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ABSTRACT
Generating interpretable visualizations of multivariate time series
in the intensive care unit is of great practical importance. Clinicians
seek to condense complex clinical observations into intuitively
understandable critical illness patterns, like failures of different
organ systems. They would greatly benefit from a low-dimensional
representation in which the trajectories of the patients’ pathol-
ogy become apparent and relevant health features are highlighted.
To this end, we propose to use the latent topological structure of
Self-Organizing Maps (SOMs) to achieve an interpretable latent
representation of ICU time series and combine it with recent ad-
vances in deep clustering. Specifically, we (a) present a novel way
to fit SOMs with probabilistic cluster assignments (PSOM), (b) pro-
pose a new deep architecture for probabilistic clustering (DPSOM)
using a VAE, and (c) extend our architecture to cluster and forecast
clinical states in time series (T-DPSOM). We show that our model
achieves superior clustering performance compared to state-of-the-
art SOM-based clustering methods while maintaining the favor-
able visualization properties of SOMs. On the eICU data-set, we
demonstrate that T-DPSOM provides interpretable visualizations of
patient state trajectories and uncertainty estimation. We show that
our method rediscovers well-known clinical patient characteristics,
such as a dynamic variant of the Acute Physiology And Chronic
Health Evaluation (APACHE) score. Moreover, we illustrate how it
can disentangle individual organ dysfunctions on disjoint regions
of the two-dimensional SOM map.
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1 INTRODUCTION
Intensive care units (ICUs) treat patientswith severe or life-threatening
illnesses and injuries, which require constant care and supervision.
A critically ill patient is closely monitored by multiple devices and
regular blood samples. At the same time, the patient is also subject
to multiple treatments. The physicians’ task is to integrate these
high-dimensional monitoring and treatment data into a comprehen-
sive picture of the patient’s current and likely future health state
and to then decide on further treatment.

Traditional clustering methods, such as hierarchical clustering
and latent class analysis, have been applied to physiological mea-
surements to identify clinically relevant patient states and to dis-
cover new physiological relationships unknown to the physicians.
Detecting and defining comprehensive patient sub-phenotypes is
an important step in personalized medicine. It could also facili-
tate future treatment studies by allowing for more homogeneous
patient cohorts [37]. More granular sub-phenotypes and intuitive
visualizations of such patient health clusters could ultimately aid
the physicians’ central task of understanding the patient’s health
state and future trajectories [5, 15, 24].

Traditional clustering methods, however, have often poor per-
formance on high-dimensional, complex, real-world data sets such
as clinical time series, due to the inefficiency of similarity mea-
sures used. To overcome this issue, dimensionality reduction and
feature transformation have been successfully applied to obtain
a low-dimensional representation of the raw data that is easier
to cluster [23]. Recently, traditional feature transformation meth-
ods, such as PCA [50] or Kernel methods [21], have been replaced
by Deep Neural Networks (DNNs), due to their inherent property
of highly non-linear transformation. The combination of DNNs
and clustering methods have been proved to ease the clustering
process and to substantially increase their performance [1, 52]. In
such methods, however, the clustered feature points lie in a latent
space that cannot generally be easily visualized or interpreted by
humans, and not much effort is directed towards investigating the
relationship between clusters.

In contrast, the Self-Organizing Map (SOM) [25] is a cluster-
ing method that provides such an interpretable representation. It
produces a low-dimensional (typically 2-dimensional), discretized
representation of the input space by inducing a flexible neighbor-
hood structure over the clusters. As a result, it spatially groups
together clusters that are similar and it permits pattern recognition
in datasets that would otherwise be too complex to visualize, ob-
taining a clear overview of the state of the patients, and detecting
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Table 1: Overview of related approaches and our proposed methods.

Model SOM structure Probabilistic Clustering performance Temporal model

DEC / IDEC [18, 52] ✗ ✓ ✓ ✗

SOM-VAE [11] ✓ ✗ ✗ ✓

DESOM [10] ✓ ✗ ✗ ✗

DPSOM (ours) ✓ ✓ ✓ ✗

T-DPSOM (ours) ✓ ✓ ✓ ✓

subsets that might be missed otherwise. The SOM has been success-
fully applied to various medical settings and has been proven to be
an excellent tool in the visualization of high-dimensional medical
data [16, 19, 39] and in medical imaging [33, 40]. While the SOM is
particularly effective for data visualization [30], only a few methods
have attempted to combine it with DNNs. Moreover, as we will
show in the experiments, their performances are subpar compared
to modern deep clustering methods.

To address the above issues, we present a novel way of fitting
SOMs with probabilistic cluster assignments, which we call Prob-
abilistic SOM (PSOM). We then propose a deep architecture, the
Deep Probabilistic SOM (DPSOM), which jointly trains a VAE and
a PSOM to achieve an interpretable discrete representation while
exhibiting state-of-the-art clustering performance. Instead of hard
assignments of data points to clusters, our model uses centroid-
based probability distributions. It minimizes their Kullback-Leibler
divergence against auxiliary target distributions, while enforcing a
SOM-friendly space. We further extend this model to support time
series, yielding the temporal DPSOM (T-DPSOM). We demonstrate
that the T-DPSOM serves as a useful tool to understand and track
patient health states in the ICU.

Our main contributions are:
• DPSOM, a deep clustering architecture that combines a VAE
with a novel SOM-based clustering objective (PSOM).

• T-DPSOM, an extension of this architecture to time series,
improving clustering performance and enabling temporal
forecasting.

• A thorough empirical assessment of our proposed models,
showing superior performance on static image data and med-
ical time series from the ICU.

• Illustrations of how T-DPSOM can be used to cluster patients
into different sub-phenotypes and potentially gain better
understanding of disease patterns and individual patient
health states.

2 RELATEDWORK
2.1 Applied clustering and visualization for the

critically ill patient
Personalized medicine encourages a more singular approach to
patients, treating each individual according to their specific history.
This is becoming increasingly widespread, not only in the ICU
[47, 49]. To provide personalized medicine, the different phenotypes
of diseases have to be understood, and the patient’s phenotype has
to be correctly identified. Historically, clinical phenotypes were the
most important. In the last years, data-driven approaches became

more popular. Simple versions of such approaches (Latent Class
Analysis, Hierarchical Clustering) now exist for almost all major
diseases in the ICU [37] such as sepsis [15, 38], ARDS [4, 6, 24], and
AKI [2]. Already in 2010, Buchman et al. [5] described the potential
of clustering to understand the patient in his “physiological state
space” and discussed the potential for using this method to describe
current, past, and future patient states. Knox et al. [24] used SOM
to visualize subtypes of patients with sepsis intuitively. Tscholl et
al. [43] show that better visualizations of complex medical data can
improve the understanding of the patient state, increase situational
awareness, and reduce the workload. Even though this was only
shown for directly visualizing vital parameters.

2.2 Self-organizing maps
Self-organizing maps have been widely used as a means to visualize
information from large amounts of data [41]. They can be seen
as a form of clustering in which the centroids are connected by a
topological neighborhood structure [9]. Since their inception [25],
several variants have been proposed to enhance their performance
and scope. The adaptive subspace SOM, ASSOM [26], for example,
combines PCA and SOMs to map data into a reduced feature space.
Tokunaga and Furukawa [42] combine SOMs with multi-layer per-
ceptrons to obtain a modular network. Liu et al. [30] proposed the
Deep SOM (DSOM), an architecture composed of multiple layers
similar to deep neural networks. Although there exist several meth-
ods tailored to representation learning on time series [12–14], only
few models present extensions of the SOM optimized for temporal
data. Examples are the Temporal Kohonen map [7], its improved
version Recurrent SOM [32], as well as Recursive SOM [48]. Prob-
abilistic versions of SOM include [8, 31] as well as the generative
topographic map [3].

2.3 Deep SOM-based models
While there exist previous efforts to endow VAEs with a hierar-
chical latent space [17, 27, 46], to the best of our knowledge, only
two approaches used deep generative models in combination with
a SOM structure in the latent space. The SOM-VAE model [11],
inspired by the VQ-VAE architecture [44] (which itself was later
extended by Razavi et al. [36]), uses an AE to embed the input
data points into a latent space and then applies a SOM-based clus-
tering loss on top of this latent representation. Even though it
prominently features a VAE in its name as well as model descrip-
tion, in practice it uses a Dirac 𝛿-distribution and therefore hard
assignments of data points to cluster centroids [11]. It also uses
a uniform prior over cluster assignments, such that the KL-term
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Figure 1: Model architectures of DPSOM and its temporal extension T-DPSOM. A data point 𝑥𝑖 is mapped to a continuous
embedding 𝑧𝑖 using a VAE. In T-DPSOM, the embeddings 𝑧𝑖,𝑡 for 𝑡 = 1, . . . ,𝑇 are connected by an LSTM, which predicts the
embedding 𝑧𝑡+1 of the next time step.

is dropped from the loss, thus effectively turning the used model
into a standard autoencoder. Moreover, it employs a Markov model
for the temporal dynamics. Both of these design choices yield in-
ferior expressivity compared to our proposed method. The Deep
Embedded SOM, DESOM [10], improved the previous model by
using a Gaussian neighborhood window with exponential radius
decay and by learning the SOM structure in a continuous setting.
Both methods extract a topologically interpretable neighborhood
structure and yield promising results in visualizing state spaces.
However, those works did not include empirical comparisons to
state-of-the-art deep clustering techniques. Moreover, they do not
allow for a probabilistic interpretation of the cluster assignments. A
concise overview of the differences between our proposed models
and the related approaches is shown in Table 1.

3 PROBABILISTIC CLUSTERINGWITH THE
DPSOM

Given a set of data samples {𝑥𝑖 }𝑖=1,...,𝑁 , where 𝑥𝑖 ∈ R𝑑 , the goal
is to partition the data into a set of clusters {𝑆 𝑗 } 𝑗=1,...,𝐾 , while
retaining a topological structure over the cluster centroids.

The proposed architecture is presented in Figure 1. The input
vector 𝑥𝑖 is embedded into a latent representation 𝑧𝑖 using a VAE.
This latent vector is then clustered using PSOM, our novel SOM
clustering strategy for probabilistic cluster assignments. The VAE
and PSOM are trained jointly to learn a latent representation, with
the aim of improving the clustering performance. To model time
series, we propose an architecture extension called T-DPSOM.

3.1 Background
A self-organizing map is comprised of 𝐾 nodes𝑀 = {𝑚 𝑗 }𝐾𝑗=1 tied
by a neighborhood relation, where the node𝑚 𝑗 corresponds to a
centroid ` 𝑗 in the input space. Given a random initialization of the
centroids, the SOM algorithm randomly selects an input 𝑥𝑖 and
updates both its closest centroid ` 𝑗 and its neighbors to move them
closer to 𝑥𝑖 . For a complete description of the SOM algorithm, we
refer to the Appendix.

The Cluster Assignment Hardening (CAH) method has been
recently introduced by the DEC model [52] and was shown to
perform well in the latent space of AEs [1]. Given an embedding
function 𝑧𝑖 = 𝑓 (𝑥𝑖 ), it uses a Student’s t-distribution (𝑆) as a kernel
to measure the similarity between an embedded data point 𝑧𝑖 , and a
centroid ` 𝑗 . It improves the cluster purity by forcing the distribution
𝑆 to approach a target distribution 𝑇 :

𝑠𝑖 𝑗 =

(
1 +

𝑧𝑖 − ` 𝑗 2 /𝛼
)−𝛼+1

2

∑
𝑗 ′

(
1 +

𝑧𝑖 − ` 𝑗 ′2 /𝛼
)−𝛼+1

2
, (1)

𝑡𝑖 𝑗 =
𝑠^
𝑖 𝑗
/∑𝑖′ 𝑠𝑖′ 𝑗∑

𝑗 ′ 𝑠
^
𝑖 𝑗 ′/

∑
𝑖′ 𝑠𝑖′ 𝑗 ′

, (2)

where 𝛼 is the degrees of freedom of the Student’s distribution. As
it has been shown that learning 𝛼 might be superfluous [45], we
set it to 10 for all experiments. By taking the original distribution 𝑆
to the power of ^ and normalizing it, the target distribution puts
more emphasis on data points that are assigned a high confidence
and thus reduces the entropy of the distribution. Over the course
of training, this lets the distribution approach a discrete cluster as-
signment (hence “hardening”). We follow Xie et al. [52] in choosing
^ = 2, which leads to larger gradient contributions of points close
to cluster centers, as they show empirically. The resulting cluster-
ing loss is defined as the Kullback-Leibler divergence between the
target distribution, 𝑇 , and the original distribution 𝑆 :

LCAH = 𝐷𝐾𝐿 (𝑇 ∥𝑆) =
𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑡𝑖 𝑗 log
𝑡𝑖 𝑗

𝑠𝑖 𝑗
. (3)

3.2 PSOM: Probabilistic SOM clustering
We propose a novel clustering method called Probabilistic SOM
(PSOM), which extends the CAH method to include a SOM neigh-
borhood structure over the centroids. We achieve this by combining
(3) with a new objective function LS-SOM (Soft SOM loss) to get an
interpretable representation. This function maximizes the similarity
between each data point and the neighbors of the closest centroids.
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Therefore, it acts on soft cluster assignments, but still yields the
qualitative behaviour of the SOM algorithm. The objective is pre-
sented in the following.

Given the set of 𝐾 nodes, 𝑀 = {𝑚 𝑗 }𝐾𝑗=1, we define the neigh-
borhood function as 𝑁 ( 𝑗) = {𝑛𝑧 ( 𝑗)}𝑍𝑧=1 for 𝑗 ∈ {1, . . . , 𝐾}, where
𝑛𝑧 ( 𝑗) returns the 𝑧-th neighbor’s index of 𝑚 𝑗 . We require that
∪𝑗𝑚𝑛𝑧 ( 𝑗) = 𝑀 , which can for instance be achieved by using a
toroid geometry for the map with one neighbor in each direction
(the setting used in our experiments). Each node corresponds to
a centroid ` 𝑗 in the latent space. We use 𝑠𝑖 𝑗 , defined in (1), as the
probability that data point 𝑧𝑖 belongs to cluster centroid ` 𝑗 . We
then define a loss that enforces a SOM-like neighborhood structure
over the centroids as:

LS-SOM = − 1
𝑁

𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑠𝑖 𝑗

∑
𝑒∈𝑁 ( 𝑗)

log 𝑠𝑖𝑒

=

𝑍∑
𝑧=1

− 1
𝑁

𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑠𝑖 𝑗 log 𝑠𝑖𝑛𝑧 ( 𝑗) .

Intuitively, the objective encourages that if 𝑠𝑖 𝑗 is large, then the 𝑠𝑖𝑒 ’s
should also be large and vice versa. Hence, this procedure leads to
the same topological neighborhood properties as the classical SOM,
while using soft cluster assignments. Interestingly, this loss can
also be seen as a sum of 𝑍 cross-entropies between the probability
distribution of each centroid and the probability distribution of its
respective 𝑧-th neighbor centroid. Note that

∑
𝑗 𝑠𝑖𝑛𝑧 ( 𝑗) = 1 because

of the union property in the definition above. The complete PSOM
clustering loss is then defined as:

LPSOM = LCAH + 𝛽LS-SOM , (4)

which for 𝛽 = 0 becomes equivalent to Cluster Assignment Harden-
ing. We later show empirically that this novel objective does indeed
lead to SOM-like behaviour and thus offers a viable way to fit self-
organizing maps with probabilistic cluster assignments. Note that
the parameter 𝛽 can be chosen freely as a trade-off between pure
clustering performance and spatial coherence, where increasing 𝛽
improves the smoothness of the learned map (see Fig. 2).

3.3 DPSOM: VAE for representation learning
To increase the expressivity of the PSOM, we apply the clustering
in the latent space of a deep representation learning model. In
our method, this nonlinear mapping between the input 𝑥𝑖 and
embedding 𝑧𝑖 is realized by a VAE. Instead of directly mapping
the input 𝑥𝑖 to a latent embedding 𝑧𝑖 , the VAE learns a probability
distribution 𝑞𝜙 (𝑧𝑖 | 𝑥𝑖 ) parameterized as a multivariate normal
distribution with mean and covariance (`𝜙 , Σ𝜙 ) = 𝑓𝜙 (𝑥𝑖 ). Similarly,
it also learns the probability distribution of the reconstructed output
given a sampled latent embedding 𝑝\ (𝑥𝑖 | 𝑧𝑖 ), where (`\ , Σ\ ) =

𝑓\ (𝑧𝑖 ). Both 𝑓𝜙 and 𝑓\ are neural networks, which are respectively
called encoder and decoder. The VAE loss (ELBO) is:

LVAE =

𝑁∑
𝑖=1

[
− E𝑞𝜙 (𝑧 |𝑥𝑖 ) (log𝑝\ (𝑥𝑖 | 𝑧))

+ 𝐷𝐾𝐿 (𝑞𝜙 (𝑧 | 𝑥𝑖 ) ∥ 𝑝 (𝑧))
]
,

(5)

where 𝑝 (𝑧) is an isotropic Gaussian prior over the latent embed-
dings. The second term can be interpreted as a form of regulariza-
tion, which encourages the latent space to be compact. For each
data point 𝑥𝑖 , the latent embedding 𝑧𝑖 is sampled from 𝑞𝜙 (𝑧 | 𝑥𝑖 ).
Adding the VAE loss to the PSOM loss from the previous subsection,
we get the overall loss function of the DPSOM:

LDPSOM = 𝛾LCAH + 𝛽LS-SOM + LVAE , (6)

where 𝛾 regulates the tradeoff between reconstruction and cluster-
ing performances while 𝛽 is as above. For an in-depth discussion
of the choice of these parameters and of our model’s robustness to
different parameter configurations, we refer to the Appendix. To
the best of our knowledge, no previous SOM method attempted to
use a VAE to embed the inputs into a latent space. Yet, the VAE is
a natural choice, since the compactness of the representations en-
couraged by the Gaussian prior fits the neighborhood assumptions
of the SOM algorithm (see Appendix).

3.4 T-DPSOM: Extension to time series data
To extend our proposedmodel to time series data, we add a temporal
component to the architecture, yielding the Temporal DPSOM (T-
DPSOM). Given a set of𝑁 time series of length𝑇 , {𝑥𝑖,𝑡 }𝑖=1,...,𝑁 ;𝑡=1,...,𝑇 ,
the goal is to learn interpretable trajectories on the SOM grid. To
do so, the DPSOM could be used directly but it would treat each
time step 𝑡 of the time series independently. To exploit temporal
information and enforce smoothness in the trajectories, we design
an additional loss term, which is similar to the smoothness loss in
the SOM-VAE [11], but is able to act on soft assignments:

Lsmooth = − 1
𝑁𝑇

𝑁∑
𝑖=1

𝑇∑
𝑡=1

𝑢𝑖𝑡 ,𝑖𝑡+1 , (7)

where𝑢𝑖𝑡 ,𝑖𝑡+1 = 𝑔(𝑧𝑖,𝑡 , 𝑧𝑖,𝑡+1) is the similarity between 𝑧𝑖,𝑡 and 𝑧𝑖,𝑡+1
using a Student’s t-distribution and 𝑧𝑖,𝑡 refers to the embedding of
time series 𝑥𝑖 at time index 𝑡 . It maximizes the similarity between
latent embeddings of adjacent time steps, such that large jumps in
the latent state between time points are discouraged. This is moti-
vated by the intuition that the true underlying factors of variation
in real-world applications usually vary smoothly over time and can
be seen as being similar to a Kalman filter prior [28].

One of the main goals in time series modeling is to predict fu-
ture data points, or alternatively, future embeddings. This can be
achieved by adding a long short-term memory network (LSTM)
[20] over the latent embeddings of the time series, as shown in Fig
1. Each cell of the LSTM takes as input the latent embedding 𝑧𝑡 at
time step 𝑡 , and predicts a probability distribution over the next
latent embedding, 𝑝𝜔 (𝑧𝑡+1 | 𝑧𝑡 ). We parameterize this distribution
as a multivariate Gaussian distribution where the mean and vari-
ance are learnt by the LSTM. The prediction loss is the negative
log-likelihood of a sample of the next embedding 𝑧𝑡+1 under this
distribution:

Lpred = −
𝑁∑
𝑖=1

𝑇∑
𝑡=1

log𝑝𝜔 (𝑧𝑡+1 | 𝑧𝑡 ) . (8)

The final loss of the T-DPSOM, which is trainable in a fully end-to-
end fashion, is

LT-DPSOM = LDPSOM + Lsmooth + Lpred . (9)
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Table 2: Clustering performance of DPSOM using 64 clusters arranged in a 8 × 8 SOM map, compared with baselines. Means
and standard errors are computed across 10 runs with different random model initializations. *The DESOM results are taken
from [10] which did not provide errors. **The IDEC does not provide pretrained weights for Fashion MNIST.

MNIST fMNIST

𝑝𝑢𝑟 𝑛𝑚𝑖 𝑝𝑢𝑟 𝑛𝑚𝑖

K-means 0.845 ± 0.001 0.581 ± 0.001 0.716 ± 0.001 0.514 ± 0.000
VQ-VAE 0.515 ± 0.005 0.354 ± 0.003 0.594 ± 0.003 0.468 ± 0.001
DEC 0.944 ± 0.002 0.682 ± 0.001 0.758 ± 0.002 0.562 ± 0.001
IDEC ** 0.950 ± 0.001 0.681 ± 0.001 - -

SOM 0.701 ± 0.005 0.539 ± 0.002 0.667 ± 0.003 0.525 ± 0.001
AE+SOM 0.874 ± 0.004 0.646 ± 0.001 0.706 ± 0.002 0.543 ± 0.001
SOM-VAE 0.868 ± 0.004 0.595 ± 0.004 0.739 ± 0.005 0.520 ± 0.003
DESOM* 0.939 ± 𝑁 /𝐴 0.657 ± 𝑁 /𝐴 0.752 ± 𝑁 /𝐴 0.538 ± 𝑁 /𝐴
DPSOM (ours) 0.968 ± 0.001 0.701 ± 0.001 0.779 ± 0.003 0.562 ± 0.001

DPSOM \ VAE (ablation) 0.813 ± 0.004 0.561 ± 0.002 0.730 ± 0.006 0.530 ± 0.003

This combined objective encourages the learned representations
and clusters to preserve similarity between inputs in its topological
structure (through the first term), while also preserving smoothness
over time (through the second term), and learning representations
that are informative about the future of the trajectory (through the
third term). It therefore ensures usefulness of the representations
for clustering, time series visualization, and time series forecasting.
In the following, we will separately evaluate these three use cases
empirically.

4 EXPERIMENTS
Firstly, we evaluate the DPSOM and compare its clustering per-
formance to a wide range of state-of-the-art deep and SOM-based
clustering methods, on MNIST [29] and Fashion-MNIST [51] data.
We then present extensive evidence of the performance of the T-
DPSOM on medical time series from the eICU data set [35] on sev-
eral relevant tasks. Moreover, we discuss how our method increases
the spatial coherence of the clusters and we analyze enrichment of
organ function parameters and mortality risk in different regions
of the SOM map. Lastly, we illustrate how the probabilistic assign-
ments of T-DPSOM enable interpretable visualizations of medical
time series with uncertainty estimation. Open source code, with
which the most important results and figures can be reproduced, is
available at https://github.com/ratschlab/dpsom.

4.1 Model implementation
In implementing our models we focused on retaining a fair com-
parison with the baselines. Hence, we decided to use a standard
network structure, with fully connected layers of dimensions 𝑑 −
500 − 500 − 2000 − 𝑙 , to implement both the VAEs and the AEs. The
latent dimension 𝑙 is set to 100 for the VAEs, and to 10 for the AEs of
the baselines. We set the number of clusters to 64 for the image data
and to 256 for the ICU time series for both the baselines and our
models. We highlight the fact that our model does not only focus
on clustering, but is also a visualization aid. Therefore, we use a
much larger amount of clusters than the expected number clusters.

We choose our SOM grid to be the 2-dimensional surface of a 3-
dimensional torus in all experiments. The neighborhood is chosen
to contain one neighboring cluster in each direction (up, down, left,
right). For different configurations we refer to the Appendix. For all
architectures, no greedy layer-wise pretraining was used to tune
the VAE. Instead we simply run the VAE without the clustering
loss for a few epochs as initialization. A standard SOM was used
to initialize the centroids. Finally, the entire architecture is trained
for 100, 000 iterations. To avoid fine-tuning the hyperparameters,
𝛽 is chosen such that the S-SOM loss has a similar magnitude as
the CAH loss and 𝛾 follows a simple heuristic which regulates the
trade-off between the CAH and the ELBO loss components. Cru-
cially, these simple strategies for choosing the hyperparameters
are completely unsupervised and do not rely on ground-truth label
information or any expensive optimization. Additionally, the model
is shown to be robust under different configurations of 𝛽 and 𝛾 .
For an overview of the hyper-parameter setting for both static and
temporal data we refer to the Appendix.

4.2 Static image clustering with the DPSOM
As a sanity check on static image data, we evaluate the DPSOM
clustering module against various baselines, before proceeding to
medical time series. We used two different categories of baselines.
The first category contains clustering methods that do not pro-
vide any interpretable discrete latent representation. Those include
k-means, the well-known DEC model [52], which sequentially ap-
plies embedding learning using Stacked Autoencoders (SAE) and
the Cluster Assignment Hardening method on the obtained rep-
resentations, as well as its improved version IDEC [18]. We also
include the VQ-VAE [44], which formed the basis for the SOM-VAE
model [11]. In the second category, we include state-of-the-art clus-
tering methods based on SOMs. Here, we used a standard SOM,
AE+SOM (an architecture composed of an AE and a SOM applied
on top of the latent representation, trained sequentially), SOM-VAE
[11], and DESOM [10].

Table 2 shows the clustering performance of DPSOM on MNIST
and Fashion-MNIST data, compared with the baselines. Purity and
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Table 3: Mean NMI and standard error of cluster enrichment for current/future APACHE physiology scores, using a 16 × 16
SOM map, across 10 runs with different random model initializations.

Model APACHE-24 APACHE-12 APACHE-6 APACHE-0

SOM 0.0308 ± 0.0013 0.0322 ± 0.0013 0.0334 ± 0.0014 0.0380 ± 0.0016
AE+SOM 0.0278 ± 0.0010 0.0283 ± 0.0009 0.0290 ± 0.0011 0.0321 ± 0.0014
DESOM 0.0847 ± 0.0019 0.0847 ± 0.0019 0.0816 ± 0.0019 0.0868 ± 0.0022
SOM-VAE 0.0824 ± 0.0008 0.0758 ± 0.0007 0.0743 ± 0.0007 0.0803 ± 0.0008
HMM 0.0533 ± 0.0007 0.0463 ± 0.0007 0.0427 ± 0.0007 0.0419 ± 0.0008
DPSOM 0.0919 ± 0.0037 0.0843 ± 0.0031 0.0816 ± 0.0029 0.0875 ± 0.0033
T-DPSOM 0.1115 ± 0.0006 0.10220 ± 0.0005 0.0989 ± 0.0004 0.1065 ± 0.0005

Table 4: MSE for predicting the time series of the last 6 hours before ICU dispatch, given the prior time series, across 10 runs
with different random model initializations.

Model LSTM HMM SOM-VAE T-DPSOM

MSE 0.0113 ± 0.0002 0.0146 ± 0.0001 0.0081 ± 0.0001 0.0049 ± 0.0001

Normalized Mutual Information are used as evaluation metrics.
We observe that our proposed model outperforms the baselines in
terms of both metrics on both data sets. Interestingly, the DPSOM
not only improves interpretability through the use of the latent
PSOM, but also increases the performance compared to DEC/IDEC.
Finally, we performed an ablation study to investigate the effect of
the VAE in our model. We exchanged the VAE with an AE (DPSOM
\ VAE of Table 2) and we observe a significant decrease in perfor-
mance. This fits our intuition that the Gaussian prior of the VAE
encourages a compact latent representation which favors the SOM
neighbourhood assumptions.

4.3 eICU dataset preprocessing
The performance of our proposed models is mainly evaluated on
the eICU data set [35], which is comprised of multivariate medical
time series from the intensive care unit (ICU). Hereby, we use vital
sign and lab measurements of ICU patients resampled to a 1-hour
based grid using forward filling and filling with population statistics
from the training set if no measurements were available prior to
the time point. From all available ICU stays, we excluded stays
which were shorter than 3 days, longer than 30 days, or which had
at least one gap in the continuous vital sign monitoring, which
we define as an interval between two heart rate measurements
of at least 1 hour. This yielded 𝑁 = 10, 559 ICU stays from the
eICU database [35]. We included 𝑑vitals = 14 vital sign variables
and 𝑑lab = 84 lab measurement variables, giving an overall data
dimension of 𝑑 = 98. To aid reproducibility, included variables are
listed in the Appendix. The last 72 hours of these multivariate time
series were used for the experiments. As labels, we use a variant
of the current dynamic APACHE physiology score (APACHE-0)
as well as the worst APACHE score in the next {6, 12, 24} hours
(APACHE-6/12/24), current lab and vital values and mortality in
the next 24 hours. Only those variables from the APACHE score
definition which are recorded in the eICU database were taken into
account for its definition. The dataset was divided into training,
validation, and test sets for both our models and the baselines.

4.4 Clustering and forecasting of patient
health states

We compare the clustering performance of our proposed models
against the state-of-the-art clustering methods based on SOMs used
in Section 4.2 and a Hidden Markov Model. Table 3 shows the
cluster enrichment in terms of NMI for four different labels, the
current (APACHE-0) and worst future (APACHE-6/12/24) physiol-
ogy scores in the next 6, 12, 24 hours, respectively. The T-DPSOM
clearly achieves superior clustering performance compared to the
baselines.
To quantify the performance of T-DPSOM in predicting future tra-
jectories, we predict the final six latent embeddings of each time
series, conditioned on all previous time steps. For each predicted
embedding, we reconstruct the input using the decoder of the VAE.
Finally, we measure the mean squared error (MSE) between the
original inputs and the reconstructed inputs for the last six hours
of the ICU stay. As baselines, we use an LSTM, an HMM, and the
SOM-VAE. The LSTM predicts the future time steps directly in
the input space. The HMM predicts by sampling future time steps
using its learned transition and emission matrices, starting from
the most likely current state. The results (Table 4) indicate that
the joint training of clustering and prediction used by T-DPSOM
clearly outperforms the baselines. Training times of the T-DPSOM
model are reported in the Appendix.

4.5 Spatial coherence through S-SOM loss
The main objective of the PSOM is to enforce a SOM-like structure
between the cluster centroids. Thus, we achieve an interpretable 2-
D representation of the data in which neighboring centroids should
exhibit similar characteristics. To illustrate the topological structure
in the latent space and to qualitatively show the effect of the S-SOM
loss, we include heatmaps that show the enrichment of cells for
the current APACHE physiology score for different values of 𝛽 in
Figure 2(a)-(c). We notice that centroids with a similar APACHE
score are more tightly clustered in neighboring centroids for higher
values of 𝛽 .
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Figure 2: Visualizations of the SOM grid heat-maps obtained by training T-DPSOMs with (a) 𝛽 = 0, (b) 𝛽 = 10, (c) 𝛽 = 100 and (d)
by training SOM-VAE. We see that increasing 𝛽 increases the correlation between neighboring clusters, which is also shown
quantitatively using Moran’s index (𝐼moran) and 𝐼𝑑 . For all experiments we used the same pretraining weights obtained by
running the VAE without the clustering loss for a few epochs and by using a standard SOM to initialize the centroids.

(a) t-SNE (b) 𝐼moran = 0.46

Figure 3: (a) and (b), t-SNE and gridded t-SNE representations
of the latent spacewhen using 𝛽 = 0 on eICUdata. The colors
correspond to the mean APACHE scores.

To assess this property quantitatively, we use Moran’s index [34]
as a measure of spatial correlation among clusters. Moran’s index
can be defined as:

𝐼moran =
𝑁

𝑊

∑
𝑖

∑
𝑗 𝑤𝑖 𝑗 (𝑦𝑖 − 𝑦)

(
𝑦 𝑗 − 𝑦

)∑
𝑖 (𝑦𝑖 − 𝑦)2

where 𝑁 is the number of clusters indexed by 𝑖 and 𝑗 , 𝑦𝑖 , 𝑐𝑖 are
continuous cell labels, 𝑦 is the mean of 𝑦,𝑤𝑖, 𝑗 is a matrix of spatial
weights and𝑊 is the sumof all𝑤𝑖, 𝑗 .We define𝑤𝑖, 𝑗 = exp(−𝑑SOM (𝑖, 𝑗)),
where 𝑑SOM (𝑖, 𝑗) is the Manhattan distance between the nodes𝑚𝑖
and𝑚 𝑗 in the SOM. For the eICU data-set we use the mean APACHE
score as a cell label to express similarities between patient states.
We compute Moran’s index for different values of the parameter 𝛽
in Equation 4. We see in Figure 2(a)-(c) that increasing the 𝛽 coef-
ficient, and thus the relative weight of the S-SOM loss, increases
the correlations between neighboring clusters, both visually and
quantitatively. We can thus conclude that the S-SOM loss does in-
deed encourage the latent representations to assume a SOM-like
structure, and that the spatial coherence of the clustering can be
controlled via 𝛽 . As a comparison, we computed the Moran’s in-
dex of the SOM map learned by SOM-VAE in Fig 2(d). It yields a
lower Moran’s index compared to T-DPSOM, indicating that our

model encourages a smoother representation of the latent space
than SOM-VAE.

Finally, we compare the spatial coherence of the learned SOM-
based map with a post hoc visualization of the latent embeddings
generated when the soft-SOM loss is disabled (𝛽 = 0). We use
the popular visualization method t-SNE as a comparison. In Fig-
ure 3a/3b, we show both the original t-SNE plot, and a gridded
t-SNE which allows us to compare Moran’s index. We see that t-
SNE obtainsmuch lower spatial coherence, compared to ourmethod.
Moreover, our method enjoys other advantages over t-SNE, which
is not trainable end-to-end and does not yield a regular geometric
structure (like a grid). Further, it has to be retrained as soon as
unseen test data is used and scales poorly with large data-set sizes.

4.6 Cluster enrichment for organ function
parameters and mortality risk

In Fig. 4 (a) and (b), heatmaps (colored according to enrichment in
the current APACHE score, as well as the mortality risk in the next
24 hours) show compact enrichment structures. The T-DPSOM
model succeeds in discovering a meaningful and smooth neigh-
borhood structure with respect to APACHE score enrichment. For
mortality, it distinguishes risk profiles with practically zero mortal-
ity risk from very high mortality risk in the next 24 hours (reaching
up to 30-40%) in different regions of the map, even though it is
trained in a purely unsupervised fashion, which is a remarkable
result. In Fig. 4 (c), the clusters with the highest 33% (z>0.43) aver-
age values per key organ lab value (yellow: Creatinine, red: alanine
aminotransferase (ALT), grey: Lactate) are marked by the respec-
tive color. The chosen lab values can be seen as key variables for
specific organ systems (Creatinine: Kidney, ALT: Liver, Lactate: Cir-
culatory system). For each lab value, the highest values concentrate
in a different region on the SOM map. At the same time, clusters
with overlapping high values for different lab values exist in all
combinations. For example, the cluster (x=14,y=5) has an isolated
high kidney lab value; (x=13,y=2), on the other hand, has high kid-
ney and liver values; finally, for the cluster (x=11,y=2), the values
for liver, kidney and circulatory lab values are high. The detailed
average value distribution per organ system can also be observed
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(a) Current APACHE score (b) Mortality risk in the next 24 hours (c) Organ clusters

Figure 4: (a)+(b) Heatmaps of enrichment of the current dynamic APACHE score as well as in mortality risk in the next 24
hours. (c) Regions with the 33% (z>0.43) highest average values per key organ lab value (yellow: Creatinine, red: Alanine amino-
transferase (ALT), grey: Lactate). E.g. the patient timepoints assigned to cluster point (x=13,y=2) have on average kidney and
liver values in the top 33% of all measurements. For all plots the information is superimposed on the discrete 2D grid learned
by the T-DPSOMmodel.

(a) Lactate [mmol/l] (b) Creatinine [mg/dL] (c) ALT [U/l] (d) MAP [mmHg] (e) P/F ratio [cmH2O]

Figure 5: Heatmaps of enrichment of key lab vital and lab values, superimposed on the discrete 2D grid learned by the T-
DPSOMmodel. ALT: Alanine aminotransferase, MAP: Mean arterial pressure

in Fig. 5. In this figure, we can also observe that not only regions of
high but also of low values exist.

4.7 Visualization of health state trajectories
with uncertainty estimation

In Fig. 6, we show how the T-DPSOM could help to distill complex
multivariate time series into an intuitive representation. In partic-
ular, we show two example trajectories on the SOM grid learned
by the T-DPSOM method. The red trajectory represents a patient
that died at the end of the ICU stay, while the green one is a con-
trol patient who was dispatched alive from the ICU. For a more
quantitative assessment, in the Appendix we showmore patient tra-
jectories obtained by our model. We observe that the trajectories are
located in different parts of the SOM grid, and that their directions
of movement fit the intuition when combined with the average
physiology scores of each cluster (Fig. 6). One of the advantages
of the T-DPSOM over the SOM-VAE algorithm is the use of soft
assignments of data points to clusters, which results in the ability
to quantify uncertainty in the clustering. For interpreting health
states in the ICU, this property is very important [22]. In Fig 6,
additionally to the patient trajectories, we show the probability
distributions over cluster assignments at different time steps. Our

model yields a soft centroid-based probability distribution which
evolves over time and which allows estimation of likely discrete
health states at any given point in time. For each time step, the
distribution of probabilities is plotted using a blue color shading,
whereas the overall trajectory is plotted using a solid line.
We see that the assigned probabilities fit well to the intuition that
neighboring clusters should be harder to distinguish than more sep-
arated ones. Moreover, neighboring clusters with larger assigned
probability can sometimes forebode the movement direction of
the trajectory, suggesting that the combination of SOM-loss and
temporal losses leads to a representation that is smooth in space as
well as in time.

5 CONCLUSION
We presented two novel methods for interpretable unsupervised
clustering on static and temporal data, DPSOM and T-DPSOM.
Both models make use of a VAE and a novel probabilistic cluster-
ing method, PSOM, that extends the classical SOM algorithm to
include centroid-based probability distributions. They achieve su-
perior clustering performance compared to state-of-the-art deep
clustering baselines on image data sets and medical time series.
The use of probabilistic assignments of data points to clusters, and
the use of a VAE for feature extraction, instead of an AE as used
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Interpretable 
visualization

Figure 6: Illustration of two example patient trajectories in the SOM grid of T-DPSOM. One patient died (red), while the other
was dispatched alive from the ICU (green). Superimposed is a heatmap which displays mean APACHE score of all time points
assigned to each cluster. We observe qualitative differences in the trajectories of the dying and the surviving patient. For each
time series we also show the assigned probabilities to the discrete patient health states using a blue color shading.

in previous methods, results in an interpretable model that can
quantify uncertainty in the clustering as well as in its predictions
of future time series states.

When applied to medical time series, this new methodology
improves clustering performance and allows for visualizations of
patients’ health states. The former can further drive the current
developments in personalized medicine by more comprehensive
patient phenotypes. This could lead to a better understanding of the
pathophysiology of disease and facilitate future therapeutic trials by
more homogeneous patient cohorts of likely treatment responders.
Intuitive cluster assignment visualizations could improve the grasp
of the current patient health state, improving situational awareness,
while reducing workload. The next step forward is therefore to
apply T-DPSOM to specific patient cohorts (e.g. sepsis) and investi-
gate the derived clusters and trajectories in even greater detail by
physicians.
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