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We introduce SketchGNN, a convolutional graph neural network for semantic
segmentation and labeling of freehand vector sketches. We treat an input
stroke-based sketch as a graph, with nodes representing the sampled points
along input strokes and edges encoding the stroke structure information. To
predict the per-node labels, our SketchGNN uses graph convolution and a
static-dynamic branching network architecture to extract the features at three
levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN signifi-
cantly improves the accuracy of the state-of-the-art methods for semantic
sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the
component-based metric over a large-scale challenging SPG dataset) and has
magnitudes fewer parameters than both image-based and sequence-based
methods.
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1 INTRODUCTION
Freehand sketching is becoming one of the common interaction
means between humans and machines with the continuous itera-
tion of digital touch devices (e.g., smartphones, tablets) and various
sketch-based interfaces on them. However, sketch interpretation still
remains difficult for computers due to the inherent ambiguity and
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sparsity in user sketches, since sketches are often created with varying
abstraction levels, artistic forms, and drawing styles. While many pre-
vious works attempt to interpret a whole sketch [Eitz et al. 2012a,b;
Li et al. 2020; Sangkloy et al. 2016; Xu et al. 2013], part-level sketch
analysis is increasingly required in multiple sketch applications [Li
et al. 2016; Qi et al. 2015; Sarvadevabhatla et al. 2017; Song et al.
2018; Xie et al. 2013]. In this article, we focus on semantic segmen-
tation and labeling of sketched objects, an essential task in finer-level
sketch analysis.

Lately, with the capacity of modern network architectures, deep-
learning based sketch segmentation methods [Li et al. 2019c,a; Qi
and Tan 2019; Sarvadevabhatla et al. 2017; Wu et al. 2018; Zhu et al.
2019] have greatly improved the performance over traditional sketch
segmentation methods [Delaye and Lee 2015; Gennari et al. 2005;
Schneider and Tuytelaars 2016]. These learning-based methods can
be divided into two groups: image-based methods [Li et al. 2019a;
Sarvadevabhatla et al. 2017; Zhu et al. 2019] and sequence-based
methods [Li et al. 2019c; Qi and Tan 2019; Wu et al. 2018]. The
image-based methods treat a sketch as a raster image and thus un-
avoidably ignore the stroke structure. In contrast, the sequence-based
methods use relative coordinates of stroke points and pen actions
to encode the stroke structure but neglect the proximity of points
(especially among different strokes). The proximity information is
crucial for sketch analysis according to the Gestalt laws [Wertheimer
1938]).

To address the above issues with the existing solutions, we adopt
the graph representation [Defferrard et al. 2016; Scarselli et al. 2009]
to the sketch domain and present a novel method based on graph neu-
ral networks (GNNs). We treat a sketch as a 2D point set with certain
graphical relationships automatically built from the original stroke
structure. Our graph-based representation provides richer informa-
tion against a raster image representation. Unlike sequence-based
methods based on relative coordinates, our method uses the absolute
coordinates of points, thus naturally providing the proximity. Fur-
thermore, we introduce a novel Stroke Pooling operation to allow our
network to aggregate stroke-level features in addition to point-level
and sketch-level features, and greatly improve the consistency of
labels within individual strokes.

Although the GNN-based method has the advantages compared
to the other methods, semantic interpretation of sketches from the
graphs built using the basic stroke structure (i.e., the static edges
within individual strokes) is still challenging because of the resulting
sparse graph structure. Schneider et al. [2016] manually add relation
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Fig. 1. Our graph-based method outperforms the state-of-art image-
based metheod (FastSeg) and sequence-based method (SPGSeg),
achieving a similar result to the manual labeling on the SPG Dataset.

edges (e.g., proximity and enclosing relations) in the graph before
using a Conditional Random Field (CRF). Their method, however is
sensitive to variations of input. Inspired by the dynamic edges used in
3D point cloud analysis [Simonovsky and Komodakis 2017; Valsesia
et al. 2019; Wang et al. 2019], we use a similar technique in our
network to extend the basic structure information. To alleviate the
problem that dynamic edges may possibly bring wrong relationships
between vertices and thus contaminate the original correct structure,
we propose a two-branch network (Fig. 2): one branch using the
original sparse structure and the other with dynamic edges, to balance
the correctness and sufficiency.

Our main contributions are as follows: (1) We propose the first
GNN-based method for semantic segmentation and labeling of sketched
objects; (2) Our method significantly improves the accuracy of state-
of-the-art and has magnitudes fewer parameters than both image-
based methods and sequence-based methods.

2 RELATED WORK
Sketch Grouping. Sketch grouping divides strokes into clusters,

with each cluster corresponding to an object part. Qi et al. [2013]
treat this problem as a graph partition problem, and group strokes
by graph cut. Later Qi et al. [2015] present a grouper that utilizes
multiple Gestalt principles synergistically, with a novel multi-label
graph-cut algorithm. Li et al. [2018b] and [2019c] use ordered strokes
to represent a sketch, and develop a sequence-to-sequence Variational
Autoencoder (VAE) model to learn a stroke affinity matrix. These
methods, however, do not address the semantic labeling problem.

Semantic Sketch Segmentation. To semantically segment a sketch
into groups with semantic labels, early works on sketch segmentation
use hand-crafted features with limited ability to handle the large
variations of sketches [Delaye and Lee 2015; Gennari et al. 2005].
Such user intervention [Noris et al. 2012; Perteneder et al. 2015]
is often needed to achieve desired segmentation results. Later tech-
niques [Huang et al. 2014; Schneider and Tuytelaars 2016] leverage

data-driven approaches to improve the accuracy of automatic seg-
mentation. For example, Huang et al. [2014] use a mixed integer
programming algorithm and utilize the segmentation information in
a repository of pre-segmented 3D models. Schneider and Tyutelaars
[2016] classify strokes based on Fisher vectors, build a graph by
encoding relations between strokes, and finally use a Conditional
Random Field (CRF) to solve for the most suitable label configura-
tion. While these methods achieve reasonably accurate segmentation
results, they are often computationally expensive.

The recent deep learning methods improve both the segmentation
accuracy and the efficiency [Li et al. 2019c,a; Qi and Tan 2019;
Sarvadevabhatla et al. 2017; Wu et al. 2018; Zhu et al. 2019]. The
methods of [Li et al. 2019a; Sarvadevabhatla et al. 2017; Zhu et al.
2019] treat the sketch segmentation task as a semantic image seg-
mentation problem and use convolutional neural networks (CNNs)
to solve the problem. Such approaches usually ignore the structure
information of strokes or use the stroke structure information in a
post-processing step [Li et al. 2019a]. In contrast, the methods of
[Li et al. 2019c; Qi and Tan 2019; Wu et al. 2018] treat the task as
a sequence prediction problem. They use relative coordinates and
pen actions to encode the structure information. However, sequence-
based representations ignore the proximity of points. In contrast, our
method uses a graph representation to fully exploit both the stroke
structure and the stroke proximity, with carefully designed convo-
lutional operations to extract both the intra-stroke and inter-stroke
features.

Graph Neural Networks. Graph Neural Networks (GNNs) have
been used in many applications for example for processing social
networks [Tang and Liu 2009], in recommendation engines [Monti
et al. 2017; Ying et al. 2018], and in natural language processing
[Bastings et al. 2017]. GNNs are also suitable to process 2D and
3D point cloud data. Sketches are composed of strokes with ordered
point sequences, making it possible to construct graphs based on
strokes and to use GNNs for sketch segmentation. As far as we know,
we are the first to apply GNNs to semantic sketch segmentation and
labeling.

Graph structures in most GNNs are static. Recent studies about
dynamic graph convolution show that changeable edges may perform
better. For instance, filter weights in [Simonovsky and Komodakis
2017] are dynamically generated for each specific data. EdgeConv
in [Wang et al. 2019] dynamically computes node neighbors and
constructs new graph structures in each layer. Valsesia et al. [2019]
also construct node neighbors with the 𝑘-nearest neighbors (KNN)
algorithm, in order to learn to generate point clouds. Since original
graphs built from the stroke structure are very sparse, it is difficult to
learn effective point-level features. To better capture global and local
features, we will adopt a two-branch network and use both static
and dynamic graph convolutions. Lately, Li et al. [2019b] leverage
residual connections, dense connections, and dilated convolution to
solve the problem of vanishing gradient and over-smoothing in GNNs
[Kipf and Welling 2016; Li et al. 2018a; Wu et al. 2019]. Our method
also exploits similar ideas when building our multi-layer GNNs.
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Fig. 2. The architecture of our SketchGNN. An input sketch is first converted into a graph based on the stroke structure (the graph is simplified for
illustration purpose). The graph node features and the connectivities are fed into the network, passing through two graph convolutional branches to
extract the inter-stroke features (top, the global branch) and the intra-stroke features (bottom, the local branch). The extracted inter-stroke features
are further fed into a mix pooling block to extract the global features, which are subsequently concatenated with the local features, and fed into a
Multi-Layer Perceptron (MLP) to get the final results.

3 OVERVIEW
Fig. 2 shows the pipeline of our network. Given an input sketch, we
first construct a graph from the basic stroke structure and use the
absolute coordinate information as the features of the graph nodes
(Section 4.1). Then the graph and the node features are fed into two
branches (Section 4.2): a static branchconsists of several static graph
convolutional units; a dynamic branchconsists of dynamic graph
convolutional units and a mix pooling block (Section 4.3), including
a max pooling operation and a stroke pooling operation. The learned
features of two branches are concatenated and fed into a Multi-Layer
Perceptron (MLP) to get the final segmentation and labeling.

The two-branch structure is tailored to the unique sketch struc-
ture, capturing both the intra-stroke information and the inter-stroke
information. In the static branch, the information only flows inside in-
dividual strokes since different strokes are not connected in the input
graph. We use this branch to generate point-level features. While in
the dynamic-graph branch, we add extra connections with the nodes
found by a dilated KNN (𝑘 nearest neighbors) function. We use a
mix-pooling block, more specifically, a max-pooling and a stroke-
pooling after the dynamic graph convolutional units to aggregate
both the sketch-level features and the stroke-level features, respec-
tively. Experiments have proved that the design of such three-level

features, i.e., point-level, sketch-level, and stroke-level (Section 4.3)
is beneficial to our task compared with traditional two-level features,
i.e., point-level and sketch-level (see Section 5.2).

4 METHODOLOGY
In this section, we first explain our graph-based sketch represen-
tation as input to the network. Then we introduce the two graph
convolutional units separately used in two branches. followed by the
descriptions of the three-level features.

4.1 Input Representation
Many existing sequence-based methods [Li et al. 2019c; Qi and Tan
2019; Wu et al. 2018] use the relative coordinates to represent an
input sketch. Instead, we use the absolute coordinates of sketch points,
which are more suitable for our graph-based network structure.

Specifically, we represent a single sketch as an 𝑁 -point set P =

{𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 )}𝑖=1,2, · · · ,𝑁 , where 𝑥𝑖 and 𝑦𝑖 are the 2D absolute coordi-
nates of point 𝑝𝑖 . A graph G is built using the basic stroke structure
information, leading to a sparse graph G = (V, E), where V = P
and E includes the edges that connect adjacent points on each single
stroke. We use the same input for both the static branch and the
dynamic branchof our network.
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4.2 Graph Convolutional Units
We use two types of graph convolutional units in our network: a static
graph convolutional unit (SConv for short) in the static branchand a
dynamic graph convolutional unit (DConv) in the dynamic branch.
Both units use the same graph convolutional operation. The main
difference between them is that the SConv unit does not update the
graph connectivity during convolution in different layers while the
DConv unit updates the graph connectivity layer by layer using KNN.
Both units use residual connections, since their performance is more
stable than the general connection [Xu et al. 2018b]. We obtain the
features F𝑆 = {𝑓 𝑆

𝑖
}𝑖=1,2, · · · ,𝑛𝑠 after several SConv and the features

F𝐷 = {𝑓 𝐷
𝑖
}𝑖=1,2, · · · ,𝑛𝑑 after several DConv.

Graph Convolution Operation. We use the same graph convolution
operation as in [Wang et al. 2019] and briefly explain the operation
here for the convenience of reading. Given a graph at the 𝑙-th layer
G𝑙 = (V𝑙 , E𝑙 , F𝑙 ), where V𝑙 and E𝑙 are the respective vertices and
edges in the graph G𝑙 , and F𝑙 = {𝑓 𝑙

𝑖
}𝑖=1,2, · · · ,𝑛𝑙 is a set of node

features, each defined at a vertex at the 𝑙-th layer.
The node feature 𝑓 𝑙

𝑖
of the vertex 𝑣𝑖 in the 𝑙-th layer is updated by

𝑓 𝑙𝑖 = max
𝑗 :(𝑖, 𝑗) ∈E𝑙

ℎΘ𝑙
(𝑓 𝑙−1𝑖 , 𝑓 𝑙−1𝑗 ), (1)

where Θ is the learnable weights of the feature update operation
ℎΘ (·), and the operation is defined as

ℎΘ (𝑓𝑖 , 𝑓𝑗 ) = ReLU(MLPΘ (𝑐𝑜𝑛𝑐𝑎𝑡 (𝑓𝑖 , 𝑓𝑗 − 𝑓𝑖 ))) . (2)

Graph Updating Strategy. The SConv units only use the input
graph and do not update the graph structure in different layers. In
other words, we have E𝑆1 = E𝑆2 = · · · = E𝑆

𝑙
= E in the static branch.

While the dynamic branchdynamically changes the graph by adding a
different edge set E𝑑𝑦𝑛

𝑙
to the input graph in different layers, leading

to non-local diffusion across the strokes. More specifically, the graph
used in the 𝑙-th layer of the dynamic branchis defined as

E𝐷
𝑙

= E ∪ E𝑑𝑦𝑛
𝑙

. (3)

To enlarge the receptive fields, E𝑑𝑦𝑛
𝑙

is designed to get dilated aggre-
gations of the information, inspired by Li et al. [2019b],

E𝑑𝑦𝑛
𝑙

= {𝑒𝑖 𝑗 = {𝑣𝑖 , 𝑣 𝑗 }|𝑣 𝑗 ∈ K (𝑑) (𝑣𝑖 )}𝑖=1, · · · ,𝑁 (4)

where K (𝑑) (𝑣𝑖 ) is the 𝑑-dilated neighbors of vertex 𝑣𝑖 . We use the
same stochastic strategy at the training time as in [Li et al. 2019b].

4.3 Three-level Features
The features provided for the final MLP layer are composed of three
parts: point-level features, stroke-level features, and sketch-level fea-
tures. The point-level features F𝑝𝑜𝑖𝑛𝑡 are obtained directly after sev-
eral SConv units, meaning F𝑝𝑜𝑖𝑛𝑡 = F𝑆 .

A mix-pooling block, which contains two pooling operations is
designed to learn the sketch-level features F𝑠𝑘𝑒𝑡𝑐ℎ = {𝑓 𝑠𝑘

𝑖
}𝑖=1,2,...,𝑁

and the stroke-level features F𝑠𝑡𝑟𝑜𝑘𝑒 = {𝑓 𝑠𝑡
𝑖

}𝑖=1,2,...,𝑁 . Before apply-
ing two pooling operations, we transform the features F𝐷 by using
different multi-layer perceptrons with learnable weights Θ𝑠𝑘 and Θ𝑠𝑡
separately.

We use the max pooling operation to aggregate the sketch-level
features,

𝑓𝑠𝑘 = max
𝑓𝑖 ∈F𝐷

MLPΘ𝑠𝑘
(𝑓𝑖 ) (5)

and assign 𝑓𝑠𝑘 for every point, i.e., 𝑓 𝑠𝑘
𝑖

= 𝑓𝑠𝑘 , similar to many existing
methods used in 3D point cloud analysis (e.g., [Charles et al. 2017;
Simonovsky and Komodakis 2017]).

To compute the stroke-level features, we propose a novel pooling
operation, named stroke pooling, to aggregate the features on every
single stroke,

𝑓 𝑠𝑡𝑟 = max
𝑗 ∈VS𝑟 ,𝑓𝑗 ∈F𝐷

MLPΘ𝑠𝑡
(𝑓𝑗 ), (6)

where S𝑟 represents the 𝑟 -th stroke in a sketch, and VS𝑟
represents

the vertex set of the stroke S𝑟 . The points in the same stroke gain the
same stroke-level features 𝑓 𝑠𝑡𝑟𝑜𝑘𝑒

𝑖
= 𝑓 𝑠𝑡𝑟 , 𝑖 ∈ VS𝑟

.
Therefore, the whole features used in the final MLP layers are a

concatenation of the output of the dynamic branch (i.e., stroke-level
feature F𝑠𝑡𝑟𝑜𝑘𝑒 and sketch-level feature F𝑠𝑘𝑒𝑡𝑐ℎ) and the output of
the static branch(i.e., point-leval features F𝑝𝑜𝑖𝑛𝑡 ):

F = 𝑐𝑜𝑛𝑐𝑎𝑡 (F𝑝𝑜𝑖𝑛𝑡 , F𝑠𝑡𝑟𝑜𝑘𝑒 , F𝑠𝑘𝑒𝑡𝑐ℎ) . (7)

4.4 Implementation Details
Datasets. We run our SketchGNN on the following four exist-

ing sketch datasets: SPG dataset [Li et al. 2019c], SketchSeg-150K
dataset [Wu et al. 2018], Huang14 dataset [Huang et al. 2014] and
TU-Berlin dataset [Eitz et al. 2012a]. The SPG and SketchSeg-150K
datasets are both built upon QuickDraw [Ha and Eck 2017], which
is a vector drawing dataset selected from an online game where
the players are required to draw objects in less than 20 seconds.
SPG has 25 categories and 800 sketches per category and we use
the same 20 categories as in [Li et al. 2019c]. Compared to the
SPG dataset, SketchSeg-150K is relatively simpler with fewer se-
mantic labels per categories (2-4 labels per category). With data
augmentation by a sketch generative model [Ha and Eck 2017],
SketchSeg-150K has about 150,000 sketches over 20 categories. The
Huang14 dataset [Huang et al. 2014] and TU-Berlin dataset [Eitz
et al. 2012a] are eariler smaller datasets which consist of 30 sketches
and 80 sketches per category respectively. The specific statistics of
the sketch datasets are presented in Table 1.

Table 1. Statistics of the number of labels per category and the number
of storkes per sketch. The column Sketch shows the total number of
sketches in different datasets in a form of 𝑆 ×𝐶, where 𝑆 represents
the number of sketches per category and 𝐶 represents the number of
categoies in every dataset.

Dataset Sketch
strokes per sketch labels per category

min max median min max median
SPG 800 × 20 2 43 6 3 8 4
150k 7500 × 20 1 7 3 2 4 3

Huang14 30 × 10 9 123 48 3 11 6
TUB 80 × 5 3 70 16 2 6 4
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Fig. 3. Qualitative results of semantic segmentation on the SPG dataset. More visual results can be found in the appendix.

Network. As shown in Fig. 2, our network uses 𝐿 = 4 graph
convolution units in both the local branch and the global branch. Each
graph convolution unit computes edge features from connected point
pairs by first concatenating point features and then using a multi-layer
perceptron with the hidden size of 32. Then it updates point features
by aggregating neighboring edge features. In the global branch, we
additionally use dynamic edges found by a dilated KNN function
with the number of nearest neighbors𝐾 = 8 and an increasing dilation
rate 𝑑 = 1, 4, 8, 16 for layers 0 to 3, respectively. In the mix pooling
block, we apply a multi-layer perceptron with the hidden size of
128 before each pooling operation. After pooling and repeating, the
global features together with the local features are fed into a multi-
layer perceptron with the hidden size of [128, 64,𝐶] to get the final
prediction.

Training. For SPG and SketchSeg-150K datasets, we directly split
the original datasets to get the corresponding training and test sets.
For Huang14 and TU-Berlin datasets, which have limited numbers of
sketches per category, we make synthetic training data with labeled
3D models. We use the labeled 3D models provided by [Huang et al.
2014] for the Huang14 dataset and by [Yi et al. 2016] for the TU-
Berlin dataset. We use the similar method of [Li et al. 2019a] to
generate such synthetic data: we first render the normal maps of
the 3D models using different colors for different segmentations,
and then extract edge maps to approximate the sketch images by
using the Canny edge detection algorithm [Canny and John 1986].
To obtain final vector sketch data, we design a simple algorithm
for extracting stroke vectors from images: this algorithm randomly
chooses one unprocessed pixel as the seed of a current stroke and
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searches its adjacent pixels to find the one having the minimum
included angle with the current stroke direction as the next point. The
stroke direction is initialized as the horizontal direction and updated
when a new pixel is processed. Some intermediate results are shown
in Fig. 4. We scale all sketches to fit a 256 × 256 canvas. We then
simplify each sketch using the Ramer-Douglas-Peucker algorithm
[Douglas and Peucker 1973] and resample it to 𝑁 points.

During the training phase, we use the cross-entropy loss and Adam
(𝛽1 = 0.9, 𝛽2 = 0.999) for optimization with the base learning rate
0.002 and batch size 64. For SPG and SketchSeg-150K, we train
the network for 100 epochs and decay the rate by 0.5 for every 50
epochs. For Huang14 and TU-Berlin, we train the network for 30
epochs and decay the rate by 0.5 for every 10 epochs. The model
is implemented with PyTorch and PyTorch Geometric, a geometric
deep learning extension library for PyTorch. All models are trained
with an NVIDIA GTX 1080Ti GPU. On average an epoch takes 15s
on the SPG dataset and it takes 7ms to process a test sketch. We
use 𝑁 = 256 for the SPG, Huang14, and TU-Berlin datasets, and
𝑁 = 128 for the SketchSeg-150K dataset, since the original sketches
in the latter contain fewer points. During the test time, an input sketch
is first resampled to 𝑁 points to pass through the network and then
the predicted result is mapped back to the original sketch using a
nearest-neighbor scheme.

5 EXPERIMENTS
We evaluate our method on the aforementioned datasets and also com-
pare our method to the current state-of-the-art sketch segmentation
methods [Chen et al. 2018; Li et al. 2019c,a; Wu et al. 2018].

We perform both qualitative and quantitative comparisons. Fig.
1 and 3 show some representative visual comparisons between our
method and the methods of [Li et al. 2019c] and [Li et al. 2019a]
on the SPG dataset. The sequence-based method SPGSeg [Li et al.
2019c] uses point drawing orders and their relative coordinates but
ignores the proximity among strokes, leading to unsatisfactory results
(Fig. 2, the first column). The image-based method [Li et al. 2019a]
is not aware of the stroke structure and hence mainly relies on the
local image structure, also leading to inferior results.

5.1 Quantitative Evaluation
In this subsection, we discuss our quantitative comparisons on differ-
ent datasets. For quantitative evaluation, we use the same evaluation
metrics as the previous works [Huang et al. 2014; Li et al. 2019c,a;
Wu et al. 2018]:

• Pixel-based accuracy (P_metric), which evaluates the percent-
age of the pixels that are correctly labeled in all the sketches.
The pixel metric is sensitive to label errors that appear on large
components.

• Component-based accuracy (C_metric), which evaluates the
percentage of the correctly labeled strokes, irrespective of the
number of pixels in one stroke. A stroke is correctly labeled
if at least 75% of its pixels have the correct label. The com-
ponent metric is sensitive to label errors that appear on small
components.

Table 2 lists the quantitative results of different methods on the
SPG dataset. We use the same set of data split as in [Li et al. 2019c].

Our approach outperforms others by a large margin: on average
11.2% higher in terms of the pixel metric and 18.2% higher in terms
of the component metric on the SPG dataset than FastSeg + GC [Li
et al. 2019a], which performs the best among the existing methods.

To validate the benefits of stroke structure, we test our model
on a reconstructed SPG dataset, in which the stroke structure is
derived from the rasterized images of the sketches. Specifically, we
render the vector sketches to the binary images and rebuild the vector
sketches by the stroke-extraction algorithm similar to the one we used
in making the synthetic data for Huang14 and TU-Berlin datasets
(Section 4.4). Considering the ambiguity of the reconstructed stroke
structure, we evaluate the segmentation results on the original stroke
structure after mapping the predicted label to the nearest point in
the original sketch. The results of our method on this reconstructed
SPG dataset are listed in Table 2 (the column ‘Ours w/o gt stroke’).
With the stroke structure automatically inferred from the raster sketch
images, our model still raises 6.9% on average in terms of the pixel
metric and 11.2% on average in terms of the component metric
compared with FastSeg + GC [Li et al. 2019a]. This indicates that
our method is potentially beneficial for semantic segmentation of
raster sketch images.

Table 3 shows the comparison results on the SketchSeg-150K
datasets with the same data split as in [Wu et al. 2018]. Our approach
exceeds FastSeg + GC [Li et al. 2019a] 3% higher in the pixel
metric and 6% higher in the component metric on average. The less
significant performance gain by our method on the SketchSeg-150K
dataset than the SPG dataset is mainly because this dataset is labeled
coarsely with fewer semantic labels per category (2-4 labels per
category in SketchSeg-150K versus 3-7 labels per category in SPG)
and thus less challenging for the existing methods.

We also evaluate our model on the Huang14 dataset and a subset
of TU-Berlin dataset. Tables 4 and 5 show the respective quantita-
tive results. In the Huang14 dataset, the individual strokes typically
contain many spacious small segments (e.g., see Fig. 4, top row).
Such small segments would potentially increase the structural noise
and thus degrade the performance of our DConv units, since DConv
connects new edges within the feature space. For a fair comparison,
we apply an additional graph cut algorithm to refine our results as
in [Li et al. 2019a]. The situation is improved (see statistics in Table
5) in the TU-Berlin dataset where there are not many such spacious
small segments, which indicates that our model can learn the stroke
structure information. We did not include the results of our method
with graph cut when comparing to existing methods on the SPG
and SketchSeg-150K datasets, since GC did not bring any obvious
improvements. Note GC is more helpful in [Li et al. 2019a] because
their image-based method is not aware of the stroke structure and
hence the prediction usually contains many spacious tiny segments
within a single stroke (see details in [Li et al. 2019a]).

Overall, our method + GC gains on average 0.7% higher in the
pixel metric and 2.2% higher in the component metric on the Huang14
dataset (than FastSeg + GC), and on average 5.0% higher in the pixel
metric and 5.0% higher in the component metric on the TU-Berlin
dataset. On the Huang14 dataset, our results are only slightly better
than those by the CNN-based method FastSeg + GC [Li et al. 2019a]
(in some categories even slightly worse, Table 4). This is mainly due
to the large domain gap between the synthetic data rendered from
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Table 2. Quantitative comparisonon the SPG dataset [Li et al. 2019c]. “P_metric” and “C_metric” stand for the pixel and component metrics,
respectively. GC is short for graph cut refinement [Li et al. 2019a]. “Ours w/o gt stroke” lists the results of our method by using the structure
information automatically reconstructed from the raster images of the sketches in the dataset.

Category SPGSeg [Li et al. 2019c] DeepLab [Chen et al. 2018] FastSeg+GC [Li et al. 2019a] Ours Ours w/o gt stroke
P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric

airplane 82.9 70.9 70.7 46.2 85.3 75.2 96.4 92.3 91.8 86.7
alarm_clock 84.8 81.0 82.5 74.3 84.6 72.3 98.1 96.0 94.8 91.0
ambulance 80.7 68.1 72.5 54.2 85.8 75.3 94.2 90.3 89.2 83.0

ant 66.4 56.6 61.3 32.1 68.9 66.4 94.1 92.4 85.6 82.3
apple 89.9 71.8 87.3 60.2 91.4 82.3 97.2 93.4 94.3 88.4

backpack 75.2 63.7 64.3 28.4 73.3 59.8 92.7 86.7 84.8 77.4
basket 84.8 83.2 79.5 69.5 86.6 82.2 98.2 97.9 91.2 88.9

butterfly 89.0 83.6 85.6 69.8 92.7 79.3 99.6 98.7 96.3 94.7
cactus 77.5 72.3 67.2 30.8 73.3 68.6 97.5 96.5 92.7 80.7

calculator 91.1 89.9 92.5 92.1 97.4 93.0 99.3 99.0 98.7 95.1
campfire 92.3 91.4 82.9 83.3 95.6 92.9 97.3 96.0 90.3 87.8
candle 88.3 71.8 91.5 76.9 90.8 80.1 99.1 98.4 97.7 91.4

coffee cup 92.0 87.2 86.2 81.8 90.9 87.0 99.7 98.6 97.1 96.6
crab 77.9 70.5 73.9 49.3 75.9 55.4 96.1 94.0 91.7 87.5
duck 86.9 75.4 85.9 76.0 88.9 75.1 98.0 96.7 94.1 88.9
face 88.0 80.1 87.4 78.4 88.1 80.4 98.8 97.5 95.7 90.3

ice cream 85.4 79.3 80.7 70.3 87.5 80.1 95.2 95.3 89.9 85.3
pig 81.9 75.4 82.1 77.9 81.1 73.9 98.8 98.0 95.4 90.8

pineapple 89.8 90.2 85.4 79.5 91.9 82.3 98.8 96.5 94.5 90.7
suitcase 92.7 90.7 90.2 90.1 94.8 86.7 99.5 97.9 97.1 94.9

Average 84.9 77.6 80.5 59.0 86.2 77.4 97.4 95.6 93.1 88.6

Table 3. Quantitative comparison on the SketchSeg-150K dataset [Wu et al. 2018].

Category FastSeg+GC [Li et al. 2019a] SegNet+ [Wu et al. 2018] Ours

P_metric C_metric P_metric C_metric P_metric C_metric

angel 0.98 0.96 0.89 0.86 0.99 0.98
bird 0.82 0.70 0.98 0.97 0.99 0.99

bowtie 1.00 1.00 0.99 1.00 1.00 1.00
butterfly 0.98 0.96 0.95 0.95 1.00 1.00
candle 0.96 0.78 0.95 0.95 0.98 0.97

cup 0.91 0.92 0.77 0.74 0.98 0.98
door 1.00 1.00 0.99 0.99 1.00 1.00

dumbbell 0.98 0.98 0.99 0.99 1.00 1.00
envelope 1.00 1.00 1.00 0.99 1.00 1.00

face 0.98 0.95 0.94 0.91 0.94 0.92
ice 1.00 1.00 0.72 0.69 1.00 1.00

lamp 0.78 0.78 0.95 0.94 0.96 0.96
lighter 0.99 0.96 0.99 0.98 1.00 1.00
marker 0.90 0.80 0.61 0.55 0.97 0.98

mushroom 0.98 0.94 0.70 0.66 0.99 0.94
pear 0.97 0.94 0.99 0.98 1.00 1.00
plane 1.00 0.99 0.86 0.85 1.00 1.00
spoon 0.80 0.79 0.85 0.81 0.90 0.90
traffic 0.89 0.93 0.96 0.96 0.95 0.95
van 0.99 0.99 0.87 0.84 0.99 0.99

Average 0.95 0.92 0.90 0.88 0.98 0.98

3D models and the real hand-drawn data, as shown in Fig. 4. The
large domain gap may result in large structural noise for GNN-based
methods to fully capture the stroke structures. Our method, however
is still able to achieve the state-of-the-art performance.

It is noteworthy that compared with existing deep network-based
models for sketch segmentation, our model has orders of magnitude
fewer parameters. For example, the sequence-based method SPGSeg

[Li et al. 2019c] has a parameter size of 23.4MB while the image-
based method FastSeg + GC [Li et al. 2019a] has a parameter size
of 40.9MB. In contrast, the parameter size of our model is only
434KB, which is two orders of magnitude tinier than them. However,
the GNN model has some additional computation, such as for the
aggregation of the vertices. We implement our model with PyTorch
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Table 4. Quantitative comparison on the Huang14 dataset [Huang et al. 2014].

Category FastSeg [Li et al. 2019a] FastSeg+GC [Li et al. 2019a] DeepLab [Chen et al. 2018] MIP-Auto [Huang et al. 2014] Ours Ours+GC
P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric

airplane 81.1 65.4 85.5 75.5 45.0 30.4 74.0 55.8 80.0 66.6 82.9 75.4
bicycle 82.9 67.9 85.4 76.7 64.9 46.0 72.6 58.3 82.0 69.1 83.5 76.0

candelabra 74.7 59.2 77.3 68.0 58.6 44.1 59.0 47.1 78.6 66.7 81.4 74.3
chair 70.0 60.5 73.9 69.3 56.3 44.5 52.6 42.4 76.3 66.8 76.5 72.2

fourleg 79.6 66.5 83.9 75.8 64.6 49.1 77.9 64.4 80.2 67.8 82.0 74.9
human 74.8 61.9 79.2 71.9 67.6 55.5 62.5 47.2 75.5 66.3 76.5 71.0
lamp 85.7 78.1 86.5 80.9 68.3 64.8 82.5 77.6 87.1 79.2 89.8 86.5
rifle 68.5 56.3 71.4 67.3 63.8 50.2 66.9 51.5 77.9 67.4 79.3 73.3
table 77.6 67.3 79.0 73.1 64.6 51.9 67.9 56.7 78.6 68.0 81.0 76.7
vase 81.1 71.9 83.8 79.3 73.4 63.6 63.1 51.8 78.4 71.0 80.2 79.6

Average 77.6 65.5 80.6 73.8 62.7 50.0 67.9 55.3 79.5 69.2 81.3 76.0

Table 5. Quantitative comparison on subsets of the TU-Berlin dataset [Eitz et al. 2012a].

Category FastSeg [Li et al. 2019a] FastSeg+GC [Li et al. 2019a] Ours Ours+GC
P_metric C_metric P_metric C_metric P_metric C_metric P_metric C_metric

airplane 77.6 63.5 82.1 72.4 88.0 74.1 87.7 77.0
chair 91.7 89.5 95.7 93.5 95.5 92.5 95.9 93.7
guitar 78.5 67.0 81.4 78.8 91.6 86.0 92.5 87.7

motorbike 66.0 47.5 70.8 61.1 75.2 66.2 76.5 70.6
table 92.0 87.3 94.0 91.1 96.1 92.4 96.2 92.8

Average 81.2 71.0 84.8 79.4 89.3 82.2 89.8 84.4

TU-Berlin - airplane

Huang14 - bicycle

Fig. 4. To create training data for the Huang14 and the TU-Berlin
datasets, we construct graphs (Middle) from edge map images (Left)
rendered from 3D models. The right column shows the exemplar
freehand sketches in the test data. The synthesized and real sketches
are different in both structure and shape. The endpoints of each stroke
are marked with solid circles.

Geometric and achieve a similar runtime performance to the state-of-
the-art method (FastSeg + GC[Li et al. 2019a]). The need of fewer
parameters means that our model has more potential to be developed
in light-weight applications like those on mobile devices.

5.2 Ablation Study
In this section we examine the effectiveness of our various design
choices in SketchGNN. All the experiments are run on the SPG
dataset since it has sufficient data and complexity. We use 650
sketches per category to train the models and choose the optimal
model with the lowest average loss on the validation set with 50
sketches in 100 epoch training. The remaining 100 sketches are used
as a test set to show the final performance.

Structure Design. We use the network with only the DConv units
and the max-pooling aggregation as the baseline, which is a typical
single-branch two-level-feature structure, similar to the network used

in [Wang et al. 2019]. Compared to the baseline, our model has two
core improvements in structural design: 1) from two-level-feature to
three-level-feature by adding the stroke-pooling operation; 2) from
one-branch to two-branch by using both the static and dynamic graph
convolutions.

Table 6 shows the benefit of these two designs: 1) With the stroke-
pooling (i.e., S.P.), Base + S.P. outperforms the baseline by 6.8%
in the pixel metric and 9.73% in the component metric; 2) With an
additional static branch to generate the point-level features, Base +
S.D. outperforms the baseline by 2.74% in the pixel metric and 3.06%
in the component metric. To show the effectiveness of the two-branch
structure we use, we design another two alternatives: the baseline
with an additional dynamic branch (Base+D.D.) and the baseline
with a static branch and a dynamic branch but use the SConv blocks
before the pooling operation (Base+D.S.). Both of these networks
are worse than Base+S.D.. Therefore, we use the baseline with an
additional static branch and stroke-pooling as our full model (Base +
S.D. + S.P.). Our full model achieves the best results: 7.48% better
than the baseline in the pixel metric and 10.86% in the component
metric.

GNN variants. For the choice of the convolution operation, we
compare the effects of various GNN variants, including EdgeConv
[Wang et al. 2019], MRGCN [Li et al. 2019b], GraphSAGE [Hamil-
ton et al. 2017], GIN [Xu et al. 2018a], and ECC [Simonovsky and
Komodakis 2017]. For ECC, we use 𝐸 ( 𝑗, 𝑖) = (𝛿𝑥 , 𝛿𝑦, ∥𝛿 ∥, arctan𝛿𝑦/𝛿𝑥 )
as its input edge features, where 𝛿 = 𝑝 𝑗 −𝑝𝑖 is the offset between two
nodes, similar to their original design. Table 7 shows the experiments
for the first 5 categories and the average results of the 20 categories
on the SPG dataset. We use EdgeConv in our final model for its best
performance in the experiments.

The Number of GCN Units. We have tried alternating the number
of GCN units used in our two branches. In our current setting, we
use both 4 units (of SConv and DConv) in the global and the local
branches. Alternatively, we change this number to 6, 8, and 10 con-
volutional units. As shown in Table 8, we find that increasing the
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Table 6. Quantitative results of ablation study on the SPG dataset. The baseline has only one dynamic branch and uses max pooling. B + D.S.,
B + D.D., and B + S.D. are the baseline with different combinations of two branches (S. and D. standing for the static and dynamic branches,
respectively). B + S.P. is the baseline with stroke pooling. B + S.D. + S.P is our full model. We also show the simplified pipeline of each network for
intuitive understanding.■ and ■ represent the SConv and DConv blocks, respectively. ■ and ■ represent max-pooling and mix-pooling, respectively.
■ represents the input features and ■ represent the features sent into the final MLP.

Baseline B + D.S. B + D.D. B + S.D. B + S.P. B + S.D. + S.P.

Category P C P C P C P C P C P C

airplane 88.00 80.75 81.60 72.19 88.29 78.32 91.34 83.07 95.94 90.67 96.13 92.00
alarm_clock 92.15 86.79 88.69 81.08 90.74 84.98 93.82 89.57 97.57 95.04 97.99 96.08
ambulance 82.04 74.49 76.94 54.36 82.65 73.14 89.20 83.61 92.48 88.14 93.92 89.98

ant 82.70 78.55 76.80 66.81 84.35 78.09 87.93 83.65 90.30 89.21 94.12 92.42
apple 91.49 78.39 88.07 64.64 92.32 75.96 93.44 83.07 96.41 91.32 97.07 92.32

backpack 77.50 63.19 61.19 39.45 75.45 60.77 79.58 61.49 92.68 86.36 92.20 85.16
basket 82.12 76.60 80.92 74.25 84.40 76.41 83.42 77.49 97.52 97.13 97.75 97.32

butterfly 94.04 88.96 94.19 90.79 93.16 89.04 96.47 91.56 98.76 96.96 99.61 98.71
cactus 89.04 80.20 88.94 80.25 88.68 82.08 92.67 86.43 95.81 94.16 96.85 95.89

calculator 97.66 96.45 97.33 96.29 97.46 96.53 98.13 97.03 99.08 98.02 99.18 98.49
campfire 85.85 83.53 85.29 76.02 86.11 80.77 88.17 86.30 95.44 92.94 96.06 94.21
candle 96.40 91.52 96.23 87.61 96.23 89.29 97.73 95.19 99.17 97.98 99.14 98.35

coffee_cup 95.13 95.21 95.34 95.27 95.40 94.68 97.01 95.97 98.64 96.95 98.82 97.76
crab 89.02 82.61 86.90 78.97 88.10 82.75 92.43 86.67 95.03 92.43 96.08 94.01
duck 92.82 88.22 90.89 87.83 90.77 86.91 94.88 91.63 97.81 96.94 98.04 96.64
face 93.58 89.15 90.82 83.92 93.58 87.09 94.67 91.27 98.13 96.04 98.81 97.53

ice cream 86.39 82.29 84.94 79.52 85.44 77.04 89.78 84.16 94.62 92.55 95.21 95.32
pig 91.14 86.76 87.59 81.33 90.63 88.14 95.09 93.19 97.77 95.90 98.83 97.97

pineapple 92.01 89.55 88.76 85.02 92.67 88.63 96.13 92.00 98.69 95.80 99.03 96.45
suitcase 95.74 94.10 95.62 92.46 96.44 95.31 97.77 95.08 99.03 97.33 99.53 97.93

Average 89.74 84.37 86.85 78.40 89.64 83.30 92.48 87.42 96.54 94.09 97.22 95.23

Table 7. Quantitative results of GNN variants on the SPG dataset. SAGE-mean and SAGE-max are GraphSAGE with the mean and pooling
aggregators, respectively. GIN-𝜖 has a learnable parameter 𝜖 initialized with 0.1, while GIN-0 sets 𝜖 = 0.

Category EdgeConv MRGCN SAGE-mean SAGE-max GIN-0 GIN-𝜖 ECC
P C P C P C P C P C P C P C

airplane 96.6 92.5 95.1 91.2 93.5 88.3 94.6 89.9 95.1 89.8 94.1 88.7 94.2 87.2
alarm_clock 97.4 94.6 97.4 94.4 96.4 93.0 96.4 93.6 96.3 91.8 95.4 91.4 97.0 94.4
ambulance 93.5 90.1 94.0 90.2 92.9 89.0 90.8 85.4 91.3 86.5 92.2 88.1 92.1 87.9

ant 92.1 91.6 88.9 89.0 90.3 89.3 91.0 89.4 85.9 84.5 87.1 86.7 88.9 86.8
apple 96.4 90.7 97.1 93.1 95.9 89.9 89.9 73.7 96.0 88.7 96.6 90.4 95.8 88.8

... ... ... ... ... ... ... ... ... ... ... ... ... ...

Average 96.7 94.5 96.3 93.8 95.7 92.9 95.3 92.0 95.5 92.3 95.5 92.7 95.6 92.5

Table 8. Evaluation on different numbers of GCN units.

Average 4 units 6 units 8 units 10 units
P_metric 97.6% 96.9% 96.9% 96.7%
C_metric 95.6% 94.2% 94.2% 94.0%

Table 9. Evaluation on different values of N.

Average 128 256 512
P_metric 95.97% 96.62% 96.69%
C_metric 93.67% 94.44% 94.36%

number of GCN units does not benefit our results. For simplicity, we
thus use 4 units in our final model.

The Number of Sample Points. We choose 𝑁 = 256 based on
the complexity of sketches in the SPG dataset. With 𝑁 = 256, we
will not lose the details of the original sketches. To investigate the
impact of 𝑁 , we also train the model with 𝑁 = 128 and 𝑁 = 512.
Table 9 shows that using more points does not bring a significant
improvement, while using fewer points reduces the performance.

The Value of K. In consideration of accuracy and efficiency, we
choose 𝐾 = 8 when we build dynamic edges by the dilated KNN
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Fig. 5. Evaluation of accuracy and efficiency with different values of K.
The solid lines represent the evaluation results of two accuracy metrics.
The dashed line represents the training time cost with different values
of 𝐾 .

function. Generally, the larger the value of 𝐾 , the longer the running
time of the KNN algorithm. Fig. 5 shows that 𝐾 = 8 strikes a great
balance between accuracy and efficiency. Note that the segmentation
accuracy starts to drop gradually when 𝐾 is larger 8, possibly because
the increased connection between the nodes causes an oversmoothing
of the learned features.

Classification Test. In an interesting attempt, we try to use our
model for the sketch recognition task with minor modifications. Af-
ter we aggregate the features for every node according to Eq. 7, we
apply MLP and average pooling on every point of sketches to get
graph-level features. Such graph-level features are used to classify
sketches by an MLP classifier. We run our experiments on the TU-
Berlin dataset with 250 classes. However, the effect is not satisfying,
with only a recognition accuracy of 52.3%. We suspect that the poor
performance may be due to the different scales of the segmentation
and recognition problems. According to Table 1, the maximum num-
ber of segmentation labels is 11, while the number of classification
categories in TU-Berlin is 250. The model we design specifically for
semantic segmentation might not have sufficient capacity to extract
enough discriminating feature information for large-scale classifi-
cation. We also perform the same classification experiment using
the DGCNN model [Wang et al. 2019] with the default settings (ex-
cept for 𝑘 = 8 to keep it the same as in our test), and the resulting
classification accuracy is only 47.3%. The existing GNNs may have
difficulty handling the sketch classification task for the sparse struc-
ture of sketches. Hence, for such tasks, further exploration is needed
with GNNs in future work.

5.3 Invariance Test
To further demonstrate our method, we design invariance tests at three
levels, i.e., sketch-level, stroke-level, and point-level. We perform
the tests on four representative categories, i.e., Airplane, Calculator,
Face, and Ice cream.

Sketch-level. Since we scale all sketches to fit a 256 × 256 canvas,
our method is not sensitive to translation or scaling. For the sketch-
level invariance test, we apply random rotations to the sketches and
monitor the segmentation results. Fig. 6 (Top) shows the results. It
can be seen that as the range of the rotation angle increases, the
performance decreases (dashed lines) rapidly if the training data
does not contain similar sketches with random rotations. After we

augment the training data with random rotations, the segmentation
(solid lines) becomes more robust.

Point-level. For the point-level invariance test, we corrupt the
input sketches with Gaussian noise. Specifically, we add random
offset 𝑂𝑝 = (𝑥𝑜𝑝 , 𝑦𝑜𝑝 ) to every point in the sketch, where 𝑥𝑜𝑝 , 𝑦𝑜𝑝 ∼
𝑁 (0, 𝛿2), 𝛿 = 0, 2, 4, 6, 8, 10. It can be seen from Fig. 6 (Bottom) that
training our model on the model with similar random noise can
greatly improve the robustness of our method to random noise.

Stroke-level. For the stroke-level invariance test, we design three
experiments.

In test I, we break the original strokes into small pieces. This
changes the relationship of the points (the input graph) but not spatial
layouts (i.e., the position) of the points (the input features). After
partition, each new stroke contains up to 𝑝𝑠 vertices, where 𝑝𝑠 =
10𝑁
2𝜓 ·𝑛𝑠

,𝜓 = 1, 2, 3, 4, 5, 6, 𝑁 is the number of points in the sketch, and
𝑛𝑠 is the number of strokes in the sketch. Fig. 7 (Top) shows the
results. The partition destroys the original stroke structure, causing
poor segmentation results. When chopping up the strokes (𝜓 = 6), the
results become disastrous. Relevant data augmentation can help our
model adapt to the broken strokes, as shown in Fig. 7. However, it
cannot make the model extremely robust to such topological changes
since the destroy of the stroke structure would undermine the benefit
of the static-graph branch and stroke-pooling.

In test II, we add the random offset 𝑂𝑠 = (𝑥𝑜𝑠 , 𝑦𝑜𝑠 ) to every
stroke in the sketch, where 𝑥𝑜𝑠 , 𝑦𝑜𝑠 ∼ 𝑈 (−𝜂 × 256, 𝜂 × 256), 𝜂 =

2%, 4%, 8%, 16%, 32%. In this setting, the position of points (the input
features) has changed, but the relationship of the points (the input
graph) remains the same. Fig.7 (Bottom) shows that data augmenta-
tion can improve the results but cannot eliminate the negative impact
caused by the random offset since the random offset of the strokes
can disrupt the learning of the relationship between the strokes. The
experiment also shows that the correct inter-stroke relationships can
benefit the segmentation task, and our model can learn such relation-
ships.

In test III, we scribble the sketch with meaningless strokes, leading
to a decrease in the segmentation accuracy. Considering that re-
sampling the sketch with scribbling stroke will change the original
vertex position, we only use C_metric for quantitative analysis here.
Some categories are not severely affected by scribbling, e.g., the
Calculator (96.0% in C_metric, -3.0%). Some are severely affected,
e.g., Airplane (82.6% in C_metric, -9.7%). We experiment with two
strategies of data augmentation to combat the scribbling. One is to set
another new label for the meaningless strokes (Ours*), and the other

Table 10. The component metric of our model and our model with
two different data augmentation strategies on four representative cate-
gories.

C_metric test w.o. scribbling test w. scribbling
Ours Ours* Ours** Ours Ours* Ours**

airplane 92.3 93.1 93.5 82.6 93.9 91.8
calculator 99.0 97.4 98.3 96.0 97.7 97.5

face 97.5 96.5 96.2 94.1 96.7 94.8
ice cream 95.3 91.1 92.2 90.5 93.3 93.0
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Fig. 6. The visualization of the sketch-level invariance test (Top) and
the point-level invariance test (Bottom) on four representative cat-
egories. The solid lines represent the evaluation results with data
augmentation in the training stage, while the dashed lines represents
those without data augmentation.

is to randomly assign one of the existing labelings to the meaningless
strokes (Ours**) during the training stage. Table 10 shows that both
strategies can work. On Category Airplane, the data augmentation
even benefits the segmentation. Fig. 8 visualizes some segmentation
results on Category Airplane in this experiment.

6 LIMITATIONS
Fig. 9 shows several segmentation results with segmentation errors.
The imperfection of our method is mainly caused by two factors. First,
due to the inherent ambiguity of freehand sketches in part position
and part shape, our model may assign wrong labels to strokes. For
example, in Fig. 9 (a) the branch of the cactus is mistakenly assigned
as thorn and (b) the strap on the top of a bag is labeled as handle.
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Fig. 7. The visualization of two stroke-level invariance tests (Top for
test I and Bottom for test II) on four representative categories. The
solid lines represent the evaluation results with data augmentation in
the training stage, while the dashed lines represents those without
data augmentation.

Second, the large differences between train data and test data may
also mislead our model (Fig. 9 (d)): the butterflies in the train data
always spread the wings, while the test example in this figure has the
butterfly folded its wings, with a different view angle. We believe
that the domain gap is a common issue of current learning based
methods. Nevertheless, the visual results in Fig. 3 and the statistics
on the Huang14 and the TU-Berlin datasets (Tables 4 and 5) have
shown the generalization ability of our model. Finally, since our
graph representation only warps features such as node position and
proximity, our model is not aware of some high-level semantics such
as the fact that “a human face can only have one nose” (see Fig. 9
(c)). We believe this issue can be alleviated by incorporating more
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Fig. 8. Representative results of stroke-level invariance test III on
Category Airplane.
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Fig. 9. Exemplar results with imperfect segmentation.

semantic features into our graph representation for which we leave
for future work.

7 CONCLUSION
In this work, we presented the first graph convolutional network
for semantic sketch segmentation and labeling. Our SketchGNN
employs static graph convolutional units and dynamic graph con-
volutional units to respectively extract intra-stroke and inter-stroke
features using a two-branch architecture. With a novel stroke pooling
operation enabling more consistent intra-stroke labeling, our method
achieves higher accuracy than the state-of-the-art methods with sig-
nificantly fewer parameters in multiple sketch datasets. In our current
experiments, we only use absolute positions as graph node features,
while ignoring the information of the stroke order, direction, spatial
relation, etc. In the future, we will exploit these information with
more flexible graph structures. Another possibility would be to ex-
ploit recurrent modules to learn intact graph representations. Finally,
it could be an intriguing direction to reshape our architecture for
scene-level sketch segmentation and sketch recognition tasks.
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