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ABSTRACT

This work explores an unsupervised approach for modelling players
of a 2D cube puzzle game with the ultimate goal of customising the
game for particular players based solely on their interaction data.
To that end, user interactions when solving puzzles are coded as
images. Then, a feature embedding is learned for each puzzle with
a convolutional network trained to regress the players’ comple-
tion effort in terms of time and number of clicks. Next, the known
bag-of-words technique is used at two levels. First, sets of puzzles
are represented using the puzzle feature embeddings as the input
space. Second, the resulting first-level histograms are used as input
space for characterising players. As a result, new players can be
characterised in terms of the resulting second-level histograms.
Preliminary results indicate that the approach is effective for char-
acterising players in terms of performance. It is also tentatively
observed that other personal perceptions and preferences, beyond
performance, are somehow implicitly captured from behavioural
data.
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1 INTRODUCTION

In a previous work [26], we explored how visual modification in
a cube puzzle game could modulate the game challenge without
any other modification of the gameplay whatsoever. Through a
between-subject protocol, it was found not only that different vi-
sual modifications generally induced different challenges, but also,
and more importantly, that even the more challenging modifica-
tions were perceived differently by different players. This is by
no means a surprising result; after all, different people have dif-
ferent background and skills. But, motivated by the results and
observations in this particular game, a natural question emerged:
could players of this game be characterised from their interactive
behaviour while playing so that the visual modifications of the
game can be adaptive?

This work addresses the player characterisation part, not the
game adaptation part. An overview of the proposed approach is
given in Fig. 1. The problem is tackled through an unsupervised
scheme to discover player profiles from behavioural data, instead
of relying on ground-truth user classes that could be inferred from
either measurements of self-reported personality traits or implicit
association tests [28]. Also, instead of manually extracting fea-
tures as in other works [12], we encode the players’ interaction
as images, and then learn deep features for a supervised regres-
sion task. Although the regression task is supervised, the rest of
the approach is unsupervised in that these features are directly
used for user modelling without additional ground-truth, prede-
fined labels of puzzles or player profiles. After our background on
the bag-of-words (BoW) representation applied to human action
and gesture recognition [1, 32], and partly inspired by the “bag of
behaviours” [7] in a different user modelling problem and with a
different purpose, we propose to use a two-level BoW: the first one
will characterise sets of individual puzzles; and the second one will
characterise players.

The main contribution of this work is an approach for charac-
terising players of a particular videogame, which combines known
computer vision and machine learning techniques. Although the
methodology and tests are focused on a case-study game as part
of an ongoing project, some of the ideas and concepts underlying
our proposal are likely to be applicable to some other games as
well. In particular, games with significant visual components and
mouse- or touch-based interactions might find useful the possibili-
ties of encoding interactions with images, feature learning, or some
approach similar to the bag-of-words representation.
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Figure 1: Schematic overview of the proposed methodology.

2 RELATED WORK

Player modelling. Modelling players of videogames is useful for
marketing, procedural content generation, and game design. Dy-
namic difficulty adjustment (DDA) [39] is particularly relevant to
adapt the challenge to the players’ skills or preferences, which may
bring an improved game experience [35]. Personality and game
experience are related [5]; player types can be found from per-
sonality traits, and the latter can be inferred through behavioural
data [9], which in turn can help personalise games [16, 31]. User
modelling from either theoretical frameworks [30], or human do-
main experts [20], are useful, but have limited flexibility. Naturally,
data-driven approaches pose an interesting alternative with advan-
tages such as generalisation to other games [14]. Recently, player
behaviours are modelled with neural networks, which can be ap-
plied to generating the behaviour of the opponent player so as to
modulate the difficulty [23, 24].

Predictive systems. Player experience (challenge, frustration, and
fun) can be modelled through controllable features of level de-
sign [21, 22]. Instead of having users report their personality or
emotions explicitly during the game play, it is interesting to do this
unsupervisedly and implicitly [4], or through gaze, and physiologi-
cal data [19]. Sequential models of in-game player behaviours are
an alternative to aggregated players’ actions, for predicting per-
sonality and expertise [6], assistance in serious games [36], churn
prediction [17, 38], or player categorisation from past and predicted
behaviours [8]. Deep and reinforcement learning may help predict
completion rate [18], or excessive gaming [34].

Challenging scenarios. In some cases, data from players is sim-
ply unavailable. For modelling players who leave the game early,
data from both, other players of the same game, and other games
played by the target player, are explored via transfer learning [33].
Computational models of motivation, and artificial game-playing
agents have been proposed [13] to predict player experience with-
out any actual player. Although in-game data is crucially important
to model players [27], this data is not available during game devel-
opment, and Al-based players can be used instead [11]. Our work
uses data from actual players, but future work might consider how
to include data from computational players.

3 METHODOLOGY

After describing the puzzle game and the user study from which
behavioural data is obtained (Sec. 3.1), we introduce how the inter-
action of one player with one puzzle can be encoded as an image
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(Sec. 3.2). These images are then used to learn to predict the player
performance via supervised regression (Sec. 3.3). As a byproduct
of this learning, interactions can now be represented with a com-
pact feature vector which is used for the two-level bag-of-words
approach (Sec. 3.4, Sec. 3.5).

3.1 Interaction data from a cube puzzle game

In this work, we use the data gathered from a case study conducted
in a previous work [26], which explored how visual modifications
in a particular game could modulate the game challenge. The case
study consisted of a web-based cube puzzle game (Fig. 2) with two
different versions. The experiment was conducted online, with a
between-subject protocol, where each participant played only one
version, randomly assigned. We collected behavioural data for each
player, as well as their responses to a final questionnaire about
their opinion, preferences and perceived effort (Table 1). Now, in
this work, we aim at characterising players of this game from the
collected data.
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Figure 2: One puzzle in the VC version for the beach target
image, colour modification and distracting images unrelated
to the target image. Five out of the nine cubes have already
the correct side on.

In this cube puzzle game, participants had to solve six cube
puzzles, sequentially presented to them. Each puzzle consisted of
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Table 1: After-game questionnaire

In general, I found easy to complete the game

I found the game entertaining

I think I was quick solving the puzzles

I would play this game again

I found the overall experience to be entertaining/boring/NA
I found the overall experience to be simple/complex/NA

I found the overall experience to be surprising/dull/NA

NN W =

8  Ifound the overall experience to be exciting/frustrating/NA
9  Which puzzle did you like the most?

10  Which puzzle did you like the least?

11  Iliked this game more than Mahjong

12 Iliked this game more than Solitaire

13 Iliked this game more than classical puzzle

14  1liked this game more than Sliding puzzle

nine cubes, with only one cube side visible at a time (Fig. 2). Six
images are involved in each puzzle, one per cube side. One of these
images is the target image, and is displayed as a reference to the
right of the cubes (right-hand side in Fig. 2). The participants had
to form the target image through mouse clicks in delimited areas
of each cube. These areas are hinted as arrows when hovering, as
can be appreciated at the upper-right square of the puzzle in Fig. 2.
These clicks are mapped to associated cube rotations around three
orthogonal axes; namely, left-right arrows for pan, up-down arrows
for tilt, and inner arrows for roll.

Players had also the choice to provide instant emotional feedback
regarding each puzzle, in the form of emojis, which are available in
the lower part of the the window (Fig. 2), but since this information
was used very little, it is not considered in this work.

We used three different target images (eye, beach, smoke) along
with five other images to design the six puzzles of the game. Two
versions of the game were produced: the standard (ST) one, con-
sisting of the six puzzles with the original images, and the visual
computing (VC) one, formed by the same puzzles with all their
images altered with a single visual concept. We used three visual
concepts: edges (spatial gradients of the gray-level images), colour
transformation (by applying a colour map), and dynamic transfor-
mation (by clockwise rotation of images). Each visual concept was
applied to the six images (one per cube side), each in two out of the
six puzzles (i.e. 3 concepts X 2 = 6 puzzles). For further details on
the game and the case study, the reader is referred to [26].

In this work, we use performance data from the 126 (ST and
VC) participants who completed the game and the questionnaire.
These data from each player at each puzzle are referred to as an
interaction (represented as B in Fig. 1). Therefore, each interaction is
a stream of time-stamped information about the mouse position and
clicks which thus represent the trajectory as well as the sequence of
cube rotations performed by a single player to solve one particular
puzzle.

3.2 Coding interactions with images

The information of the interaction of a player solving one puzzle
(B) is sequential in nature due to the temporal order of mouse
movements and clicks. However, this information can be somehow
coded as a single image as well. This idea is similar to how other
sequential information has been represented in other problems
such as coding audio information [2] or mouse movements in web
search tasks [3].
Two different image encodings were initially considered: trajectory-

based and click-based. In both cases the time information is colour-
coded using a map colour from green to red, scaling time relatively
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to the range [0, 1], i.e. not using absolute time values. In the trajec-
tory case, intermediate mouse positions are joined by line segments
and time is additionally coded as the width of these line segments.
In the case of clicks, each click is represented by a circle, whose
position is the center of the corresponding arrow button. Since
more than one click on the same arrow button is possible, the size
of each circle is made proportional to the number of clicks. By using
transparency, overlapping circles are still partially visible. Exam-
ples of these images are given in Fig. 3 for illustration purposes.
In this work, we focus on the click-based image representation
since it appeared to better predict performance in some early exper-
iments. This procedure produces the image (I in Fig. 1) encoding
an interaction.

3.3 Learning to predict performance

The 3 X 512 X 512 colour images encoding the interactions were
used to train a convolutional neural network (CNN) for regressing
the performance (number of clicks and completion time). This pre-
diction is not an end in itself because, after all, if we can construct
these images, we can also know the values for the time and number
of clicks. However, using a CNN for this task has two valuable
purposes. First, we can find out how successful a CNN can be for
predicting information from this type of images. Second, we can use
the activation of one hidden layer to compactly represent the input
image for subsequent tasks. In a way, this performance prediction
resembles a form of self-supervised learning task [10].

For that regression purpose, a ResNet34 was used as the back-
bone CNN as a reasonable tradeoff between model complexity and
prediction performance. Since ResNet was trained on a 1000-class
classification problem, the last fully-connected (FC) classification
layer was removed and replaced by two blocks each consisting of
batch normalisation, one dropout layer (with drop rates p = 0.2
and p = 0.5, in each block, respectively), and one FC layer. The
FC layer in the first block has 128 units (so that dimensionality is
progressively reduced, as customary), and was followed by a ReLU
activation. The output of the network at this point is used for the
feature embedding x € R1%8. The FC layer of the second block has
two units, corresponding to the predicted time and click values,
respectively, and no activation function was used. The loss function
was the mean squared error. A batch size of 32 instances were used.

We use the weights corresponding to training with ImageNet,
so the corresponding mean and standard deviations of the colour
channels for the training images was used to normalise our input
images. For training, we first freeze these weights and train the
new layers for 40 epochs with the Adam optimiser, and learning
rate 5 - 104, Then, the ImageNet-pretrained weights are unfrozen
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Figure 3: Examples of images encoding behavioural data per puzzle: (a) trajectory-based and (b) click-based, for three different
users and puzzles. In each case, the elapsed time (¢) in seconds, and the number of clicks (c) are given below, as a reference.

and the full network is trained for 10 more epochs with a lower
learning rate of 107>, so as to get some further adaptation to this
specific task.

3.4 Characterising puzzles with bags of
interactions

To characterise behaviours of players with individual puzzles, sets
of puzzles and, ultimately, players, we use the well-known concept
of the bag of words (BoW) [29]. In essence, the BoW consists of
vector quantization (i.e. clustering a set of feature vectors) to build
a vocabulary (the dictionary of words), and using a histogram (i.e.
the bag of words) as a pooling mechanism to summarise a given
document (i.e. a set of words). The vocabulary is typically repre-
sented by the centroids of the C clusters, with C being the chosen
size of the vocabulary. Here, k-means was used for clustering, and
the number of clusters (vocabulary size) was manually selected
using as a guiding criteria the well-known elbow method [37] from
the set of tested k € {1,...,9}.

In our case, the vocabulary is built from the training set of in-
teractions represented by the corresponding embedding vectors.
Now, a single new interaction x can be represented in terms of
this vocabulary as h(x) € RC by using a soft cluster assignment.
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Formally, let {di}ic:1 the distances of x to each of the C clusters;
the i-th bin of h is computed by the following softmax function:
—d;

e
hi(x) = ——,
1( ) chzl e—dj

(1)

which is similar to the idea of fuzzy c-means [15]. Soft assignments
are generally beneficial [25]. Note that this soft-assignment of a
single vector to the set of clusters can be seen as a histogram itself.
Now, the BoW representation for a set S = {x; }]Ai , of embeddings,
corresponding to a set of N puzzles (interactions), can be simply
computed as the sum
N
h(s$) = )" h(x)), @)
j=1

and then normalised with L;. Both the single-puzzle histogram
(Eq. 1) and the multi-puzzle histogram (Eq. 2) correspond to the first-
level bag of words (h; in Fig. 1). The left part of Fig. 4 summarises
the procedure.

3.5 Characterising players with bags of puzzles

The BoW discussed above (Sec. 3.4) is performed from embeddings
corresponding to individual puzzles. To model players, however, a
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Figure 4: The two-level bag-of-words illustrated. the two levels are similar and involve two steps each: building a vocabulary
via a clustering procedure (upper part), and defining the bag-of-words through histogramming (lower part). The difference
between the two levels is what are the input data points and what the resulting histograms represent. Left: The first level
(Sec. 3.4) has as input the feature vectors learned in the regression CNN (Sec. 3.3), and the resulting histograms represent sets
of interactions. Right: The second level (Sec. 3.5) uses the histograms produced from the first-level BoW, each corresponding
to the set of interactions from a single player, and produces histograms, each of which represent how a given (unknown or
new) player is similar to each of the identified groups (clusters) of players. Both BoW levels use a soft assignment (Eq. 1) based
on the distances (dashed line segments) of a data point to the cluster centres (stars). The number clusters in both cases were

identified with the elbow method.

conceptually higher stage is required. Since a single player i with
a set of puzzles S; for all its interactions can be represented by
h(S;), it can be argued that profiles of players can now be discov-
ered by operating in the space of these histograms of joint puzzles.
Therefore, we propose to perform another BoW, this time using
the histograms of the first-level BoW (h;) as an input. In turn, the
resulting vocabulary will serve to characterise players in terms of
the second BoW (hy in Fig. 1), which can be useful to assign a new
player to one profile, or to a mixture of profiles, given a complete
or partial set of their interactions. The procedure is illustrated in
the right part of Fig. 4. The number of clusters was again chosen
by the elbow method from the same set of tested k values as in the
first level.

4 RESULTS

From the second-level BoW, three player groups are automatically
identified. As shown in Fig. 5, these groups roughly correspond
with their actual effort. In particular, Group 1 correspond to the
players with larger times and more clicks. Interestingly, it can
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tentatively be argued that Groups 2 and 3 have similar times, but
differ in the number of clicks. Although the group separation is
not perfect, possibly due to limited data or learning, this result
tentatively indicates that (1) the image-based representations of the
interactions encode rich information regarding player’s behaviour;
(2) the learned (128-dimensional) feature embeddings found by the
CNN captures compactly the player performance; and (3) the Bow
representation is able to distinguish patterns of players from the
feature embeddings.

Although feature embeddings were learned for predicting times
and clicks, they might also be latently capturing other player’s
characteristics since the input images are representing specific
interactive behaviours. To explore this, we looked into the players’
responses to the questionnaire. As seen in Fig. 5, players in Group 1
took the longest to complete the game, and even though they were
aware of it (Fig. 6-Q3), they would play the game again (Fig. 6-Q4).
Although a finer-grained analysis would be required, it can roughly
be stated that players within this profile could be offered to play
similar puzzles in the future since their skill and puzzle challenge
seem to be aligned. On the other hand, even though players in
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Figure 5: Average completion times and number of clicks per
puzzle for the three player’s groups automatically identified
in the second-level BoW. Each point correspond to a differ-
ent player. Although the proposed approach allows for a soft
assignment whereby a single player has a degree of mem-
bership to each player group, here a hard assignment to the
closest cluster has been used.

Table 2: Classification of players into groups from their
questionnaire responses. Number of players (column-wise
% in parentheses).

pred.\true 1 2 3
1 15(44.1)  12(226) 13 (33.3)
2 8(23.5) 23(54.8) 11(28.2)
3 11(323) 18(34.0) 15 (38.5)
34(100) 53 (100) 39 (100)

Group 3 took the least to complete the game (Fig. 5), and this aligns
with their subjective perception (Fig. 6-Q1, Fig. 6-Q3), they were the
least to think they would play again (Fig. 6-Qy4). This suggests that
these players might have found the game boring, arguably because
their skills are higher than the game challenge. Tentatively, harder
puzzles could probably be suitable for them.

Finally, we explored how much the responses to the question-
naire (Q1-Q14, Table 1) relate to players profiles.

Results with the nearest-neighbour classifier and leaving-one-
player-out (Table 2) indicate that, despite the unsurprising low
overall accuracy (42.1%), it happens that within each true group,
the predicted group with most players correspond to the correct
one, which suggests that simple behavioural data might subtly
capture some subjective traits beyond performance.

5 DISCUSSION

Although the click-based image encoding was used in this work,
the trajectory-based representation could also be explored, since it
may model intrinsic players’ skills, e.g. in terms of puzzle solving
strategies. Since the current data size is somehow limited, collecting
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data for more players would be helpful. At this stage, we preferred to
keep the approach mostly unsupervised, but embeddings could also
be learned for supervisedly learning preferences and perceptions,
which could provide complementary predictive cues. The image-
based representation is very suitable for CNNs, but it does not easily
lend itself to on-line predictions for earlier user characterisation (e.g.
before completing a puzzle); exploring long short-term memories
(LSTMs) for this problem, either from image encoding or raw mouse
data, seems a natural next step.

6 CONCLUSION

A framework for characterising players of a cube puzzle game
has been proposed. It relies on representing the behavioural inter-
action as images, and then learning a feature embedding. These
compact learned feature vectors are then used for representing
individual and sets of puzzles as histograms following a two-level
bag-of-words approach. Preliminary results suggest this pipeline
is appropriate for comparing puzzles, and players in terms of the
puzzles they played, which offers a simple and reasonably effective
strategy for player characterisation in terms of performance and
beyond.
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