
FabO: Integrating Fabrication with a Player’s Gameplay in
Existing Digital Games

Dishita Turakhia
MIT CSAIL

Cambridge, MA, USA
dishita@mit.edu

Harrison Mitchell Allen
MIT CSAIL

Cambridge, MA, USA
hmallen@mit.edu

Kayla DesPortes
New York University

New York City, NY, USA
kayla.desportes@nyu.edu

Stefanie Mueller
MIT CSAIL

Cambridge, MA, USA
stefanie.mueller@mit.edu

Figure 1: FabO allows designers to integrate fabrication of with existing digital games. When players play these integrated
games, FabO generates fabrication files of objects from their gameplay that can be used as (a) collectibles, such as a Pokemon
from the game Pokemon Lets Go, or (b) custom game controllers, such as a sword-shaped controller from the Legend of Zelda
game. (c) Examples of fabricated objects from our user study, wherein the participants integrated fabrication with existing
games of their choice.

ABSTRACT
Fabricating objects from a player’s gameplay, for example, col-
lectibles of valuable game items, or custom game controllers shaped
from game objects, expands ways to engage with digital games. Re-
searchers currently create such integrated fabrication games from
scratch, which is time-consuming and misses the potential of in-
tegrating fabrication with the myriad existing games. Integrating
fabrication with the real-time gameplay of existing games, however,
is challenging without access to the source files.

To address this challenge, we present a framework that uses on-
screen visual content to integrate fabrication with existing digital
games. To implement this framework, we built the FabO toolkit, in
which (1) designers use the FabO designer interface to choose the
gameplay moments for fabrication and tag the associated on-screen
visual cues; (2) players then use the FabO player interface which

This work is licensed under a Creative Commons Attribution International
4.0 License.

C&C ’21, June 22–23, 2021, Virtual Event, Italy
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8376-9/21/06.
https://doi.org/10.1145/3450741.3465239

monitors their gameplay, identifies these cues and auto-generates
the fabrication files for the game objects. Results from our two user
studies show that FabO supported in integrating fabrication with
diverse games while augmenting players’ experience. We discuss
insights from our studies on choosing suitable on-screen visual con-
tent and gameplay moments for seamless integration of fabrication.

CCS CONCEPTS
• Human-centered computing→ User interface toolkits.

KEYWORDS
Fabrication Games, Fabrication Toolkits

ACM Reference Format:
Dishita Turakhia, Harrison Mitchell Allen, Kayla DesPortes, and Stefanie
Mueller. 2021. FabO: Integrating Fabrication with a Player’s Gameplay in
Existing Digital Games. In Creativity and Cognition (C&C ’21), June 22–
23, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3450741.3465239

1 INTRODUCTION
Fabricating physical objects from a player’s digital gameplay ex-
pands a player’s engagement with the game [3]. Creative examples

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3450741.3465239
https://doi.org/10.1145/3450741.3465239
https://doi.org/10.1145/3450741.3465239
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3450741.3465239&domain=pdf&date_stamp=2021-06-22


C&C ’21, June 22–23, 2021, Virtual Event, Italy Turakhia et al.

of integrating fabrication with gameplay include fabricating col-
lectibles of valuable game items to augment the game’s digital
assets, custom game controllers shaped as game objects to improve
the player’s interactive experience, and fabricating game objects at
chosen gameplay moments to learn fabrication skills.

One way to currently integrate fabrication with gameplay is by
creating such games from scratch. For example, researchers have
created Destructive Games [6] and Terraform [20] in which play-
ers fabricate collectibles or game controllers from their gameplay.
Because creating games from scratch can be time-consuming, re-
searchers have proposedmodifying existing games with added func-
tionalities. For example, Blocks-To-CAD [12] is a modifiedMinecraft
game that teaches the player 3D modeling skills during the game-
play. However, modifying existing games requires access to the
games’ source files. Thus, while these approaches allow for tight
integration of fabrication with games, they do not generalize across
the large pool of existing games.

To tap the potential of myriad existing games for fabrication,
we present a framework that uses on-screen content instead of
accessing source files to integrate fabrication with the games. In
this framework, designers choose significant gameplay moments
and tag the on-screen visual cues using our system. When players
play this game, our system monitors their gameplay and scans
for the tagged cues. Once identified, our system extracts objects
from on-screen visual content and generates fabrication files. In
this way, our framework allows designers to integrate fabrication
with existing games without accessing the source files that contain
information on the player’s gameplay, and the asset repository that
contains information for generating the fabrication files.

To implement our framework with the above workflow, we de-
veloped the FabO toolkit, which consists of a designer interface
and a player interface. Consider the example of integrating fabrica-
tion with the game Pokemon Lets Go in which every time players
capture a Pokemon, they can fabricate a collectible of that Poke-
mon. To embed such a fabrication event, designers use the FabO
designer interface to tag the on-screen text ‘You have encountered
a’ because the same text appears on-screen every time players cap-
ture a Pokemon. When players play the game, the FabO player
interface monitors their screen, identifies the tagged text cue, and
auto-generates the fabrication files for the captured Pokemons us-
ing object extraction. Players can fabricate their collectible, for
example, a Pikachu memento shown in Figure 1a.

We ran two user studies to evaluate (1) the performance and
usability of the FabO toolkit for integrating fabrication with various
existing games, and (2) the experience of fabricating objects from
gameplay. In the first study, 12 participants used the FabO designer
interface to integrate fabrication events within the games of their
choice. In the second study, 12 participants played a collectible
game with integrated fabrication events and used the FabO player
interface to fabricate objects from their gameplay. Our user studies’
results and the participants’ feedback from the post-study inter-
views show that FabO can successfully generalize across various
games. Based on our studies’ findings, we discuss insights on how
to choose suitable on-screen visual content and gameplay moments
for integrating fabrication with existing games, and on how to inte-
grate fabrication without hindering the gameplay.

Contributions: In summary, we contribute the following:
• a framework to augment existing games by allowing fabri-
cation of objects from the gameplay using on-screen visual
content

• a toolkit that implements our framework through a designer
interface for tagging on-screen visual content and a player in-
terface for extracting fabrication files from on-screen visual
content

• insights from our two user studies, on choosing the suit-
able on-screen visual content and gameplay moments for
successful integration of fabrication with existing games

2 RELATEDWORK
Our work is related to HCI research that focuses on integrating
fabrication with games, augmenting existing digital games with
added functionalities, and using visual information to fabricate
physical artifacts.

2.1 Integrating Fabrication with Games
Fabrication tools are pervasive today [2, 7] and allow users to fabri-
cate objects with a fast turnaround time using laser cutters [15, 24],
and with complex geometries using 3D printers [4, 14]. Researchers
have recently proposed combining fabrication and games for vari-
ous applications [3]. Fabrication can be integrated with games by
either (1) fabricating various objects from the gameplay or by (2)
having the fabrication tools be part of the gameplay. Objects that
can be fabricated include physical props [19, 22], costumes [21],
physical game-boards [11] and game-controllers [23, 25]. Examples
to integrate fabrication tools with the gameplay include using a
3D printer to fabricate colonies onto the gameboard as the players
expand their territories (Hybrid Games [20]). Similarly, a computer-
controlled embroidery machine can be used to stitch marks over
areas on the gameboard as in the strategy game Threadsteading[1].
Finally, laser cutters can be used to destroy physical objects as part
of the gameplay so that players can use those artifacts as conver-
sation starters during social interaction (Destructive Games[6]). Of
these two ways of integrating fabrication with games, we focus
on fabricating objects from the gameplay. However, the above ex-
amples of such games are created from scratch, which is a tedious
process. To address this challenge, we explore how to integrate
fabrication with existing games.

2.2 Augmenting Existing Digital Games
Digital games have existed for several decades, and new games are
being created every year. Researchers have recently augmented
existing digital games by modifying the games’ sources code to in-
clude additional functionalities. For example, Blocks-To-CAD [12] is
a modified Minecraft [8] game that allows players to learn 3D mod-
eling during the gameplay. BeadED Adventures [17] is a modified
Twine game [10] that allows players to craft beaded bracelets from
their gameplay. Similarly, the Loominary [18] is another modified
Twine game [10] that allows players to craft looms using a loom
controller during their gameplay. Lundgren et al. [13] augment
different existing digital games, such as Zoo Tycoon [9] with potter-
ing. To modify these existing games researchers have modified the



FabO C&C ’21, June 22–23, 2021, Virtual Event, Italy

Figure 2: FabO’s framework uses on-screen visual content to (1) allow designers to integrate fabrication with existing games
and (2) auto-generate the fabrication files to allow players to fabricate objects from their gameplay.

source code. However, the source code might not always be avail-
able and thus not every game can be augmented with additional
functionalities posthoc. In our work, we propose a framework that
uses on-screen visual content instead of source code to augment
existing games with fabrication.

2.3 Using Visual Information to Fabricate
Physical Artifacts

To allow users to fabricate objects from visual content, such as
images and videos, researchers have developed systems that pro-
cess visual information and automatically generate fabrication files.
For example, Dick et al. [5] developed a Computer-Aided Pattern-
Detection (CAPD) technique that allows users to convert photos of
ceramic glazing into laser cut-able patterns. In another approach,
the Mosculp system [26] takes video of a moving human body as
an input, extracts the body’s motion over time from the 2D video
frames, and generates a 3D sculpture that users can 3D print. In
our work, to generate fabrication files, we monitor the on-screen
visual content of the gameplay and process it frame by frame to find
embedded fabrication events. We then identify objects to fabricate
from the visual content and use object extraction to auto-generate
the corresponding 2D fabrication files.

3 FABO
In this section, we first explain our framework and how it uses
on-screen visual content to support integrating fabrication with
existing games. We then demonstrate the implementation of this
framework via the FabO toolkit.

3.1 FabO’s Framework
We developed a framework that allows designers to use on-screen
visual content to integrate fabrication with games, and the players
to fabricate objects from their gameplay. As shown in Figure 2, our
framework takes existing games as input and outputs fabrication
files of game-objects. To achieve this, designers use our system to
choose gameplay moments as fabrication events by tagging visual
content as cues, such as text or images. Designers can also tag
on-screen regions to extract game objects for fabrication. Using
our system, the designers then export all the fabrication events in
a single file. Players load this events file while playing the game.
Our system then monitors their gameplay, searches for cues of the
tagged events and outputs the fabrication files of the game objects.
A key benefit of this framework that uses on-screen visual content
rather than source code is that it can tap the potential of integrating

a large pool of existing games with fabrication, where the source
files may be unavailable. We accomplish this in our framework by:

Extracting Information on Player’s Gameplay Without Ac-
cess to the Source Code: Information on a player’s gameplay, such
as when they encounter significant moments in the game, can be
extracted from the on-screen visual content via computer vision.
Such moments are typically accompanied by visual content, such
as a congratulatory message or image. For example, in the game
Pokemon Lets Go, when players capture a Pikachu, the text message
‘You have caught a Pikachu’ appears on the screen. Using computer
vision to monitor and match such cues allows us to extract infor-
mation that the player acquired a game object in their gameplay.
Furthermore, visual content of such gameplay moments can be eas-
ily sourced from online recorded gameplay videos or by recording
their own gameplay.

Generating Fabrication Files from the GameplayWithout Ac-
cess to the Game’s Assets: Fabrication files can be generated dur-
ing the gameplay by using object extraction on the on-screen visual
content via computer vision. For example, by extracting the out-
line of the image of Pikachu that appears on-screen in the game
Pokemon Lets Go, we can generate its SVG file during a player’s
gameplay. The players can use this fabrication file to laser cut a
Pikachu collectible. Alternatively, the players can mark on-screen
objects for generating their fabrication files. If the object intended
for fabrication is unavailable on-screen, our system allows linking
a custom fabrication file that is released when players encounter
that fabrication event.

3.2 FabO Toolkit
To implement the above framework of integrating fabrication with
games, we developed the FabO toolkit that uses computer vision to
extract information from the on-screen visual content. The FabO
toolkit has two parts - a designer interface that designers use to tag
on-screen visual cues in the game, such as text or images; and a
player interface, that monitors the tagged cues during a player’s
gameplay and auto-generates fabrication files for the objects from
the game. We now demonstrate the FabO toolkit’s workflow with
the example of the game Pokemon Let’s Go.

Designer Interface: The first step for designers is to select an exist-
ing game, for example, we selected Pokemon Lets Go. The next step
is to choose the gameplay moments to integrate with fabrication.



C&C ’21, June 22–23, 2021, Virtual Event, Italy Turakhia et al.

Figure 3: To integrate fabrication events, designers use FabO’s designer interface to (a) capture the screenshot of the gameplay
moment (b) tag the on-screen visual content as cues, such as text or images, (c) set event properties, and (d) choose option for
object fabrication.

We choose the moments when the players capture Pokemons as
the fabrication events so they can fabricate a collectible of their
Pokemons.

To locate such gameplay moments, designers can either use
videos of recorded gameplay from video platforms, such as Youtube,
or play the game themselves. In our case, we located the Pokemon
capturing moment from a gameplay video sourced from Youtube.
Designers then use the ‘take a new screenshot’ feature to import
the chosen gameplay moments into FabO’s designer interface. For
instance, Figure 3 shows the screenshot of our chosen gameplay
moment of a player capturing a Pikachu imported into FabO’s
designer interface.

The next step is for designers to tag on-screen visual cues, such as
text or images associated with that gameplay moment. For instance,
Figure 3b shows our tagged text cue of ‘You have encountered a
’. We tag this cue because it allows us to create fabrication events
for any Pokemon and not just a Pikachu. Alternatively, to limit
our fabrication to only Pikachu, we can tag the image of Pikachu’s
character as a cue. Based on their preference, designers can set if
the fabrication event should trigger just once or repeat every time
the player encounters it. In our case, we choose to repeat the event
to allow for the fabrication of Pokemons every time a player catches
one (Figure 3c).

The next step for designers is to define the object for fabrication
by choosing one of the three options from the designer interface:
(1) specifying the on-screen area where the object appears, (2) pro-
viding a custom object’s fabrication files, or (3) letting the players
determine the object from the visual scene. We specify the on-
screen area where Pikachu appears as it allows us to generalize for
all the Pokemons that appear in that area (Figure 3d). We then save
this fabrication event with its properties. The event can be modified
later if needed.

After creating all the events, designers finally export the ‘Fabri-
cation Events’ file which references all the fabrication events with
their screenshots, the tagged events, marked regions, and choice of

object’s fabrication.

Player Interface: Before playing the respective game, players load
the exported ‘Fabrication Events’ file into the player interface.

Figure 4: FabO’s player interface monitors players’ screens
during the gameplay, and when they encounter a fabrica-
tion event, (a) it extracts the tagged object for fabrication
from the screenshot of the event and (b) allows players to re-
fine the extracted outline and generate fabrication files that
(c) players can usewith laser cutters and paper cutters to fab-
ricate the object, for example a collectible of Pikachu from
the game Pokemon Lets Go.

While playing, the player interface monitors a player’s screen,
scans for tagged cues, and identifies fabrication events. Once identi-
fied, the player interface notifies players with a prompt message. At
this point, players can either continue playing or pause the game
to fabricate the object from the fabrication event using the player
interface (Figure 4a).



FabO C&C ’21, June 22–23, 2021, Virtual Event, Italy

Based on the setting for the object’s fabrication, the player inter-
face either (1) automatically extracts the object’s outline from the
on-screen region, or (2) loads the pre-linked external fabrication
file, or (3) allows players to choose an object for fabrication by
marking an area on-screen.

In some instances, for example, when an on-screen object blends
with the background, the auto-extracted outlines may have artifacts,
such as parts of the background included, or the outline may not
be smooth. In such cases, players can use the player interface (Fig-
ure 4b) to rectify the object outline by marking the respective color
pixels. They can further refine the outline by adjusting parameters
such as smoothness to reduce the number of points on the outline,
and scale factor to increase the image’s resolution, thereby reduc-
ing the artifacts due to image pixelation. After reviewing, players
can export the outlines with or without image texture as SVG files
for fabrication using cutting or engraving. Figure 4c, for instance,
shows a Pikachu collectible that FabO extracted with outline and
texture from an on-screen image, that we fabricated with engraved
texture using a laser cutter.

FabO - Additional Features: In addition to the above workflow,
the FabO toolkit also supports functionalities, such as sequencing
the fabrication events, previewing the frequency of events, and
referencing game-controller outlines within fabrication files.

Figure 5: FabO allows (a) sequencing of events in a desired
order to impose linearity (b) auto-scanning gameplay videos
to check the frequency of the embedded events (c) insert-
ing game-controller outlines to fit them within fabricated
objects, such as a sword from the game The Legend of Zelda.

Designers can decide the sequence of fabrication events, such
that only when a certain fabrication event has occurred, the subse-
quent events are unlocked. This feature allows designers to impose
linearity in the fabrication of objects during the gameplay (Figure
5a). To support designers with estimating the frequency of their
embedded events, the preview feature allows them to check when
and how often the embedded events occur in a gameplay video by
scanning the source video for tagged cues and highlighting them

on the video timeline (Figure 5b). To expand the use of objects
extracted from the games that use game-controllers, the player
interface has a library of outlines of standard game controllers that
players can overlay on their fabrication files. For example, an out-
line of the game controller Nintendo Switch can be combined with
the outline of a sword extracted from an on-screen game object to
make a personalized sword-shaped game controller for the game
The Legend of Zelda (Figure 5c).

3.3 FabO - Implementation:
Figure 6 shows the implementation pipeline of the FabO toolkit
which mirrors the framework described in Section 3.1. We imple-
mented the FabO toolkit in Python using the PyQt5 library as a GUI
wrapper.

Designer Interface Implementation (For Extracting Informa-
tion onPlayer’s GameplayWithoutAccess to the Source Code):
In the FabO designer interface, we use the Autopy library 1 to take
gameplay screenshots, and display them in an editable OpenCV
canvas. This editable canvas allows designers to draw bounding
boxes on the loaded screenshot image and mark the text and im-
age cues as well as select the region to monitor for cues. For text
extraction from a region, we use OpenCV’s thresholding function
and Python-tesseract 2, an optical character recognition (OCR) tool.
For processing the image cues, we use list slicing to crop the scene
image to the cue region. We save the fabrication events, and the
associated cues’ properties in a JSON file encoded as a dictionary.

Player Interface Implementation (For Generating Fabrication
Files from the Gameplay Without Access to the Game’s As-
sets): Players can load the JSON file in the FabO player interface
and start monitoring their gameplay. For text cue detection, we
capture the screen frame by frame and then use text extraction
as described above. To match the extracted text with the tagged
text cue, we use the Python FuzzyWuzzy library’s 3 Levenshtein
Distance calculation and match accuracy to 99%. For image cue
detection, we use Autopy’s find_bitmap function to search a screen
region pixel by pixel. Once a fabrication event is detected, we use list
slicing to crop the region and then process it for object extraction
using Sullivan et al.’s GrabCut algorithm [16] from OpenCV.

Additionally, the player can also tune the smoothness outline
profile using settings from the UI. These settings allow adjusting
the resolution (using linear interpolation), applying a bilateral filter
blur kernel, applying a binary thresholding filter, and a reduction
of the number of points on the outline using the approxPolyDP
function. Note that all these processing steps are optional for the
player. After the players fine-tune the outline, we then extract the
object outline with OpenCV’s contours function, and export it as
an SVG file or PNG file. The player can use this file for fabricating
the object using 2D paper plotters or laser-cutters.

To evaluate the performance and usability of this FabO toolkit,
and the experience of using it to integrate fabrication with existing
digital games we ran two user studies detailed in the next sections.

1https://www.autopy.org/documentation/api-reference/
2https://pypi.org/project/pytesseract/
3https://pypi.org/project/fuzzywuzzy/



C&C ’21, June 22–23, 2021, Virtual Event, Italy Turakhia et al.

Figure 6: Implementation pipeline: The FabO toolkit has two components, the designer interface and the player interface, that
are written in Python and use PyQt5 as a GUI wrapper

4 USER STUDY #1: EVALUATING FABO FOR
INTEGRATING FABRICATIONWITH
EXISTING GAMES

In the first user study, we examined FabO’s workflow and user’s
experience for integrating fabrication events within various existing
digital games. Insights from the study allowed us to determine how
designers can choose (1) suitable visual content for FabO’sworkflow
and (2) suitable gameplay moments for seamless integration of
fabrication within the gameplay.

4.1 Study Design
We recruited 12 participants from our institution (6f, 5m, 1n/b) aged
between 20-29 years (M=24, STD.=2.82) and with varied experience
of playing digital games (10+ yrs to never playing games). We
conducted the 60min study remotely over a video call (Zoom). The
participants used the FabO toolkit on our computer via Zoom’s
remote control.

Before the study, we asked the participants to choose up to 3
existing digital games, gameplay moments within those games to
embed fabrication events, and associated game objects for fabrica-
tion. They could source these gameplay moments either from their
own gameplay or from online videos. During the study, we first
demonstrated the FabO workflow using the game Pokemon Lets Go.
The participants then used the FabO designer interface and their
sourced videos to tag as many gameplay moments and associated
objects for fabrication as they preferred using text and image cues.
They then tested if the FabO player interface successfully detected
their embedded fabrication events. Finally, we gathered their feed-
back through semi-structured interviews and a post-study feedback
form.

4.2 Study Results
Altogether, the 12 participants attempted to integrate fabrication
with 35 existing digital games (2-3 games per participant) across 9
genres by tagging 47 events (1-2 events per game). We tested the
success of the fabrication events across three conditions: (1) were
the participants able to tag on-screen visual content of their chosen
gameplay moment, (2) did FabO identify those moments by scan-
ning for the visual cues, and (3) did FabO generate a fabrication file

of a game object for laser cutting. If all three conditions were met,
we counted an event as a successful fabrication event.

Figure 7: (a) User study participants tested 35 games (24 suc-
cessful) across 9 genres. (b) Fabricated game-objects using
FabO.

From the 35 games attempted shown in Figure 7a: (1) the par-
ticipants were able to tag on-screen content for 33 games (94.29%).
In 2 games, they struggled to identify a discrete moment to tag a
text or image cue for integration. (2) Within the 33 tagged games,
participants tagged 47 events - 15 using text cues and 32 using
image cues. Of these 47 tagged events, FabO detected 35 events
(74.47%) - 12/15 text cues (80%) and 23/32 image cues (71.19%). In



FabO C&C ’21, June 22–23, 2021, Virtual Event, Italy

total 24 games had successfully detected events. (3) For the 35 de-
tected events, FabO successfully auto-extracted the fabrication files
for all game objects as marked by the participants. Thus, in total,
the participants successfully integrated fabrication in 24 out of 35
games (68.57%) across all three conditions. Figure 7b shows the
objects that we fabricated from the generated files. These objects
ranged from commemorative trophies and collectibles to supportive
gameplay tools, such as maps.

4.3 Study Insights
We studied the successful and failed examples of fabrication events
from the study to gain the following insights on choosing suitable
visual content and gameplay moments:

#1 Choosing Suitable Visual Content: When tagging an event,
the designer has to find a text or image cue on screen that indicates
that the event occurred. While most games offer such discrete cues
through text messages or images, some games are continuous and
do not contain such cues. An example of a game with a discrete cue
is the game Prof. Layton [p2] (Figure 8a), in which a text message
appears on-screen when players acquire a coin, thus indicating that
the event occurred. However, in the 2 games for which participants
failed to integrate fabrication events, i.e., Unrailed [p4] (Figure 8a)
and Parkitect [p5], the gameplay was continuous with no discrete
cues to indicate event occurrence, i.e., the players built a track and
a park continuously, thereby making it difficult to select a discrete
moment.

Figure 8: Examples from user study where FabO (a) success-
fully detected the text cues (that had legible text), (b) failed
to detect text cues (that were pixelated) (c) onscreen text was
tagged as image cue because of the font

Another important consideration in choosing the visual content
is to select cues detectable using computer vision, i.e., extractable
font and images with a high contrast background (Figure 8b, c). If
the font was too thick, artistic or low-res (Figure 8b-bottom), the

text extraction was faulty. Similarly, if the background was too
noisy (Figure 8c-bottom), the image cue detection was slow and
faulty. To increase the detection speed, some participants used a
smaller area with less background noise for monitoring and FabO
successfully detected the events.

Finally, to fabricate objects from visual content, it is essential to
have them present on-screen at the moment selected for fabrication.
When the objects were not visually present on-screen, participants
linked external files with the event. However, one participant [p6]
addressed this constraint by using FabO’s sequencing feature for
the game Final Fantasy, by using one fabrication event to trigger
another event, wherein the fabrication object was on-screen. P6
wanted to fabricate the score card only after an enemy was killed.
To achieve this, the participant embedded the first event where the
enemy killing was identified, but did not mark an object to fabricate.
However, this event unlocked the next event which was triggered
when the score-card was identified for fabrication.

#2 Choosing Gameplay Moments Suitable for Seamlessly In-
tegrating with Fabrication:When analyzing the successfully em-
bedded fabrication events from the study, we observed that the
timing of integration within the gameplay was crucial. We noted
that fabrication was integrated either at the start (7/47 events, 15%),
during the gameplay when there are natural pauses (31/47 events,
66%), or at the end of the gameplay (9/47 events, 19%) when the
player can shift focus to fabrication.

Examples of embedded fabrication events at the start of the game-
play included moments when the player created new objects, such
as a dress (Animal Crossing Figure 9-1), customized game-objects,
such as their skateboard (TonyHawk Figure 9-2), or received support
objects, such as a map (World of Tanks Figure 9-3). Examples of em-
bedded fabrication events during the gameplay included moments
of natural pauses, either because the game paused the playing or the
player paused their gameplay voluntarily. Examples of gameplay
pauses included moments, such as unlocking characters (Mario Kart
Figure 9-4) or powers (Gris Figure 9-6), and destroying characters
or objects. Examples of player-based pauses included players up-
dating (Skyrim Figure 9-7) or accessing their inventory (Minecraft
Figure 9-8), referencing support objects, such as maps, accessing
scorecards or stat cards, and socially interacting with game charac-
ters (Ori and the Blind Forest Figure 9-9). Because “these are natural
pauses" [p9] when players were not concentrating on playing the
game, participants chose these moments as suitable for introducing
them to a fabrication activity. Examples of embedded fabrication
moments at the end of the gameplay included moments when the
players completed building, such as a house (Sims Figure 9-11), or
had won the game (Grand Tourismo Sport Figure 9-12).

In summary, we observed that participants were mindful of the
gameplay timing while integrating fabrication within it, such that
it would not distract or interrupt the players while playing.

While these examples cover the various games that the partici-
pants explored, our study does not cover the full design space of
existing games. Thus, more extended studies are needed to under-
stand how to choose suitable visual content and gameplay moments
for integrating fabrication with existing games while also augment-
ing the player’s experience.



C&C ’21, June 22–23, 2021, Virtual Event, Italy Turakhia et al.

Figure 9: User study #1 examples of gameplay moments when fabrication was integrated at the start, during, or end of the
gameplay. [(e): fabrication event, and (o): fabrication object.]

5 USER STUDY #2: EVALUATING THE
PLAYER EXPERIENCE DURING GAMEPLAY

In the second user study, we examined player’s experience of play-
ing an existing digital game integrated with fabrication events, and
then fabricating objects from their gameplay using FabO.

5.1 Study Design
For the study, we selected the game Pokemon Planet because it has
a short gameplay and an open-ended story line. Using FabO, we
embedded fabrication events that corresponded to when players
received either a Pokeball or captured a Pokemon. We recruited 12
new participants from our institution (8f, 4m) aged between 17-28
years (M=22.75, STD.=4) with varied experience of playing games
from few times a month to everyday. We conducted the 30min study
per participant remotely over Zoom, where they played the game
for 15 mins on our computer via Zoom’s remote control. We did
not brief the participants about the FabO system and simply asked
them to play the game as they normally would on their own. When
they encountered a fabrication event in the game, FabO notified
them with a text prompt. At this point, they could either continue
playing or pause the game to fabricate the object. For fabrication,
the participants first reviewed the auto-generated fabrication files
in the FabO player interface and then fabricated the objects, such
as Pokeballs and their captured Pokemons using a remote paper-
plotter via Zoom’s remote control feature, and watched their objects
get fabricated over the video call. We then collected feedback on

their experience in a semi-structured interview and a post-study
feedback form.

5.2 Participant Feedback
Fabrication of Objects was Meaningful: 11 out of 12 (91.6%) par-
ticipants found the ability to have physical versions of digital objects
from their gameplay meaningful. For example, p4 said “There are
many times during a game where I [have] thought it would be amaz-
ing to have a physical version of the equipment” and p7 said “I think
it can be nice to build collections and to hold pride about.” However,
p8 highlighted the need for closely integrating fabrication - “The
main risk of the modified game is for the fabrication event to feel out
of place.” Some participants also recommended using the system
for educational purposes. For example p12 said “As an educational
tool, especially for getting kids excited about fabrication, I can see it
being really empowering and engaging while teaching really valuable
skills in STEM.”

Choice of Objects for Fabrication: When asked if they preferred
to choose which objects to fabricate and when to fabricate them,
7 out of 12 (58%) participants wanted to choose themselves. For
example, p3 said “I would love to see players given the opportunity
to design and embed their own events as well - to trade in games”.
In contrast, 5 participants preferred the experience designed by
someone else because it builds anticipation. For example, p10 said
“the anticipation of fabricating pokemon in real life encourages me to
keep playing the game to discover new pokemon...so I can make more



FabO C&C ’21, June 22–23, 2021, Virtual Event, Italy

collectibles. The excitement and anticipation of playing the game
and fabrication game items builds on each other.” In addition, p4
said “randomizing the fabrication events rather than having them be
predictable is fun!”

Timing of Fabrication Events: 7 out of 12 (58%) participants
found the idea of fabricating objects during their gameplay en-
joyable. From the other 5 participants, 3 stated that they preferred
to fabricate the objects after the gameplay and not while playing the
game as it halted their gameplay. For example, p2 said “depending
on the pace of gameplay, e.g., on a mission or adventure, it may feel
distracting to keep having to switch out of the game to fabricate.” and
p12 said “perhaps pausing [the] game to make fab files print-ready
was a bit intrusive and detracted a bit from gameplay.’

Figure 10: (a) User study #2 setup wherein the participants
remotely (via Zoom’s remote control) played the game Poke-
monPlanet integrated with fabrication events, (b) fabricated
objects from their gameplay using FabO and a remote paper-
plotter. (c) Participants’ feedback.

5.3 Study Insights
We thus observed that from the player’s perspective, it was im-
portant that the fabrication does not hinder the gameplay and is
integrated meaningfully for a definite purpose. If integrated well,
our study participants’ feedback shows that it may increase player’s
motivation, excitement, and engagement with the game without
distracting their gameplay.

6 LIMITATIONS AND FUTUREWORK
Visual Cues Required: Because our framework uses on-screen
visual content, we cannot extract information from moments that
either (1) do not have distinct visual cues or (2) that have non-visual
cues, for example sound. To address the first limitation, we can ex-
plore if machine learning techniques can be used to automatically
identify significant moments and auto-label fabrication objects. For
the second limitation, we can expand our system to tag and identify
audio cues to include events that may not have distinct visual cues.

Trade-off in Detection Speed and Object Fidelity: Because an-
alyzing visual content during the gameplay requires significant

computation power, the speed of detection is dependent on the
player’s screen resolution and the processing power of their com-
puters.While reducing the screen resolutionmay improve detection
speed, it reduces the fabrication file’s fidelity. This trade-off in per-
formance speed and fabrication file’s fidelity can be addressed by
using more efficient algorithms for object detection.

2D Fabrication Only: Because we use 2D object extraction tech-
niques for generating files, the resulting fabrication files are for 2D
fabrication only. However, 3D fabrication, such as 3D printing, can
also be integrated with gameplay using our framework by linking
custom STL files of 3D objects to the fabrication events. For future
versions of our system, we can generate 3D models from 2D visual
content by (1) mapping 2D images to 3D models repositories, or
(2) reconstructing the 3D geometry from 2D images through ad-
vanced graphics techniques, such as multi-view object construction.

Extending theUse of the FabricatedObjects in theGames:While
incorporating the fabricated objects back into the game’s mechanics
is beyond the scope of our current work, it is an avenue for future
work. Toolkits like Nintendo LABO already incorporate objects fab-
ricated from 2D materials within games for immersive gameplay.
By fabricating tangible objects and configuring them to influence
the gameplay can integrate the loop of play and fabrication more
tightly.

Educational and Social Maker Games: The design of our frame-
work also allows for applications in educational and social maker
games. For instance, an educator can use the sequencing feature
of our toolkit to embed increasingly difficult fabrication activities
for their students. Similarly, in a social setting with multiple users,
every user can use the designer interface to design unique fabri-
cation events within the game or add to each others’ fabrication
events. The users can then play each others’ unique versions or
the combined version, encounter the unique fabrication events and
fabricate objects, thereby creating novel social interactions using
gaming and fabrication.

7 CONCLUSION
In conclusion, we showed that fabricating objects from player’s
gameplay, such as collectibles, can be accomplished using our FabO
framework, which allows designers to use on-screen content in-
stead of source files for integration and auto-generation of fabri-
cation files. We implemented our framework in the FabO toolkit
and demonstrated FabO’s workflow that uses computer vision for
tagging on-screen visual cues for embedding events and extracting
on-screen objects for fabrication. Through two user studies, we
showed that FabO successfully allowed the participants to inte-
grate fabrication with a wide variety of existing games to augment
player’s experience. We discussed the insights from our studies for
choosing suitable on-screen visual content and gameplay moments
for seamlessly integrating fabrication with the myriad existing
games, thereby tapping their potential to expand players’ engage-
ment through fabrication.



C&C ’21, June 22–23, 2021, Virtual Event, Italy Turakhia et al.

ACKNOWLEDGMENTS
We thank the MIT Learning Initiative and the MIT.nano NCSoft
innovations in gaming technology initiative for partial funding of
this research. This work is also supported by the National Science
Foundation under Grant No. 2008116.

REFERENCES
[1] Lea Albaugh, April Grow, Chenxi Liu, James McCann, Gillian Smith, and Jennifer

Mankoff. 2016. Threadsteading: Playful Interaction for Textile FabricationDevices.
In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems. ACM, 285–288. https://doi.org/10.1145/2851581.2889466

[2] Patrick Baudisch, Stefanie Mueller, et al. 2017. Personal fabrication. Foundations
and Trends® in Human–Computer Interaction 10, 3–4 (2017), 165–293. https:
//doi.org/10.1145/2909132.2934645

[3] Srinjita Bhaduri, Jesús G Ortiz Tovar, and Shaun K Kane. 2017. Fabrication games:
using 3D printers to explore new interactions for tabletop games. In Proceedings
of the 2017 ACM SIGCHI Conference on Creativity and Cognition. ACM, 51–62.
https://doi.org/10.1145/3059454.3059463

[4] Xuelin Chen, Honghua Li, Chi-Wing Fu, Hao Zhang, Daniel Cohen-Or, and
Baoquan Chen. 2018. 3D Fabrication with Universal Building Blocks and
Pyramidal Shells. ACM Trans. Graph. 37, 6, Article 189 (Dec. 2018), 15 pages.
https://doi.org/10.1145/3272127.3275033

[5] Nir Dick, Naama Glauber, Adi Yehezkeli, Moran Mizrahi, Shani Reches, Maiayn
Ben-Yona, Anna Carmi, and Amit Zoran. 2018. Design with Minimal Intervention:
Drawing with Light and Cracks. In Proceedings of the 2018 Designing Interactive
Systems Conference. 1107–1120. https://doi.org/10.1145/3196709.3196814

[6] David Eickhoff, Stefanie Mueller, and Patrick Baudisch. 2016. Destructive games:
Creating value by destroying valuable physical objects. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM, 3970–3974.
https://doi.org/10.1145/2858036.2858113

[7] Verena Fuchsberger, Martin Murer, Manfred Tscheligi, Silvia Lindtner, Shaowen
Bardzell, Jeffrey Bardzell, Andreas Reiter, and Pernille Bjorn. 2016. Fabrication &
HCI: Hobbyist making, industrial production, and beyond. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems.
3550–3557. https://doi.org/10.1145/2851581.2856491

[8] Minecraft Game. 2020. Minecraft. https://www.minecraft.net/en-us
[9] Zoo Tycoon Game. 2021. Zoo Tycoon. https://en.wikipedia.org/wiki/Zoo_Tycoon
[10] Twine Games. 2020. Twine Games. https://twinery.org/
[11] Gabriella M. Johnson and Shaun K. Kane. 2020. Game Changer: Accessible

Audio and Tactile Guidance for Board and Card Games. In Proceedings of the
17th International Web for All Conference (Taipei, Taiwan) (W4A ’20). Association
for Computing Machinery, New York, NY, USA, Article 9, 12 pages. https:
//doi.org/10.1145/3371300.3383347

[12] Ben Lafreniere and Tovi Grossman. 2018. Blocks-to-CAD: A Cross-Application
Bridge from Minecraft to 3D Modeling. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 637–648. https://doi.org/
10.1145/3242587.3242602

[13] Sus Lundgren and Staffan Björk. 2012. Neither playing nor gaming: pottering in
games. In Proceedings of the international conference on the foundations of digital
games. 113–120. https://doi.org/10.1145/2282338.2282363

[14] Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfis-
terer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed

Previews for Fast Prototyping. In Proceedings of the 27th Annual ACM Sym-
posium on User Interface Software and Technology (Honolulu, Hawaii, USA)
(UIST ’14). Association for Computing Machinery, New York, NY, USA, 273–280.
https://doi.org/10.1145/2642918.2647359

[15] Stefanie Mueller, Bastian Kruck, and Patrick Baudisch. 2013. LaserOrigami: laser-
cutting 3D objects. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 2585–2592. https://doi.org/10.1145/2470654.2481358

[16] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. 2004. " GrabCut"
interactive foreground extraction using iterated graph cuts. ACM transactions on
graphics (TOG) 23, 3 (2004), 309–314. https://doi.org/10.1145/1186562.1015720

[17] Anne Sullivan and Emily K Johnson. 2019. BeadED Adventures: Crafting STEM
Learning. In Proceedings of the Thirteenth International Conference on Tangible,
Embedded, and Embodied Interaction. 351–358. https://doi.org/10.1145/3294109.
3300997

[18] Anne Sullivan, Joshua Allen McCoy, Sarah Hendricks, and Brittany Williams.
2018. Loominary: crafting tangible artifacts from player narrative. In Proceedings
of the Twelfth International Conference on Tangible, Embedded, and Embodied
Interaction. 443–450. https://doi.org/10.1145/3173225.3173249

[19] Joshua Tanenbaum and Karen Tanenbaum. 2015. Envisioning the Future of
Wearable Play: Conceptual Models for Props and Costumes as Game Controllers.

[20] Joshua Tanenbaum, Karen Tanenbaum, and Michael Cowling. 2017. Designing
Hybrid Games for Playful Fabrication: Augmentation, Accumulation and Idleness.
In Extended Abstracts Publication of the Annual Symposium on Computer-Human
Interaction in Play (Amsterdam, The Netherlands) (CHI PLAY ’17 Extended Ab-
stracts). Association for Computing Machinery, New York, NY, USA, 413–419.
https://doi.org/10.1145/3130859.3131334

[21] Joshua Tanenbaum, Karen Tanenbaum, Katherine Isbister, Kaho Abe, Anne Sul-
livan, and Luigi Anzivino. 2015. Costumes and wearables as game controllers.
In Proceedings of the Ninth International Conference on Tangible, Embedded, and
Embodied Interaction. 477–480. https://doi.org/10.1145/2677199.2683584

[22] Joshua G Tanenbaum and Karen Tanenbaum. 2015. Fabricating futures: Envi-
sioning scenarios for home fabrication Technology. In Creativity in the Digital
Age. Springer, 193–221.

[23] Joshua G. Tanenbaum, Amanda M. Williams, Audrey Desjardins, and Karen
Tanenbaum. 2013. Democratizing Technology: Pleasure, Utility and Expressive-
ness in DIY and Maker Practice. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Paris, France) (CHI ’13). Association for
Computing Machinery, New York, NY, USA, 2603–2612. https://doi.org/10.1145/
2470654.2481360

[24] Tom Valkeneers, Danny Leen, Daniel Ashbrook, and Raf Ramakers. 2019. Stack-
Mold: Rapid Prototyping of Functional Multi-Material Objects with Selective
Levels of Surface Details. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 687–699. https:
//doi.org/10.1145/3332165.3347915

[25] Nicolas Villar, Kiel Gilleade, Devina Ramdunyellis, and Hans Gellersen. 2007.
The VoodooIO gaming kit: a real-time adaptable gaming controller. Computers
in Entertainment (CIE) 5, 3 (2007), 7. https://doi.org/10.1145/1316511.1316518

[26] Xiuming Zhang, Tali Dekel, Tianfan Xue, Andrew Owens, Qiurui He, Jiajun Wu,
Stefanie Mueller, andWilliam T Freeman. 2018. Mosculp: Interactive visualization
of shape and time. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology. 275–285. https://doi.org/10.1145/3242587.
3242592

https://doi.org/10.1145/2851581.2889466
https://doi.org/10.1145/2909132.2934645
https://doi.org/10.1145/2909132.2934645
https://doi.org/10.1145/3059454.3059463
https://doi.org/10.1145/3272127.3275033
https://doi.org/10.1145/3196709.3196814
https://doi.org/10.1145/2858036.2858113
https://doi.org/10.1145/2851581.2856491
https://www.minecraft.net/en-us
https://en.wikipedia.org/wiki/Zoo_Tycoon
https://twinery.org/
https://doi.org/10.1145/3371300.3383347
https://doi.org/10.1145/3371300.3383347
https://doi.org/10.1145/3242587.3242602
https://doi.org/10.1145/3242587.3242602
https://doi.org/10.1145/2282338.2282363
https://doi.org/10.1145/2642918.2647359
https://doi.org/10.1145/2470654.2481358
https://doi.org/10.1145/1186562.1015720
https://doi.org/10.1145/3294109.3300997
https://doi.org/10.1145/3294109.3300997
https://doi.org/10.1145/3173225.3173249
https://doi.org/10.1145/3130859.3131334
https://doi.org/10.1145/2677199.2683584
https://doi.org/10.1145/2470654.2481360
https://doi.org/10.1145/2470654.2481360
https://doi.org/10.1145/3332165.3347915
https://doi.org/10.1145/3332165.3347915
https://doi.org/10.1145/1316511.1316518
https://doi.org/10.1145/3242587.3242592
https://doi.org/10.1145/3242587.3242592

	Abstract
	1 Introduction
	2 Related Work
	2.1 Integrating Fabrication with Games
	2.2 Augmenting Existing Digital Games
	2.3 Using Visual Information to Fabricate Physical Artifacts

	3 FABO
	3.1 FabO's Framework
	3.2 FabO Toolkit
	3.3 FabO - Implementation:

	4 User Study #1: Evaluating FabO for Integrating Fabrication with Existing Games
	4.1 Study Design
	4.2 Study Results
	4.3 Study Insights

	5 User Study #2: Evaluating the Player Experience during Gameplay
	5.1 Study Design
	5.2 Participant Feedback
	5.3 Study Insights

	6 Limitations and future work
	7 Conclusion
	Acknowledgments
	References

