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ABSTRACT

With the introduction of edge analytics, IoT devices are becom-
ing smarter and ready for Al applications. However, any increase
in the training data results in a linear increase in the space com-
plexity of the trained Machine Learning (ML) models, which means
they cannot be deployed on IoT devices that have limited mem-
ory. To alleviate such memory issues, we recently proposed an
SRAM-optimized classifier porting, stitching, and efficient deploy-
ment method in [3]. This is currently the most resource-friendly
approach that enables large classifiers to be comfortably executed
on microcontroller unit (MCU) based IoT devices, and perform ultra-
fast classifications (1-4x times faster than state-of-the-art libraries)
while consuming 0 bytes of SRAM.

In this demo, realizing our recent SRAM-optimized approach, we
port and execute 7 dataset-trained classifiers on 7 popular MCUs,
and report their inference performance. It is apparent from the
demo results that realizing our approach makes even the slowest
Atmega328P MCU perform faster unit inference than a NVIDIA
Jetson Nano GPU and Raspberry Pi 4 CPU.
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1 IMPLEMENTATION

The recent studies like RCE-NN [2], Edge2Train [1] enables users
to fit, deploy and execute large-high-quality neural networks (NNs)
on MCUs. In contrast to NNs, in this demo, realizing our recent
SRAM-optimized approach [3], we execute various datasets trained
multi-class classifier models on popular MCUs. We target the MCU
platform because they are low-power and low-cost chips that act
as a brain for billions of IoT devices like HVAC controllers, smart
plugs, smoke detectors, etc. In the following, we port the standard
Python scikit-learn GPU trained ML classifier to its MCU executable
C version, then stitch and flash it on the MCU of IoT devices.

Porting Classifiers to Plain C. In MCU-based tiny IoT devices,
the program space (Flash memory) is always much greater than the
available SRAM. So our implementation produces a C version of
classifiers that will not depend on the SRAM during execution. We
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Figure 1: We port and execute various classifiers on popular
MCU-boards and show the live inference results.

propose to sacrifice Flash memory in favor of the limited SRAM
since it is the most scarce resource in the majority of MCUs. For
example, in a Decision Tree (DT), our method hard-codes the DT
splits in C, without storing any reference of the splits and other
parameters into variables. Since no variables are allocated, 0 bytes
of SRAM will be consumed during the classifier execution.

Executing Classifiers on IoT Devices. Here, we stitch the ported
C classifier with the IoT application and perform inference as re-
quired. We write the generated C code inside a . h model file. During
the edge application design phase, the users have to include this . h
model as a header file at the beginning of their program. Then, this
.h file needs to be compiled along with the main IoT edge appli-
cation and flashed on MCUs. For predictions, the predict function
inside the . h model file should be passed with values for which it
needs predictions.

2 DEMONSTRATION DESCRIPTION

We show the demo setup in Figure 1. During the demo, by following
instructions from Section 1, we perform live porting, stitching, and
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Figure 2: Demo results: comparing the time consumed by MCUs 1-7 (using our implementation) and CPUs 1-5 (using Python
scikit-learn) when performing inference for datasets of various feature dimensions (3-64) and class counts (1-10).

execution of a classifier model (model shall be chosen by demo
viewers) on all the displayed MCUs.

Devices, Datasets and Demo Procedure. We first select 7 datasets
(shown in Figure 2) with feature dimensions ranging from 4 to 64
features and class counts from 2 to 10 classes. Using these datasets,
we then train DT and RF classifiers using Python scikit-learn (80/20
training/testing split for each dataset) to produce 14 different mod-
els. We then ask the demo viewers to select any one model of their
choice, which we quickly port to plain C, stitch it with an IoT ap-
plication and execute it on each of the 7 displayed MCUs. We also
show the live prediction results with prediction time for 100 data
samples on the COM port of the connected MCU.

We use the same demo setup to perform an extensive evaluation.
Here, similar to the MCUs, we selected various CPUs, where CPU1 is
a17-8650U Windows laptop, CPU2 is a NVIDIA Jetson Nano, CPU3
is a 15-825U Windows laptop, CPU4 is a i7-5500 Ubuntu laptop, and
CPUS is a Raspberry Pi 4. We execute the same 7 datasets trained
classifiers on CPUs 1-5 and report the inference time in Figure 2,
next to the time taken by MCUs 1-7 to infer using same models and
data samples. For statistical validation, the plotted time corresponds
to the average of 5 runs. In the following, we analyze the results
and compare the inference performance of MCUs with CPUs.

Inference on MCUs and CPUs. Here, we perform an onboard
test for accuracy, and simultaneously record the time taken by each
MCU to perform unit inference and inference for 100 samples for
each model and show the results in Figure 2 (y-axis in base-10
log scale), and report the following observations: (i) All the MCUs,
irrespective of their specifications, for all datasets, performed unit
inference in less than 1 ms; (ii) Even the slowest Atmega328P MCU
performed faster unit inference than the Jetson Nano and Raspberry
Pi 4; (iii) The ported models, during execution on MCUs, show the
same level of accuracy and F1 score as its original models (before
porting) when evaluated on high-resource lab setups; (iv) For the
largest 64-feature Digits dataset, the 3% ESP32 (MCU 4) inferred for

100 samples in 7 ms, which is only ~ 5 ms slower than CPUs 3 & 4,
which are 200x times more costly than MCUs.

Features Count vs Inference Time. From Figure 2, it can be
observed that using high-feature data as input has only a few ms
impact on the unit inference time. Whereas for 100 input samples,
the slower MCUs 1,5 & 6 show a logarithmic growth in inference
time, the fast MCUs 2, 3, 4 & 7 shows time growth only for the
Cancer and Digits dataset. When users deploy their IoT use case
models on advanced MCUs or AIoT boards, they will obtain much
faster inference results due to the FPU, KPU, and FFT support.

3 SUMMARY

In this demo, we implemented our SRAM-optimized ML classi-
fier porting, stitching, and efficient deployment method [3] and
executed multiple classifiers on popular MCUs that have limited
memory footprint. When users apply our method to port and de-
ploy any use-case models on their IoT devices/products, similar to
the demo results, they will get benefits from the memory-friendly
and ultra-fast classifier implementations.
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