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Figure 1: We train a material texture generator with multiple channels such as albedo, normal, roughness, metalness and
ambient occlusion by passing random channel triplets to the 3-channel loss proposed by Gatys et al. [2015].

ABSTRACT
Our objective is to compute a textural loss that can be used to train
texture generators with multiple material channels typically used
for physically based rendering such as albedo, normal, roughness,
metalness, ambient occlusion, etc. Neural textural losses often build
on top of the feature spaces of pretrained convolutional neural
networks. Unfortunately, these pretrained models are only available
for 3-channel RGB data and hence limit neural textural losses to this
format. To overcome this limitation, we show that passing random
triplets to a 3-channel loss provides a multi-channel loss that can
be used to generate high-quality material textures.
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1 INTRODUCTION
A neural textural loss allows for generating textures by image opti-
mization [Gatys et al. 2015] or training generative models [Ulyanov
et al. 2016]. Typically, the loss is computed from the statistics of the
feature activations in pretrained Convolutional Neural Networks
(CNNs) such as VGG-19 [Simonyan and Zisserman 2015]. These pre-
trained CNNs are mainly available for RGB inputs, i.e. a 3-channel
formats. This is limiting for material textures used in physically
based rendering that have multiple channels such as albedo, normal,
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roughness, metalness, ambient occlusion, etc. We thus investigate
how a 3-channel loss can be applied to 𝑛-channel textures.

Our first attempt was inspired by previous work that generates
material textures from RGB photographs examples [Aittala et al.
2016]. They use a differentiable renderer to light the material tex-
tures and create an RGB render that can be passed to an RGB loss.
The material textures can then be optimized via gradient descent
by backpropagating gradients through the differential renderer.
As shown in Figure 2-(a), we found this approach to be unstable
with non-diffuse materials, especially sharp speculars. Indeed, in
addition to texture synthesis, the optimizer also needs to solve a
challenging inverse rendering problem. Aittala et al. [2016] report
using additional priors and considerable engineering efforts.

Fortunately, we can take advantage of explicitly provided mate-
rial channels and avoid solving a difficult inverse rendering problem
if we find a simpler way to pass 𝑛 channels to a 3-channel loss. We
tested different more or less elaborated ideas such as computing a
partial component analysis, training a 𝑛-to-3 channel encoder, etc.
In the end, we found that the best solution consists of choosing ran-
dom triplets in the 𝑛 channels. It provides a surprisingly simple and
well-founded approach with stable outcome shown in Figure 2-(b).
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Figure 2: (a) Passing a differentiable render to a 3-channel
loss workswith diffusematerials but becomes unstable with
rough speculars. (b) Our approach is robust and stable.
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2 OUR MULTI-CHANNEL TEXTURAL LOSS
The 3-channel loss. We build upon the 3-channel textural loss

introduced by Gatys et al. [2015]. They define the textural distance
between two RGB images 𝐼3 and 𝐼3 as the MSE between the Gram
matrices of the activations produced by the images in the 𝐿 layers
of a pretrained CNN:

L3-channel
(
𝐼3, 𝐼3

)
=

𝐿∑︁
𝑙=1

1

𝑁 2
𝑙

∥𝐺𝑙 −𝐺𝑙 ∥2, (1)

where 𝐺𝑙 and 𝐺𝑙 are the Gram matrices of the 𝑁𝑙 deep features
extracted from respectively 𝐼 and 𝐼 at layer 𝑙 in the pretrained CNN.
In our experiments, we use a pretrained VGG-19 [Simonyan and
Zisserman 2015].

Combining multiple 3-channel losses. Accounting for more than
3 channels can be done by adding multiple 3-channel losses applied
on the different maps. For instance, in Figure 3-(a) we optimize for
the sum of two 3-channel losses computed for the albedo and the
roughness triplets separately. This produces a texture whose albedo
and normal look realistic separately but do not match together
because the correlations between the albedo and the normal have
not been accounted for.

Our 𝑛-channel loss. In order to account for all the inter-channel
correlations, we define the loss between two 𝑛-channel images 𝐼𝑛
and 𝐼𝑛 as the expectation of the 3-channel loss over all the possible
triplets:

L𝑛-channel
(
𝐼𝑛, 𝐼𝑛

)
= E

[
L3-channel

(
triplet(𝐼𝑛), triplet(𝐼𝑛)

)]
, (2)

where triplet (𝐼𝑛) is a 3-channel image whose channels are chosen
randomly among the 𝑛 channels of 𝐼𝑛 . As shown in Figure 3-(b),
L𝑛-channel preserves inter-channel correlations. The generated tex-
tures have the same feature at the same places channel-wide. The
downside is a direct evaluation of L𝑛-channel requires evaluating
L3-channel for all possible triplets and averaging the results. A ma-
terial of 𝑛 channels hence requires 𝑛3 different evaluations, which
is untractable in practice.

Stochastic evaluation. To overcome this problem we proceed as
shown in Figure 1. Instead of evaluating L3-channel on all the possi-
ble triplets, we only evaluate it on a single triplet that is randomized
for each batch during learning. In other words, we compute a sto-
chastic estimate of Equation (2):

L̂𝑛-channel
(
𝐼𝑛, 𝐼𝑛

)
= L3-channel

(
triplet(𝐼𝑛), triplet(𝐼𝑛)

)
. (3)

This evaluation is fast, practical and does not change the optimum of
the 𝐿2 minimization because the estimate is unbiased. Furthermore,
it remains robust because the randomness induced by the stochas-
tic evaluation is similar to the natural randomness of stochastic
gradient descent and well-handled by state-of-the-art optimizers.

3 TRAINING AND RESULTS
We use our loss as a drop-in extension of a 3-channel loss to train
generative architectures of 𝑛 rather than 3 channels. We train a
mono-texture [Ulyanov et al. 2016] and a multi-texture [Li et al.
2017] generators, which we adapted to output 𝑛 channels. We use

L̂𝑛-channel for sole loss functionwithout further priors or regulariza-
tion terms and we train with the Adam optimizer. Note that we use
a vanilla implementation of the 3-channel loss of Gatys et al. [2015].
Several improvements to this loss have been published and imple-
menting them would directly benefit to our 𝑛-channel extension
as well. Figure 1 shows a result generated by our mono-texture
generator. Figure 4 shows a result generated by our multi-texture
generator. These generative architectures are capable of producing
arbitrarily-large texture at inference time with variation (no ver-
batim copying of the exemplar). Our supplemental material shows
further results with different sets of channels on various textures.

4 CONCLUSION
We have proposed a simple approach to extend existing 3-channel
textural losses to𝑛 channels. Themain idea is to span all the possible
inter-channel correlations thanks to a stochastic evaluation that can
be implemented in a single line of code. With this approach we hope
to bring a vast literature of neural texture synthesis approaches to
material texture synthesis without further efforts.

✗ ✓
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Figure 3: (a) Optimizing multiple 3-channel losses on sep-
arate triplets produces textures that look realistic indepen-
dently but that are not correlated, i.e. the spatial features do
not match. (b) Our loss preserves inter-channel correlations
since it optimizes for all the possible channel combinations.

example 1 generated example 2

Figure 4: We train a multi-texture generator that allows for
interpolating material textures. We trained the same archi-
tecture for 16 textures that includes these 2 examples.
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