b 𝑗

)
, where 𝛿 is the

Dirac distribution. The assumption

b 𝑗  > Y for all 𝑗 ∈ N therefore

implies F (𝑔) |𝑈Y (0) ≡ 0. □

Corollary 5.2.1 also recovers the convexity result from Exam-

ple 2.1.

Corollary 5.2.2. The Rastrigin function

𝑥 ∈ R𝑛 ↦−→ 𝑓 (𝑥) := ∥𝑥 ∥2 −
𝑛∑
𝑗=1

𝑎 𝑗 cos(b 𝑗𝑥 𝑗 ) ,

where b 𝑗 , 𝑎 𝑗 > 0 for all 𝑗 ∈ N≤𝑛 , is 𝑚∗-strongly N(0, 1)-weakly
convex for all𝑚∗ < 1.

We also obtain the following result for stochastic disturbances.

From the algorithmic perspective, the following model constitutes

static noise.

Corollary 5.2.3 (Stochastic Cosine Disturbance). Let 𝑓 =

𝑟 + 𝑔 : R𝑛 → R be the sum of a polynomially bounded,𝑚-strongly
convex function 𝑟 and a random field

𝑔(𝑥) =
∞∑
𝑗=1

𝐴 𝑗 cos(⟨b 𝑗 , 𝑥⟩ +𝜓 𝑗 )

with
• (𝐴 𝑗 ) 𝑗 ∈N are real-valued random variables on the same proba-
bility space such that

∑
𝑗 |𝐴 𝑗 | < 𝐶 with probability 𝑝 ∈ [0, 1],

and
• b 𝑗 ∈ R𝑛 such that there exists Y > 0 with

b 𝑗  ≥ Y for all
𝑗 ∈ N.

Let Pr𝑘 be a probability measure with a rapidly decreasing Lebesgue
density 𝑘 and𝑚∗ < 𝑚. Then, 𝑓 is𝑚∗-strongly Pr𝑘 -weakly convex
with at least probability 𝑝 with the same threshold scaling constant
𝜎∗. Further, 𝜎∗ (𝐶) ∈ 𝑂

( 𝑑
√
𝐶
)
for all 𝑑 ∈ N.

Proof. Analogously to Theorem 5.2 and Lemma 5.2 the result

follows in conjunction with the following bound. For all Schwartz

functions 𝜑 ∈ S(R𝑛), we have with probability 𝑝

F𝑇𝑔 (𝜑) =
∞∑
𝑗=1

𝐴 𝑗

2

(
𝑒𝑖𝜓 𝑗𝜑 (b 𝑗 ) + 𝑒−𝑖𝜓 𝑗𝜑 (−b 𝑗 )

)
(proof of Corollary 5.2.1)

=⇒
��F𝑇𝑔 (𝜑)

�� ≤ ∞∑
𝑗=1

|𝐴 𝑗 |
2

(��𝜑 (b 𝑗 )�� + ��𝜑 (−b 𝑗 )��) (triangle inequality)

≤
∞∑
𝑗=1

��𝐴 𝑗

��
sup

𝑥 ∈𝑈Y (0)𝐶
|𝜑 (𝑥) | (𝜑 is Schwartz)

≤ 𝐶 sup

𝑥 ∈𝑈Y (0)𝐶
|𝜑 (𝑥) | . (assumption

∑
𝑗 |𝐴𝑗 | < 𝐶)

By the fact that 𝜑 is rapidly decreasing (see Lemma 5.2 for why 𝜑

can be considered fixed), we also have

𝐶 sup

𝑥 ∈𝑈Y (0)𝐶
|𝜑 (𝜎𝑥) | ≤ 𝐶 𝐵

𝜎𝑑

for some 𝐵 ≥ 0 and for all 𝜎 > 0 and for all 𝑑 ∈ N. Therefore, as
we want to pick 𝜎∗ to bound the value of

��F𝑇𝑔 (𝜎∗𝜑)
��
by say some

𝑐 > 0 dependent on the convexity parameter of 𝑟 , in the spirit of

Theorem 5.2 and Lemma 5.2, we have 𝜎∗ (𝐶) ∈ 𝑂
( 𝑑
√
𝐶
)
for all 𝑑 ∈ N

due to

𝐶 𝐵
𝜎𝑑 = 𝑐 ⇐⇒ 𝜎 =

𝑑
√
𝐵/𝑐 𝑑

√
𝐶 .

□

6 CONCLUSION
We established that stochastic relaxations have many favorable

properties for optimization in surprisingly general settings. Con-

cretely, we provided mild conditions under which optima are per-

sistent under stochastic relaxation and thereby established the ap-

proach’s consistency, which aligns with our intuition. Next to con-

sistency, we have also shown that probability measures with Lips-

chitz differentiable densities under mild regularity conditions result

in relaxations with Lipschitz differentials, allowing favorable con-

vergence properties for first-order optimization methods. However,

the arguably most important contributions are the convexity con-

ditions for stochastic relaxations derived in the last section, which

offer the possibility of principled global optimization under high-

frequency, even stochastic, disturbances. Beyond that, we hope that

the insight developed will be useful in furthering state-of-the-art

optimization methods.

Future Work. We believe that some of the most promising di-

rections for future work lie in extending the convexity results for

stochastic relaxations based on other methods from harmonic anal-

ysis. In practice, particularly in evolution strategies, the decoupling

of the relaxation and (numerical) integration methods suggested by

the setting at hand could offer the opportunity to design many new

optimization methods. The gradient representation of relaxations

of differentiable functions likely has powerful applications in prob-

lems where gradients are available, such as in gray-box problems in

machine learning. Whether convexity results for relaxations hold

for probability measures with a support on Lebesgue null sets may

also pose an interesting question. These measures can offer strongly

reduced computational cost in numerical integration—related algo-

rithms have recently yielded spectacular results [3, 5]. Connecting

the convexity results with existing approaches to control the scaling

of probability measures during an optimization process is also an

important next step.
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