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pleted by 354 students from 29 colleges and universities. The CCI is a conceptual test of understanding cre- 
ated to enable research on instruction quality in cybersecurity education. This work extends previous expert 
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1 Introduction 

Knowledge of cybersecurity principles is critical for individuals and organizations to keep sen- 
sitive data secure and to avoid theft and other digital threats. Security breaches undermine the 
effectiveness of business, governments, and other organizations. Frequent news reports about ma- 
jor security breaches highlight the importance of cybersecurity [43]. Despite the paramount im- 
portance of digital security, there is a large and growing shortage of cybersecurity professionals 
[32, 36]. It is essential that we increase the efficiency and effectiveness of educational programs to 
fill this need. 

To conduct reproducible research on the benefits and drawbacks of different teaching methods 
and curricular structures for teaching cybersecurity, we should use validated assessment instru- 
ments to minimize the amount of error with which we measure student knowledge. Until now, no 
such instrument has existed. 

In this paper, we present the Cybersecurity Concept Inventory (CCI), a validated instrument for 
assessing student knowledge of introductory cybersecurity concepts. After briefly reviewing the 
creation of the CCI, we give statistical evidence of its reliability and validity as an assessment of 
cybersecurity knowledge for students who have taken in introductory cybersecurity course. 
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2 Background 
For context, we will provide a brief history of assessment instruments used in computer science 

education, and then we explain how we created the CCI. 

2.1 Concept Inventories 
A concept inventory (CI) is a validated assessment for a given set of topics that enables researchers 
and instructors to gauge what their students have learned about a given subject. The first CI, 
the Force Concept Inventory, is credited with helping to realize the active learning revolution in 
introductory physics by creating a meaningful way to compare the results of different pedagogical 
techniques [23, 28]. 

Over the last ten years, computing education researchers have been creating CIs, so our disci- 
pline can also benefit from them. Examples include the Digital Logic Concept Inventory (DLCI) [27], 
the Multilanguage Assessment of CS1 Knowledge (SCS1) [22, 38, 44], and the Basic Data Structures 
Inventory (BDSI) [39]. For a more extensive review of assessment instruments used in computing 
education research, see [20, 33]. 

The effect of CIs has not yet been as far reaching in Computer Science as it has been in other 
disciplines, such as physics, likely because CIs have not been in use in CS for as long. Despite 
their recent creation they have already been useful for many purposes in computing education, 
including but not limited to: examining the relationship between spatial ability and learning pro- 
gramming [13], comparing outcomes between digital logic courses which use differing pedagogi- 
cal approaches [25], evaluating novel instructional practices in CS1 [34, 47], evaluating the effec- 
tiveness of teaching students using both block- and text-based programming languages [12], and 
understanding the impact of students’ educational background on learning topics in computer 
science [11]. This activity confirms the utility of creating concept inventories to the computing 
education community. 

2.2 Cybersecurity Assessment Exams 
We are not aware of any other group that is developing an educational assessment tool for cy- 
bersecurity. There are several existing certification exams, including ones listed by NICCS as rel- 
evant [19]. 

CASP+ [15] comprises multiple-choice and performance tasks items including enterprise secu- 
rity, risk management, and incident response. OSCP [42] (offensive security) is a 24-hour practi- 
cal test focusing on penetration testing. Other exams include CISSP, Security+, and CEH [14, 16, 
45], which are mostly informational, not conceptual. Global Information Assurance Certification 
(GIAC) [17] offers a variety of vendor-neutral MCQ certification exams linked to SANS courses; 
for each exam type, the gold level requires a research paper, and none of them are suitable for use 
as a research instrument We are unaware of any scientific study that characterizes the properties 
of any of these tests. 

Additionally, the ACM, IEEE, and ABET have been working on curricular guidance for cyber- 
security [21, 30], and the NICE Cybersecurity Workforce Framework [35] establishes a common 
lexicon for explaining a structured description of professional cybersecurity positions in the work- 
force with detailed documentation of the knowledge, skills, and abilities needed for various types 
of cybersecurity activities. For more details, see [10]. 

2.3 The Cybersecurity Assessment Tools (CATS) Project 
With this backdrop, the authors founded the Cybersecurity Assessment Tools (CATS) project in the 
interest of creating validated educational assessment tools for cybersecurity [2–10]. 
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Fig. 1. CCI Question 6 probes the concept “Devise a defense.” 

 
1 Identify vulnerabilities and failures 
2 Identify attacks against CIA triad1 and authentication 
3 Devise a defense 
4 Identify the security goals 
5 Identify potential targets and attackers 

Table 1. The five core concepts underlying the CCI and CCA embody aspects of adversarial thinking. 
 
 
 

Unlike some areas of computer science (CS), in cybersecurity there often is not a clear right 
or wrong answer to a given problem. Cybersecurity professionals must think deeply about real 
world scenerios and differentiate what may be poor, mediocre, or ideal solutions to a given security 
problem. The CCI presents a series of scenarios, and asks questions about the scenario that force 
students to weigh their options and select the best solution choice to the security problem. Figure 1 
gives an example test item from the CCI. 

We now explain how we created the CCI; for more details, see [10]. First, our team engaged 33 
cybersecurity experts in a Delphi process to identify the core concepts of cybersecurity that should 
be tested [3], which can be seen in Table 1. Next the team developed cybersecurity scenarios. We 
used these scenarios in a series of open-ended interviews with students to identify common mis- 
conceptions [2]. We then used these misconceptions to aid in constructing compelling distractors 
for multiple-choice questions. 

During fall 2018 we had a group of experts review the CCI to ensure that they believed the test 
questions were sound and the assessment covers the topics that cybersecurity educators would 
expect it to. We found that most experts approved of most of the questions, and agreed that the 
questions on the CCI covered the knowledge that they would want their students to have after 
a first course on cybersecurity [9]. We also pilot tested the CCI with 142 students, showing that 

 

1CIA Triad (Confidentiality, Integrity, Availability). 

Scenerio. An enterprise with highly sensitive data needs to be able to retrieve information from the 
Internet. To support this requirement while protecting its sensitive data, the enterprise partitions its 
internal computer network into three segments: Public, Quarantine, and Private. In this system, data 
can flow ONLY from Internet to Public, Public to Internet, Public to Quarantine, and from Quarantine 
to Private. 

 
 

 
Question. Choose the most effective method to ensure that, pertaining to the section of the network 
involving Public, Quarantine, and Private, data flow only from Public to Quarantine, and from 
Quarantine to Private: 

A. Authenticate all flows of data. 
B. Restrict access to authorized users only. 
C. Encrypt all flows of data. 
D. Install software firewalls between the segments. 
E. Use only one-way physical connections between the segments. 
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the CCI has some desirable psychometric properties [9], and gaining insight into which questions 
did not work as well as we had hoped for assessing knowledge. Since then, we revised the CCI 
to improve items that were too hard or did not discriminate well between lower- and higher- 
performing students. 

Using our revised version of the test, we started a more comprehensive round of data collection 
from fall 2019 through spring 2020. In this paper, we analyze these new data to understand the 
statistical evidence for the reliability and validity of the CCI. More specifically, we answer the 
following research questions: 

RQ1: What does the statistical evidence say about the reliability and validity of the 
CCI? 
RQ2: What levels of cybersecurity knowledge does the CCI measure well? 
RQ3: What can we learn by examining the response patterns to questions with desir- 
able psychometric properties? 
RQ4: How do the statistical properties of the CCI compare with other concept inven- 
tories in use? 

 
3 Methods 

We explain how we collected and analyzed data. 

3.1 Data Collection 
We pursued multiple avenues for recruiting subjects to take the assessment, including emailing 
professors who do research in cybersecurity, talking to colleagues, and contacting institutions in- 
volved with cybersecurity education programs such as Scholarship for Service [18] and institutions 
qualifying as Centers for Academic Excellence in Cyber Defense (CAEs) [29]. By far the most ef- 
fective recruitment strategy was making use of the professional connections of the members of our 
research team, who are embedded in the cybersecurity research and teaching communities [10]. 

We hosted the CCI in an online, open source homework and exam platform, to facilitate the 
administration of the assessment to students at a range of institutions [1]. For anonymization 
purposes, we will call the platform OHEP. 

For most students, their instructor offered some extra credit to complete the CCI. We collected 
data from September 2019 through May 2020. The institutional review board at one of the author’s 
institutions approved our protocol. 

A total of 574 students started the CCI in OHEP. After we discarded test instances where the 
student did not complete the assessment, or spent less than 15 minutes on the assessment, our 
data set consists of scores from 354 students from 29 colleges and universities. Since it takes about 
15 minutes just to read all the assessment questions, no student could complete the assessment 
in good faith in under 15 minutes. In the sanitized data set, the mean time to finish the test is 45 
minutes, with 272 out of 354 (77%) test takers finishing in under an hour. 

Our participants came from a range of institutions including private and public universities and 
community colleges, with the full list shown in Table 2. Institutions were geographically diverse 
within the United States, with a few data points coming from other countries as well. We collected 
data from both research-focused and teaching-focused institutions. The data set is biased toward 
large, public research universities as they were often able to provide more subjects for testing. Sub- 
jects also came from courses with a variety of titles including Computer Security, Cybersecurity 
Concepts, and Information Assurance and Security, all of which covered most or all of the core 
cybersecurity topics that the CCI seeks to assess. Most students who took the CCI were CS majors 
in the latter half of completing their bachelor’s degree. 



 

Institution 

Institution 1∗ 

Institution 2 
Institution 3 
Institution 4∗ 

Institution 5 
Institution 6 
Institution 7 
Institution 8 
Institution 9 
Institution 10 
Institution 11∗ 

Institution 12 
Institution 13 
Institution 14 
Institution 15 
Institution 16 
Institution 17 
Institution 18 
Institution 19 
Institution 20 
Institution 21 
Institution 22 
Institution 23 
Institution 24 
Institution 25 
Institution 26 
Institution 27 
Institution 28 
Institution 29 

Number of 
Participants 

95 
61 
31 
20 
16 
12 
11 
11 
10 
10 
10 
9 
9 
8 
7 
6 
6 
4 
3 
3 
2 
2 
2 
1 
1 
1 
1 
1 
1 

Location 

Midwest 
East Coast 

South 
East Coast 

Spain 
East Coast 
East Coast 
East Coast 
Southwest 

South 
Midwest 

West Coast 
West Coast 

South 
East Coast 

South 
Midwest 

South 
South 

East Coast 
South 

West Coast 
Mountain West 

Midwest 
Puerto Rico 
Australia 

Southwest 
Southwest 
East Coast 

Highest Degree 
Granted 
Doctoral 
Doctoral 
Masters 
Doctoral 
Doctoral 
Doctoral 
Doctoral 
Doctoral 

Associates 
Doctoral 
Doctoral 

Associates 
Doctoral 
Bachelors 
Doctoral 
Doctoral 
Masters 
Doctoral 
Doctoral 
Doctoral 
Doctoral 
Doctoral 
Doctoral 
Doctoral 
Bachelors 
Doctoral 
Doctoral 
Doctoral 
Doctoral 

Ownership 

Public 
Public 
Public 
Public 
Public 
Public 
Public 
Private 
Public 
Public 
Public 
Public 
Private 
Public 
Public 
Public 
Public 
Public 
Public 
Private 
Public 
Public 
Public 
Public 
Private 
Public 
Public 
Public 
Public 

Size 

Large 
Large 
Small 

Medium 
Large 
Large 

Medium 
Medium 
Medium 
Large 

Medium 
Large 

Medium 
Large 
Small 
Small 
Small 

Medium 
Medium 
Small 
Small 
Large 

Medium 
Large 
Small 
Large 
Large 
Large 
Large 

Table 2. Schools who participated in the study, number of participants from the school who gave valid responses to the assessment, and demographic data 
about the school. Names have been anonymized for peer review. Institutions with less than 10,000 are listed as small, institutions with between 10,000 and 
25,000 students are considered medium, and institutions with greater than 25,000 students are considered large. We use * to denote authors’ institutions. 
Schools in the U.S. are listed by region, and schools outside the U.S. are listed by country. 
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3.2 Item Response Theory vs. Classical Test Theory 
Classical Test Theory (CTT) and Item Response Theory (IRT) are two commonly used analytical 
frameworks for showing statistical support for the validity of assessment instruments, and for 
gauging the skill of students taking an assessment [31]. Both CTT and IRT give a measurement 
of each question’s difficulty, how hard it is to answer a question correctly, and its discrimination, 
how well a question differentiates between students of lower and higher skill levels. These metrics 
are defined differently between CTT and IRT, and therefore they should not be compared across 
frameworks. A robust assessment will have test questions with a range of difficulty levels to obtain 
information about students at a range of ability levels. It is desirable to have questions with high 
discrimination, because questions that do a better job differentiating between students of higher 
or lower ability can measure student ability more accurately. 

CTT can be used on samples of any size and is useful for obtaining a simple measurement of 
the reliability of assessment instruments. Some strengths of IRT that CTT does not have are: 

(1) Falsifiable assumptions: the assumptions of CTT must be taken as a given, whereas the as- 
sumptions of IRT can be tested using the data set and appropriate statistical tests. 

(2) CTT assumes that the measurement error is the same for any student taking the test, where 
IRT allows us to see if there is a different measurement error for students of different skill 
levels. 

(3) IRT enables us to estimate, for each question, how much information the question provides 
about each student. 

IRT, while extremely useful, requires a larger sample size than does CTT because it requires fitting 
a version of the general linear model with a number of parameters that increases with respect to 
the number of items on the test. We use both CTT and IRT to demonstrate the reliability and 
validity of the CCI. 

 
3.3 Classical Test Theory 
Due to small sample size, our team used only CTT to analyze the results of the pilot testing [9]. 
Here we use CTT as a means of comparing the current properties of the test to the properties of 
the earlier draft of the test, and as a way to verify basic properties of the test, such as whether the 
CTT difficulty and discrimination fit into the accepted ranges. 

CTT assumes that each student has a true score (𝑇𝑇 ) which, together with some error term (𝐸𝐸), 
gives the student’s actual score (𝑋𝑋 ), so that 𝑋𝑋 = 𝑇𝑇 + 𝐸𝐸. 

3.3.1 Reliability. If a test is reliable, a student who takes the same exam repeatedly should receive 
close to the same score each time they take the test. The most common measure of reliability 
for assessments is Cronbach’s 𝛼𝛼, because it can be used even if each student has only taken the 
exam once, as long as the test items are scored dichotomously as correct or incorrect, and under 
the assumption that the test measures a single latent trait. Cronbach’s 𝛼𝛼 which ranges from 0 to 1, 
with 1 indicating perfect reliability. There is no generally accepted value of Cronbach’s 𝛼𝛼 to denote 
a reliable assessment, but most people agree that for a test to be used in high-stakes scenarios, such 
as assigning grades, the Cronbach’s 𝛼𝛼 should be at least 0.7 or 0.8 [31, 37]. 

One method for evaluating the quality of items in an assessment is to compare the Cronbach’s 𝛼𝛼 
with what it would be if the particular item was removed [31]. If removing a test item from the test 
increases the reliability of the test, the item may be poor quality, and would become a potential 
candidate for removal. 
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3.3.2 Difficulty and Discrimination. In CTT, the difficulty is the percentage of students who cor- 
rectly answered a given item, and the discrimination is the point biserial correlation between a 
student’s score on the question and their score on the test [27]. 

3.4 Item Response Theory 
We use IRT to gain greater insight into the properties of particular questions, and how much infor- 
mation individual questions and the test as a whole give about students of differing ability levels. 
We fit the Rasch, two-parameter logistic (2PL), and three-parameter logistic (3PL) models using the 
R package ltm [40, 41]. 3PL did not reach a stable solution. This result is not surprising because it 
usually takes a large amount of data to fit a model with that many parameters. A likelihood ratio 
test shows that 2PL does a significantly better job explaining the data than does the Rasch model 
(𝑝𝑝 < 0.001, LRT = 72.07), so we focus on 2PL. 

In 2PL, for each student 𝑛𝑛 and item 𝑖𝑖, we let 𝑋𝑋𝑛𝑛,𝑖𝑖     0, 1 be a dichotomous random variable 
with 𝑋𝑋 = 1 denoting a correct response. We assume that the probability of student 𝑛𝑛 correctly 
responding to item 𝑖𝑖 can be modeled as a function of the student’s ability, 𝜃𝜃𝑛𝑛, the difficulty of the 
item, 𝑑𝑑𝑖𝑖 , and the discrimination of the item 𝑎𝑎𝑖𝑖 as follows: 

1 
𝑃𝑃 {𝑋𝑋𝑛𝑛,𝑖𝑖 = } = 

1 𝑒𝑒−𝑎𝑎𝑖𝑖 (𝜃𝜃𝑛𝑛−𝑑𝑑𝑖𝑖 ) . 

The distribution of student ability parameters 𝜃𝜃𝑛𝑛 is given a mean of 0 and standard deviation 
of 1. 

3.4.1 Item Response Functions. Inserting the difficulty and discrimination parameters for each 
test item into Equation 1 gives the item response functions, which help us visualize the difficulty 
and discrimination of test items, and the probability that a student with a given ability level will 
answer the question correctly. 

3.4.2 Item Information Functions. The item information function for an item is the derivative of 
the item response function for that item. It shows how much information that item gives about 
subjects taking the test. Summing the item information functions for all items on an instrument 
gives the item information function of the instrument. 

Item response theory enables us to use the standard error of measurement (SE) for a student 
based on their ability level: 

1 
𝑆𝑆𝐸𝐸 (𝜃𝜃 ) = 

𝐼𝐼 (𝜃𝜃 ) 
, 

where 𝐼𝐼 (𝜃𝜃 ) is the information function of the test. 

4 Results 
We analyze CCI test data from CTT and IRT perspectives. 

4.1 Classical Test Theory Results 
CTT reveals information about the CCI’s reliability, difficulty, and discrimination. 

4.1.1 Reliability. The Cronbach’s 𝛼𝛼 of the CCI is 0.78, putting it in the acceptable range for CIs, 
and comparable to other commonly used CIs in CS, as shown in Table 6. As shown in Table 3, 
removing each item of the CCI individually results in the same or lower reliability, suggesting that 
none of the items are so weak that they should be removed. 
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Item 

Q1 
Q2 
Q3 
Q4 
Q5 
Q6 
Q7 
Q8 
Q9 
Q10 
Q11 
Q12 
Q13 

Change in 𝛼𝛼 Item 
with item removed 

−0.01 

Change in 𝛼𝛼 
with item removed 

0.00 
−0.01 
−0.01 

0.00 

Q14 
Q15 
Q16 
Q17 
Q18 
Q19 
Q20 
Q21 
Q22 
Q23 
Q24 
Q25 

−0.01 

−0.01 
−0.01 

−0.01 
0.00 
0.00 

−0.01 −0.01 
0.00 

−0.01 
−0.01 

−0.01 

−0.01 
−0.01 

−0.01 
−0.01 

−0.01 
0.00 
0.00 

−0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Change in the reliability of the test with each item removed. The overall Cronbach’s 𝛼𝛼 is 0.78, which 
is in the acceptable range, and is comparable or better than those of many accepted concept inventories [24, 
39, 46]. Removing each item individually results in either the same or lower reliability, suggesting that none 
of the items on the test are so weak that they should be removed. 

 
 
 

Item Diff. (Pilot) Disc. (Pilot) Item Diff.(Pilot) Disc. (Pilot) 
Q1 0.28 (0.24) 0.42 (0.21) Q14 0.42 (0.25) 0.26 (0.32) 
Q2 0.43 (0.33) 0.47 (0.31) Q15 0.32 (0.10) 0.46 (0.25) 
Q3 0.34 (0.26) 0.42 (0.13) Q16 0.33 (0.59) 0.43 (0.35) 
Q4 0.45 (0.52) 0.48 (0.46) Q17 0.63 (0.52) 0.33 (0.35) 
Q5 0.46 (0.18) 0.40 (0.35) Q18 0.60 (0.31) 0.29 (0.19) 
Q6 0.45 (0.22) 0.36 (0.23) Q19 0.49 (0.28) 0.46 (0.27) 
Q7 0.67 (0.66) 0.24 (0.30) Q20 0.36 (0.14) 0.33 (0.22) 
Q8 0.19 (0.19) 0.39 (0.21) Q21 0.46 (0.44) 0.43 (0.23) 
Q9 0.47 (0.61) 0.50 (0.33) Q22 0.57 (0.34) 0.44 (0.47) 
Q10 0.62 (0.40) 0.42 (0.19) Q23 0.68 (0.49) 0.50 (0.38) 
Q11 0.46 (0.36) 0.39 (0.34) Q24 0.37 (0.40) 0.31 (0.30) 
Q12 0.48 (0.24) 0.40 (0.36) Q25 0.25 (0.14) 0.31 (0.24) 
Q13 0.22 (0.28) 0.45 (0.21)    

Table 4. Difficulty and discrimination of each item in Classical Test Theory, compared to its difficulty and 
discrimination at Pilot testing time, showing that the revisions to the test successfully strengthened its 
validity as a measurement of cybersecurity knowledge. 

 
 
 

4.1.2 Difficulty and Discrimination. Figure 2 shows a comparison of the classical test theory diffi- 
culty and discrimination of an earlier version of the CCI (Plot A) compared to those of the current 
version (Plot B). The same information is shown in tabular form in Table 4. This shows that our re- 
visions to the test successfully strengthened its validity as a measurement of cybersecurity knowl- 
edge. This comparison demonstrates the value of continuing to revise and develop an assessment 
instrument past the initial validation phase. 
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A: Pilot Testing B: Current Version 
 
 
 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
 

Difficulty (% subjects who answered correctly) Difficulty (% subjects who answered correctly) 

Fig. 2. Comparison of the classical test theory difficulty and discrimination of an earlier version of the CCI 
(Plot A) to that of the current version (Plot B), showing that the revisions to the test successfully strengthened 
its validity as a measurement of cybersecurity knowledge. All CCI items are now in the accepted discrimina- 
tion range for Classical Test Theory (above 0.2), and all but one are in the accepted difficulty range (between 
0.2 and 0.8) [31]. We created Plot A from data given in [9]. 

 
 

Item Diff. (𝑎𝑎𝑖𝑖 ) Disc. (𝑑𝑑𝑖𝑖 ) Item Diff.(𝑎𝑎𝑖𝑖 ) Disc. (𝑑𝑑𝑖𝑖 ) 
Q1 1.14 0.94 Q14 0.85 0.39 
Q2 0.32 1.10 Q15 0.82 1.13 
Q3 0.87 0.88 Q16 0.90 0.92 
Q4 
Q5 
Q6 
Q7 
Q8 
Q9 
Q10 
Q11 
Q12 
Q13 

0.23 
0.19 
0.34 
−2.00 

1.73 
0.11 
−0.63 

0.23 
0.09 
1.29 

1.14 
0.80 
0.66 
0.37 
0.98 
1.38 
0.94 
0.82 
0.78 
1.23 

Q17 
Q18 
Q19 
Q20 
Q21 
Q22 
Q23 
Q24 
Q25 

−0.90 
−0.94 

0.04 
1.06 
0.18 
−0.37 
−0.72 

0.99 
2.04 

0.65 
0.46 
1.04 
0.58 
0.89 
0.95 
1.47 
0.57 
0.57 

Table 5. Difficulty and discrimination of each question in the 2PL item response theory model. 
 
 
 

4.2 Item Response Theory Results 
Table 5 shows the difficulty and discrimination parameters for each question as predicted by fitting 
our data to the 2PL model shown in Equation 1. 

4.2.1 Item Response Functions. Figure 3 shows the item response functions for the CCI, which 
represent the probability that a student of a given ability will answer a given item correctly. A 
steep curve, such as that of Q23, shows that a question has high discrimination, and a more shallow 
curve, such as that of Q7, shows that a question has lower discrimination. If a question’s item 
response function has a negative slope (or discrimination), that would mean students with lower 
ability are more likely to answer the item successfully than are students with higher ability. This 
outcome would cause serious concern about the usefulness of the test item. None of the questions 
of the CCI have this problem. 
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Item Characteristic Curves 
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Fig. 3. Item characteristic curves from the 2PL IRT model. The differences in slopes of the lines show the 
variance of discrimination between parameters. These data confirm that the Rasch model’s assumption, that 
each item has the same discrimination, is not a good fit for our data. 

 

4.2.2 Item Information Functions. Figure 4 shows the item information functions for each of the 
test items under 2PL. Some test items provide a great deal of information about the student’s ability, 
such as Q9, while other items provide very little, such as Q7 and the other questions with near-flat 
item information functions. All the information curves are concave down, showing that none of 
the test items decrease the amount of information we know about a student’s ability. 

Figure 5 shows the item information function for the CCI. The CCI provides the most infor- 
mation about students with 𝜃𝜃 = 0.26 (students whose ability is 0.26 standard deviations above the 
mean). The test information curve is greater than 4 on the interval  0.61 < 𝜃𝜃 < 1.17, telling us that 
if a student’s ability level is in that range, their ability level can be estimated within 0.5 standard 
deviations with confidence 68%. 

 
5 Discussion 

The psychometric evaluation results of the CCI are very promising when compared to the results 
of other accepted CIs in CS. Table 6 gives a quick overview showing that the statistical properties 
of the CCI are in the same general range as those for other CIs. In comparison to the SCS1, the CCI 
does an excellent job providing information about students both above and below mean ability 
level, whereas the SCS1 is a very difficult test, providing much more information about students 
above the mean than below [46]. 

In comparison with the DLCI, however, the CCI has some questions that provide relatively little 
information, and the test as a whole has more error for students who are far from the mean. We 
theorize that the nature of cybersecurity questions is such that measuring student ability with 
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Item Information Curves 
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Fig. 4. Item information curves from the 2PL IRT model. Some test items provide a great deal of information 
about the student’s ability, while other items provide very little. All the information curves are concave down, 
showing that none of the test items remove information. 

 
Measurement CCI DLCI SCS1 BDSI 
Cronbach’s 𝛼𝛼 0.78 0.80 0.70 0.68 
Min. Difficulty −2.00 

2.04 
0.37 
1.47 

−1.84 
0.55 
0.28 
1.68 

0.08 
5.07 
0.49 
1.53 

−3.03 
1.25 
0.33 
2.03 

Max. Difficulty 
Min. Disc. 
Max. Disc. 

Table 6. Comparison of the reliability and 2PL model parameters of the CCI with those of other CIs. Param- 
eters for other CIs come from [27, 39, 46]. 

 
 

low error is more difficult than in some other domains. For example, in the DLCI, most questions 
have an answer that is clearly correct, and answers that are clearly wrong. On the contrary, many 
questions on the CCI have answers that are good, better, and best, and we expect a student to pick 
the “best” answer to be awarded points. 

5.1 Expert Analysis of Interesting Items 
For many items, we attribute their high discrimination in part to having high-quality distractors— 
answers that many students pick when they have a common misconception about the cybersecu- 
rity scenario. For six items (Q1, Q3, Q8, Q13, Q16, Q20), there was a distractor that subjects found 
more attractive than the correct answer. We know that the distractor was appealing because the 
discrimination of the questions were quite high, showing that stronger students were much more 
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Fig. 5. Information curve for the entire test. The CCI gives a reasonable amount of information about stu- 
dents of all ability levels. The slight skew of the test information curve means that the test gives a little bit 
more information about students who are above average. 

 
 

likely to answer the question correctly than were weaker students. Removing each of these ques- 
tions individually from the test decreased the Cronbach’s 𝛼𝛼 of the test as a whole, showing that 
these questions did help strengthen the reliability of the test. 

5.1.1 Question 3. For Question 3 (Figure 6), more students selected Distractor A (122 of 354: 34%) 
than selected the correct, and somewhat unusual, answer D (119 of 354: 34%). Alternative A is a 
compelling distractor. 

Question 3 probes the important adversarial-thinking concept “Identify the attacker.” The sce- 
nario explains why Alice might be motivated to lie by denying having sent the purchase order, 
which supports D, even though usually Alice would not normally intentionally reveal her signing 
key. 

Each of the other alternatives can be excluded as implausible. With a strong signature system: 
signatures cannot be transferred from one document to another (A); the key cannot be deduced 
from the signature (B); signatures cannot be forged (C); and distinct documents cannot be found 
that produce identical signatures (E). Distractor A reflects an egregious misconception about dig- 
ital signatures. Selecting the correct answer requires adversarial thinking and knowledge of fun- 
damental properties of digital signatures. We conjecture that students who picked A may have 
engaged in improper analogizing, assuming that digital signatures can be copied in the same way 
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Scenario. A law firm stores sensitive client records in a database on their local network. 
Question. Choose the action that is the MOST likely to prevent an opposing law firm from reading 
the records: 

A. Require fingerprint scans to access the law offices. 
B. Disconnect their local network from the Internet 
C. Use only trusted vendor software. 
D. Protect the network with a state-of-the-art firewall and intrusion-detection system. 
E. Secure the law offices 24/7 with strong locks and security cameras. 

Definitions 
24/7: Twenty-four hours a day, seven days a week. 

 

 
 

Fig. 6. CCI Question 3 probes the concept “Identify the attacker.” More subjects selected Distractor A than 
the correct answer. 

 
 

 

Fig. 7. CCI Question 23 probes the concept “Devise a Defense.” This question had the highest discrimination 
of all the questions on the test. 

 
 

that physical signatures can be copied. This conjecture aligns with prior research findings on stu- 
dents using improper analogies while trying to transfer knowledge from one domain to another, as 
when they assume the properties of an if-then statement in programming and the if-then construct 
in Boolean logic to be the same [26]. 

5.1.2 Question 23. Question 23, with four appealing distractors, had the highest discrimination 
(see Figure 7). The correct answer is Alternative B: to disconnect the local network from the in- 
ternet. Many students, however, selected Alternative D: protecting the network with a state-of- 
the-art firewall. This explanation aligns with prior research findings from student interviews that 
students tend to prefer a digital solution over a physical solution, even in situations where the 
physical solution does a better job solving the cybersecurity problem [6]. 

5.2 Using the CCI 
We will continue to host the CCI on OHEP [1] for the foreseeable future, and we invite educators 
to use it and to participate in our ongoing evaluations of it. The authors can forward test results 
for students who take the CCI through OHEP. The authors are also willing to provide a PDF copy, 
or provide instructions on how someone might host the CCI through OHEP on their own servers. 

Scenario. Alice wants to send a file to Bob over an Internet connection. Bob receives a file digitally 
signed with Alice’s private (signature) key, using a secure digital signature algorithm. The file 
specifies an electronic order to purchase a large number of shares for a new public offering. Contrary 
to expectation, the value of the stock plummets. Following this incident, Alice denies having signed 
the purchase order, pointing out that Charlie has been caught forging her signature. 
Question. Choose the most likely explanation for how Charlie forged Alice’s signature: 

A. Copied Alice’s digital signature from an older electronic purchase order. 
B. Mathematically analyzed Alice’s signature to deduce her private key. 
C. Changed bits in Alice’s signature to sign another electronic document. 
D. Received Alice’s private key from Alice. 
E. Created a new document producing the same digital signature. 
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5.3 Limitations 
Most CIs are poorly suited for use as pre-tests, and the CCI has not been administered as a pre- 
test. Therefore, we have no evidence for whether or not it can be use as a reliable pre-test. Given 
the difficulty of the CCI, this possibility seems unlikely. Also, we are unable to comment on the 
performance of particular demographic groups, because we did not collect this information. 

Another limitation of our data set is that our data are biased toward computer science programs 
at research universities. We believe and hope that the CCI has equally desirable properties for 
assessing student’s knowledge of cybersecurity at a range of institutions types and in a range of 
degree programs including those in systems administration, business, information technology, and 
others. However, the data we have collected thus far does not allow us to reach this conclusion 
with certainty. 

6 Conclusion 
Our psychometric evaluation provides evidence that the CCI is a reliable and valid assessment 

for classifying the strength of student understanding of basic cybersecurity concepts. Therefore, 
the CCI can and should be used to compare pedagogic approaches to teaching of cybersecurity. 

We plan to apply the CCI to compare the effectiveness of various approaches to teaching and 
learning cybersecurity. We will also complete our evaluation of a second CI that we developed— 
the Cybersecurity Curriculum Assessment (CCA), for students completing an undergraduate degree 
or track in cybersecurity. The CCA targets the same five concepts as does the CCI, but assuming 
greater technical depth. 

CIs are useful tools for promoting change in education through valid and reliable measurement 
of student knowledge. We have shown that the CCI it is a valid and reliable instrument to measure 
the cybersecurity knowledge of students who have completed a first course in cybersecurity. We 
hope that its use will help instructors diagnose the knowledge of their students, and that it will 
lead to rigorous research in comparing pedagogic practices in cybersecurity education. 
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