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Abstract

Monitoring of hybrid systems attracts both scientific
and practical attention. However, monitoring algo-
rithms suffer from the methodological difficulty of
only observing sampled discrete-time signals, while
real behaviors are continuous-time signals. To mit-
igate this problem of sampling uncertainties, we in-
troduce a model-bounded monitoring scheme, where
we use prior knowledge about the target system to
prune interpolation candidates. Technically, we ex-
press such prior knowledge by linear hybrid automata
(LHAs)—the LHAs are called bounding models. We
introduce a novel notion of monitored language of
LHAs, and we reduce the monitoring problem to the
membership problem of the monitored language. We
present two partial algorithms—one is via reduction
to reachability in LHAs and the other is a direct
one using polyhedra—and show that these methods,
and thus the proposed model-bounded monitoring
scheme, are efficient and practically relevant.
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1 Introduction

Monitoring Pervasiveness and safety criticalness of
cyber-physical systems (CPSs)—where physical dynamics
are controlled by software—pose their quality assurance as
a pressing industrial and social problem. A number of re-
search efforts have aimed at their correctness proofs, with
software science and control theory collaborating hand-in-
hand.

However, such exhaustive verification is often very hard
with real-world examples. This is because white-box mod-
els of real-world CPSs are hard to find—the difficulty can
be because of 1) the systems’ complexity, 2) uncertain-
ties in their operation environments, and 3) third-party
black-box components. Mathematically, formal verifica-
tion is to give a proof that a system is correct, and a
white-box model is a definition of the system. Without
a white-box model, there is no definition to build a proof
on.

Monitoring is attracting attention as a light-weight yet
feasible alternative in quality assurance of CPSs. Moni-
toring consists in checking whether a sequence of data sat-
isfies a specification expressed using some formalism. It
can be used offline (e. g., for extracting interesting parts
from a huge log) and online (e. g., for alerting to unsafe
phenomena). See the related work in this section for ref-
erences.

Hybrid System Monitoring In this paper, we study
monitoring of CPSs, with a particular emphasis on their
hybrid aspect (i. e., the interplay between continuous and
discrete worlds).

We sketch the workflow of hybrid system monitoring in
Fig. 1. We are given a specific behavior σ of the system
under monitoring (SUM) and a specification ϕ (in this
paper, we focus on safety specifications). The problem is
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Figure 1: Hybrid system monitoring and sampling
uncertainties

to decide whether σ is safe or not, in the sense that σ
satisfies ϕ. We assume a computer solves this problem.
Therefore, an input to a monitor must be a discrete-time
signal w, obtained from the continuous-time signal σ via
sampling. We shall call such w a log of the SUM induced
by the behavior σ.
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Figure 2: w and
σ

Sampling Uncertainties in Hy-
brid System Monitoring There
is a methodological difficulty already
in the high-level schematics in Fig. 1:

By looking only at a sampled log w, how can a
monitor conclude anything about the real behav-
ior σ?

The same log w can result from different behaviors σ.
Fig. 2 shows an example, where we cannot decide if a
safety property “x is always nonnegative” is satisfied by
σ. In other words, the way we interpolate the log w and
recover σ is totally arbitrary. Thus, we cannot exclude
potential violations of any safety specification unless the
specification happens to talk only about values at sam-
pling instants.

t

x

t

xThis issue of sampling un-
certainties is often ignored in
the hybrid system monitoring
literature. They typically em-
ploy heuristic interpolation methods, such as piecewise-
constant and piecewise-linear interpolation (above). Use
of these heuristic interpolation methods is often justified,
typically when the sampling rate is large enough. How-
ever, in networked monitoring scenarios where a sensor
and a monitor are separated by, e. g., a wireless network,
the sampling rate is small, and the interpolation of a log
becomes a real issue. Network monitoring is increasingly
common in IoT applications, and smaller sampling rates
(i. e., longer sampling intervals) are preferred for energy
efficiency.

Example 1 (automotive platooning). Consider a situa-
tion where two vehicles drive one after the other, with
their distance kept small. Such automotive platooning at-
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(b) The log w. The red cir-
cles are x1 and the blue tri-
angles are x2.

Figure 3: A leading example: automotive platooning

tracts interest as a measure for enhanced road capacity as
well as for fuel efficiency (by reducing air resistance).

Assume that the monitoring is conducted on a remote
server. Each vehicle intermittently sends its position to
the server via the Internet. Thus, the remote monitor only
has a coarse-grained log. Concretely, a log w is given in
Fig. 3b, by the position x1, x2 (meters) of each of the two
vehicles, sampled at time t = 0, 10, 20 (seconds).

Let us now ask this question: have the two vehicles
touched each other? Physical contact of the vehicles is not
observed in Fig. 3b, but we cannot be sure what happened
between the sampling instants. The piecewise-constant
and piecewise-linear interpolation can only answer to this
question approximately. Moreover, such approximation is
not of much help in the current example where sampling
intervals are long.

Interpolation Assisted by System Knowledge
The following idea underpins the current work.

Prior knowledge about a system is a powerful
tool to bound sampling uncertainties.

The latter means excluding some candidates when we re-
cover a behavior σ from a word w by interpolation (cf.
Fig. 2). For the log in Fig. 3b, for example, we can say
x1 never reached 104, knowing that the vehicle cannot
accelerate that quickly.

Putting this idea to actual use requires a careful choice
of a knowledge representation formalism.

• For one, it is desired to be expressive. The above “ac-
celeration rate” argument can be formulated in terms
of Lipschitz constants, but it is nice to also include
mode switching—an important feature of hybrid sys-
tems.

• For another, a formalism should be computationally
tractable. Monitoring is a practice-oriented method
that often tries to process a large amount of data with
limited computing resources (especially in embedded
applications). Therefore, inference over knowledge
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represented in the chosen formalism should better
be efficient.

Note that these two concerns—expressivity and computa-
tional tractability—are in a trade-off.

Bounding Models Given by LHAs In this paper, we
express such prior knowledge about a system using a linear
hybrid automaton (LHA) [HPR94]. This LHA is called a
bounding model, and serves as an overapproximation of
the target system.

LHA is one of the well-known subclasses of hybrid au-
tomata (HA); an example is in Fig. 6a. LHA’s notable
simplifying feature is that flow dynamics is restricted to
a conjunction of linear (in)equalities over the derivatives
ẋ1, ẋ2, · · · , ẋM . Its expressivity is limited—for example, a
flow specification ẋ = Ax+b is not allowed since the vari-
ables x occur there. Differential inclusions are allowed,
nevertheless (such as ẋ1 ∈ [7.5, 8.5] and ẋ1 − ẋ2 ≤ 1);
these are useful in expressing known safety envelopes, as in
Fig. 6a. Most importantly, analysis of LHAs is tractable,
with convex polyhedra providing an efficient means to
study the reachability problem.

Model-Bounded Hybrid System Monitoring Our
proposal is a scheme that we call model-bounded moni-
toring of hybrid systems. Its workflow is in Fig. 4; its
features are as follows.

1. We use our prior knowledge about the SUM in order
to reduce sampling uncertainties. The knowledge is
expressed by an LHA; it is called a bounding model.

2. We restrict to a safety specification ϕ given by a
conjunction of linear (in)equalities.1 We interpret ϕ
globally (“σ(t) satisfies ϕ at any time t”). We obtain
an LHAM¬ϕ by taking the synchronized product of
the bounding model M and an automaton monitor-
ing the violation of ϕ.

3. We introduce the notion of monitored language Lmon

of an LHA. Roughly speaking, it is the set of “logs
which have a corresponding signal accepted by the
LHA.” The notion differs from known language no-
tions for LHA, in that mode switches in an LHA need
not be visible in a log (modes may change between
sampling instants).

4. We show the following meta-level correctness re-
sult: w ∈ Lmon(M¬ϕ) if and only if there exists a
continuous-time signal σ such that

1This restriction is for the ease of presentation. Extension
to LTL specifications should not be hard: an LTL formula can
be translated to an automaton; and it can then be combined
with a bounding model M. This is future work.

(a) σ induces w by sampling,

(b) σ conforms with the bounding model M, and

(c) σ violates the safety specification ϕ.

Our main technical contribution consists of

1. the introduction of the new language notion Lmon,

2. the use of Lmon in the proposed model-bounded mon-
itoring scheme, and

3. (partial) algorithms that solve Lmon membership.

Used in the scheme in Fig. 4, these algorithms check if
the given log w belongs to Lmon(M¬ϕ), whose answer is
then used for the safety analysis of the (unknown) actual
behavior σ. The last point is discussed in the next para-
graph about usage scenarios.

We present two (partial) algorithms: one reduces the
Lmon membership problem to the reachability problem
of LHAs, translating a log w into an LHA. The other is
a direct algorithm that relies on polyhedra computation.
These algorithms are necessarily partial since Lmon mem-
bership is undecidable (Theorem 17). However, their pos-
itive and negative answers are guaranteed to be correct.
Moreover, we observe that the latter direct algorithm ter-
minates in most benchmarks, especially when a bounding
model’s dimensionality is not too large.

Example 2. We continue Example 1. For the log w in
Fig. 3b, the bounding model M in Fig. 6a confines po-
tential interpolation between the samples to the hatched
areas in Fig. 5. The two areas are separate in t ∈ [0, 10],
which means the two cars were safe in the period. For
t ∈ [10, 20], the two areas overlap, suggesting potential
collision.

The above analysis is automated by our automata-
theoretic framework in Fig. 4. We shall sketch its work-
flow.

Let ϕ be the safety specification x1−x2 > 0 (“no phys-
ical contact”)2. The formal construction ofM¬ϕ (Defini-
tion 12) yields the LHA in Fig. 6b. In M¬ϕ, the original
LHA M (Fig. 6a) is duplicated, and once ϕ is violated,
the execution can move from the first copy (the top two
states in Fig. 6b) to the second (the bottom states). The
bottom states are accepting—they detect violation of ϕ.

Now we use one of our algorithms to solve the mem-
bership problem, i. e., whether the log w belongs to
Lmon(M¬ϕ). Solving this membership problem amounts

2For simplicity, we modeled the cars as points. It is straight-
forward to use a more realistic model e. g., a car model by a
rectangle.
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Figure 5: Model-bounded monitor-
ing of the log w in Fig. 3b. The
bounding model M in Fig. 6a con-
fines interpolation to the hatched
area. Thus no collision in t ∈ [0, 10];
potential collision in t ∈ [10, 20].

`0
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

x1 = 40
x2 = 35 `1

ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

x1 − x2 ≤ 4

x1 − x2 ≥ 4

(a) A bounding model M for the platooning
example, expressed as an LHA

`0
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

x1 = 40
x2 = 35 `1

ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

`2
ẋ1 ∈ [7.5, 8.5]
ẋ2 ∈ [8.0, 9.0]

`3
ẋ1 ∈ [11.0, 13.0]
ẋ2 ∈ [9.0, 11.0]

x1 − x2 ≤ 4

x1 − x2 ≥ 4

x1 − x2 ≤ 4

x1 − x2 ≥ 4

x1 − x2 ≤ 0 x1 − x2 ≤ 0

(b) The LHA M¬ϕ for ϕ = (x1 − x2 > 0)

Figure 6: LHAs for the automotive platooning example
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to computing the hatched areas in Fig. 5—it is done rely-
ing on polyhedra computation—and checking if the safety
specification is violated.

Usage Scenarios The scheme in Fig. 4 is used as
follows. As a basic prerequisite, we assume that the
bounding model M overapproximates the SUM: for each
continuous-time signal σ,

(soundness of a bounded model)

σ is a behavior of the SUM =⇒ σ is a run ofM.

We do not require the other implication. Due to the lim-
ited expressivity of LHAs (that is the price for compu-
tational tractability), M would not tightly describe the
SUM.

Assume first that our monitor did not raise an alert
(i. e., w 6∈ Lmon(M¬ϕ)). Let σ0 be the (unknown) actual
behavior of the SUM that is behind the log w. By the
feature 4 of the scheme, we conclude that σ0 was safe. In-
deed, σ0 satisfies Item 4a by definition. It comes from the
SUM, and thus by the soundness assumption, σ0 satisfies
Item 4b. Hence Item 4c must fail.

Let us turn to the case where our monitor did raise an
alert (w ∈ Lmon(M¬ϕ)). This can be a false alarm. For
one, the existence of unsafe σ (as in the feature 4) does
not imply that the actual behavior σ0 was unsafe. For an-
other, Item 4b does not guarantee that σ is indeed a possi-
ble behavior of the SUM, since we only assume soundness
of the bounding model. Nevertheless, a positive answer of
our monitor comes with a reachability witness (a trace)
in M¬ϕ, which serves as a useful clue for further exami-
nation.

Summarizing, our monitor’s alert can be false, while
the absence of an alert proves safety. We can thus say our
model-bounded monitoring scheme is sound.

Bounding Models We note that the roles of bounding
models are different from common roles played by sys-
tem models. A system model aims to describe the sys-
tem’s behaviors in a sound and complete manner. In
contrast, bounding models focus on overapproximation,
trading completeness for computational tractability that
is needed in monitoring applications.

The overapproximating nature of a bounding model is
less of a problem in monitoring, compared to other ex-
haustive applications such as model checking. In the lat-
ter, approximation errors accumulate over time, leading to
increasingly loose overapproximation. In contrast, in our
usage, a bounding model is used to interpolate between
samples (Fig. 5). Here overapproximation errors get reset
to zero by new samples.

Because we assume that we have an overapproxima-
tion of the actual system, we can indeed formally verify
the safety of the system by the reachability analysis of the
bounding model. However, due to the overapproximation,
the given LHA usually contain unsafe behaviors, i. e., the
unsafe locations are reachable in the LHA. Most of the
benchmarks in our experiments are certainly unsafe. In
contrast, in model-bounded monitoring, even if the unsafe
locations are reachable in the LHA, the monitored behav-
ior can be safe, i. e., the unsafe locations are unreachable
from the current sample. Therefore, monitoring is still
useful even if we have a model overapproximating the ac-
tual system.

Bounding models can arise in different ways, including:

• (Adding margins to a system model) If a system
model is given as an LHA, we can use it as a bound-
ing model. A more realistic scenario is to add some
margins to address potential perception and actua-
tion errors. LHAs’ feature that they allow differential
inclusions is particularly useful here. An example is
in Fig. 7, where perception and actuation uncertain-
ties are addressed by the additional margins in the
transition guards and flow dynamics, respectively.

• (LHA approximation of a system model) LHA
is one of the subclasses of HA for which reachability
is attackable (it is hopeless for general HA). Con-
sequently, tools have been proposed for analyzing
LHA, including PHAVerLite [BZ19] and its predeces-
sor PHAVer [Fre08]. Moreover, for their application,
overapproximation of other dynamics by LHAs has
been studied and tool-supported. See e. g., [Fre08,
Section 3.2]. These techniques can be used to ob-
tain an LHA bounding model from a more complex
model.

• (From a third-party vendor) HA is a well-
accepted formalism in academia and industry. It is
conceivable that a system vendor provides an LHA
as the system’s “safety specification”. It serves as a
bounding model.

Contributions We summarize our main contributions.

• We tackle the issue of sampling uncertainties in
hybrid system monitoring, proposing the model-
bounded monitoring scheme (Fig. 4) as a countermea-
sure. The scheme uses LHAs as bounding models.

• We introduce the novel technical notion of monitored
language Lmon for LHAs. In Lmon, unlike in other
language notions, input words and mode switches
do not necessarily synchronize. We show that Lmon
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a system model
`0

ẋ1 = 7
ẋ2 = 8.5

`1
ẋ1 = 12
ẋ2 = 10

x1 − x2 ≤ 4

x1 − x2 ≥ 4

⇓ add margins

a bounding model
`0

ẋ1 ∈ [6.8, 7.2]
ẋ2 ∈ [8.3, 8.7]

`1
ẋ1 ∈ [11.8, 12.2]
ẋ2 ∈ [9.8, 10.2]

x1 − x2 ≤ 4.5

x1 − x2 ≥ 3.5

Figure 7: Adding margins to obtain bounding models.
The top model gets loosened by perception uncertain-
ties (margin 0.5) and actuation uncertainties (margin
0.2)

membership is undecidable, yet we introduce two
partial algorithms.

• We establish soundness of our model-bounded mon-
itoring scheme: absence of an alert guarantees that
every possible behavior σ behind the log w is safe.

• The practical relevance and algorithmic scalability
is demonstrated by experiments, using benchmarks
that are mainly taken from automotive platooning
scenarios.

Related Work In the IoT applications [Gub+13], en-
ergy efficiency is of paramount importance. Energy effi-
ciency demands longer sampling and communication in-
tervals; the current work presents an automatic and sound
method to mitigate the uncertainties that result from
those longer intervals.

In the context of quality assurance of CPSs, moni-
toring of digital (i. e., discrete-valued) or analog (i. e.,
continuous-valued) signals takes an important role. There
have been many works on signal monitoring using vari-
ous logic e. g., signal temporal logic (STL) [MN04; FP09],
timed regular expressions (TREs) [Ulu+14], timed au-
tomata [Bak+18], or timed symbolic weighted automata
(TSWAs) [Wag19]. However, in most of the existing
works, interpolation of the sampled signals is limited to
only piecewise-constant or piecewise-linear.

There are a few works on monitoring utilizing system
models. In [ZLD12], a set of predictive words are gener-
ated through a static analysis of the monitored program
and monitored against linear temporal logic. In [Pin+17],
the system model and the monitored property are given
as timed automata to construct a monitor predicting
the satisfaction (or violation) of the monitored property.
In [BGF18], the stochastic system model is trained as a
hidden Markov model and utilized for monitoring against
a DFA. In [QD20], statistical models on the monitored

signals are utilized to predict the future signals for robust
monitoring against signal temporal logic.

Overall, prediction (i. e., extrapolation) of the future be-
haviors is the main purpose of the existing model-based
monitoring works [ZLD12; Pin+17; BGF18; QD20] to
the best of our knowledge. Our approach utilizes system
knowledge for interpolation of the infrequently sampled
signals.

There are existing language notions for LHAs [AKV98].
These are different from the notion Lmon that we intro-
duce; hence the results in [AKV98] do not subsume ours.
The key difference is if the input word and mode switches
must synchronize; see Example 11 and the preceding dis-
cussions.

A recent line of work is that of timed pattern match-
ing [Ulu+14; WHS17; Bak+18; UM18; AHW18; WA19;
WAH19; Wag19], that takes as input a log and a specifica-
tion, and decides where in the log the specification is satis-
fied or violated. Through the construction of the matching
automata [Bak+18; Wag19], our monitoring problem can
also decide where in the log the specification is satisfied or
violated. Thus, our work can also be seen as an extension
of timed pattern matching concerning the system models.

Outline We recall LHAs in Section 2. After we intro-
duce monitored languages Lmon for LHAs in Section 3,
model-bounded monitoring is formalized in Section 4 and
we prove its correctness. We show that Lmon member-
ship is undecidable in Section 5. We present two partial
algorithms:

1. the one in Section 6 relies on an existing model
checker PHAVerLite via suitable translation; and

2. the one in Section 7 is a dedicated algorithm.

We perform extensive experiments in Section 8 and con-
clude in Section 9.

2 Preliminaries: Linear Hybrid
Automata

Let I(Q) be the set of closed intervals on Q, i. e., of the
form [a, b], where a, b ∈ Q and a ≤ b. For a partial func-
tion f : X 9 Y , the domain {x ∈ X | f(x) is defined}
is denoted by dom(f). We fix a set X = {x1, . . . , xM} of
real-valued variables. A (variable) valuation is a function
v : X → R. When X is clear from the context, a valua-
tion v is expressed by the tuple (v(x1), v(x2), . . . , v(xM )).
Given µ : X 9 I(Q), we define the update of a valuation v,
written [v]µ, as follows: [v]µ(x) ∈ µ(x) if x ∈ dom(µ), and
[v]µ(x) = v(x) otherwise.
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We assume ./ ∈ {≤,=,≥}. Let Φ(x) be the set of
linear systems over X defined by a finite conjunction of
inequalities of the form a1x1 + a2x2 + · · · + aMxM ./ d,
with d, a1, a2, . . . , aM ∈ Z. We let > =

∧
∅ and ⊥ be

the contradiction. The set Φ(ẋ) is defined similarly; it
consists of constraints over derivatives ẋ1, . . . , ẋM .

2.1 Syntax

Definition 3 (linear hybrid automata (LHA) [HPR94]).
An LHA is a tuple M = (L,F,X, Init,F , Inv, E), where:

1. L is a finite set of locations,

2. F ⊆ L is the set of accepting locations,

3. X is a finite set of variables,

4. Init : L → Φ(x) is the initial variable valuation for
each location,

5. F : L→ Φ(ẋ) is the flow, assigning to each ` ∈ L the
set of the derivatives (“rates”) {(ẋ1, ẋ2, · · · , ẋM ) |
(ẋ1, ẋ2, · · · , ẋM ) |= F(`)},

6. Inv : L→ Φ(x) is the invariant for each location,

7. E is a finite set of edges e = (`, g, µ, `′) where

(a) `, `′ ∈ L are the source and target locations,

(b) g ∈ Φ(x) is the guard,

(c) µ : X 9 I(Q) is the update function.

Note that Definition 3 allows for non-deterministic initial
locations. A location ` that cannot be initial is such that
Init(`) = ⊥.

LHAs can be composed using synchronized product (see
e. g., [Ras05, Definition 4]) in a way similar to finite-state
automata. The synchronized product of two LHAs is
known to be an LHA [HPR94]. Of importance is that,
in a composed location, the global flow constraint is the
intersection of the local component flow constraints.

Example 4. Consider the LHA in Fig. 6a, where Init is
such that Init(`0) = {x1 = 40∧x2 = 35} and Init(`1) = ⊥.
This LHA, giving a bounding model for an automotive
platooning system (Example 1), contains 2 locations and
2 variables X = {x1, x2}. This LHA features no invariant
(i. e., all invariants are >). Note that this LHA fits into
a subclass in which the derivatives for the flows are all in
bounded, constant intervals.

In this LHA (Fig. 6a), x1 (resp. x2) denotes the posi-
tion of Vehicle 1 (resp. 2), initially 40 and 35 respectively.
In `0, both vehicles run roughly at the same speed, al-
though Vehicle 2 can be slightly faster (e. g., due to smaller

air resistance, as it follows Vehicle 1). When the distance
between both vehicles becomes less than 4, they enter
mode `1, where Vehicle 1 drives faster than in `0.

In the LHA M¬ϕ in Fig. 6b, the vertical edges are
enabled once the specification x1 − x2 > 0 is violated,
that is, once the two vehicles touch each other.

Example 5. Consider the LHA in Fig. 8, where

1. X = {x1, x2, tabs , trel},
2. Init is such that Init(`0) = {x1 = 40∧x2 = 35∧tabs =

0 ∧ trel = 0} and Init(w`i) = ⊥ for 1 ≤ i ≤ 3, and

3. ẋ1 = ẋ2 = ˙tabs = ˙trel = 1 in all locations (not de-
picted in Fig. 8).

We depict invariants using a box under the location.

2.2 Semantics

We recall the standard semantics of LHAs, called con-
crete semantics. It is formulated as a timed transition
system [HMP92].

Definition 6 (concrete semantics of an LHA). Given an
LHA M = (L,F,X, Init,F , Inv, E), the concrete seman-
tics of M is given by the timed transition system (TTS)
(S, S0,→), with

• S =
{

(`, v) ∈ L× RM | v |= Inv(`)
}

,

• S0 =
{

(`, v) | ` ∈ L, v ∈ Init(`)
}
∩ S,

• → consists of the discrete and continuous transition
relations:

1. discrete transitions: (`, v)
e7→ (`′, v′), if there

exists e = (`, g, µ, `′) ∈ E such that v |= g,
v′ ∈ [v]µ.

2. continuous transitions: (`, v)
d,f7→ (`, v′), with

the delay d ∈ R≥0 and the flow f : X → R sat-
isfying, f |= F(`), ∀d′ ∈ [0, d], (`, v + d′f) ∈ S,
and v′ = v + df , where v + d′f is the valuation
satisfying (v + d′f)(x) = v(x) + d′f(x) for any
x ∈ X.

Definition 7 ((accepting) run). Given an LHA M with
concrete semantics (S, S0,→), we refer to the states of S
as the concrete states ofM. A run ofM is an alternating
sequence ρ = s0,→1, s1, . . . ,→n, sn of concrete states si ∈
S and transitions →i ∈ → satisfying s0 ∈ S0 and s0 →1

s1 · · · →n sn. For a run ρ, the duration Dur(ρ) ∈ R≥0

is the sum of the delays in ρ. We denote the i-th prefix
s0 →1 s1 · · · →i si of ρ by ρ[i]. A run is accepting if its
last state (`, v) satisfies ` ∈ F .
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Example 8. Let M be the LHA in Fig. 6a. The se-

quence ρ =
(
`0, v0

) 10,(8.3,8.2)7→
(
`0, v1

) 4
3
,(7.5,9)
7→

(
`0, v2

) e17→(
`1, v2

) 2
3
,(12,9)
7→

(
`1, v3

) e27→
(
`0, v3

) 8,(7.75,8.25)7→
(
`0, v4

)
is a run of M, where v0 = (40, 35), v1 = (123, 117),
v2 = (133, 129), v3 = (141, 135), v4 = (203, 201), and
e1 and e2 are the edges from `0 and `1, respectively.

3 Monitored Languages of
LHAs

We introduce another semantics for LHAs besides con-
crete semantics (Definition 6); it is called the monitored
language. The two semantics are used in Fig. 4 in the
following way:

1. concrete semantics is (roughly) about whether a
continuous-time signal σ (“behavior”) conforms with
the LHA M;

2. the monitored language Lmon(M) is about whether
a discrete-time signal w (“log”) conforms with M.

Definition 9 (timed quantitative words).
A timed quantitative word w is a sequence
(u1, τ1), (u2, τ2), . . . , (um, τm) of pairs (ui, τi) of a
valuation ui : X→ R and a timestamp τi ∈ R≥0 satisfying
τi ≤ τi+1 for each i ∈ {1, 2, . . . ,m− 1}.

For a timed quantitative word w =
(u1, τ1), . . . , (um, τm), we let |w| = m and for any
i ∈ {1, . . . ,m}, we let w[i] = (u1, τ1), . . . , (ui, τi).

We sometimes refer to pairs (ui, τi) as samples—these are
the red dots in Fig. 4.

Definition 10 (monitored language Lmon(M)). Let ρ =
s0 →1 s1 →2 · · · →n sn be a run of an LHA M (Def-
inition 6), and w = (u1, τ1), (u2, τ2), . . . , (um, τm) be a
timed quantitative word. We say w is associated with ρ
if, for each j ∈ {1, 2, . . . ,m}, we have either of the fol-
lowing two. Here `i, vi are so that si = (`i, vi) for each
i ∈ {0, 1, . . . , n}.

1. There exists i ∈ {0, 1, 2, . . . , n} such that Dur(ρ[i]) =
τj and uj = vi; or

2. There exists i ∈ {0, 1, 2, . . . , n − 1} such that
Dur(ρ[i]) < τj < Dur(ρ[i + 1]) and for any x ∈ X,
uj(x) = vi(x) + (τj − Dur(ρ[i]))fi(ẋ) holds, where

→i =
di,fi7→ .

Finally, the monitored language Lmon(M) of an LHAM is
the set of timed quantitative words associated with some
accepting run of M.

In the above definition of association of w to ρ, note
that the lengths of ρ and w can differ (n 6= m). Condi-
tion 1 is when a sample in w happens to be simultaneous
with some transition in ρ. This special case is not required
to happen at all, for w to be associated with ρ.

For example, in Fig. 5, mode switches (i. e., discrete
transitions) in the LHA in Fig. 6a can occur at times other
than t = 0, 10, 20. This is in contrast to the language of
hybrid automata in [AKV98], where (observable) discrete
transitions are always synchronous with the word, much
like the condition 1.

Example 11. Let M be the LHA in Fig. 6a, ρ be the
run of M in Example 8. The timed quantitative word w
in Fig. 3b is associated with ρ. We note that the sam-
pling and the discrete transitions are asynchronous: the
sampling is at 0, 10, and 20, while the discrete transitions
are at 34

3
and 12. This is in contrast to the synchronous

language in [AKV98]: the accepted words represent the
discrete transitions e. g., at 34

3
and 12.

4 The Model-Bounded Moni-
toring Scheme

Based on the technical definitions in Section 3, we for-
mally introduce the scheme that we sketched in Fig. 4.
(Partial) algorithms for computing if w ∈ Lmon(M¬ϕ)
are introduced in later sections. Recall that we focus on
safety specifications that are global and linear.

Definition 12 (the LHAM¬ϕ). LetM be an LHA, and
ϕ ∈ Φ(x) (Section 2). The LHA M¬ϕ is defined by

• making a copy M◦ of M,

• making each location `◦ of M◦ non-initial i. e.,
Init(`◦) = ⊥,

• letting F consist of all the states `◦ of M◦, and

• for each location ` ∈ M, creating an edge
(`,¬ϕ, ∅, `◦) from ` to its copy `◦, labeling the edge
with the safety specification ϕ as a guard and no
update.

Fig. 6b shows an example ofM¬ϕ. InM¬ϕ, having a sin-
gle accepting sink state for a violation of ϕ is not enough.
After detecting violation, we are still obliged to check if
the rest of a word w conforms with the bounding model
M. Thus, we maintain a copy of M.

8



Lemma 13. The following are equivalent for each se-
quence ρ.

• Both of the following hold:

1. ρ is a (non-necessarily accepting) run of M,
and

2. ρ violates ϕ at a certain time instant.

• There is an accepting run ρ′ of M¬ϕ such that
{w | w is associated with ρ} = {w |
w is associated with ρ′}.

The proof is easy by definition. The runs ρ and ρ′

can differ only in the locations they visit—in an LHA, an
enabled transition is not always taken. Note, however,
that violation of ϕ and w’s association are two properties
that are insensitive to locations.

We are ready to state the correctness of our scheme
(Fig. 4). The proof is straightforward by Lemma 13 and
Definition 10.

Theorem 14 (correctness). In the setting of Defini-
tion 12, let w be a timed quantitative word. We have
w ∈ Lmon(M¬ϕ) if and only if there is a (non-necessarily
accepting) run ρ of M such that

1. w is associated with ρ, and

2. ρ violates ϕ at some time instant.

Identifying a run ρ with a behavior σ, and association
of w to ρ with sampling, the theorem establishes the fea-
ture 4 of our scheme (Section 1).

The consequence in the safety analysis of the real SUM
(instead of its bounding model M) is discussed in the
“usage scenario” paragraph of Section 1. In particular,
due to potential gaps between the SUM and the bound-
ing model M, an alert of our monitor can be false, while
the absence of an alert proves safety. Overall, our model-
bounded monitoring scheme is sound.

Example 15. We show how the illustration in Example 2
is formalized by the monitored language Lmon(M¬ϕ) of
the bounded modelM¬ϕ. LetM¬ϕ be the LHA in Fig. 6b
and w be the timed quantitative word in Fig. 3b.

We have w[2] 6∈ Lmon(M¬ϕ) since all the runs with
which w[2] is associated are not accepting. That is, the
log w is safe until time t = 10.

However, for the full log, we have w ∈ Lmon(M¬ϕ),
because of the following accepting run ρ with which w

is associated: ρ =
[

(`0, u1)
10,(8.3,8.2)7→ (`0, u2)

4,(7.5,9.0)7→

(`0, v)
e7→ (`2, v)

6,( 25
3
,8.0)
7→ (`2, u2)

]
, where v = (153, 153).

5 Membership for Monitored
Languages: Symbolic Inter-
polation

The rest of the paper is devoted to solving the member-
ship problem of Lmon(M), a core computation task in
Fig. 4. We will present two (partial) algorithms: they are
symbolic algorithms that iteratively update polyhedra.

The Lmon membership problem:
Input: An LHAM and a timed quantitative word w.
Problem: Return the set C(w,M) of indices i satis-
fying u[i] ∈ Lmon(M). In particular, w ∈ Lmon(M) iff
|w| ∈ C(w,M).

Example 16. Let M¬ϕ be the LHA in Fig. 6b and w
be the timed quantitative word in Fig. 3b. We have
C(w,M¬ϕ) = {3}, meaning w[1], w[2] 6∈ Lmon(M¬ϕ), and
w[3] = w ∈ Lmon(M¬ϕ). This result corresponds to the
illustration in Fig. 5.

The following “no-go” theorem is sort of expected,
given previous results from the hybrid automata litera-
ture.

Theorem 17 (undecidability). For an LHA M and a
timed quantitative word w, it is undecidable to decide the
emptiness of C(w,M).

Given the undecidability result, we can think of restrict-
ing the class of the models. For example, the problem
becomes decidable if the number of discrete transitions
within a time unit is bounded [Bu+19].

Nevertheless, in practice, as we observe in Section 8,
our partial algorithms below perform effectively for many
benchmarks on the full LHA class—especially our latter,
direct algorithm.

Our two partial algorithms have the following features.

• Instead of solving one-way reachability (forward or
backward) as many existing algorithms do, they solve
interpolation between two points i. e., samples (see
Fig. 5).

• They work in a one-shot manner, collecting the linear
constraints representing the interpolations from the
given origin to the end with only bounded-time for-
ward reachability analysis. Instead, a naive method
would iterate between forward and backward reach-
ability analysis.
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6 Method I: via Reduction to
LHA Reachability Analysis

In our first solution, we reduce the Lmon membership
problem to reachability analysis of LHAs. In prac-
tice, we will use PHAVerLite, one of the most efficient
tools for reachability analysis of hybrid systems according
to [BZ19].

The idea of reducing monitoring to reachability analysis
of extensions of finite-state automata is not new and was
already proposed in the literature e. g., [AHW18]. While
both [AHW18] and the method we introduce in this sec-
tion are symbolic; the differences are in the formalism
and problem. On the one hand, [AHW18] uses paramet-
ric timed automata as a parametric specification and per-
forms parametric timed pattern matching (which can be
seen as parametric monitoring). On the other hand, we
use LHAs for the bounding model and we perform sym-
bolic monitoring. An extension for a parametric setting is
a future work, which is technically not much demanding.

Our workflow is as follows:

1. We transform the input timed quantitative word w
into an LHA Mw (that is in fact only timed, i. e., it
only uses clocks), that uses two extra variables:

(a) tabs measures the absolute time since the be-
ginning of the word; and

(b) trel measures the (relative) time since the last
sampled timed quantitative word.

2. We perform the synchronized product M || Mw of
the given LHA M with the transformed LHA Mw.

3. We run the reachability analysis procedure for the
product LHA M || Mw, to derive all possible loca-
tions w`i of Mw such that (`, w`i) is reachable in
M || Mw with trel = 0, where ` is an accepting lo-
cation of the given LHA M.

We explain these steps in the following.

6.1 Transforming the Timed Quanti-
tative Word into an LHA

First; we transform the input timed quantitative word w
into an LHA. The resulting LHAMw is a simple sequence
of locations with guarded transitions in between, also re-
setting trel .

The LHAMw features an absolute time clock tabs (ini-
tially 0, of rate 1 and never reset), and can test all vari-
ables of the system in guards (these are not reset in this

w`0 w`1 w`2 w`3

tabs ≤ 0 tabs ≤ 10 tabs ≤ 20

x1 = 40
x2 = 35
tabs = 0
trel = 0

tabs = 0
∧x1 = 40
∧x2 = 35
sample

trel ← 0

tabs = 10
∧x1 = 123
∧x2 = 117

sample

trel ← 0

tabs = 20
∧x1 = 203
∧x2 = 201

sample

trel ← 0

Figure 8: TQW2LHA applied to the timed quantita-
tive word in Fig. 3b. Here, i) X = {x1, x2, tabs , trel},
ii) Init is such that Init(`0) = {x1 = 40 ∧ x2 =
35 ∧ tabs = 0 ∧ trel = 0} and Init(w`i) = ⊥ for
1 ≤ i ≤ 3, and iii) ˙tabs = ˙trel = 1 and ẋ1, ẋ2 ∈ R
in all locations. Invariants are boxed under the loca-
tion.

LHA, though). More in details, we simply convert each
sample (ui, τi) of the timed quantitative word w into a
guard of the LHA testing for the timestamp using the
absolute time clock tabs , and for the value of the vari-
ables. The invariant of the location preceding a times-
tamp τi also features the clock constraint tabs ≤ τi (this
is not crucial for correctness but limits the state space
explosion). The transitions are all labeled with a fresh
action sample (which could be replaced with an unob-
servable action, but such actions are not accepted by the
PHAVerLite model checker). Each transition resets trel .
Overall, this procedure shares similarities with the one
that transforms a timed word into a timed automaton,
proposed in [AHW18].

Let TQW2LHA denote this procedure.
For example, consider the timed quantitative word w

in Fig. 3b. The result Mw of TQW2LHA(w) is given in
Fig. 8.

6.2 Reachability Analysis Using
PHAVerLite

We perform the synchronized product Mw || M (“par-
allel composition”) of the LHA Mw constructed from w
together with the given LHA M.

Then, we run the reachability analysis, setting as target
the states for which both of the following conditions hold:

1. the monitor is in an accepting location; and

2. trel = 0.

The latter condition ensures that only the states such that
we just sampled a word are accepting. Thanks to the lat-
ter condition, we can take into account of the next sample
without any explicit backward reachability analysis.

This is intuitively because of the following. While
trel > 0 and we are at w`i in Mw, we compute all the
reachable valuations from w[i] by the forward reachability
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analysis. Here, we non-deterministically make an assump-
tion of the next sample including the ones incompatible
with the actual sample w[i+ 1]. When we take the tran-
sition from w`i to w`i+1 and trel = 0, we require that the
assumption of the next sample must be compatible with
the actual sample w`i+1 and accept only if the accepting
locations are reachable by an interpolation between w[i]
and w[i+ 1].

Example 18. Let us exemplify the need for the latter
condition. Consider the LHA M¬ϕ in Fig. 6b and the
timed quantitative word w in Fig. 3b transformed into
the LHA Mw in Fig. 8 (only the time frame in [0, 10]
is of interest in this example). Clearly, this log is safe
w.r.t. the LHA M¬ϕ in Fig. 6b, that is neither `2 nor `3
are reachable, since the distance between both vehicles
cannot be ≤ 0 in the [0, 10] time frame.

If we simply run the reachability procedure looking
for `2 or `3 as target (without condition on trel), the pro-
cedure will output that at least `2 is reachable. Indeed,
it is possible that vehicle 1 runs at the minimal rate of
7.5 while vehicle 2 runs at the maximal rate of 9. In that
case, after 10 time units, vehicle 1 (resp. 2) reaches x-
coordinate 115 (resp. 125), and thus their distance is ≤ 0,
making `2 reachable. While this behavior is indeed possi-
ble from the knowledge we have of the first sample, it is
actually impossible knowing the full log and in particular
the second sample. This phenomenon is illustrated in the
part of Fig. 5 restricted to the [0, 10] time frame: the blue
part depicts all possible valuations knowing the first and
second sample.

Hence, adding the condition trel = 0 forces the model
checker to take into consideration the next sample before
making a decision concerning the reachability of a possible
target location.

7 Method II: Direct Method by
Polyhedra Computation

In our second solution, we directly solve the Lmon mem-
bership problem. We iteratively compute the runs of the
LHA M associated with the prefixes of the timed quan-
titative word w utilizing bounded reachability analysis.
This is our main contribution.

Procedure 1 shows an outline of our incremental pro-
cedure for the Lmon membership problem. Procedure 1
incrementally constructs the intermediate states Statei
and outputs the partial result Result i showing if w[i] ∈

Procedure 1: Outline of our incremental pro-
cedure for the Lmon membership problem

Input: A timed quantitative word
w = (u1, τ1), (u2, τ2), . . . , (un, τn) and an
LHA M = (L,F,X, Init,F , Inv, E).

Output: The Boolean sequence
Result1, . . . ,Resultn, where
Result i = > ⇐⇒ w[i] ∈ Lmon(M)

1 State0 ←
{

(`, v) | ` ∈ L, v ∈ Init(`)
}

2 for i← 1 to n do
3 State ′i ← reachable states from Statei−1 in

duration τi − τi−1

4 Statei ←
{

(`, v) ∈ State ′i | v = ui
}

5 Result i ← ∃(`, v) ∈ Statei. ` ∈ F

Lmon(M). In line 1, we construct the initial states State0.
We note that although Init(`) is, in general, an infinite set,
it is given as a convex polyhedron, and we can represent
State0 as a finite list of pairs of a location and a convex
polyhedron.

From line 2 to line 5 is the main part of Procedure 1: we
incrementally compute Statei and Result i. In line 3, we
compute the reachable states Statei from Statei−1 after
the executions of duration τi − τi−1. This part is essen-
tially the same as the bounded-time reachability analysis,
and thus, it is undecidable for LHAs in general [Bri+11].
Nevertheless, in practice, the reachable states State ′i are
usually effectively computable as a finite union of convex
polyhedra.

In line 4, we require Statei to be the subset of State ′i
compatible with the current observation ui. Thanks to
this requirement, we can take into account of the next
sample just by the forward reachability analysis. Finally,
in line 5, we determine the partial result Result i by check-
ing the reachability to the accepting locations.

An example is in the appendix (Example 21).

The intermediate states set Statei is the set of the last
states of the runs of M associated with w[i] and of du-
ration τi. Therefore, we have the following correctness
theorem.

Theorem 19 (correctness of Procedure 1). Given a timed
quantitative word w and an LHA M, Procedure 1 returns
the sequence Result1, . . . ,Resultn satisfying Result i =
> ⇐⇒ w[i] ∈ Lmon(M).
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Table 1: Summary of the benchmarks

Name Dimension (= d) # of locs. max. length of logs

ACCC 5,10,15 d+ 1 1,000
ACCI 2 4 100,000

ACCD 2, 3, · · · , 7 2d 1,000
NAV 4 18 150

8 Experimental Evaluation

We experimentally evaluated our model-bounded moni-
toring scheme using the two procedures for Lmon mem-
bership. For the first procedure via reachability analysis
(in Section 6), we used PHAVerLite [BZ19] for conducting
reachability analysis. For the second direct procedure (in
Section 7), we implemented a prototypical tool HAMoni.

We pose the following research questions.

RQ1 Is our dedicated implementation HAMoni worth-
while, performance-wise?

RQ2 Is HAMoni scalable w.r.t. the length of the input
log?

RQ3 How is the scalability of PHAVerLite and HAMoni
w.r.t. the dimension of the bounding model?

RQ4 Is there any relationship between the robustness of
the log and the precision of model-bounded monitor-
ing? Moreover, can we reduce the sampling interval
in the model-bounded monitoring scheme in Fig. 4
without causing significant false alarms?

8.1 Benchmarks

Table 1 summarizes the benchmarks for both scalability
and precision experiments.

8.1.1 Benchmarks for RQ1–3

In the scalability experiments to answer RQ1–3, we used
the following three benchmarks on adaptive cruise con-
troller: Piecewise-Constant ACC (ACCC); Interval ACC
(ACCI); and Diagonal ACC (ACCD). The bounding
models for the benchmarks are mostly taken from the
literature (see below); they express keeping the inter-
vehicular distance by switching between the normal cruise
mode and the recovery mode. This is much like Fig. 6a.

The input logs w were randomly generated by following
the flows and the transitions of the bounding model M.
This means that our SUM is the bounding model itself
(Fig. 4). We note that this coincidence is not mandatory.
Piecewise-Constant ACC (ACCC) The bounding
models for ACCC are taken from [BRS19]. The accepting

locations of ACCC happen to be unreachable, thus there
will be no alerts. This is no problem for the scalability
evaluation. In ACCC, the velocities of the cars at each
location are constant. ACCC contains three LHAs of di-
mensions 5, 10, and 15. Fig. 17 (in Appendix D) is the
LHA of dimension 5.

Interval ACC (ACCI) ACCI is a variant of the
ACCC benchmark. In the bounding model for ACCI,
the velocities of the cars at each location are nondeter-
ministically chosen from the given interval. It is shown in
Fig. 6b.

Diagonal ACC (ACCD) The bounding models for
ACCD are taken from [Fre+19]. In ACCD, the velocities
of the cars at each location are constrained by the fol-
lowing diagonal constraints (i. e., constraints of the form
xi−xj ./ n, n ∈ Z): when recovering the distance between
xi and xi+1, we have |ẋi − ẋi+1 − ε| < 1, where ε is the
slow-down parameter; otherwise, we have |ẋi − ẋi+1| < 1.
We used ε = 0.9 and ε = 2.0. The safety specification in
ACCD is xi > xi−1 for each i. ACCD contains six LHAs
of dimensions from 2 to 7. The LHAs of dimension 2 are
shown in Fig. 14 (in Appendix D).

8.1.2 Benchmark for RQ4

In the precision experiments to answer RQ4, we used the
robot navigation benchmark (NAV). The original system
model is an affine hybrid automaton [DHR05] and the
bounding model is constructed by the projection overap-
proximation in [Fre08, Section 3.2]. We use Definition 12
to construct M¬ϕ. The input logs w were generated by
a simulation of a Simulink implementation of the original
system model.

The original model for NAV is taken from [FI04]. To
obtain an LHA M, we used the projection overapprox-
imation in [Fre08] with an additional invariant vx ∈
[−1, 1], vy ∈ [−1, 1]. We constructed the bounding model
M¬ϕ by the construction in Definition 12, where the mon-
itored safety specification ϕ is vx ∈ [−1, 1] ∧ vy ∈ [−1, 1].
We note that the bounding modelM¬ϕ does not contain
the invariant vx ∈ [−1, 1], vy ∈ [−1, 1], and the accepting
locations for the safety violation are reachable.

8.2 Experiments

8.2.1 Scalability experiments

For the reachability analysis in the procedure presented
in Section 6, we used PHAVerLite 0.2.1. PHAVerLite re-
lies on PPLite [BZ19] to compute symbolic states. We
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Table 2: Experiment result on ACCC [sec.]
dim. len. PHAVerLite HAMoni

5 10 500.02 0.46
5 25 540.02 0.86
5 50 480.06 0.78
5 75 580.01 0.79
5 100 520.07 1.21
5 200 560.06 1.00
5 300 540.13 1.37
5 400 T.O. 1.77

dim. len. PHAVerLite HAMoni
5 500 480.41 2.27
5 600 500.40 2.12
5 700 520.40 2.37
5 800 540.33 2.58
5 900 580.12 2.76
5 1000 560.26 3.26
10 10 267.60 204.79
15 10 T.O. T.O.

Table 3: Experiment result on ACCI [sec.]
len. PHAVerLite HAMoni

10000 13.42 2.18
20000 40.29 4.29
30000 83.39 6.43
40000 141.55 8.56
50000 225.23 10.76

len. PHAVerLite HAMoni
60000 116.67 12.86
70000 26.60 15.00
80000 227.29 17.14
90000 259.17 19.28
100000 227.12 21.45

implemented an OCaml program and a Python script to
construct a PHAVerLite model from an LHA M and a
timed quantitative word w. For the procedure presented
in Section 7, we implemented HAMoni in C++ with
Parma Polyhedra Library (PPL) [BHZ08] and compiled
using GCC 7.4.0. In both PHAVerLite and HAMoni,
closed convex polyhedra are used to analyze the reacha-
bility [BZ19].

Since the difficulty of the Lmon membership problem
depends on the given timed quantitative word w, we ran-
domly generated 30 logs for each experiment setting and
measured the average of the execution time. The sampling
interval of w is from 1 to 5 seconds, uniformly distributed.
The timeout is 10 minutes. We conducted the experi-
ments on an Amazon EC2 c4.large instance (2.9 GHz In-
tel Xeon E5-2666 v3, 2 vCPUs, and 3.75 GiB RAM) that
runs Ubuntu 18.04 LTS (64 bit). Tables 2 to 4 summarize
the experiment results.

RQ1: worthwhileness of a dedicated implementa-
tion In Tables 2 to 4, we observe that HAMoni tends
to outperform PHAVerLite. Especially, in Table 2, we
observe that for ACCC, HAMoni performed drastically
faster than PHAVerLite for dimension 5. This is because
PHAVerLite is not a specific tool for the Lmon member-
ship problem but a tool for reachability analysis in general.
Thus, despite the engineering cost for the implementation
that is not small, a dedicated solver i. e., HAMoni, is
worthwhile.

However, in Table 4, we also observe that in ACCD,
when the dimension of the LHA is relatively large and
the timed quantitative word is not too long, PHAVerLite
often outperformed HAMoni. This is because of the opti-
mized reachability analysis algorithm in PHAVerLite. Op-
timization of the reachability analysis algorithm in HA-

Table 4: Experiment result on ACCD [sec.]
ε = 0.9 ε = 2.0

dim. len. PHAVerLite HAMoni PHAVerLite HAMoni

2 25 0.03 0.00 0.03 0.00
2 50 0.04 0.00 0.04 0.00
2 75 0.05 0.01 0.05 0.00
2 100 0.06 0.01 0.06 0.01
2 200 0.12 0.02 0.11 0.01
2 300 0.16 0.02 0.16 0.02
2 400 0.21 0.03 0.20 0.02
2 500 0.27 0.04 0.26 0.03
2 600 0.32 0.04 0.30 0.03
2 700 0.35 0.05 0.36 0.04
2 800 0.40 0.05 0.40 0.05
2 900 0.46 0.06 0.45 0.05
2 1000 0.51 0.07 0.50 0.06
3 10 0.05 0.02 0.04 0.01
3 25 0.08 0.03 0.08 0.02
3 50 0.14 0.04 0.12 0.03
3 75 0.19 0.05 0.18 0.03
3 100 0.23 0.05 0.22 0.04
3 200 0.44 0.07 0.42 0.05
3 300 0.65 0.09 0.62 0.06
3 400 0.84 0.12 0.82 0.09
3 500 1.07 0.15 1.00 0.10
3 600 1.25 0.16 1.24 0.11
3 700 1.46 0.16 1.42 0.13
3 800 1.73 0.20 1.61 0.13
3 900 1.84 0.19 1.83 0.16
3 1000 2.04 0.20 2.00 0.17
4 10 0.28 0.35 0.22 0.42
4 25 0.46 0.46 0.34 0.22
4 50 0.66 0.42 0.59 0.38
4 75 0.92 0.47 0.82 0.36
4 100 1.21 0.64 1.05 0.35
4 200 2.13 0.82 2.02 0.87
4 300 2.98 0.74 2.81 0.40
4 400 3.98 0.92 3.76 0.62
4 500 4.79 0.85 4.69 0.65
4 600 5.71 0.86 5.63 0.68
4 700 6.60 0.81 6.53 0.93
4 800 7.67 1.15 7.28 0.97
4 900 8.39 1.04 0.02 0.87
4 1000 9.26 1.18 9.15 0.89
5 10 2.65 7.51 22.38 29.33
5 25 3.84 10.13 3.05 9.22
5 50 5.25 9.68 12.93 31.06
5 75 7.13 14.41 18.32 29.93
5 100 8.14 12.87 7.58 21.13
5 200 11.39 8.94 29.52 36.17
5 300 17.33 15.03 15.38 14.56
5 400 20.44 9.81 19.47 15.34
5 500 24.87 11.72 36.83 34.12
5 600 28.78 8.79 28.47 16.37
5 700 35.14 17.05 32.86 16.10
5 800 37.76 12.41 41.97 39.07
5 900 42.22 9.83 48.26 46.68
5 1000 47.11 11.55 57.49 54.44
6 10 47.42 221.55 80.26 428.66
6 25 41.18 165.63 76.40 510.55
6 50 65.36 243.97 120.77 518.01
6 75 58.21 173.46 125.61 480.19
6 100 87.47 209.53 131.88 421.59
7 10 525.07 560.69 T.O. 594.05
7 25 489.35 559.56 T.O. 526.14
7 50 514.10 562.68 T.O. 566.01
7 75 T.O. 588.23 T.O. 583.49
7 100 T.O. 577.29 T.O. 578.3913



Moni e. g., utilizing the techniques in [BZ19; CÁF11], is
a future work.
RQ2: scalability w.r.t. the word length Figs. 9
and 10 show the execution time of HAMoni w.r.t. the
length of the timed quantitative word for selected experi-
ment settings. See Appendix C for the other settings.

In Figs. 9 and 10a, we observe that when the dimension
of the LHA is not large, the execution time was more or
less linear to the word length. This is because, when the
number of the intermediate states (Statei in Procedure 1)
is constant, the execution time of the bounded-time reach-
ability analysis (line 3 of Procedure 1) is constant for each
iteration, and the execution time of Procedure 1 is linear
to the word length. Thanks to the merging of the convex
polyhedra, such saturation often happens when the word
length is long enough for the complexity of the LHA.

In Fig. 10b, we observe that for ACCI of dimension 5,
the execution time was more or less constant w.r.t. the
word length. Such behavior also happens for other bench-
marks when the word length is short e. g., when the word
length is less than 200 for ACCC of dimension 5.

Overall, in our experiments, the execution time was
at most linear, and we conclude that at least for many
benchmarks, HAMoni is scalable to the word length.
RQ3: scalability w.r.t. the dimensionality of the
LHA Fig. 11 shows the execution time of PHAVerLite
and HAMoni to the dimension of the LHA, where the
length of the log is fixed to be 100. As we mentioned in
Section 8.2.1, the sampling interval is from 1 to 5 seconds,
uniformly distributed; thus, each w spans 300 seconds on
average. Note that the y-axis of Fig. 11 follows a loga-
rithmic scale.

In Fig. 11, we observe that the execution time is more
or less exponential to the dimension of the LHA. This is
due to the exponential complexity of the convex polyhe-
dra operations. However, in Tables 2 to 4, we observe
that for any benchmark (excluding ACCI, which consists
of only one LHA and is not suitable for this discussion),
HAMoni can effectively process a huge log up to around
5 dimensions. This is important for monitoring where the
log tends to be huge while the dimension of the bounding
model may not be much large.

In contrast, in Fig. 11, we observe that PHAVerLite
is more scalable to the model dimension than HAMoni.
This is thanks to the optimized convex polyhedra algo-
rithms and implementations in PHAVerLite. Again, our
future work will consist in optimizing HAMoni e. g., by
using the techniques from [BZ19; CÁF11].

Overall, our experiment results suggest that for signals
of up to 5 dimensions, our monitoring works more or less

in real-time because both implementations handle the logs
spanning at least 100 seconds (a few paragraphs ago) in
less than 30 seconds on average (Fig. 11).

8.2.2 Precision Experiments

In the precision experiments, since the result of the pro-
cedures presented in Sections 6 and 7 are the same, we
only used HAMoni to evaluate the precision of model-
bounded monitoring. Since NAV has a nondeterminism
in its initial configuration, we randomly generated 100
logs for NAV. From a dense enough raw log, we gener-
ated timed quantitative words w with constant sampling
interval. We tried the following 10 sampling intervals:
100, 200, 300, . . . , 1000 milliseconds.

RQ4: robustness vs. precision Fig. 12 shows the
shortest sampling interval with no false alarms and the
robustness for each log of NAV. Since the monitored spec-
ification is vx ∈ [−1, 1] ∧ vy ∈ [−1, 1], the robustness i. e.,
the satisfaction degree of the monitored specification, is
the minimum value of min{1− |vx|, 1− |vy|} in the whole
execution in the raw log.

In Fig. 12, we observe that when the robustness is small
i. e., the execution is close to violation, model-bounded
monitoring tends to cause false alarms with a short sam-
pling interval. This is because when the sampled log
is coarse, the overapproximation in the model-bounded
monitoring is rough, and near unsafe behavior is deemed
to be unsafe. This observation suggests the following pro-
cess to decide a reasonable sampling interval:

1. assume false alarms with small robustness (e. g., ro-
bustness ≤ 0.15) are acceptable;

2. we plot the relationship between the robustness and
the shortest sampling interval without false alarms
e. g., Fig. 12; and

3. we decide the sampling interval so that the amount of
the false alarms with high robustness becomes rea-
sonably small, e. g., in Fig. 12, if the false alarms
with robustness ≤ 0.15 are acceptable, 600 ms is a
reasonable sampling interval.

We note that our LHA construction does not utilize
any runtime information, and the precision of the approx-
imation is limited. It is a future work to reduce the false
alarms by improving the approximation utilizing the run-
time information by an online construction of the LHAs
e. g., the iterative refinement in [Fre08, Section 3.2].
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9 Conclusions and Perspectives

Based on a novel language notion Lmon for LHAs, we
formulated what we call the model-bounded monitoring
scheme for hybrid systems. It features the use of a
bounding model of the system to bridge the gap between
(continuous-time) system behaviors and (discrete-time)
logs that a monitor can access. While the Lmon member-
ship problem is undecidable, our two partial algorithms
(especially our dedicated HAMoni) work well for auto-
motive platooning benchmarks. Overall, our results show
the power of symbolic manipulation of polyhedra in the
domain of cyber-physical systems.

So far, HAMoni is a quickly developed prototype. Op-
timization of the reachability analysis with the technique
in [BZ19; CÁF11] is a first future work. In addition, im-
porting the latest optimizations from PHAVerLite [BZ19]
into HAMoni is on our agenda. Further evaluation of the
precision of model-bounded monitoring using a real-world
industry example is also a future work.

One potential extension of the Lmon membership prob-
lem is to make it more quantitative: returning a distance
between the monitored language Lmon(M) and the ob-
servation w rather than checking the membership of the
observation w to the monitored language Lmon(M). This
makes the result of the analysis even more useful. An-
other extension is to use intervals rather than points for
the measured values to cope with the uncertainty in the
measured values.

A testing-based approach, e. g., in [DN09], instead of
the current guaranteed approach by the convex polyhedra
analysis is a future work for more efficiency at the expense
of the safety guarantee.

Being parametric can be extremely useful when per-
forming monitoring or in the close area of parameter
identification [Asa+11; BFM18; WAH19]. Parametric
monitoring consists in exhibiting parameter valuations for
which a specification is violated (or correct). Parametriza-
tion of the current framework is future work.
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A Omitted proofs

A.1 Proof of Theorem 17

The proof of Theorem 17 is as follows.

Proof. We prove the claim by a reduction from
the bounded-time reachability of the LHA M =
(L,F,X, Init,F , Inv, E). Let τ ∈ R>0 be the time bound
of the reachability checking. Let u : X → R be the valu-
ation satisfying u(x) = 0 for any x ∈ X, w = (u, τ), and
M′ = (Lt{`f}, {`f},Xt{t}, Init,F ′, Inv′, EtE′), where:

• F ′ is F ′(`) = {F(`) ∧ ṫ = 1} for any ` ∈ L, and
F ′(`f ) is such that ẋ = 0 for any x ∈ X and ṫ = 1;

• Inv′ is Inv′(`) = Inv(`) for ` ∈ L and Inv′(`f ) = >;
and

• E′ = {(`, {t ≤ τ}, µ, `f ) | ` ∈ F, µ(x) =
0 for any x ∈ X}.

We have (u, τ) ∈ Lmon(M′) if and only if F is reach-
able in M within τ . Since we have |w| = 1, the
bounded-time reachability of the LHA M, which is un-
decidable [Bri+11], is reduced to the emptiness checking
of C(w,M′).

A.2 Proof of Theorem 19

First, we prove the following lemma.

Lemma 20. Let w be a timed quantitative word
w = (u1, τ1), . . . , (um, τm), M be an LHA M =
(L,F,X, Init,F , Inv, E), and Statei ∈ L × (R≥0)X be the
Statei in line 4 of Procedure 1, where i ∈ {1, 2, . . . ,m}.
For any i ∈ {1, 2, . . . ,m}, ` ∈ L, and v ∈ (R≥0)X,
we have (`, v) ∈ Statei if and only if there is a run
ρi = s0,→1, s1, . . . ,→n, sn = (`, v) of M associated with
w[i] and satisfying Dur(ρi) = τi.

Proof. We prove Lemma 20 by induction on i. When i =
1, State1 is the set of states reachable from {(`0, v0) | `0 ∈
L, v0 ∈ Init(`)} in τ1 and satisfying v = u1. Therefore, for
any (`1, v1) ∈ State1, there are `0 ∈ L, v0 ∈ Init(`), and a
run ρ1 = (`0, v0),→1, s1, . . . ,→n, (`1, v1) of M satisfying
Dur(ρ1) = τ1. By Definition 10, such ρ1 is associated to
w[1], and thus, when we have (`1, v1) ∈ State1, there is a
run ρ1 = s0,→1, s1, . . . ,→n, sn = (`1, v1) ofM associated
with w[1] and satisfying Dur(ρ1) = τ1. When there is a
run ρ1 = s0,→1, s1, . . . ,→n, sn = (`1, v1) ofM associated
with w[1] and satisfying Dur(ρ1) = τ1, since s0 ∈ State0

holds, we have (`1, v1) ∈ State1.
When i > 1, by definition in Procedure 1, Statei is the

set of states (`i, vi) ∈ L× (R≥0)X satisfying the following.

• There is a state (`i−1, vi−1) ∈ Statei−1 such that
(`i, vi) is reachable from (`i−1, vi−1) in τi − τi−1.

• We have vi = ui.

By definition of the reachability inM, Statei is the set of
states (`i, vi) such that there is an alternating sequence
ρ̃i = s0,→1, s1, . . . ,→n, sn = (`i, vi) of concrete states
si ∈ S and transitions →i ∈ → satisfying the following.

• s0 →1 s1 · · · →n sn

• s0 ∈ Statei−1

• Sum of the delays in ρ̃i is τi − τi−1

• vi = ui

By induction hypothesis, for any state (`i−1, vi−1) ∈
Statei−1, there is a run ρi−1 = s′0,→′1, s′1, . . . ,→′n, s′n =
(`i−1, vi−1) of M associated with w[i − 1] and satisfy-
ing Dur(ρi−1) = τi−1. Therefore, for any ` ∈ L and
v ∈ (R≥0)X satisfying (`, v) ∈ Statei, there is a run

ρi = ρi−1 · ρ̃i = s′0,→′1, s′1, . . . ,→′n, s′n,→1, s1, . . . ,→n, sn = (`i, vi)

of M. Moreover, since Dur(ρi−1) = τi−1 holds, ρi−1 is
associated with w[i−1], and the sum of the delays in ρ̃i is
τi−τi−1, such ρi satisfies Dur(ρi) = τi and ρi is associated
with w[i].

For any run ρi = s0,→1, s1, . . . ,→n, sn = (`i, vi) of M
associated with w[i] and satisfying Dur(ρi) = τi, there
is a run ρi−1 = s0,→1, s1, . . . ,→k, sk = (`i−1, vi−1) of
M associated with w[i − 1], and an alternating sequence
ρ̃i = sk,→k+1, sk+1, . . . ,→n, sn satisfying the following.

• Dur(ρi−1) = τi−1

• sum of the delays in ρ̃i is τi − τi−1

By induction hypothesis, we have (`i−1, vi−1) ∈ Statei−1.
Moreover, by the existence of ρ̃i, (`i, vi) is reachable from
(`i−1, vi−1) ∈ Statei−1, and thus, we have (`i, vi) ∈ Statei.

Proof of Theorem 19. For each i ∈ {1, 2, . . . ,m}, by line 5
of Procedure 1, we have Result i = > if and only if there
is (`, v) ∈ Statei satisfying ` ∈ F . By Lemma 20, for each
(`, v) ∈ Statei, there is a run ρi = s0,→1, s1, . . . ,→n, sn =
(`, v) of M associated with w[i]. Therefore, we have
Result i = > if and only if there is an accepting run
ρi of M associated with w[i], which is equivalent to
w[i] ∈ Lmon(M).
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B Additional experiment

We also conducted a precision experiment with an addi-
tional benchmark GasBurner.

Shared Gas-Burner (GasBurner) Benchmark
The original model for GasBurner is taken
from [DHR05]. In order to obtain an LHA M, we
used the projection overapproximation in [Fre08]. We
constructed the bounding model M¬ϕ by the con-
struction in Definition 12, where the monitored safety
specification ϕ is x1 ∈ [0, 100.1) ∧ x2 ∈ [0, 100.1). We
note that all the upper bounds 100 of the invariants
in bounding model M¬ϕ are replaced with 150, and
thus, the accepting locations for the safety violation are
reachable. Experiment result For GasBurner, the
shortest sampling interval without any false alarms is 600
ms and the robustness is 0. This is because of the initial
value x1 = 0.

In GasBurner, even though the robustness is 0, we
have no false alarms for a relatively large sampling interval
(600 ms). This is because

1. the low robustness is due to the initial value x1 = 0;

2. initially, ẋ1 > 0 holds in the bounded model, and we
have no false alarm there;

3. we potentially have false alarm only around the
switching; and

4. around the switching, the robustness is 0.099, which
is not very small.

C Detailed experiment results

Fig. 13 shows the plots of the experiment results omitted
from the paper. We note that these results are available
in Tables 2 to 4.

D Detail of the benchmarks

Fig. 14 shows the bounded model of dimension 2 in
ACCD. The affine hybrid automaton in Fig. 15 repre-
sents the original model of NAV. The affine hybrid au-
tomaton in Fig. 16 represents the original model of Gas-
Burner. Fig. 17 shows the bounded model of dimension 5
in ACCC.

E Omitted Example

Example 21. Let w and M be the ones in Example 16.
In line 1 of Procedure 1, we let State0 = {(`0, (40, 35))}.
In line 3, we compute the time-bounded reachability anal-
ysis and the result is as follows.

State′1 = {(`0, v1) | v1(x1) ∈ [115, 125], v1(x2) ∈ [115, 125]}
∪{(`0, v1) | −3v1(x1) + 11v1(x2) ≥ 876,−2v1(x1) + 9v1(x2) ≥ 789,

v1(x2) ≤ 431/3, v1(x1) ≤ 499/3, v1(x2) ≥ 115,

v1(x1) ≥ 115, 4v1(x1)− 7v1(x2) ≥ −415}
∪{(`1, v1) | −3v1(x1) + 11v1(x2) ≥ 876,−v1(x1) + 5v1(x2) ≥ 456,

− 3v1(x2) ≥ −431,−3v1(x1) ≥ −499, v1(x2) ≥ 115,

v1(x1) ≥ 115, 4v1(x1)− 7v1(x2) ≥ −415}
∪{(`2, v1) | −18v1(x1) + 15v1(x2) ≥ −415,−v1(x1) + 2v1(x2) ≥ 115,

4v1(x1)− 7v1(x2) ≥ −415, v1(x1) ≥ 115}
∪{(`3, v1) | v1(x1) ∈ [115, 455/3],−3v1(x1) + 11v1(x2) ≥ 920,

v1(x2) ≤ 415/3, 4v1(x1)− 7v1(x2) ≥ −415}

In line 4, we require x1 = 123 and x2 = 117, and
we have State1 = {(`0, (123, 127)), (`1, (123, 127))}. Since
`0 6∈ F and `1 6∈ F , we have Result1 = ∅.

After incrementing i in line 2, in line 3, we again com-
pute the time-bounded reachability analysis and the result
is as follows.

State′2 = {(`0, v2) | v2(x1) ∈ [198, 253], v2(x2) ∈ [197, 227],

− 2v2(x1) + 9v2(x2) ≥ 1357, 4v2(x1)− 7v2(x2) ≥ −657}
∪{(`1, v2) | v2(x1) ∈ [233, 253], v2(x2) ∈ [207, 227]}
∪{(`1, v2) | −3v2(x1) + 11v2(x2) ≥ 1540,−v2(x1) + 5v2(x2) ≥ 784,

− 3v2(x2) ≥ −673,−3v2(x1) ≥ −737, v2(x2) ≥ 197,

v2(x1) ≥ 198, 4v2(x1)− 7v2(x2) ≥ −657}
∪{(`2, v2) | −6v2(x1) + 5v2(x2) ≥ −219,−v2(x1) + 2v2(x2) ≥ 198,

4v2(x1)− 7v2(x2) ≥ −657, v2(x1) ≥ 198}
∪{(`3, v2) | v2(x1) ∈ [198, 231], v2(x2) ≤ 219,

− 3v2(x1) + 11v2(x2) ≥ 1584, 4v2(x1)− 7v2(x2) ≥ −657}

In line 4, we require x1 = 203 and x2 = 201. This time,
we have State1 = {(`, (203, 201)) | ` ∈ L}. Thus, we have
Result2 = {(203, 201)}.
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Figure 13: The execution time of HAMoni for ACCD dimension 2 (left) and 4 (right)

ẋ1 = 36, 0 ≤ ẋ2,
|ẋ1 − ẋ2| ≤ 1
1 ≤ x1 − x2

x1 = 3,
x2 = 0
x1 = 3,
x2 = 0 ẋ1 = 36, 0 ≤ ẋ2,

|ẋ1 − ẋ2 − ε| ≤ 1
x1 − x2 ≤ 3

ẋ1 = 36, 0 ≤ ẋ2,
|ẋ1 − ẋ2| ≤ 1
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Figure 14: The LHA of dimension 2 in ACCD
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x ∈ [0, 1],
y ∈ [0, 1],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇2

x ∈ [1, 2],
y ∈ [0, 1],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇2

x ∈ [2, 3],
y ∈ [0, 1],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇0

x ∈ [0, 1],
y ∈ [1, 2],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇4

x ∈ [1, 2],
y ∈ [1, 2],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇3

x ∈ [2, 3],
y ∈ [1, 2],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇4

x ∈ [0, 1],
y ∈ [2, 3],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇3

x ∈ [1, 2],
y ∈ [2, 3],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇2

x ∈ [2, 3],
y ∈ [2, 3],

vx = ẋ, vy = ẏ
(v̇x, v̇y)> = v̇3

x ∈ [0, 1],
y ∈ [2, 3],
vx ∈ [−1, 1],
vy ∈ [−1, 1]

y ≥ 1 y ≤ 1 y ≥ 1 y ≤ 1 y ≥ 1 y ≤ 1
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Figure 15: The affine hybrid automaton for the original model in NAV, where A =

(
−1.2 0.1
0.1 −1.2

)
,

vd,i = (sin(iπ/4), cos(iπ/4))>, v̇i = A
(
(vx, vy)> − vd,i

)
for i ∈ {2, 3, 4}, and v̇0 = A(vx, vy)>

ẋ1 = ON1,
ẋ2 = OFF2,
x1 ∈ [0, 100],
x2 ∈ [0, 100]

ẋ1 = OFF1,
ẋ2 = OFF2,
x1 ∈ [80, 100],
x2 ∈ [80, 100]

ẋ1 = OFF1,
ẋ2 = ON2,
x1 ∈ [0, 100],
x2 ∈ [0, 100]

x1 = 0,
x2 = 50

(x1 ≥ 100 ∧ x2 ≤ 80) ∨ (x1 ≥ 20 ∧ x2 ≤ 0)

x1 ≥ 100

x1 ≤ 80 x2 ≥ 100

x2 ≤ 80

(x2 ≥ 100 ∧ x1 ≤ 80) ∨ (x2 ≥ 20 ∧ x1 ≤ 0)

Figure 16: The affine hybrid automaton for the original model in GasBurner, where h = 2, a = 0.01,
b = 0.005, ON1 = h− ax1 + bx2, ON2 = h− ax2 + bx1, OFF1 = −ax1 + bx2, and OFF2 = −ax2 + bx1.
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ẋ1 = 8, ẋ2 = 8.5,
ẋ3 = 9, ẋ4 = 9.5,

ẋ5 = 10,
2 ≤ xi − xi+1 ≤ 10

x1 = 40,
x2 = 35,
x3 = 30,
x4 = 25,
x5 = 20

ẋ1 = 12, ẋ2 = 10,
ẋ3 = 8, ẋ4 = 9,

ẋ5 = 10,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 10, ẋ4 = 8.5,

ẋ5 = 9.5,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 12, ẋ4 = 10,

ẋ5 = 9,
0 ≤ xi − xi+1 ≤ 10

ẋ1 = 12, ẋ2 = 12,
ẋ3 = 12, ẋ4 = 12,

ẋ5 = 10,
0 ≤ xi − xi+1 ≤ 10

unsafe

x1 − x2 ≤ 4

x1 − x2 ≥ 4

x2 − x3 ≤ 4

x2 − x3 ≥ 4

x3 − x4 ≤ 4

x3 − x4 ≥ 4 x4 − x5 ≤ 4

x4 − x5 ≥ 4

x1 − x2 ≥ 1

x2 − x3 ≥ 1 x3 − x4 ≥ 1

x4 − x5 ≥ 1

Figure 17: The LHA of dimension 5 in ACCC, where i ∈ {1, 2, 3, 4}
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