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Abstract
Early detection of influenza-like symptoms can prevent widespread
flu viruses and enable timely treatments, particularly in the post-
pandemic era. Mobile sensing leverages an increasingly diverse
set of embedded sensors to capture fine-grained information of
human behaviors and ambient contexts, and can serve as a promis-
ing solution for influenza-like symptom recognition. Traditionally,
handcrafted and high level features of mobile sensing data are ex-
tracted by manual feature engineering and convolutional/recurrent
neural network respectively. In this work, we apply graph repre-
sentation to encode the dynamics of state transitions and internal
dependencies in human behaviors, leverage graph embeddings
to automatically extract the topological and spatial features from
graph inputs, and propose an end-to-end graph neural network
(GNN)model withmulti-channel mobile sensing input for influenza-
like symptom recognition based on people’s daily mobility, social
interactions, and physical activities. Using data generated from 448
participants, we show that GNN with GraphSAGE convolutional
layers significantly outperforms baseline models with handcrafted
features. Furthermore, we use GNN interpretability method to gen-
erate insights (e.g., important nodes and graph structures) about
the importance of mobile sensing for recognizing Influenza-like
symptoms. To the best of our knowledge, this is the first work that
applies graph representation and graph neural network on mobile
sensing data for graph-based human behavior modeling and health
symptoms prediction.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluationmethods; •Computingmethod-
ologies → Neural networks.
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1 Introduction
From Spanish flu to SARS, to swine flu, global pandemics caused by
influenza viruses have devastated human society, leading to signifi-
cant loss in human lives and economies [57]. These pandemics have
put the established public health and socioeconomic systems under
the microscope, and resulted in many policy changes that were
meant for combating future pandemics [47]. However, the ongoing
COVID-19 pandemic reveals unseen vulnerabilities of the current
systems in containing the virus due to its delayed appearance of
symptoms and easy contagion, and poses much greater challenges
to governments’ public health response [5]. In the United States,
the Center for Disease Control and Prevention (CDC) initialized the
U.S. Influenza Surveillance System to collect and analyze influenza-
related information and monitor influenza activities 1. Aggregated
outpatient data about "influenza-like illness" (ILI) are collected and
reported hierarchically from local hospitals and public health sys-
tems to CDC [37]. Due to rapid expansion of influenza viruses, the
effectiveness of these public health interventions can be delayed
and diminished. Thus, it is critical to develop intelligent influenza
surveillance systems to continuously monitor influenza activity,
automatically detect early ILI among population, and accurately
predict influenza outbreaks [26].

There are multiple established research focusing on influenza ac-
tivity monitoring and influenza-like symptom recognition. Forsad
et al. tested a contactless syndromic surveillance platform consisted
of a microphone array and a thermal camera, installed in public
waiting area of a university hospital, to continuously and passively
monitor influenza infection scenes by characterizing the captured
influenza bio-clinical signals [1]. The trends of Google search and
Wikipedia pageviews on influenza related terms, and ILI linguistic
signals extracted from social media platforms are used to build nat-
ural language processing models to predict influenza dynamics[49].
Multiple data sources, including air quality data and insurance data,
have been leveraged to predict the probability of influenza out-
breaks [58]. Even though the above methods can detect ILI and
predict influenza trends in promising ways, their estimations have
certain limitations. For example, Google Flu Trend, which predicts
flu activity by analyzing search queries, has been discontinued due
to its inaccuracies and lack of reproducibility [39]. Furthermore,
installing edge devices in hospitals to capture influenza signal could
lead to biased estimations that can not be generalized to the larger
population [1].
1CDC-Flu Activity & Surveillance https://www.cdc.gov/flu/weekly/index.htm.
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Mobile sensing provides a potential solution for ILI recognition
and influenza surveillance through continuously and unobtrusively
collecting both behavioral and physiological signals generated from
human users [6]. Embedded sensors in mobile devices (e.g., per-
sonal smartphones and smartwatches), such as accelerometer, GPS
sensor, and Bluetooth sensor, have been applied to monitor hu-
man behaviors and track daily activities. The resulted data from
these embedded sensors can be used to infer human health status,
monitor mental health states, and deliver medical interventions
[7, 10, 12]. Traditionally, handcrafted features are extracted from
mobile sensing data to analyze human behavior patterns. For ex-
ample, motion features such as magnitude of acceleration, can be
extracted from accelerometer to study their correlations with differ-
ent user contexts (e.g., location, activity, social context) [8]. Instead
of using handcrafted features, which are usually based on heuris-
tics and domain knowledge, high level complex features can be
automatically extracted from mobile sensing data, and leveraged to
improve generalization of predictive modeling using deep learning
algorithms. For example, Boukhechba et al. built convolutional neu-
ral network (CNN) models based on photoplethysmogram (PPG)
data to infer ambulatory activities [9]. However, traditional hand-
crafted feature engineering and general deep learning methods (e.g.,
CNNs) are limited for multi-modal mobile sensing data. On one
hand, low level features extracted by handcrafted feature engineer-
ing can miss information about the inter-dependencies in different
sensing modalities. On the other hand, the complex interactions
within data points in and among different sensing streams can not
be naturally encoded in deep features by CNN, especially when the
data have hidden structural patterns and are generated from non-
Euclidean domains [54]. Given that some discrete sensor signals,
such as GPS and Bluetooth streams, can be naturally represented
as graphs, which encode the structural interdependence and in-
formation generated from non-euclidean spaces, we proposed an
end-to-end graph neural network (GNN) framework to infer the ex-
istence of influenza-like symptoms based on people’s multi-modal
daily mobile sensing data.

Our contributions in this work are summarised below:
• We propose an end-to-end Graph neural network frame-
work to model human behaviors by leveraging multi-modal
mobile sensing data. The goal is to automatically extract
high level features representing the dynamic interactions
between human states to predict symptoms of ILI. To our
best knowledge, this is the first work that applies Graph
neural networks to infer human health states using
mobile sensing. This end-to-end GNN framework can be
easily generalized and applied in other mobile sensing tasks,
such as monitoring mental health symptoms [2, 11, 13, 21].

• We demonstrate the performance of the proposed GNN
framework by applying our framework on a large mobile
sensing dataset collected in the wild to perform influenza-
like symptom recognition. The results show that the GNN
models significantly outperform baseline methods using
handcrafted features.

• Instead of using handcrafted features to characterize the
nodes in input graphs, we apply a graph representation
learning method, called node embedding, to automat-
ically generate topological embeddings of nodes. Our

results imply that graph representation learning methods
can be leveraged to generate embeddings to represent each
individual human state.

• To enhance trust with the ’black box’ GNNs, we apply inter-
pretable GNN methods to increasemodel interpretability.
We illustrate the transparency of the GNN models such that
this framework can be better understood by policy decision
makers and medical professionals.

The remainder of this work is presented as follows. In Section 2,
we summarize recent works on influenza-like symptoms recogni-
tion and the benefit of applying GNN to mobile sensing data. In
Section 3, we present how we model human behaviors by using
mobile sensing data, and introduce graph-based behavior modeling
by using graph representation learning and GNNs. In Section 4,
we introduce our mobile sensing data and summarizes them us-
ing graph statistics. Section 5 presents the results from our case
study. We end the current work with some conclusion marks and
discussions of future works in Section 6.

2 Related Work
Several researchers have previously built machine learning models
to predict influenza-like symptoms by analyzing human mobility
behaviors captured by GPS sensors. Barlacchi et al. extracted fine-
grained mobility behavior markers such as radius of gyration and
number of unique visited places from GPS trajectories to predict
future presence of influenza-like symptoms [4]. However, these
handcrafted behavior markers require domain knowledge, and can
only serve as low level representations of human mobility behav-
iors. The complex relationships between human mobility states
cannot be fully captured by using these handcrafted features. For
example, the relationship between place visits cannot be encoded
by using these handcrafted features (e.g., transitioning from one
place to another), nor can they capture the topological information
of the mobility traces. Similarly, by analyzing human mobility be-
haviors, Ma et al. built an ensemble Support Vector Machine (SVM)
to improve the generalization using handcrafted features [37]. Even
though the ensemble SVM algorithm produces promising results
in predicting influenza-like symptoms, there is still room for im-
provement in prediction performance by using more sophisticated
feature engineering methods to capture complex human mobility
behavior patterns. In our current work, we propose to leverage
GNNs to automatically decode complex signals in mobile sensing
data for influenza-like symptom recognition.

In addition to mobility, people with influenza-like symptoms
may also display different physical and social behaviors [43]. Blue-
tooth sensors have been leveraged to approximate people’s social
interactions [51], while motion data from accelerometer can be
leveraged to recognize physical activities [30]. We found no exist-
ing works, which applied Bluetooth encounter and physical activity
data together with mobility data to infer influenza-like symptoms.
Given that these multi-modal data can be represented as graphs
based on their underlying temporal relationships, we propose to
combine them using a multi-modal approach, aiming to improve
prediction performance.

Graph representation learning has been applied to encode var-
ious data in machine learning tasks to solve several real world
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problems such as social network recommendation [18], drug-to-
drug interaction prediction [46], and knowledge reasoning [38]. Au-
thors in these works have applied graph representation to capture
complex interdependent relationships between individual entities
in different problems. Graph neural networks can automatically
extract graph structural information and capture composite inter-
connections from graph-structured data. For instance, in the graph
representation of road networks, road segments represent their
spatial information; and edges linking two adjacent segments rep-
resent the connectivity between them [50]. The authors applied
GNNs to predict traffic flow by learning spatiotemporal patterns
hidden in the complex road networks. Road network embeddings
are learned by using GNNs to generate semantic representation of
road segments such that the structural functions road networks can
be leveraged for transportation optimization [53]. In social network,
Fan et al. encoded the user-to-user and user-to-item relationships
using graphs and applied GNNs to make social recommendations
based on the social interactions between users [18]. In this work,
we apply different GNN algorithms with multiple types of node
embedding techniques to recognize influenza-like symptoms using
multi-modal mobile sensing data.

3 Methodology
In this section, we present our methodology for comparing hand-
crafted feature engineering and graph representation methods to
model human behaviors, and infer whether people suffer from at
least one influenza-like symptoms or not given their daily mobile
sensing observations. Influenza-like symptoms refer to fever, feeling
feverish/chills, cough, sore throat, runny or stuffy nose, muscle or
body aches, headaches, fatigue 2. Existence of influenza-like symp-
toms could decrease people’s daily mobility, social interactions, and
physical activeness. For example, when people feel fatigue ormuscle
ache, they may subconsciously become more sedentary and avoid
unnecessary traveling, even when they do not realize these early
stage flu symptoms. Significant reductions of time spent in daily
social interaction and average duration per contact were observed
for participants who had influenza-like illness in [43]. We hypothe-
size that people’s mobility behaviors, social interactions, and
physical activities are correlated with influenza-like symp-
toms, and can be used to accurately recognize them.

We use GPS sensors to capture human mobility behaviors by
tracking people’s daily travel patterns; Bluetooth sensors, which
record Bluetooth devices in proximity, to approximate social in-
teractions; and activity data derived from accelerometer and gy-
roscope data to represent physical activities. For mobility data,
we applied DBSCAN [17] to cluster GPS coordinates into visited
places, and form sequences of daily place visits. Activities (i.e
𝑖𝑛 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔,𝑤𝑎𝑙𝑘𝑖𝑛𝑔) were recognized by using Google
Activity Recognition API [22] for Andriod devices and CMMotion-
Activity API for iOS devices [3]. We denoted daily place visit trace
as Xp, daily Bluetooth encounter traces as Xb, and daily activity
trace as Xa. Our prediction task can be generalized as learning a
function F (•|𝜽 ) given the inputs of Xp,Xb,Xa to predict existence
of influenza-like symptoms denoted as 𝑦 ∈ {0, 1}, such thatH(𝑦,𝑦)
can be minimized, whereH(•) is the cross entropy loss function.

2CDC-Flu symptoms https://www.cdc.gov/flu/symptoms/symptoms.html.

Behavior Feature Description

Mobility

radius_gyration radius of gyration

number_visits total number of places visited

max_distance maximum distance of place visited from centroid

travel_distance total distance traveled

max_distance_home maximum distance of place visited from home

travel_distance_std standard deviation of distance of trips

entropy_visits randomness of places visited

unique_visits number of unique place

multiple_place number of placed visited at least twice

Social Interaction

num_encounter number of Bluetooth devices detected

entropy_encounter randomness of Bluetooth devices

unique_encounter number of unique Bluetooth devices detected

Physical Activity act_entropy randomness of physical activity

Table 1: Description of Handcrafted Features

We propose to compare two feature engineering methods: 1) us-
ing handcrafted feature engineering as shown in section 3.1; and
2) using Graph representation to automatically extract high level
features in section 3.2.

3.1 Handcrafted Feature Engineering
Tomeasure humanmobility and build a predictivemodel for influenza-
like symptom recognition, we propose to compute fine grained
handcrafted features extracted from GPS coordinates (e.g., number
of visited places), which have been studied in [10]. The details about
mobility features and description are shown in Table 1. Similarly,
social interaction (e.g., number of encountered Bluetooth devices)
and physical activity features (e.g., entropy of physical activity) are
also extracted and shown in Table 1.

3.2 Graph-based Feature Engineering
Although handcrafted feature engineering can produce fine-grained
and more interpretable features, they are designed using domain
knowledge and intuition, which usually do not generalize well to
different populations [60]. In addition, handcrafted features may
not capture dynamic characteristics of human mobility, social in-
teractions and physical activities. For example, in daily place visit
trajectories, the impact of transitioning from one place to the next
cannot be practically encoded by using handcrafted feature en-
gineering given heterogeneous number of places visited by each
person. To address this limitation, we represent daily GPS trajec-
tory, Bluetooth encounters, and Physical activities as graphs, as
shown in Fig 1 and apply GNNs to automatically generate deep
features for our influenza-like symptoms recognition task.

We use G𝑝 = (𝑉𝑝 , 𝐸𝑝 ,Xp) to represent daily GPS trajectory,
where 𝑉𝑝 = {𝑣𝑝1 , 𝑣𝑝2 ...} and 𝐸𝑝 = {𝑒𝑝1 , 𝑒𝑝2 ...|𝑒𝑝𝑖 ∈ 𝑉𝑝 × 𝑉𝑝 } are
the set of nodes (places visited) and edges (transitions between
places), respectively; and Xp = {𝑥𝑝1 , 𝑥𝑝2 , ... |𝑥𝑝𝑖 ∈ R𝑑 } are the
feature vectors associated with each node in G𝑝 , where𝑑 is the node
features dimension. For Bluetooth encounter network, we represent
each detected Bluetooth device as a node in the graph and use edges
to indicate the adjacency between two detected Bluetooth devices.
We use G𝑏 = (𝑉𝑏 , 𝐸𝑏 ,Xb) to denote daily Bluetooth encounters ,
where 𝑉𝑏 = {𝑣𝑏1 , 𝑣𝑏2 ...} and 𝐸𝑏 = {𝑒𝑏1 , 𝑒𝑏2 ...|𝑒𝑏𝑖 ∈ 𝑉𝑏 ×𝑉𝑏 } are the
set of nodes (scanned devices) and edges (adjacency), respectively;
and Xb = {𝑥𝑏1 , 𝑥𝑏2 , ...|𝑥𝑏𝑖 ∈ R𝑑 } are the feature vectors associated
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Figure 1: GraphBasedBehaviorModeling usingMobile Sens-
ing.

with each node in G𝑏 , where 𝑑 is the node features dimension.
To represent physical activity transitions, we encode each activity
label as node in the transition graph denoted as G𝑎 = (𝑉𝑎, 𝐸𝑎,Xa),
where 𝑉𝑎 = {𝑣𝑎1 , 𝑣𝑎2 ...} and 𝐸𝑎 = {𝑒𝑎1 , 𝑒𝑎2 ...|𝑒𝑎𝑖 ∈ 𝑉𝑎 ×𝑉𝑎} are the
set of nodes (physical activities) and edges (transitions between
physical activities), respectively; and Xa = {𝑥𝑎1 , 𝑥𝑎2 , ...|𝑥𝑎𝑖 ∈ R𝑑 }
are the feature vectors associated with each node in G𝑎 , where
𝑑 is the node features dimension. All the graphs G𝑝 ,G𝑏 , and G𝑎

are unweighted and non-directional. As shown in Fig 1, behavior
represented graphs and their corresponding feature vectors can be
fed into graph neural networks, discussed in section 3.3, to build
predictive models.

3.3 Graph Neural Networks and Node
Embedding

Given the graphs representing daily mobility patterns, social inter-
actions, and physical activities, we apply graph neural networks
(GNNs) to automatically extract high level topological features from
non-euclidean spaces in an optimized way. Specifically, GNNs can
capture high order interaction information between neighbors in
graphs and aggregate local node features to generate graph level nu-
merical representation [54]. In our study, this prediction task can be
formed as graph classification given multi-channel input of graph
structured data, G𝑝 ,G𝑏 and G𝑎 . As shown in Fig 2, we propose an
end-to-end Graph neural network architecture with multi-channel
input to predict existence of influenza-like symptoms. The feature
vectors of node in each graph can also be automatically learned
by using Node Embedding, which maps each node into numerical
space such that nodes who share similar topological structures will
be closed with each other in the embedding numerical space. The
details of node embedding selection will be demonstrated in section
5.2. We investigated four different state of the art node embed-
ding techniques (Node2Vec, Walklets, NodeSketch, and BoostNE),
and four different graph convolutional layers (GCN, GaphSAGE,
GAT, GIN), as defined in the following subsections, to compare and
contrast their performance in our symptom recognition task.

3.3.1 Graph Convolutional Layers Graph Convolutional Net-
works (GCNs) [27] are neural networks that perform graph con-
volution operations on graph structured inputs. GCNs can infer
node level embeddings based on the features of node neighbor-
hoods. Given a graph G(𝑉 , 𝐸,X), we denote the adjacency matrix
and degree matrix of G as 𝐴 and 𝐷 respectively. Then layer-wise
propagation in a GCN can be expressed as

𝐻 (𝑙+1) = 𝜎 (𝐷̃− 1
2 𝐴̃𝐷̃− 1

2𝐻 (𝑙)𝑊 (𝑙) ) . (1)

Figure 2: Multi-Channel Graph Neural Network for
Influenza-like Symptom Recognition.

We set each node in G as self-connected, and define 𝐴̃ = 𝐴 + 𝐼 ,
where 𝐼 is the identity matrix. 𝐷̃ = 𝐷 + 𝐼 , and𝑊 (𝑙) is the weight
matrix which will be learned in the training process. 𝑙 indicates the
𝑙th layer of graph convolution operations. 𝐻 (𝑙) is the matrix output
with activation from 𝑙th graph convolution layer, and 𝐻 (0) = X.
𝜎 (•) is the activation function, such as 𝑅𝑒𝐿𝑈 (𝑥) =𝑚𝑎𝑥 (0, 𝑥). With
one layer of graph convolution, GCNs aggregate node features from
the nodes’ first-order neighborhood. Higher order neighborhood
aggregation can be achieved by adding more convolution layers.

GraphSAGEs [24] utilize various aggregate functions to inte-
grate features of node neighborhoods in search depth. Different
from GCNs, which aggregate nodes’ first order neighborhood in-
formation, GraphSAGEs apply forward propagation to concatenate
the features of each local neighborhood through the propagation
trace, such that higher order topological property can be leveraged
to aggregated node features. The GraphSAGE convolution can be
expressed as

ℎ
(𝑙+1)
𝑣 = 𝜎 (𝑊 (𝑙) •𝐶𝑂𝑁𝐶𝐴𝑇 [ℎ (𝑙)𝑣 , 𝐹 (𝑙) ({ℎ (𝑙)𝑢 ,∀𝑢 ∈ N (𝑣)}]) (2)

for each node 𝑣 in 𝑉 , where 𝐶𝑂𝑁𝐶𝐴𝑇 is the concatenation opera-
tion and 𝐹 (𝑙) (•) is the aggregation function in layer 𝑙 , which can
be mean, max, sum, and LSTM [24]. N(•) represents the set of
neighborhoods of the node 𝑣 .

GraphAttentionNetworks (GATs) [48] exploit attentionmech-
anisms to produce node representations. Given sequential observa-
tions such as text data, attentions are usually realized by allocating
more weights to the most important features from the inputs, such
that more attentions will be focused on the important features
when prediction is made. GATs adapt attention mechanisms by
learning the weights for the node neighborhoods, and during the
aggregation process, more weights will be assigned to the node
neighborhoods that have more influence to the node. The graph
attention convolution can be defined as

ℎ
(𝑙+1)
𝑣 = 𝜎 (

∑
𝑢∈N(𝑣)

𝛼
(𝑙)
𝑣,𝑢𝑊

(𝑙)ℎ (𝑙)𝑢 ), (3)

where ℎ (0)𝑣 = 𝑥𝑣 , and 𝛼
(𝑙)
𝑣,𝑢 is the attention of node 𝑣 in the 𝑙th layer,

which can be further expressed as

𝛼
(𝑙)
𝑣,𝑢 =

𝑒𝑥𝑝 (𝜂 (a(𝑙)𝑇 [𝑊 (𝑙)ℎ (𝑙)𝑣 ,𝑊 (𝑙)ℎ (𝑙)𝑢 ])∑
𝑢
′ ∈N(𝑣) 𝑒𝑥𝑝 (𝜂 (a(𝑙)𝑇 [𝑊 (𝑙)ℎ (𝑙)𝑣 ,𝑊 (𝑙)ℎ (𝑙)

𝑢
′ ])

. (4)

Here 𝜂 is LeakyReLU activation function, while a is a weight vector
to parametrize the attention mechanism.

Graph IsomorphicNetworks (GINs) [56] generalizeWeisfeiler-
Lehman graph isomorphism test to better discriminate graphs. GINs
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apply multi-layer perceptrons (MLP) to approximate the composi-
tion function as shown below:

ℎ
(𝑙+1)
𝑣 = 𝑀𝐿𝑃 (𝑙) ((1 + 𝜖 (𝑙) ) • ℎ (𝑙)𝑣 +

∑
𝑢∈N(𝑣)

ℎ
(𝑙)
𝑢 ), (5)

where 𝜖 (𝑙) is a learnable parameter. GINs are argued as power-
ful as the Weisfeiler-Lehman graph isomorphism test for graph
classification tasks [56].

3.3.2 Node Embedding Node embeddings are applied to infer node
attributes in graphs, mapping graph structured data into numeri-
cal spaces. Node embeddings can automatically extract high level
node features by leveraging dependencies between nodes and graph
structures [25]. In general, there are two categories of Node embed-
ding methods: 1) Deep walk [41]; 2) matrix factorization [35]. We
applied two node embedding methods from each category listed
below:

(1) DeepWalk
(a) Node2Vec [23] deploys exploration-exploitation strategy

to consider both homophily and structural equivalence
in graphs when performs node embedding. By making
depth first search and breadth first search for sampling
the node neighborhoods, Node2Vec can generate continu-
ous feature representations to encode the immediate local
structure of nodes and global network neighborhoods.

(b) Walklets [42] samples node neighborhoods context with
skipping over nodes in each random walk. Multi-scale
relationships can be encoded by subsampling fixed length
of path in the node neighborhoods context generated from
skipping random walks.

(2) Matrix factorization
(a) NodeSketch [59] starts lower-order node embedding with

generating Self-Loop-Augmented (SLA) adjacency matrix
and then using hashing functions to map each SLA ad-
jacency vector into Hamming space to approximate the
similarity of each adjacency vector.

(b) BoostNE [32] conducts a sequence of non-negative matrix
factorization to the residual of the connectivity matrix
approximated from previous step to generate sequence of
weak embeddings. Then the sequence of weak embeddings
will be ensembled to generate fine-grained embedding
representations.

4 Data Collection and Description
The data used in this paper is a subset of a multicohort study that
studied mobile sensing techniques for earlier diagnosis of illness.
In total, 2700 participants distributed in 24 states in the U.S. were
recruited to participate in this study for up to 1-year. We selected
only participants that had at least 14 days worth of data from
GPS, Bluetooth, Activity, and self-reported influenza-like symptom.
Finally, Data from 448 participants are retained for our current work,
and the active data collection date is from Feb 15th 2019 to Apr
30th 2020. The mean age of the participants is 40.71(𝑠𝑑 = 11.52).
65.36% of the participants are female, with White being 66.2%,
African American 19.3%, Asian 7.3%, multiple races 3.3%, Hispanic
3.5%, and others 0.4%. Among the 448 participants, 52% are full
time workers, 20% are full time students, 12% are working part

Figure 3: Samples of daily location trajectory, Bluetooth en-
counter network, and physical activity transitions graphs.

time, 7% have retired, 5% are care takers, and 4% are temporarily
unemployed. More details about the larger study can be provided
by the corresponding author.

In the data collection process, participants were asked to install
and run ReadiSens, a mobile sensing app, for up to 4 months. ReadiS-
ens is a cross-platform app built on top of Sensus [55] to passively
collect GPS location data every 30 mins; Bluetooth Encounters
data every 15 mins in Android, and every 30 mins in iOS; activity
data when activities change in Android, and every 2 hours in iOS.
Ecological momentary assessments (EMAs) were delivered at 8pm
everyday to collect self-reported symptoms, which include fever,
cough, difficulty breathing, fatigue, muscle aches, headache, sore
throat, runny nose, nausea, and diarrhea. Data were periodically
uploaded to Amazon Web Services (AWS) Simple Storage Service
(S3). All data were encrypted and anonymized to protect partici-
pants’ data security and privacy. Any identifying information was
omitted before being stored on AWS. GPS data were anonymized
by omitting the integer parts of their longitudes and latitudes. Blue-
tooth’s name and MAC addresses were automatically hashed on
Readisense.

5 Experiments and Results
In this section, we illustrate the detailed information about data pre-
processing, graph modeling, GNN implementation, model selection,
interpretability of GNN and hyperparameter sensitivity analysis.

5.1 Data Preprocessing and Statistics
After data preprocessing, we are left with 8,415 observations, among
which 6,923 are non-symptomatic (no influenza-like symptoms re-
ported) samples , and 1,492 (17.7% of all samples) are symptomatic
(at least one influenza-like symptoms reported) samples. Given the
discrete signals from daily GPS trajectories, Bluetooth encounters
and activity transitions traces, we convert them into graph repre-
sentations. Figure 3 provided one sample of the constructed graphs
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Symptom Node Number Average Node Degree Connectivity Assortativity
GPS Bluetooth Activity GPS Bluetooth Activity GPS Bluetooth Activity GPS Bluetooth Activity

NO 6.32 180.70 5.02 3.25 2.79 4.96 1.08 1.03 2.87 -0.33 -0.06 -0.10

YES 6.00 157.45 4.86 2.91 2.74 4.82 1.07 1.02 2.86 -0.39 -0.14 -0.11
Table 2: Compare the average graphmetrics of GPS trajectory, Bluetooth encounter networks, and Physical activity transitions
between days of participants with influenza-like symptoms and those without any symptoms.

Figure 4: F1-score comparison for the combinations of Node
Embedding methods and embedding dimensions. GNNs
with two GCN layers were built with TopK (ratio = 0.75)
graph pooling layer and global sum pooling layer. The train-
ing processes were set using 40 epochs, 64 batch size, 10
step patience for early stopping, and learning rate 0.001 for
Adam optimizer.

for each sensing modality. To illustrate and compare graph prop-
erties for robust and symptomatic samples, we present summary
statistics of graph metrics in Table 2. In the symptomatic cases, the
average node number, node degree, connectivity and assortativity
are consistently lower than those in the non-symptomatic cases.
These discrepancies indicate that the graphs in symptomatic cases
generally have less vertices and less edges, implying that the partic-
ipants, who have influenza-like symptoms, could have less mobility,
social interactions, and diverse physical activities. Since we had im-
balanced distribution between symptomatic and non-symptomatic
cases, we oversampled the minor cases in our experiments. For a
fair comparison between different GNNs [16], we separated the
whole dataset into 90% training data and 10% testing data, and in
the 90% training data, we select 10% training data as validation
data and applied oversampling technique to re-balance the rest of
the training data. In the end, we had 10,239 training samples after
oversampling, 692 validation samples, and 841 testing samples. To
deal with missing graphs in the data set, we imputed naive graphs
which had 2 nodes with one edge connecting them.

5.2 Node Embedding Selection
To select the best node embedding technique with sufficient em-
bedding dimensions, we experimented the above mentioned node
embedding methods using GCNs with increasing embedding dimen-
sions for one run. We used two layers of GCNs with TopK graph
pooling and global sum pooling layer for 20% random sampled data.
F1-scores from these experiments are reported in Figure 4. Ma-
trix approximation methods (NodeSketch, BoostNE), showed better
performance than DeepWalk methods (Node2Vec, Walklets). This
could be because DeepWalk methods usually require large number

Figure 5: F1-score comparison for the dimensions of neu-
rons for the hidden layers in GNNs. GNNs consisted of two
Graph convolutional layers with TopK (ratio = 0.75) graph
pooling layer and global sum pooling layer using the entire
dataset. The training processes were set using 80 epochs, 256
batch size, 15 step patience for early stopping and learning
rate = 0.001 for Adam optimizer.

of sampled node neighborhoods to generate the contexts of the
embedded nodes. However, the average node degrees in our data
are generally small such that sampled random walks could be insuf-
ficient to learn good latent representations. We select NodeSketch
with an embedding dimension of 40 based on its performance.

5.3 Hidden Layer Dimension Selection
The prediction performance of deep learning methods can be im-
pacted by dimension of neurons in the hidden layers. Neural net-
works with high dimensional layers generally can have more pre-
dictive power, but require larger training samples. In this section,
we tuned the dimension of graph convolutional layers to select the
number of dimensions for each GNN. We set up GCN, GraphSAGE,
GAT and GIN with the same TopK graph pooling layer and global
sum pooling layer, and trained the GNNs with the full dataset with
one run. NodeSkech were implemented to extract node embeddings.
F1-scores were reported Figure 5. We observed that the F1-scores
generally increased with increasing dimension of hidden layers.
However GAT and GIN were much less sensitive to the variation
of hidden layer dimensions. We selected dimensions 64 for GCN,
48 for GraphSAGE, 8 for GAT, and 40 for GIN.

5.4 Pooling layer selection
In this section, we fine-tuned the GNNs with different combina-
tions of graph pooling layers and global pooling layers, as shown
in Figure 3.3. Graph pooling layer, including TopK pooling [14]
and SAG Pooling [31] in this study, is to select most important
nodes (generating smaller graphs) with respect to the prediction
performance. TopK pooling selects the top K nodes in graphs by
ranking the projected scalar values of each node features. SAG
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Graph Convolutional Layer
Graph and Global Pooling Layer

TopK Pooling SAG Pooling
GlobalSum GlobalMax GlobalAttention GlobalSum GlobalMax GlobalAttention

GCN 0.7578 0.8617 0.7551 0.7881 0.8591 0.8081

GraphSAGE 0.7811 0.8856 0.7905 0.8068 0.8792 0.7524

GAT 0.6367 0.6309 0.6072 0.5882 0.6409 0.6206

GIN 0.7072 0.7313 0.6925 0.7243 0.7441 0.7244

Table 3: F1-score comparison to select best combination of
graph pooling layer and global pooling layer in Figure 2 in
GNNs. The dimensions of each GNN were set up based on
the results from section 5.3. TopK pooling ratio = 0.75. The
training processes were set with 80 epochs, 256 batch size,
15 step patience for early stopping and learning rate = 0.001
for Adam.

pooling applies attention mechanism to select top ranked nodes
by self-attention scores. Global pooling layer (read-out layer), in-
cluding GlobalSum, GlobalMax, and GlobalAttention [33] in this
study, is to generate graph level features from node level features.
GlobalSum and GlobalMax produce graph level representations
by taking sum and max of each node feature in the feature vec-
tors, respectively, while GlobalAttention uses neural networks to
create self-attentioned graph level representation [33]. The results
compared by F1-score were shown in Table 3. We observed that
in both TopK and SAG poolings, GlobalMax pooling produced the
best results. This could be because GlobalMax can extract the most
salient features from node feature vector to better represent the
graphs.

5.5 Results and Analysis
To compare handcrafted and graph based behavior modeling, we
select the following baseline models for handcrafted features: 1)
Logistic regression [40], 2) Support vector machine (SVM) [45], 3)
Random forest [34], 4) Xgboost [15], 5) Multi Layer Perceptron
(MLP) [19], all of which have been widely applied and investigated
in mobile sensing studies[28, 29, 36]. Equivalently, we replaced
missing values with 0 in handcrafted features, and applied over-
sampling to re-balance the training data set. We set up the GNNs
with the best performed node embedding method, their own se-
lected hidden layer dimensions, and pooling layer combinations as
discussed in section 5.2, 5.3 and 5.4. The hyperparameter setting
is as follow: TopK pooling ratio = 0.75, epochs = 80, batch size =
256, early stopping patience = 15 and learning rate = 0.001. We
performed 10-fold cross validation to compare the performance
between handcrafted and graph based methods. The metrics for
comparison include precision, recall, F1-score, and AUC-score.

The results are shown in Table 4. We observe that except GAT,
all other GNNs outperformed the baseline models with handcrafted
feature engineering by all evaluation metrics. From the training
and validation loss plot generated from one cross validation itera-
tion (Figure 6), the GCN training loss continued to decrease, but
the validation loss reached a minimum between epoch 50 and 60,
implying that GCN could have been overfitted in the training data
set after epoch 60. For GIN, the training loss decreased smoothly,
but the validation loss did not show significant improvement after
80 epochs. This could be because GIN had much more parameters
to tune, since GIN used MLPs as the composition function. For
GAT, both the training and validation loss did not show any im-
provements, thus early stopping was activated at 68 training epoch.

Category Model Metrics
Precision Recall F1 AUC

Baseline

Logistic Regression 0.5673 ± 0.0096 0.6139± 0.0171 0.5896 ± 0.0129 0.6532 ± 0.0208

SVM 0.5823 ± 0.0102 0.6414± 0.0177 0.6104 ± 0.0135 0.6838 ± 0.0133

Random Forest 0.6617 ± 0.0308 0.6252±0.0222 0.6429 ± 0.0257 0.7339 ± 0.0151

Xgboost 0.6047 ± 0.0111 0.6610± 0.0175 0.6316 ± 0.0137 0.7354 ± 0.0156

MLP 0.6407 ± 0.0212 0.6679± 0.0198 0.6501 ± 0.0186 0.7443 ± 0.0162

GNN

GCN 0.8079 ± 0.0246 0.8549 ± 0.02446 0.8307 ± 0.0236 0.9148 ± 0.0195

GraphSAGE 0.8546 ± 0.0210 0.8991 ± 0.0164 0.8762 ± 0.0184 0.9539 ± 0.0132

GAT 0.6087 ± 0.0065 0.6872 ± 0.0133 0.6455 ± 0.0058 0.6725 ± 0.0091

GIN 0.7176 ± 0.0153 0.7733 ± 0.0223 0.7443 ± 0.0161 0.8179 ± 0.0192

Table 4: Results comparison between baseline models with
handcrafted feature engineering and GNNs

Figure 6: Training and validation loss comparison of GNNs
over epochs.

GraphSAGE provided the best performance among the GNNs as it
produced lower training and validation loss than the other GNNs in
almost all training epochs. GraphSAGE showed the best predictive
power because it can aggregate higher order node neighborhood
information such that more complex interaction between nodes
can be leveraged to classify the input graphs. Additionally, since
the input graphs generally have large number of nodes but small
number of node degree, the node neighbors’ topological structures
can be better represented in GraphSAGE, whereas in GCN only
local node structures could be aggregated.

5.6 Interpretability of Graph Neural Networks
To build trust in the black box GNN approaches, and increase the
transparency of GNN’s decision making mechanism, we applied
Class Activation Mapping (CAM) [61] to interpret contributions
of the node features and graph structures to GraphSAGE’s predic-
tion. CAMs have been widely used in image recognition to explain
how high level image features can be used in convolutional neural
networks for classification tasks[44]. In this study, we implement
the GNN version of CAM to identify important node features in
differentiating graph classes. GNN based CAM can analyze the out-
put of last graph convolutional layer and link the learned feature
weights with input node attribute to calculate node importance
for graph classification. We adapt our GraphSAGE model for a
better interpretation by replacing global max pooling layer with
global average pooling layer in the last graph convolutional layer
and remove the dense layers as discussed in [61]. We generate the
heat maps of nodes in graphs from both symptomatic and non-
symptomatic cases, as shown in Figure 7. In general, we observe
that the graphs of non-symptomatic cases are more diverse and
complex than symptomatic cases. The graphs also show that that
higher number of visited places, diversity of locations, and physical
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Figure 7: Interpretable GraphSAGE: (a) is a sampled Non-
symptomatic case, and (b) is a sampled Symptomatic case.
The darker the nodes the more important of this node will
be to predict existence of influenza-like symptoms. The
numbers shown in each node indicate the order of being in
each node.

activity are all indicative of the absence of symptoms. This can
indicate that our model was able to learn that when users show
a lower activity levels and a more sedentary behavior, they have
higher chances of having ILI symptoms.

We also observed that nodes from different cases, different graphs,
and different sub-graph structures can have different importance
levels at predicting symptoms. In non-symptomatic case, as shown
in 7 (a), important nodes were distributed globally in multiple sub-
structures in each graph. This implies that multiple nodes in each
non-symptomatic graph have high contribution to the symptom
recognition. In symptomatic case, as shown in 7 (b), important nodes
were distributed locally in limited sub-graphs. This can speak to
the importance of some contextual situations (e.g., home and hospi-
tals) at differentiating between symptomatic and non-symptomatic
cases.

5.7 Hyperparameter Sensitivity Analysis
For the fine-tuned GraphSAGE model, we investigated several criti-
cal hyperparameters that could impact the prediction performance.
The results were shown in Figure 8. In plot (a), we found that higher
learning rate produces worse prediction performance, and also gen-
erates larger variance in validation loss, which means the model
has larger variance in its predictions. In plot (b), different TopK
ratios lead to different F1-scores ranging from 0.87 to 0.91. There
is no clear pattern on how the preference of TopK ratios can have
impacts on prediction performances, but from the experiments a
0.6 TopK ratio returns the best F1-score at 0.91. This implied that
top 60% of nodes had higher contribution to predict existence of
influenza-like symptoms than other nodes. In plot (c), we observed
that with only 50% of data as the training set, GraphSAGE could
have comparable validation predictive performance as the models
trained with more than 50% data. This has practical implication

Figure 8: Hyperparameter sensitivity analysis for Graph-
SAGE: a) learning rates on validation loss over training
epochs; b) prediction performances on different TopK ratios;
c) prediction performances using different proportions of
data as training set.

as in mobile sensing and human centered computing, samples are
expensive to obtain.

6 Conclusion, Discussions, and Future Works
In this study, we applied graphs to represent symptomatic human
behaviors captured by multi-modal mobile sensors, and demon-
strated the potential of graph neural networks to detect and pre-
dict human states. Based on our best knowledge, this is the first
work of graph-based behavior modeling by leveraging graph neu-
ral networks and multi-modal mobile sensing. Instead of using
handcrafted feature engineering to generate fine-grained behavior
markers, we proposed to use graph representations to encode the
dynamics of human behavior state transitions, and node embed-
ding techniques to extract topological node attributes, and finally
GNNs to learn automatic deep features for influenza-like symptom
recognition. We showed that GNNs with GraphSAGE convolutional
layers significantly outperform baseline models with handcrafted
features. Additionally, the graph-based behavior modeling and mo-
bile sensing framework, as shown in Figure 1 can be generalized to
applications in mobile sensing, such as those in mental health [52].

In addition to the generalization of this framework in the mo-
bile sensing field, this work also has public health application with
regard to overcoming the limitations of traditional public health
reporting systems and syndromic surveillance. On an individual
level, influenza-like symptoms can be detected passively and un-
obtrusively by using this framework, and interventions can be
delivered to change individuals’ behaviors such as self-isolation.
On a community and population level, early detection of influenza-
like symptoms can inform people of the potential of being infected
by those who are sick and in proximity, and help predict nationwide
influenza levels for public health policy decisions.

Our current work is subject to the following limitations. First
of all, we built global models using data from all participants by
assuming homogeneity of behaviors and personalities across differ-
ent participants in our study. A better approach would be to create
personalized models by retraining the global model with individual
data. Unfortunately, our dataset was not adequate for building per-
sonalized model due to missing data and the relatively short study
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period. Secondly, using Bluetooth encounters as proximity of real
face-to-face social interactions could be biased. This approximation
is based on the assumption that more detected Bluetooth encounters
lead to higher probability of face-to-face social interactions [20],
which is not always the case. Thirdly, lab-confirmed diagnosis of
influenza is not provided. Influenza symptomatology is nonspecific
and similar to many other diseases at an early stage which limits
the application of this work. Last, due to privacy concerns and
risks of identity exposures, we anonymized the GPS coordinates
and encrypted Bluetooth encounter device IDs. Because of this,
important semantic and contextual information of the behavior
states represented by our graphs is lost, which greatly weakens the
interpretability of the decision process.

In the future, we will extend our current work in two directions.
First, by extending the sequence of observations of mobile sensing
data to several days, dynamic graphs through time line can be used
to capture temporal variations of behavior states, such that spa-
tiotemporal representations of human behaviors can be extracted
to analyze dynamic interactions between symptoms of diseases and
human behaviors over time. Second, we plan to use semi-supervised
machine learning techniques to leverage both labeled and unlabeled
observations to produce models with better generalization.
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