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We present an algorithmic approach to designing animatronic figures — ex-
pressive robotic characters whose movements are driven by a large number
of actuators. The input to our design system provides a high-level speci-
fication of the space of motions the character should be able to perform.
The output consists of a fully functional mechatronic blueprint. We cast the
design task as a search problem in a vast combinatorial space of possible
solutions. To find an optimal design in this space, we propose an efficient
best-first search algorithm that is guided by an admissible heuristic. The
objectives guiding the search process demand that the design remains free
of singularities and self-collisions at any point in the high-dimensional
space of motions the character is expected to be able to execute. To identify
worst-case self-collision scenarios for multi degree-of-freedom closed-loop
mechanisms, we additionally develop an elegant technique inspired by the
concept of adversarial attacks. We demonstrate the efficacy of our approach
by creating designs for several animatronic figures of varying complexity.
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1 INTRODUCTION

Animatronic figures are electro-mechanical systems that are meticu-
lously engineered to generate lifelike motions. As can be witnessed
in theme parks, museums and special effects studios around the
world, these robotic characters can be made to convincingly re-
semble a vast array of creatures, real or imagined. Needless to say
though, the process of designing such marvels of engineering is
time-consuming, error-prone, and demands a great deal of experi-
ence and domain specific knowledge. In this paper, we therefore
tackle the challenge of automating some of the most tedious design
tasks that arise while creating animatronic figures.

In its most basic incarnation, as shown in Fig. 2, the bare-bones
structure of an animatronic figure consists of an articulated armature,
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Fig. 1. An animatronic face. Our algorithm assists in finding optimal motor
placement that avoid collisions and has efficient force transmission.

a set of actuators, and various mechanical structures that act as
force transmission mechanisms. The articulated armature defines
the desired range of motion of the robotic character, and it can be
seen as a direct analogue to a traditional animation rig. As such, we
model it as a hierarchical arrangement of rigid components that are
connected to each other via joints. The individual rigid components
in the armature can represent limb segments, miscellaneous body
parts such as ears, eyeballs and eyelids, or auxiliary appendages used
to drive the motions of a character’s lips or eyebrows, for example.

Actuators — commonly just off-the-shelf servomotors — bring
animatronic figures to life. The number of actuators embedded in
a design defines the set of unique functions (i.e. raise/lower left
eye-brow, open/close jaw, etc) it has; the more actuators, the richer
a space of motions the animatronic figure can generate. The com-
putational design framework we present is specifically developed
for animatronic characters that feature a large number of actuated
degrees of freedom.

Force transmission mechanisms are used to propagate the move-
ments generated by each actuator to the underlying articulated
armature. More specifically, they assign servomotors to individual
functions of the animatronic character, both conceptually and phys-
ically. In this work, the elements we consider when designing force
transmission mechanisms are rigid push/pull tie rods and bellcranks,
though other options — gears, belts, etc. — are also possible. Our
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choice is motivated by common practices in animatronic figure de-
sign, where, as shown in Fig 2, these two type of elements can be
combined to great effect. We further note that tie rods are often
endowed with swivel ends — spherical bearing joints which enable
the design of spatial (i.e. non-planar) mechanisms that are highly
versatile and have a large range of motion.

With the anatomy of a typical animatronic figure exposed, we can
now define the challenging design problem that we address in this
work. The input to our design algorithm consists of an articulated
armature. To specify the desired range of motion of the design, each
joint of the armature is given the min and max angles it should be
able to achieve. Also given as input is a set of candidate actuators;
the number of elements in this set must be greater than or equal to
the number of functions of the envisioned animatronic character.
Our design algorithm decides how to optimally assign actuators
from the input set to each target function, and it automatically gen-
erates force transmission mechanisms for each assignment. The
latter task demands that tie rods are instantiated in the design and
physically connected, possibly via bellcranks, to appropriate attach-
ment points on armature and on the horns of the servomotors. The
objectives driving the design process demand that the synthesized
force transmission mechanisms remain singularity free and do not
collide with the armature or with each other at any point in the
high-dimensional space of motions the character is expected to be
able to execute.

We cast the task of designing animatronic figures as a tree search
problem over a vast combinatorial space of possible discrete so-
lutions. To efficiently explore this space in pursuit of an optimal
design, we propose a novel best-first search algorithm that is guided
by an admissible heuristic. We demonstrate the efficacy of our ap-
proach by designing a diverse set of animatronic figures. Our most
complex example features 18 functions, and it was automatically
designed in under 20 minutes. For comparison, naively evaluating
every possible design would take years of compute time.

Succinctly, our technical contributions are:

o Casting the design of high degree-of-freedom animatronic
figures as a search problem in a discretized combinatorial
space of possible solutions

o An efficient algorithm to find optimal designs in the vast
space of possible solutions

e A technique inspired by the concept of adversarial attacks to
identify worst-case self-collision scenarios in multi-degree-
of-freedom closed-loop mechanisms.

2 RELATED WORK

The past decade has witnessed a significant number of research
projects dedicated to the development of computation-driven design
methodologies for various classes of physical artifacts [Bermano
et al. 2017]. Closest to the problem we focus on here is the body of
work addressing the design of mechanical devices that are able to
produce choreographed movements. Roughly speaking, this body
of work can be divided into techniques that synthesize novel mech-
anisms [Megaro et al. 2014; Thomaszewski et al. 2014], and methods
used to fine-tune or re-purpose existing designs using continuous
or stochastic optimization techniques [Bacher et al. 2015; Ha et al.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Fig. 2. Internal structure of an animatronic head created by master creature
FX artist Gustav Hoegen.

2018b; Song et al. 2017; Zhang et al. 2017]. Of course, these two con-
cepts can naturally be combined as well [Bharaj et al. 2015; Coros
et al. 2013; Zheng et al. 2016; Zhu et al. 2012].

The method we propose synthesizes functional mechanisms from
scratch. However, rather than employing a template-based approach
where fully-functional mechanisms are used as building blocks [Coros
et al. 2013; Zhu et al. 2012], our method operates directly on basic
components, tie rods and bellcranks, which are computationally
assembled to form complex mechanical structures. From this point
of view, our work is closest related to that of Thomaszewski and
his colleagues [Thomaszewski et al. 2014]. However, while their
method is tailored to designing planar, single degree of freedom
structures, our method specifically targets spatial (i.e. non-planar)
mechanisms driven by a large number of actuators that must oper-
ate in concert. This new problem setting drastically increases the
complexity of the design process and therefore necessitates a dif-
ferent algorithmic approach. For example, an appropriate design
must ensure that self-collisions are avoided throughout the anima-
tronic figure’s targeted range of motion. This is very challenging.
For one degree of freedom mechanisms, a simple monotonic search
along the actuation parameter suffices to identify configurations
where self collisions occur, and simple analytic formulas have also
been developed [Zheng et al. 2016]. In the multi-motor setting, we
instead propose to formulate the task of identifying self collisions
as a numerical optimization problem. To determine if a given de-
sign is free of self collisions, we find the values of the motor angles
that minimize the distance between selected pairs of mechanical
components. This approach is inspired by the concept of adversarial
attacks, where the aim is to explicitly find worst-case scenarios that
break a given system [Huang et al. 2017].

Prior work has tackled design problems for robotic systems with
multiple actuated degrees of freedom, typically in the context of
locomotion or flight [Du et al. 2016; Geilinger et al. 2018; Jelisavcic
etal. 2017; Leger et al. 1999; Megaro et al. 2015]. Some of these works
formulate the design task as tree or graph search problems [Ha et al.
2018a; Zhao et al. 2020], as we do. However, prior methods gener-
ally assume tree-like serial structures for the robotic designs they
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can generate. Designs for animatronic figures, on the other hand,
are much more mechanically complex. As they are specifically de-
signed to resemble living creatures, their underlying articulated
armatures are slim and it is not possible to place motors directly
at the joints. Mechanical force transmission elements are there-
fore a necessity, and they turn animatronic figures into complex
multi-degree-of-freedom closed-loop mechanisms. Our novel de-
sign algorithm, which is cast as an efficient search process driven
by an admissible heuristic, is specifically developed for these types
of mechatronic systems.

We also note that there are several recent projects that are closely
related, but complementary to our work. For example, Desai and
her colleagues developed a framework for assembly-aware design
of electro-mechanical devices [Desai et al. 2018]. The designs they
target contain no moving parts, but the techniques they propose
could be used to automatically prepare the designs generated with
our method for fabrication. Computational issues related to the
design of soft skins for animatronic characters have also been in-
vestigated [Bickel et al. 2012; Feng et al. 2019]. The animatronic
designs generated with our method could also be used to drive the
motion of such soft skins, although ensuring that the force trans-
mission mechanisms are designed to be sufficiently strong remains
an avenue for future work. We would also like to note that tech-
niques developed to model [Geilinger et al. 2020; Hahn et al. 2019],
design [Bern et al. 2017; Ma et al. 2017; Megaro et al. 2017; Tang et al.
2020] and control [Bern et al. 2019; Hoshyari et al. 2019] compliant
mechanisms and soft robots could also be used in conjunction with
the algorithmic methodology we present in order to create increas-
ingly lifelike animatronic characters that are composed of a mix of
rigid and deformable materials.

3 OVERVIEW

Given an animatronic figure with multiple articulated components,
our goal is to optimally place, assign and attach motors to actuate
these components. Each component can be made out of several
mechanical parts. We refer to the motors as drivers and to the me-
chanical parts they are connected to as followers. As input to the
algorithm, the user specifies a range of motion for each component.
In addition, the user defines a region of space where the drivers are
allowed to reside. Usually, this will be a plate within the body of the
mechanism that the drivers can be mounted on. This region is over-
sampled with drivers, i.e. more drivers than the necessary degrees
of freedom are placed, from which a subset that globally optimizes a
certain performance objective is automatically picked, as discussed
in sec. 3.1. In other words, we assign a driver to each follower. An
assignment is physically made by connecting the followers to the
drivers with tie rods. This can be done in many different ways, e.g.
attachment points on the driver and follower, or via bellcrank mech-
anisms, all of which are considered during optimization. See Fig. 3
for an illustration.

Our algorithm employs a Branch-and-Bounds approach, and the
general idea is as follows. A complete assignment is an assignment
of all followers to drivers such that all degrees of freedom are ac-
counted for, while a partial assignment only treats some of the
followers. Every partial or complete assignment has a certain cost,

~ Unused
9 Motor

Tie-rod Driver d;

Fig. 3. Overview of the system and the terminology used. To visualize the
motions of the followers, we trace a single points on them (shown as spheres
in the figure). The highlighted frame in the middle shows two poses of the
same follower. There is a single, unused motor visible, as determined by the
algorithm, but there are other unused ones hidden behind the mechanism.

and thus our goal is to search all possible complete assignments for
the one with minimal cost. Partial assignments can be organized in
a tree structure, where children of a node contain the same partial
assignment, appended with an additional single assignment (see Fig.
4). The leaves of the tree are the complete assignments, and there-
fore what we seek is to find the leaf with the minimal cost. Based
on this observation, for each partial assignment we propose two
heuristics that underestimate the minimal cost of a leaf of the partial
assignment’s subtree. This can be used, for example, as the basis
for the A* algorithm, a particular instance of Branch-and-Bound,
which we discuss in Sec. 4.1.

3.1 Problem statement

Input. The animatronic figure is a mechanism, which consists of a
set of rigid bodies or links that are connected by joints. In our setting,
we distinguish between three types of links: Drivers are the horns,
the exposed rotating part, of the motors, and their pose is directly
determined by the motors’ angles. Followers are the rigid parts of
the articulated components, which are intended to be actuated by
the motors. Drivers and followers can be attached to tie-rods, the
third type of link, at various points on their surfaces using ball and
socket joints. An assignment of a driver to follower is physically
fulfilled by directly connecting them together with a tie-rod. Note
that in sec. 4.2 we also discuss assignments utilizing bellcranks, for
better force transmission.

The state of the mechanism (excluding drivers and tie-rods) is
defined by a vector s containing the poses of the rigid bodies. The
space of possible states is determined by the set of constraints in-
duced by the joints. Each articulated component C; has multiple
degrees of freedom, and once the poses of all of its designated fol-
lowers parts are fixed, the entire state of the component s can be
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Fig. 4. A subset of the tree structure we use for assignments. In this example, there are 2 followers and 5 drivers. The first column show all 5 assignments
of one follower to all drivers. From these, we expand the tree for two of the assignments. Each of these has 4 other assignment for the second follower, as

depicted in the image.

uniquely determined. Fixing a follower is achieved in practice by
connecting it to a driver by a tie-rod. This essentially adds more con-
straints and reduces the number of degrees of freedom. Assuming
that all degrees of freedom are accounted for, that is, all followers
are connected to drivers, we can uniquely define the state of the
entire mechanism by s(q) where q is a vector containing the angles
of all of the drivers. This is, of course, dependant on the specific
assignment as we discuss next. See sec. 4.2 on how we determine
the state.

To define the input, we let the user interact with a virtual model
of the animatronic figure, and specify a sample of desired possible
states for each articulated component. This can also be done by
specifying the min/max angles each joint should be able to achieve.
We denote the sampled states of the component by sy; where [ is
some index. The user can also specify which parts of the mechanism
are to be considered as followers, which we denote by F = {f;},
i=1,...,mand a set of candidate attachment points on the surface
of the followers (in local coordinates) p; which will be considered
for connecting tie-rods. While this can be done automatically, many
choices can be ruled out immediately by the informed user, due to
considerations such as aesthetics and fabrication limitations. Ad-
ditionally, our algorithm requires a list of candidate motor poses,
denoted by D = {d}}, i = j,...,n which also provides the range of
poses for the drivers. Again, this list can be either generated auto-
matically, by sampling a region in space where drivers are allowed
to be placed, as provided by the user, or specific locations, based
on the user’s informed guess. Finally, a set of possible attachment
points on the drivers and initial motor angle are to be provided,
which we denote by r; and qj, respectively.
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Local costs. We define a single assignment of a follower to a driver
as a pair a;; = (f;,d;j). This assignment means that there is a tie-
rod connecting a point from p; on the follower, to a point from
rj on the driver. In order to decide which two specific points we
should connect, we compute a cost for each choice, and pick the
two points with the lowest cost. We term this cost L(a;;) as the
local cost associated with a;;. This cost measures properties that
can be inferred from a;; alone, without considering others pairs.
For example, we can measure the ability of reach target poses and
the torque required to actuate the follower, and penalize collisions
between the tie-rod and the static components of the mechanism.
More detail appears in Sec. 4.2.

Assignments. A partial assignment is commonly defined as an
injective function, which in our case would be A : FcF—D.
Herein, a more useful representation is as a set of pairs. With this,
a partial assignment A is also a set, where each driver and each
follower appear at most once. A complete assignment is a partial
assignment where all followers appear once. Partial assignments
can be organized in a tree structure, where children of a node A
contain the same partial assignment, appended with an additional
single assignment, e.g. A U {a;;}. The leaves of the tree correspond
to all complete assignments. We discuss a specific structure for this
tree and how to utilize it in sec. 4.1.

Global costs. A partial or complete assignment A has a global
cost G(A) associated with it, that evaluates the performance of the
assignment as a whole. Different considerations can be taken into
account here, related to the distribution of motors, for example.
The global cost we employ aims to eliminate collisions between the
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tie-rods that connect different driver-follower pairs. We develop
an approach inspired by adversarial attacks to find worst-case self-
collision configurations, as described in sec. 4.2.

The total cost. With the global cost defined, we can finally for-
mulate our optimization problem. Our goal is to find a complete
assignment that globally minimizes the total cost C(A), that we
define as the sum of local costs and global cost. Formally,

jiréi% C(A)=G(A) + Z L(a;j) (1)

a;j €A

where A is the set of all complete assignments. In the next sec-
tions we describe the algorithms for optimizing (1), and the various
aspects of the costs in more details.

4 METHOD
4.1 Branch-and-bound

The A™ algorithm. We begin this section by describing the the
optimization approach first, followed by a detailed description of
the local and global costs and how we compute them. As mentioned,
the main idea is to organize partial assignments in a tree structure.
We let the root be the empty assignment. Then, each level i of the
tree is dedicated to a single follower f;. In the first level, i.e., all the
children of the root, each node represents the assignment of f; to
one drivers. That is the first level contain the nodes a1; = (f1,d})
for all j’s. Let A be an assignment of the (i — 1)-th level. We define
its children to be all valid assignments A U {a;;}, that is, for all d;’s
that are not already part of A. With this structure, all possible partial
assignments appear in the tree exactly once. We note however, that
different orderings of the followers will produce different trees.

We can naively traverse the leaves of the tree (all mL'n), node),

but of course this approach is not scalable. Instead, the branch-
and-bound approach calls for bounding the cost of of each node’s
subtree. A subtree that has lower bound higher than the current
upper bound for the solution will not be traversed, potentially saving
considerable amount of resources. To this end, we note the C(A) for
a node is already a lower bound on the cost of A’s subtree. Indeed,
by appending A the cost can only increase. Thus, if we do encounter
such a node, we prune the node’s subtree and proceed with the next
node in our traversal order. Furthermore, it is possible to devise
a hueristic, which never overestimate the cost of the subtree, also
known as an admissible heuristic. This also informs the preferred
order in which the tree should be traversed, which leads to the
standard A* algorithm. In the common A* notation, we seek an
evaluation function f(A) = g(A) + h(A), where g(A) = C(A) is the
cost of the current node, and h(A) is the admissible heuristic.

The heuristic. For the A* algorithm to run efficiently, A(A) should
be quick to evaluate, and provide a tight lower bound. A good
balance between these criteria is detrimental to the performance
of A* In our case, the definition of C(A) strongly suggests of a
particular heuristic: We can quickly and accurately compute the
optimal complementary assignment to A (that is, the assignment
the completes A) in terms of local costs only. In other words, given

A, we propose to define h(A) as

h(A) = N lalgl’éﬂ Z L(ajj). @)

A.PA=gp  3ij€Ac

Eq. (2) is nothing more than a standard assignment problem which
can be solved in cubic time using the Hungarian algorithm. To boost
the performance, we can precompute all mxn local costs beforehand,
and recall the values when required.

The Hungarian algorithm can still be costly to run for every node
visited. As an alternative, we propose a greedy approach, which
allows multiple assignments to the same driver in (2). We denote
the resulting heuristic by h(A). Of course, the optimal assignments
predicted h(A) are not legal assignments, but they do serve the
purpose of achieving an underestimating heuristic quickly. Clearly,
fz(A) < h(A), and computing h(A) is done in linear time. We sum-
marize the algorithm in Algorithm 1. It is important to note that
the choice of heuristic has no influence on the final result but on
the number of nodes visited in the tree. See Table 1 in the results
Section to see how the two different heuristics influence the number
of nodes visited.

A” alternatives. The main drawbacks of the A* algorithm are the
fact the it does not produce intermediate results, and that the entire
frontier must be stored in a priority queue, leading to high memory
consumption. Many alternatives have been proposed in the past
(see e.g. [Hansen and Zhou 2007; Sun and Koenig 2007]) We experi-
mented with yet another alternative more tailored to our problem.
The approach is to reach candidate solutions early, so subtrees can
be pruned more effectively. With this approach, at a node A, we
prioritize its children based on h or h. In contrast to A*, we fully
traverse the first child of A before proceeding with the second one,
and so on. We maintain the current best solution, and use it to prune
the tree. That is, if the heuristic for the currently visited node A is
greater than the current best solution, we prune the tree at A. We
initialize this algorithm with a solution obtained by the Hungarian
algorithm. This approach, which requires O(mn) memory, provides
a suboptimal solution quickly, and then finds better solutions over
time. We summarize this approach in Algorithm 2, and discuss the
practical differences between the two strategies in Sec. 5.

4.2 Cost evaluation

Computing states. As mentioned in Sec. 3.1, the computation of
the various states of the mechanism has a central role, both for
specifying the input and evaluating the costs. We use two different
approaches — symbolic kinematics and Newton’s method - for differ-
ent parts of the algorithm, both with their own strengths and weak-
nesses. For symoblic kinematics, we follow the approach presented
in [Bacher et al. 2015]. With this approach, we can finds closed form
expressions the pose of the follower as a function of the angles of
the motor alone. We note that, originally, the paper discussed only
2D mechanisms, but the extension to 3D is straightforward. The ad-
vantage of this approach is it extremely fast and reliable compared
to constraint based evaluation, i.e. Newton’s method. The main
limitation of this approach is that it cannot treat mechanism with
kinematic loops. This is not an issue when computing local costs,
since for these, we fix the entire mechanism except for the driver
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Fig. 5. The mechanism in a specific state sy, displaying the hinge plane
corresponding to the highlighted follower.

Fig. 6. Different assignment incur different costs. In this example, the assign-
ment on the left has the two vectors almost parallel, which means that the
mechanism is at a singular point. That is, the motor will struggle actuating
the follower. On the right, they are almost orthogonal, indicating a close to
optimal configuration.

and follower in question, as we explain below. In order to compute
global costs, we employ Newton’s method. With Newton’s method,
we cast the problem of finding valid states as an optimization prob-
lem. This provides us with added flexibility which we leverage as
discuss discussed below.

Computing local costs. To determine the local cost of the single
assignment a;; assigning f; to dj, we recall that f; belongs to a
specific articulated component Cg, and that the user specified a
list of desired states for this component, denoted by si;, where
I =1,...1;. Out of all possible pairs of tie-rod attachment points
p € piandr € rj on f; and dj, we must find the most suitable
ones, in the sense that they can efficiently allow driver to actuate
the component and achieve the target poses. To measure efficiency,
we examine three points: p.y, 7y and b,, which are the point p, r
and the base joint of f;, in world coordinates. Then, we define two
vectors: S = pyy — by, and T = p,, — ry, and the smooth measure
of efficiency as )3 -pro}'(T)’, where proj(T) is the projection of T
on the plane spanned by the hinge axis at point b,,. This measure
calculates the moment arm which tells you if the tie-rod is pushed
or pulled how much of this force is applied to the joint axis. See
Figure 5 for an illustration of the specific elements of the local cost
in a specific state.

The position p,, is given by the pose of the component, but
rw depends on the motor angle. To fix an angle, we consider the
additional degree of freedom of our problem, that is, the initial motor
angle q € q;. To that angle, we can w.l.o.g. assign the first state sy
to q. Given these parameters, e.g. p, r and q, and the pose s, which
for conciseness we stack in a vector @ we can compute the length
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Fig. 7. Using via points in the form of a bellcrank, can assist in overcoming
obstacles, obtaining more efficient force transmission and reducing the cost.

¢ = £(a) of the required tie-rod. Next, we can examine the rest of
the poses sg;. Using symbolic kinematics we can compute, for each
pose, the unique motor angle q; = q(a, #; s;) for the driver (noting
that a and 7 are fixed), or conclude that one does not exist. In case
q; exists, we can calculate the efficiency measure as described above.
Let it be denoted by E(a, ¢; sg). Then, we define the cost of the pair
p and r and the angle q to be

Ir
Ep.r.d) = ), & tisk) 3)
=1

In case q; does not exist, we set & to an arbitrarily high value.
Finally, the local cost of a;; is defined as the minimum over all pairs
of attachment and initial angles, namely

L(a;;) = ;nrirqlS(p, r,q) (4)

Force transmission. To allow for greater flexibility, we can ex-
tend the mechanism by adding via points, which we denote by v;.
These are additional rigid bodies that are connected attached to
the mechanism by a hinge joint, and allow for force transmission.
Via point are useful in order to
avoid collisions, and in order to re-
duce the local costs in some cases
(Fig. 7 and the inset). For every aj;,
we additionally check the cost of
attaching d; to f; via v;. The cost
is simply the sum of the cost of
attaching d; to vy, treating v; as
a follower, and the cost of attach-
ing v; to f;, treating v; as a driver.
Adding via point to the algorithm

o \

multiplies the number of nodes in the tree. In this paper we only
experimented using up to one via point per pair, but allowing for
more is a simple extension.

Computing global costs. As mentioned, global costs can have sev-
eral use cases. In this work we use it to prevent designs that lead to
self-collisions between the mechanical elements used to transmit
forces from motors to the armature. We identify worst-case colli-
sion configurations using an approach inspired by the concept of
adversarial attacks. More precisely, we actively drive the mechanism
towards configurations where the internal components get as close
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as possible to each other. We do so using Newton’s method, mini-
mizing an objective that measures the distance between individual
pairs of tie rods. If a state is found where this distance is less then
7mm between the centers of the two tie-rods, that is, a collision is
possible, we set the global cost of the assignment to an arbitrarily
high value. Otherwise, the cost of the pair is zero. We sum up all the
pairwise costs to obtain the non-smooth global cost itself. We note
that the same pair a;, j,,a;, j, is likely to appear in several assign-
ments, several times throughout the optimization. To save time, we
store the cost of each pair that was encountered and recall it when
necessary. Finally, we note that, when only considering pairwise
costs, the problem can be cast as a quadratic assignment problem,
which is known for its high complexity [Burkard et al. 1998].

Algorithm 1: Assignment A”

Input: Desired figure poses

Output: Optimal assignment
priority-queue.push(new RootNode())
while node not leaf do

for child of node do
cost = child.localCost() + child.globalCost()

cost += child.heuristic() (Eq. 2)
priority-queue.push(child, cost)
end
node = priority-queue.pop()
end
return node

5 RESULTS

In this section we evaluate our algorithm and demonstrate different
designs. We refer the reader to the accompanying video for further
demonstrations, and to the gallery of models is shown in Fig. 11.
In all of our experiments we used the A* approach with the greedy
heuristic fl(A). That is, the heuristic that does not use the Hungarian
algorithm. We compare our method of choice with these approaches
in this section as well.

Algorithm efficiency. The overall performance of the algorithm
and its different stages are detailed in 1. The tree search algorithm
highly depends on the problem and how tight the heuristic is. In
terms of computation reuse, as mentioned, we compute all of the
local costs in a preprocessing step, but pairwise collision for the
global costs is computed on-the-fly, and then stored. The reason is
that not all pairs of single assignments necessarily appear during
the search. As can be seen from the table, the timing is dominated
by the computation of bar-bar collisions. This indicates that there is
a considerable potential for improvement, by creating a customized
procedure for these types of collisions. We also provide in the ta-
ble the total number of leaves, which are equivalent to complete
assignments, vs the number of nodes our algorithm visited. Note
that the number of leaves is just a fraction of the total number of
nodes in the tree, and that the number of nodes visited is generally
many orders of magnitude smaller, indicating that our heuristic is
effective

Algorithm 2: Assignment B&B

Input: Desired figure poses

Output: Optimal assignment

/* Initialize current best using the Hungarian
algorithm */

node = hungarian()

upperBound = node.localCost + node.globalCost

bestNode = node

stack.push(root)

while stack not empty do

vector = []

node = stack.pop()

for child of node do
cost = child.localCost() + child.globalCost()

cost += child.heuristic() (Eq. 2) if
cost < upperBound then

if node.isLeaf{) then
upperBound = cost

bestNode = child

end
vector.push(child, cost)
end

end

vector.sort()
stack.extend(vector)
end

return bestNode

Efficacy. Generally, the designer of a animatronic has a good in-
tuition on regions where motors should reside. The main challenge
is to avoid collision that are difficult to predict in a complex system.
The typical use-case we envision is for the designer to designate
a large set of likely positions, and let the algorithm find the op-
timal solution. Our experiments indicate that our algorithm can
achieve that goal in seconds to minutes for typical sized problems.
Nevertheless, the goal we set for ourselves is to find the optimal
assignment from a highly redundant set of motors. As a stress test,
we optimized a common model (baby animatronic) with 8 follow-
ers, and 100 potential drivers. The input and the solution, which
was computed in 10 hours, is shown in Fig. 8. As mentioned, we
believe the performance can still be vastly improved by developing
a dedicated solver for bar-bar collisions. Additionally, we show a
moderately sized problem with 21 drivers and 6 followers in Fig. 9.

A* vs. Branch-and-Bound. We compared the performances of A*
and branch and bound over some of the designs, and the results are
summarized in Table. 1. In general, both algorithms reach the same
designs, but A* seem to outperform Branch-and-Bound. However,
as mentioned in Sec. 4.1, Branch-and-Bound outputs intermedi-
ate results as it finds them. Additionally, the memory footprint of
Branch-and-Bound is genenally insignificant in comparison to A™.
In Fig. 10 we illustrate the progression of Branch-and-Bound by
displaying the cost as a function of time. The vertical broken line
represent the time it took for A* to reach the solution. As can be
seen, A" does conclude before Branch-and-Bound, but can provide
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Table 1. Performance statistics.

Model Method  Heuristic Drivers Followers It‘(())tcail tlesg colE:ii)ETirme Total time ef/:lll(::ti y d # I{s:a‘ies
Face A Greedy 16 14 38's 662s 827s 33697  10.4x10'2
Face A* Hungarian ! ! 576s 670s 14445 !
Face B&B Greedy " " " 822s 1168s 55863 "
Baby (designed) A* Greedy 10 10 167s 514s 773s 36024 -
Baby (Oversampled) A* Greedy 100 8 300m 9h48m 10h6m 3.6x10°  7.5x107°
Hand A* Greedy 6 6 0.8s 10s 11s 94 720
Hand A* Hungarian " " " 9s 9.7s 66 "
Hand B&B Greedy " " " 115s 12s 88 "
Hand (Oversampled) A* Greedy 21 6 6s 130s 137s 685 39x10°
Hand (Oversampled) B&B Greedy " " " 339.3s 350.5s 2399 "
Hexapod A* Greedy 18 14 30s 1412s 1702s 77506 266 "

Input Result Hexapod animatronic Face animatronic

. 1
0 Time[s] 3500 0 Time[s] 700

Fig. 8. A stress test result, running our algorithm on a baby animatronic
with 100 drivers, and 8 followers.

Fig. 9. A hand example, with 21 motors and 6 followers.

arguably acceptable results. The choice between the two depends
on the situation. Under a strict time budget, Branch-and-Bound is
preferable since it can provide early suboptimal results. Otherwise,
use of A* is suggested.

Heuristics comparison. The choice of heuristic is pivotal for the
performance of the algorithm. A good heuristic balances between

its computation time, and how effective it is in prioritizing nodes.

We experimented with the greedy and Hungarian approaches, and
the results can be seen in Table. 1. Our current conclusion is that
for smaller scale problems, the Hungarian heuristic outperform the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.

Fig. 10. A convergence plot of Branch-and-Bound, with a comparison to
A”. The blue line shows the progression of Branch-and-Bound over time,
while the broken green line indicates the point in time where A* returned
the global minimum. While Branch-and-Bound gradually improves the
candidate solution over time, before finally returning the global minimum,
A” outputs only the global minimum, as soon as it is found.

greedy one. However, the situation changes for larger problems.
The explanation for this could be related to how the Hungarian
algorithm scales; while effective for prioritization, the algorithm
scales cubically. As a result, the first levels of the tree require an
excessive amount of time to run, which is not balanced by the im-
proved prioritization. One future avenue of investigation, is whether
we can use results from similar assignments to speed up the Hun-
garian algorithm’s runtime, which could potentially improve its
performance over more complex designs.

Local vs Global Costs. The local costs tell if between a specific
motor and follower a connection is possible. But just relying on
the local costs to guide the search will often result in not desirable
designs. See Figure 12 for examples when searching for the global
optimum when ignoring vs not ignoring global costs.

Shoulder Mechanism. Figure 13 shows a recreated shoulder mech-
anism. It needs multiple motors working together and uses two
universal joints. It has 4 degrees of freedom with all the motors
placed on the rib cage and additionally leverages multiple via -
components.



Designing actuation systems for animatronic figures via globally optimal discrete search + 1:9

Fig. 11. A gallery showing different results and poses. From left to right, we show a baby model, a hexapod, a hand and a face designs. Note that the motor
assignments for the hexapod are asymmetric due to the different ranges of motion specified for each leg.

Fig. 12. a) The solution reached when ignoring global costs. b) The solution
reached when using global and local costs.

Fig. 13. The left image shows the shoulder mechanism and the right shows
possible displacements.

6 CONCLUSIONS AND FUTURE WORK

We presented a computational approach to designing high degree-
of-freedom animatronic characters based on range of motion spec-
ifications. Given an input set of candidate motors, our algorithm
automatically generates an optimal blueprint by reasoning about
the following types of design decisions:

e Which of the candidate motors is best suited to drive each
function (i.e. movement of the underlying armature)

o In synthesizing force transmission mechanisms that connect
the selected actuator to the articulated armature, which at-
tachment point on the motor’s horn should be used?

e Which attachment point on the armature should be used?

e Should a bellcrank be used as an intermediate structure be-
tween the motor and the armature?

Seen under this light, the design process boils down to a sequence of
discrete decisions that must be taken. As such, we cast it as a search
problem in the combinatorial space of all possible designs. The
objectives driving the search process demand that the synthesized
mechanisms remain singularity free and do not collide with the
armature or with each other at any point in the high-dimensional
space of motions the character is expected to be able to execute.
As evidenced through our results, the best-first search method
we propose, which is guided by an admissible heuristic, is able
to efficiently find globally optimal designs. We therefore believe
algorithms like ours can play an important role in the development
of personalized physical embodiments for future generations of
intelligent agents. Nevertheless, before this vision can be realized,
we see exciting avenues that need to be investigated. We would
like, for example, to include in the design process elements that
are not rigid. Flexible wires could be used to recreate the motion
of lips or eyebrows; spring-damper systems or soft materials could
be employed to make the overall designs compliant and safe to
interact with; soft skins could give the final result an organic look, if
that is desired. For each of these types of elements, the mechanical
structure of the animatronic character would have to be designed
while properly accounting for interactions with soft materials.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.
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It would also be interesting to increase the diversity of elements
used to design force transmissions. It is currently unclear, for exam-
ple, how our algorithm would scale as we increase the number of
ways in which a motor can be connected to the articulated arma-
ture. To gracefully handle the growth of the design space, additional
heuristics or approximations are likely to be needed. As an alterna-
tive, continuous optimization techniques applied to the final designs
could drastically reduce the set of discrete choices that must be eval-
uated using our current approach.

Lastly, we would like to explore ways of making it even more
intuitive to specify the desired repertoire of motions an animatronic
character should possess. We envision, for example, a system that
starts with an animated character (full body, face only, etc) per-
forming a variety of motions. Co-designing internal mechanisms,
actuator layouts and soft skins in order to faithfully recreate those
motions is particularly exciting as a long term vision.
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