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ABSTRACT
We present a working paper on integrating eye tracking with mixed
and augmented reality for the benefit of low vision aids. We outline
the current state of the art and relevant research and point to further
research and development required in order to adapt to individual
user, environment, and current task. We outline key technical chal-
lenges and possible solutions including calibration, dealing with
variant eye data quality, measuring and adapting image processing
to low vision within current technical limitations, and outline an
experimental approach to designing data-driven solutions using
machine learning and artificial intelligence.

CCS CONCEPTS
•Human-centered computing→ Accessibility technologies;
Mixed / augmented reality.
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1 INTRODUCTION
1.1 Smart Glasses
Digital glasses are a further development of Virtual Reality (VR)
and mixed reality (XR) glasses. In this position paper we start to
explore gaze interactive applications for people with low vision
(LV). We envisage a rapid spread in demand for such services as
eye tracking enabled digital glasses reach the consumer market.

Current head-mounted display (HMD) technologies vary in their
relationship to the user’s eyes, available field of view, illumination,
resolution, colour, stereopsis, effect on head motion, and user inter-
face [Ehrlich et al. 2017a]. Scarfe and Glennerster [Scarfe and Glen-
nerster 2019] categorise HMDs into three classes: Virtual Reality
(VR), in which all content is virtual; Merged Reality (MR), in which
all content is computer generated, but the scene is a combination
content rendered based on video of the immediate environment and
virtual content; and Augmented Reality (AR), where the viewer sees
a combination of virtual content and a direct view of the surround.

HMDs provide accurate and realistic three dimensional vision
only insofar as they accurately model the eye and visual system,
taking into account perception and limited attentional resources.
In the case of LV, processing the image in a helpful way according
to the user’s particular loss requires a detailed and individualised
internal model of the user’s visual field. HMDs have been designed
with limited variations of the normal healthy eye in mind, whereas
the LV population of users are far more variant.
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1.2 Low vision
1.2.1 Prevalence and definitions. Most cases of LV are associated
with ageing and the number of people affected are set to rise with
ageing populations, with those over 50yrs accounting for 80% of
those with moderate and severe vision impairment, and 74% of
those with mild vision impairment globally. Many kinds of LV are
not treatable.

1.2.2 Central and peripheral vision loss. One quarter of patients
seeking low-vision services in the USA have primarily peripheral
vision loss (PVL) or combined PVL and central vision loss (CVL)
which is not adequately addressed by existing devices [Ehrlich et al.
2017a]. After the onset of a visual impairment, some activities of
daily living (ADL) require training or change of routines, while
others can only be performed with assistance from others. With
major impact on ADL and a person’s social life, a visual impairment
may cause reduction in quality of life and mental well-being.

1.2.3 Effects on quality of life. PVL has long been understood to
have a major effect on basic daily activities, including navigation
[Turano et al. 2005] mobility [Ehrlich et al. 2017b], and driving
[Wolfe et al. 2017] and may result in increased risk of falls [Dhital
et al. 2010]. Existing devices for PVL have been reported to reduce
visual acuity or cause image jump, which makes using them un-
comfortable, leading users to reject these devices [Apfelbaum and
Peli 2015]. Some newer HMDs allow patients to view a ‘minified’
or zoomed-out image in the periphery while maintaining normal
central vision, but systematic testing of various information display
strategies according to type of vision loss is lacking. CVL can cause
problems with reading, face recognition, lip reading and following
conversations, and inability to use many of the interfaces of every-
day life from bank machines, phones, online interfaces, form filling,
map reading, and more.

2 CURRENT AND EMERGING STATE OF THE
ART

Digital glasses that provide magnification and contrast enhance-
ment for the visually impaired have been available for more than
10 years. These assistive devices are connected to a battery pack or
mobile phone. Studies have documented the benefit of the glasses.
Unfortunately, they are bulky and expensive, and only a few people
with visual impairment use these aids.

In everyday life, the visual field is constantly in motion, and the
location of information we need to pay attention to is typically first
viewed peripherally to plan a saccade, and then fixated as required,
depending on the task at hand. Displays within displays, or displays
in the periphery of vision, may provide a way to have a minified
version of the scene and a magnified or normally represented view
of closer detail available concurrently. However, this solution does
not provide the cues to saccade to a particular location that pe-
ripheral vision would normally provide. The precise mapping and
updating of the location of objects in relation to ourselves, which is
preserved in the brain right through higher levels of visual process-
ing, is disrupted by such a set up and makes it extremely mentally
loading and difficult to adapt to.

2.1 The need for individualised visual aids
A major constraint in existing vision aids is that they do not al-
low for sufficient individualisation of image processing methods
applied, nor do they take account of the current direction of gaze
in responding to a patient’s functioning vision as the eye moves.
Researchers have repeatedly called for rehabilitation approaches
tailored to the unique needs of patient populations [Ehrlich et al.
2017a,b], and that solutions for extensive PVL is an enduring prob-
lem. A way to display information within the remaining vision is
only possible if real-time gaze position and area of loss is precisely
mapped and updated in use, and the demands on attention as a
limited resource reasonably limited.

2.2 Eye movement based training in low vision
Low-vision rehabilitation (LVR) methods based on HMDs include
the use of sports and performance vision training for LV [Laby
2018], reported to improve hand-eye coordination, object tracking,
and visual concentration. Backus et al [Backus et al. 2018] describe
the use of virtual reality to treat problems with stereoscopic vision.
Fortenbacher et al [Fortenbacher et al. 2018] describe VR based
exercises as highly motivating and patient engaging, citing opto-
metric pioneers in proposing that vision therapy must reflect an
understanding of the visual process beyond the mechanics of vision
and take into account the principles of neuroscience, perceptual
learning (PL), and neuroplasticity.

Ivanov et al [Ivanov et al. 2016] describe ‘Exploratory Saccadic
Training’ in retinitis pigmentosa (RP) patients with severe PVL,
where fewer horizontal saccades are implicated in reduced mobility.
Training the patient’s eye movements was found to reduce response
time and increase preferred walking speed. The effects persisted
over time - retest six weeks later confirmed that on average, RP
patients’ eye movements were similar to those of normally sighted
people while walking. PVL is associated with a habitually con-
fined range of saccades [Titchener et al. 2019], and eye movements
may offer a means of measuring adaption to vision loss over time.
Yoshida et al [Yoshida et al. 2014] demonstrate increased activity in
the frontal eye fields (FEFs) in all patients following eye movement
training, and in the parietal eye fields (PEFs) in those patients who
showed the greatest improvement in reading capability following
training.

Rehabilitation approaches have increasingly called for the in-
clusion of fixation stability as an important outcome measure [Pij-
nacker et al. 2011; Seiple et al. 2011; Tarita-Nistor et al. 2017]. Man-
delcorn et al [Mandelcorn et al. 2013] reviews literature showing a
poor correlation between anatomic changes and functional improve-
ment in macular disease, and a strong correlation between fixation
stability and visual acuity, with implications for rehabilitation and
treatment. Sieple et al[Seiple et al. 2011] compared various reha-
bilitation approaches in AMD and found that only eye movement
training improved reading speed. Tarita-Nistor et al [Tarita-Nistor
et al. 2014] report an improvement in reading speed, visual acuity,
and fixation stability following PL training. No currently available
vision aids leverage such research findings.

Various authors have tested the efficacy of VR-based therapeutic
games, some incorporating eye tracking, to support adaption to
vision loss [Donmez and Cagiltay 2019; Fortenbacher et al. 2018;
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Kasprowski et al. 2016], often based on principals of PL and vision
therapy. They point to the need to take into account the differences
between CVL and PVL, and the need to develop at-home training
paradigms [Maniglia et al. 2017]. Large scale clinical research such
as those from Scheiman et al [Scheiman et al. 2011, 2008] found
vision therapy and PL to be the most effective treatment of a range
of issues including convergence insufficiency, accommodation dys-
function and other binocular dysfunction.

Saccade training in patients with retinitis pigmentosa (RP) led to
increased walking speed and a range of saccade amplitudes similar
to healthy controls [Ivanov et al. 2016], increased fixational stability
of a newly acquired preferred retinal location [Barraza-Bernal et al.
2017], and games to increase visual search and recognition tasks in
children with LV [Kasprowski et al. 2016] were effective. Extending
training to everyday, at home therapies should be a primary goal of
vision aids in the future, as this could facilitate users and clinicians
gaining insight into real world, every day functioning and allow
systems to adapt to use.

In reviewing the evidence for plasticity in LV patients and the
implications for rehabilitation, Legge and Chung [Legge and Chung
2016] report that neural visual pathways are capable of adjusting
to onset of LV, or to improved vision following surgery, even in
old age. Eye tracking based measures now supplement traditional
clinical measures of acuity, contrast sensitivity, and field status in
tracking adaption over time [Pijnacker et al. 2011; Rosengarth et al.
2013; Seiple et al. 2011; Tarita-Nistor et al. 2014].

3 LEVERAGING EYE MOVEMENTS IN VISUAL
AIDS

In taking advantage of mixed and augmented reality HMDs, visual
aid applications could augment every environment to make it more
accessible, for example, highlight the edges of steps and handrails
in badly lit stairwells. They could take advantage of algorithms for
real-time facial- and object recognition which are now becoming
standard on mobile phones, unobtrusively identifying people or
objects the user encounters and reporting it to the user in their
preferred mode. In 2017, Microsoft launched an application, "Seeing
AI", for the visually impaired, which uses the built-in camera of a
smart phone to recognise friends, interpret scenes, scan bar codes
and read text aloud. All of these systems can be adapted for use
on glasses and controlled by gaze. The critical decider of what
methods successfully enhance visual function will be their ability
to comfortably scaffold visual perception, working with variance in
individual retinas and with the cognitive and perceptual processes
of individual brains.

We propose a research approach that combines basic research
into eye movements in low vision, particularly as they relate to
functional vision in everyday tasks, with mixed reality and a ma-
chine learning-based approach to individualisation and prediction
of optimal processing for the remaining field of view. We outline a
user-driven approach to interface design that considers both the
social aspects of enabling technology, and mental load of current
visual aids in low vision users. Though vision aids that use head-
mounted displays with some basic form of integrated eye tracking
are currently under patent review, we are yet to see such systems
come to market.

3.1 Activity recognition
Eye movements and other sensor and image information in AR
HMDs can provide data for recognition of the users activity, such as
when the user is reading, walking, or moving the hands in the field
of view. The glasses can then automatically switch to the visual aid
setting that the user prefers for this particular activity. Pupil dilation
and fixation duration may show if the user is spending an unusual
amount of cognitive resources on an activity. Eye movements also
contain information on the person’s alertness, and size of successive
saccades contains information about whether the person is taking
in a scene, locating obstacles while manoeuvring through it such
as when walking, or exploring detail for higher order processing,
or whether there is an intention to act, such as when reaching to
grasp an object. Eye movements are closely related to reaching and
grasping movements of the hand and arm, and specific patterns of
eye movements towards an object can predict intention to interact
with it.

Studies of eye movements in real-world tasks were first per-
formed when mobile ‘real world’ eye-tracking became reliable in
the 1990s and have been replicated, refined, and reinterpreted many
times as models of vision and perception have evolved [Land et al.
1999; Pelz and Canosa 2001; Sullivan et al. 2021]. The temporal
patterns of gaze behaviour and action and the location of gaze to
prioritised information related to upcoming subtasks provide an
empirical basis from which to consider what to prioritise for image
processing in order to provide scaffold visual and augment visual
resources in vision loss.

3.2 Technical Challenges
A number of areas of technical innovation are implied, including
calibrating users with low vision, dealing with eye data quality lim-
itations, event detection in the presence of fixation instability, and
human perception and sensitivity to lag, processing requirements,
and portability. Attempting to adjust certain areas of the image
based on inaccuracy in the estimated direction of gaze or in the es-
timated retinal disparity, as would be the case with either low data
quality or lag, is known to cause a visual-vestibular conflict which
can cause motion sickness and dizziness. Accurate eye tracking and
careful image processing methods are essential to supporting low
vision safely and comfortably.

In cases where eye movements are at the root of the vision loss
such as in nystagmus or any binocular dysfunction; the beat and
extent of eye movement is often task or position dependent, or
dependent on the direction of preceding eye movement. It cannot
be modelled as a constant repeating pattern of image displacement,
but it can be predicted, and measured in close to real time with an
eye tracker. Tracking eye movements and adjusting the image in
real time is the only possible solution for stabilising the image on
the retina in cases where training fails to adequately improve eye
movement control, and such approaches could conceivably restore
more normal vision in those cases, given low enough system delay.

3.3 Outlook for future vision aids
Progress in the development of HMD based vision aids has been
relatively slow. Methods such as image-remapping strategies were
first explored in the laboratory in the 1980s [Loshin and Juday
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1989; Peli and Peli 1984] but have not yet made it into commercial
systems. Although the past rate of progress has been limited by the
cost of HMDs and processing power required, the technology is
now sufficiently mature to deliver.

The bulkiness of many current systems makes them uncomfort-
able to wear for long periods and difficult to walk safely with - they
obscure most of the face, and capture attention from others in social
contexts which makes the user stand out when they may not want
to. Hardware development for mainstream VR, AR and XR is, on
the other hand, developing rapidly. There are now a small number
of commercially available HMDs for the VR/AR market with eye
tracking (e.i. FOVE, VARJO, Microsoft Hololens 2, and 7Invensun)
and there are some examples of eye tracking equipment which may
be attached or integrated into VR/AR HMDs.

Integrating HMDs with eye tracking as a means to extend the
number of people who can benefit from visual aids is now tech-
nically feasible, as can be seen in patents filed. The use of HMDs
among patients with vision impairment, if devices deliver on the
possibilities, is likely to increase dramatically and the results are
likely to extend beyond low vision users to improve vision in a
variety of usage scenarios.
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