(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Porting and execution of anomalies detection models on

Title embedded systemsin 10T: Demo abstract

Sudharsan, Bharath; Patel, Pankesh; Wahid, Abdul; Y ahya,

AUthOI(S) |\t hammed; Breslin, John G.; Ali, Muhammad Intizar

Publication | 5751 5.1

Date
Sudharsan, Bharath, Patel, Pankesh, Wahid, Abdul, Y ahya,
Muhammad, Bredlin, John G., & Ali, Muhammad Intizar.
eulsissiian (2021). Porting and Execution of Anomalies Detection Models
(B S On Embedded Systemsin |oT: Demo abstract. Paper presented

at the Proceedings of the International Conference on Internet-
of-Things Design and Implementation, Charlottesvle, VA,
USA, 18-21 May, https://doi.org/10.1145/3450268.3453513

Publisher | Association for Computing Machinery (ACM)

Link to
publisher's | https://doi.org/10.1145/3450268.3453513
version

Item record | http://hdl.handle.net/10379/16776

DOl http://dx.doi.org/10.1145/3450268.3453513

Downloaded 2024-04-25T06:47:44Z

Some rights reserved. For more information, please see the item record link above.

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Demo Abstract: Porting and Execution of Anomalies Detection
Models on Embedded Systems in loT

Bharath Sudharsan®, Pankesh Patel*, Abdul Wahid*, Muhammad Yahya*, John G. Breslin*
Muhammad Intizar Ali®
*Confirm SFI Research Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland
{bharath.sudharsan,pankesh.patel,abdul. wahid,muhammad.yahya,john.breslin}@insight-centre.org
$School of Electronic Engineering, Dublin City University, Ireland, ali.intizar@dcu.ie

ABSTRACT

In the Industry 4.0 era, Microcontrollers (MCUs) based tiny em-
bedded sensor systems have become the sensing paradigm to in-
teract with the physical world. In 2020, 25.6 billion MCUs were
shipped, and over 250 billion MCUs are already operating in the
wild. Such low-power, low-cost MCUs are being used as the brain to
control diverse applications and soon will become the global digital
nervous system. In an Industrial IoT setup, such tiny MCU-based
embedded systems are equipped with anomaly detection models
and mounted on production plant machines for monitoring the
machine’s health/condition. These models process the machine’s
health data (from temperature, RPM, vibration sensors) and raise
timely alerts when it predicts/detects data patterns that show de-
viations from the normal operation state.

In this demo, we train One Class Support Vector Machines (OC-
SVM) based anomaly detection models and port the trained models
to their MCU executable versions. We then deploy and execute
the ported models on 4 popular MCUs and report their on-board
inference performance along with their memory (Flash and SRAM)
consumption. The steps/procedure that we show in the demo is
generic, and the viewers can use it to efficiently port a wide va-
riety of datasets-trained classifiers and execute them on different
resource-constrained MCU and small CPU-based devices.

KEYWORDS
Offline Inference, Intelligent Embedded Systems, Edge AL

1 MOTIVATION

The resource-constrained nature of the devices that monitor a ma-
chine’s condition restricts the standalone (offline) execution of
large-high-quality ML models at the device level. Thus, the de-
vice manufacturers are obliged to follow an online approach of
transmitting local sensor data to cloud services or edge servers
for analytics and inference. In such online settings, the cost of the
machine’s condition monitoring device increases due to the addi-
tion of a network module (Lan, 4G or WiFi), this also increases the
cyber-security risks as data leaves the device and sometimes creates
privacy concerns (GDPR restrictions) as the data is shared with a
third-party anomaly detection analytics as a service. Additionally,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoTDI °21, May 18-21, 2021, Charlottesvle, VA, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8354-7/21/05...$15.00

https://doi.org/10.1145/3450268.3453513

a continuous connection between the condition monitoring device
and the remote service needs to be maintained, leading to network
traffic and high bandwidth requirements. Finally, such internet-
dependent devices are not self-contained ubiquitous systems. In
this paper, we demonstrate to the audience how to perform porting
and execution of anomaly detection ML classifiers on resource-
constrained devices. The method we show is generic since it can
port models trained using any datasets (various features dimen-
sion and class count) and can execute the generated models on a
wide range of MCUs and small CPUs-based devices. By realizing
the demo gathered information, the audience can make their prod-
ucts/devices perform ultra-fast offline analytics, thus eliminating
the dependency on internet and cloud subscriptions.

2 IMPLEMENTATION

Nowadays, modern ML frameworks like TF Micro, RCE-NN [6],
Edge2Train [5] are focusing on deep optimization and generation
of small-size (often in kBs) Neural Networks (NNs) that can directly
be flashed and executed on resource-constrained devices [7]. In
contrast to NN, in this demo, we port unsupervised models, then
execute them on popular MCUs. Many applications including our
anomaly detection use-case, require being able to decide whether a
new data sample belongs to the same distribution as existing obser-
vations (inlier) or should it be considered as an anomaly (outlier).
The ‘COVID-away’ one class model [9], is the most related use-case
based example. In order to detect human hand-to-face movements
(considered as inlier), they trained one-class classification models
only using the majority class sensor data features and did not con-
sider the outlier distributions for creating the decision boundary.
Similarly, in the following, we train the anomaly detection models
(step I), then port trained classifiers to its C version (step II), and
finally stitch, flash, execute and evaluate the ported models on the
MCU of condition monitoring devices (step III).

2.1 Step I: Training for Anomalies Detection

We aim to identify unusual data patterns that do not conform to the
expected behavior of machines. These non-conforming patterns
are generally known as anomalies, discordant observations, aber-
rations, novelty, outliers, exceptions, peculiarities/contaminants,
strangeness, surprises. In this demo, we use OC-SVM to separate
the data of one specific class (target class) from other data. Isola-
tion Forest (iForest), Minimum Covariance Determinant (MCD),
Local Outlier Factor (LOF) are also applicable for the same task. For
training, we picked the 128 features Gas Sensor Array Drift! and

!https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset

https://doi.org/10.1145/3450268.3453513

a. Inference Time on MCU Boards b. Onboard Accuracy

c. SRAM Memory Usage d. Flash Memory Usage

Time (ms)
Accuracy (%)

Bl B2 B3 B4 B1 B2 B3 B4
Gas Sensor Array Drift Dataset: mmm Drive Diagnosis Datasets: m m

Flash (kB)

,

2
u
5

5
w
)

SRAM (kB)

‘ \
T ‘ I T ‘ - T
B1 B2 B3 B4 B1 B2 B3 B4

Free Memory:

Figure 1: Demo results: inference time, accuracy, and memory consumed by MCUs during the execution of OC-SVM models.

the 48 features Sensorless Drive Diagnosis? datasets and trained
OC-SVMs from the Python Scikit-learn library.

2.2 Step II: Generating MCU Executable Models

The sklearn-porter [3], m2cgen [2], emlearn [1] are the popular
open-source libraries to generate optimized C code, using which IoT
use-case models like the ‘Adaptive Strategy’ SVR model [4] can be
ported and deployed on remote IoT devices in order to improve their
wireless communication quality. In this demo, we take the trained
anomaly/fault detection OC-SVMs and port them to produce its
plain C versions that can be deployed and executed on MCUs, small
CPUs, FPGAs of choice. Then we write/export the generated C code
inside a . h file. When the users aim to port tree-based models like
decision trees, random forests, we recommend using the SRAM
optimized method [8] (OC-SVMs is not yet supported).

2.3 Step III: Executing Models on MCUs

The ported classifier exported in the . h file needs to be stitched with
the IoT application so it can be called whenever inference needs to
be made. During the design phase of the anomaly detection embed-
ded system that mounts on the machines, the users have to include
this . h model as a header file at the beginning of their program.
Then, this . h file needs to be compiled along with the device’s main
application and flashed on MCUs. For predictions, the predict func-
tion inside the . h model file should be passed with values for which
it needs predictions. We select four boards, where B1 is STM32 Nu-
cleo (ARM Cortex M4 STM32L432KC MCU), B2 is Generic ESP32
(Xtensa LX6 microprocessor), B3 is Seeedstudio XIAO (ARM Cortex
MO0 SAMD21G18 MCU), B4 is Nano 33 BLE Sense (ARM Cortex
M4F nRF52840 MCU). We benchmark the inference performance
and memory consumption of the ported classifiers by executing
them on B1-B4. We report the experimental results in Figure 1. For
statistical validation, the results correspond to the average of 5 runs.
In the following, we analyze the results.

Onboard Accuracy on MCUs. We fed test sets to the OC-SVM
models (running on B1-B4) via COM Port, then perform inference
and report the onboard accuracy of models in Figure 1 b. Feeding
the same test set from the Gas Sensor dataset to all boards, we
obtained 87.90 %, 89.10 %, 87.10 %, 88.00 % accuracy for B1 to B4
respectively. Similarly, for Drive Diagnosis dataset, we obtained
84.69 %, 84.59 %, 84.97 %, 84.99 % accuracy for B1 to B4 respectively.
From this, we can observe that the same models, from board to
board, show only 0.4 - 2 % variation in onboard accuracy.

Inference Performance on MCUs. In Figure 1 a, for both datasets,
we report the time consumed (in ms) by B1-B4 for producing infer-
ence results. B1 is the fastest as it performed unit inference in 1.23

Zhttps://archive.ics.uci.edu/ml/datasets/dataset+for+sensorless+drive+diagnosis

ms and 1.18 ms for the selected datasets. Followed by B2, which pro-
duced results in 2.33 ms and 1.45 ms. When MCUs can perform such
fast inference, the battery-drain reduces, increasing the operating
time of IoT devices operating in the wild.

Memory Consumption on MCUs. The run-time variables gen-
erated during model execution needs to be stored in the SRAM
of MCUs. This SRAM space in MCUs is restricted, since adding
more leads to higher power leakage and manufacturing costs. The
popular open-source boards we chose have only 64 kB to a max
of 520 kB of SRAM which restricts deployment and execution of
large models. Before flashing, when compiling the ported models
and IoT applications, the memory requirements for target boards
are calculated by the compiler (such as Arduino IDE, Atmel Studio,
Keil MDK, etc.) in use. In Figure 1 c-d, we provide the calculated
SRAM and FLASH usage for B1-B4.

3 CONCLUSION

In this demo, we showed how to port and execute anomaly detection
models on MCU-based embedded systems. When users follow the
steps we provide in this paper, they can make their products/devices
perform ultra-fast offline analytics without depending on internet
and cloud subscriptions.

ACKNOWLEDGEMENT

This publication has emanated from research supported in part by a re-
search grant from Science Foundation Ireland (SFI) under Grant Number
SFI/16/RC/3918 (Confirm) and also by a research grant from Science Foun-
dation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2 (Insight), with
both grants co-funded by the European Regional Development Fund.

REFERENCES

[1] 2020. emlearn. https://github.com/emlearn/

2020. m2cgen: Code-generation for various ML models into native code.

Darius Morawiec. 2020. sklearn-porter: Transpile trained scikit-learn models.

Bharath Sudharsan, John G Breslin, and Muhammad Intizar Ali. 2020. Adaptive

strategy to improve the quality of communication for iot edge devices. In 2020

IEEE 6th World Forum on Internet of Things (WF-IoT).

[5] Bharath Sudharsan, John G. Breslin, and Muhammad Intizar Ali. 2020. Edge2Train:
A Framework to Train Machine Learning Models (SVMs) on Resource-Constrained
IoT Edge Devices. In 10th International Conference on the Internet of Things.

[6] Bharath Sudharsan, John G Breslin, and Muhammad Intizar Ali. 2020. RCE-NN: a
five-stage pipeline to execute neural networks (cnns) on resource-constrained iot
edge devices. In 10th International Conference on the Internet of Things.

[7] Bharath Sudharsan, Peter Corcoran, and Muhammad Intizar Ali. 2019. Smart
Speaker Design and Implementation with Biometric Authentication and Advanced
Voice Interaction Capability. In 27th AICS. 305-316.

[8] Bharath Sudharsan, Pankesh Patel, John G. Breslin, and Muhammad Intizar Ali.
2021. Ultra-fast Machine Learning Classifier Execution on IoT Devices without
SRAM Consumption. In 2021 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops).

[9] Bharath Sudharsan, Dineshkumar Sundaram, John G. Breslin, and Muhammad In-
tizar Ali. 2020. Avoid Touching Your Face: A Hand-to-Face 3D Motion Dataset
(COVID-Away) and Trained Models for Smartwatches. In IoT °20 Companion.

[2
[3
[4

https://github.com/emlearn/

	Abstract
	1 Motivation
	2 Implementation
	2.1 Step I: Training for Anomalies Detection
	2.2 Step II: Generating MCU Executable Models
	2.3 Step III: Executing Models on MCUs

	3 Conclusion
	References

