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Despite the evolution of deep-learning-based visual-textual processing systems, precise multi-modal matching
remains a challenging task. In this work, we tackle the task of cross-modal retrieval through image-sentence
matching based on word-region alignments, using supervision only at the global image-sentence level.
Specifically, we present a novel approach called Transformer Encoder Reasoning and Alignment Network
(TERAN). TERAN enforces a fine-grained match between the underlying components of images and sentences,
i.e., image regions and words, respectively, in order to preserve the informative richness of both modalities.
TERAN obtains state-of-the-art results on the image retrieval task on both MS-COCO and Flickr30k datasets.
Moreover, on MS-COCO, it also outperforms current approaches on the sentence retrieval task.

Focusing on scalable cross-modal information retrieval, TERAN is designed to keep the visual and textual
data pipelines well separated. Cross-attention links invalidate any chance to separately extract visual and
textual features needed for the online search and the offline indexing steps in large-scale retrieval systems. In
this respect, TERAN merges the information from the two domains only during the final alignment phase,
immediately before the loss computation. We argue that the fine-grained alignments produced by TERAN
pave the way towards the research for effective and efficient methods for large-scale cross-modal information
retrieval. We compare the effectiveness of our approach against relevant state-of-the-art methods. On the
MS-COCO 1K test set, we obtain an improvement of 5.7% and 3.5% respectively on the image and the sentence
retrieval tasks on the Recall@1 metric. The code used for the experiments is publicly available on GitHub at
https://github.com/mesnico/TERAN.
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1 INTRODUCTION
Since 2012, deep learning has obtained impressive results in several vision and language tasks.
Recently, various attempts have been made to merge the two worlds, and state-of-the-art results
have been obtained in many of these tasks, including visual question answering [2, 12, 52], image
captioning [6, 14, 48, 65], and image-text matching [5, 9, 28, 39]. In this work, we deal with the
cross-modal retrieval task, with a focus on the visual and textual modalities. The task consists
in finding the top-relevant images representing a natural language sentence given as a query
(image-retrieval), or, vice versa, in finding a set of sentences that best describe an image given as a
query (sentence-retrieval).

This cross-modal retrieval task is closely related to image-sentence matching, which consists in
assigning a score to a pair composed of an image and a sentence. The score is high if the sentence
adequately describes the image, and low if the input sentence is unrelated to the corresponding
image. The score function learned by solving the matching problem can be then used for deciding
which are the top-relevant images and sentences in the two image- and sentence- retrieval scenarios.
The matching problem is often very difficult since a deep high-level understanding of images and
sentences is needed for succeeding in this task.
Visuals and texts are used by humans to fully understand the real world. Although they are

of equal importance, the information hidden in these two modalities has a very different nature.
The text is already a well-structured description developed by humans in hundreds of years, while
images are nothing but raw matrices of pixels hiding very high-level concepts and structures.
Images and texts do not describe only static entities. In fact, they can easily portray relationships
between the objects of interest, e.g.: "The kid kicks the ball". Therefore, it would be helpful to also
understand spatial and even abstract relationships linking them together.

Vision and language matching has been extensively studied [3, 9, 24, 28, 39]. Many works employ
standard architectures for processing images and texts, such as CNNs-based models for image
processing and recurrent networks for language. Usually, in this scenario, the image embeddings
are extracted from standard image classification networks, such as ResNet or VGG, by employing
the network activations before the classification head. Usually, descriptions extracted from CNN
networks trained on classification tasks can only capture global summarized features of the image,
ignoring important localized details. For this reason, recent works make extensive use of attention
mechanisms, which are able to relate each visual object, extracted from the spatial locations of a
feature map or an object detector to the most interesting parts of the sentence, and/or vice-versa.
Many of these works, such as ViLBERT[39], ImageBERT[45], VL-BERT[51], IMRAM[4], try to

learn a complex scoring function 𝑠 = 𝜙 (𝐼 ,𝐶) that measures the affinity between an image and a
caption, where 𝐼 is an image, 𝐶 is the caption and 𝑠 is a normalized score in the range [0, 1]. These
are very effective models for tackling the matching task, and they reach state-of-the-art results.
However, they remain very inefficient for large-scale image or sentence retrieval: the problem with
these approaches is that it is not possible to extract visual and textual descriptions separately, as
the pipelines are strongly entangled through cross-attention or memory layers. Thus, if we want to
retrieve images related to a given query text, we have to compute all the similarities using the 𝜙
function and then sort the resulting scores in descending order. This is unfeasible if we want to
retrieve images or sentences from a large database in a few milliseconds.
In our previous work, we introduced the Transformer Encoder Reasoning Network (TERN)

architecture [43], which is a transformer-based model able to independently process images and
sentences to match them into the same common space. TERN is a useful architecture for producing
compact yet informative features that could be used in cross-modal retrieval setups for efficient
indexing using metric-space or text-based approaches. TERN processes visual and textual elements
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using transformer encoder layers, exploring and reasoning on the relationships among image
regions and sentence words. However, its main objective is to match images and sentences as
atomic, global entities, by learning a global representation of them inside special tokens (I-CLS and
T-CLS) processed by the transformer encoder. This usually leads to performance loss and possibly
poor generalization since fine-grained information useful for effective matching is lost during the
projection to a fixed-sized common space.

For this reason, in this work, we propose TERAN (Transformer Encoder Reasoning and Alignment
Network) in which we force a fine-grained word-region alignment. Fine-grained matching deals
with the accurate understanding of the local correspondences between image regions and words,
as opposed to coarse-grained matching, where only a summarized global descriptions of the two
modalities is considered. In fact, differently from TERN, the objective function is directly defined on
the set of regions and words in output from the architecture, and not on a potentially lossy global
representation. Using this objective, TERAN tries to individually align the regions and the words
contained in images and sentences respectively, instead of directly matching images and sentences
as a whole. The information available to TERAN during training is still coarse-grained, as we do
not inject any information about word-region correspondences. The fine-grained alignment is thus
obtained in a semi-supervised setup, where no explicit word-region correspondences are given to
the network.
Our TERAN proposal shares most of the previous TERN building blocks and interconnections:

the visual and textual pipelines are forwarded separately and they are fused only during the loss
computation, in the very last stage of the architecture, making scalable cross-modal information
retrieval possible. At the same time, this novel architecture employs state-of-the-art self-attentive
modules, based on the transformer encoder architecture [53], able to spot out hidden relationships
in both modalities for a very effective fine-grained alignment.

Therefore, TERAN is able to produce independent visual and textual features usable in efficient
retrieval scenarios implementing two simple visual and textual pipelines built of modern self-
attentive mechanisms. In spite of its overall simplicity, TERAN is able to reach state-of-the-art
results in the image and sentence retrieval task, even when compared with complex entangled
visual-textual matching models. Experiments show that TERAN can generalize better with respect
to the previous TERN approach.
In the evaluation of the proposed matching procedure, we used a typical information retrieval

setup using the Recall@K metrics (with 𝐾 = {1, 5, 10}.) However, in common search engines where
the user is searching for related images and not necessarily exact matches, the Recall@K evaluation
could be too rigid, especially when 𝐾 = 1. For this reason, as in our previous work [43], in addition
to the strict Recall@K metric, we propose to measure the retrieval abilities of the system with a
normalized discounted cumulative gain metric (NDCG) with relevance computed exploiting caption
similarities.

Summarizing, the contributions of this paper are the following:

• we introduce the Transformer Encoder Reasoning and Alignment Network (TERAN), able to
produce fine-grained region-word alignments for efficient cross-modal information retrieval.

• we show that TERAN can reach state-of-the-art results on the cross-modal visual-textual
retrieval task, both in terms of Recall@K andNDCG, while producing visually-pleasant region-
words alignments without using supervision at the region-word level. Retrieval results are
measured both on MS-COCO and Flickr30k datasets.

• we quantitatively compare TERANwith our previous work [43], and we perform an extensive
study on several variants of our novel model, including weight sharing in the last transformer
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layers, stop-words removal during training, different pooling protocols for the matching loss
function, and the usage of different language models.

2 RELATEDWORK
In this section, we review some of the previous works related to image-text joint processing for
cross-modal retrieval and alignment, and high-level relational reasoning, on which this work lays
its foundations. Also, we briefly summarize the evaluation metrics available in the literature for the
cross-modal retrieval task.

Image-Text Processing for Cross-Modal Retrieval
Image-text matching is often cast to the problem of inferring a similarity score among an image
and a sentence. Usually, one of the common approaches for computing this cross-domain similarity
is to project images and texts into a common representation space on which some kind of simi-
larity measure can be defined (e.g.: cosine or dot-product similarities). Images and sentences are
preprocessed by specialized architectures before being merged at some point in the pipeline.
Concerning image processing, the standard approach consists in using Convolutional Neural

Networks (CNNs), usually pre-trained on image classification tasks. In particular, [8, 16, 26, 35, 54]
use VGGs, while [9, 10, 17, 38] use ResNets. Concerning sentence processing, many works [9, 17,
24, 28, 30] employ GRU or LSTM recurrent networks to process natural language, often considering
the final hidden state as the only feature representing the whole sentence. The problem with these
kinds of methodologies is that they usually extract extremely summarized global descriptions of
images and sentences. Therefore, a lot of useful fine-grained information needed to reconstruct
inter-object relationships for precise image-text alignment is permanently lost.

For these reasons, many works try to employ region-level information, together with word-level
descriptions provided by recurrent networks, to understand fine-grained alignments between words
and localized patches in the image. Recent works [4, 13, 15, 28, 36, 37, 56] exploit the availability
of pre-computed region-level features extracted from the Faster-RCNN [47] object detector. An
alternative consists in using the features maps in output from ResNets, without aggregating them,
for computing fine-grained attentions over the sentences [11, 18, 22, 55, 57, 60].
Recently, the transformer architecture [53] achieved state-of-the-art results in many natural

language processing tasks, such as next sentence prediction or sentence classification. The results
achieved by the BERT model [7] are a demonstration of the power of the attention mechanism
to produce accurate context-aware word descriptions. For this reason, some works in image-text
matching use BERT to extract contextualized word embeddings for representing sentences [46, 50,
58, 59]. Drawing inspiration from the powerful contextualization capabilities of the transformer
encoder architecture, some works use BERT-like processing on both visual and textual modalities,
such as ViLBERT [39], ImageBERT [45], Pixel-BERT [19], VL-BERT [51].
These latest works achieve state-of-the-art results in sentence and image retrieval, as well as

excellent results on the downstream word-region alignment task [5]. However, they cannot produce
separate image and caption descriptions; this is an important requirement in real-world search
engines, where usually, at query time, only the query element is forwarded through the network,
while all the elements of the database have already been processed by means of an offline feature
extraction process.
Some architectures have been designed so that they are natively able to extract disentangled

visual and textual features. In particular, in [9] the authors introduce the VSE++ architecture. They
use VGG and ResNets visual features extractors, together with an LSTM for sentence processing, and
they match images and captions exploiting hard-negatives during the loss computation. With their
VSRN architecture [30], the authors introduce a visual reasoning pipeline built of Graph Convolution
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Networks (GCNs) and a GRU to sequentially reason on the different image regions. Furthermore,
they impose a sentence reconstruction loss to regularize the training process. The authors in [18]
use a similar objective, but employing a pre-trained multi-label CNN to find semantically relevant
image patches and their vectorial descriptions. Differently, in [50] an adversarial learning method
is proposed, where a discriminator is used to learn modality-invariant representations. The authors
in [11] use a contextual attention-based LSTM-RNN which can selectively attend to salient regions
of an image at each time step, and they employ a recurrent canonical correlation analysis to find
hidden semantic relationships between regions and words.

The works closer to our setup are SAEM [59] and CAMERA [46]. In [59] the authors use triplet
and angular loss to project the image and sentence features into the same common space. The
visual and textual features are obtained through transformer encoder modules. Differently from our
work, they do not enforce fine-grained alignments and they pool the final representations to obtain
a single-vector representation. Instead, in [46] the authors use BERT as language model and an
adaptive gating self-attention module to obtain context-enhanced visual features, projecting them
into the same common space using cosine similarity. Unlike our work, they specifically focus on
multi-view summarization, as multiple sentences can describe the same images in many different
but complementary ways.

The loss used in our work is inspired by the matching loss introduced by the MRNN architecture
[24], which seems able to produce very good region-word alignments by supervising only the
global image-sentence level.

High-Level Reasoning
Another branch of research from which this work draws inspiration is focused on the study of
relational reasoning models for high-level understanding. The work in [49] proposes an architecture
that separates perception from reasoning. They tackle the problem of Visual Question Answering
by introducing a particular layer called Relation Network (RN), which is specialized in comparing
pairs of objects. Object representations are learned using a four-layer CNN, and the question
embedding is generated through an LSTM. The authors in [41, 42] extend the RN for producing
compact features for relation-aware image retrieval. However, they do not explore the multi-modal
retrieval setup.
Other solutions try to stick more to a symbolic-like way of reasoning. In particular, [12, 23]

introduce compositional approaches able to explicitly model the reasoning process by dynamically
building a reasoning graph that states which operations must be carried out and in which order to
obtain the right answer.

Recent works employ Graph Convolution Networks (GCNs) to reason about the interconnections
between concepts. The authors in [31, 62, 63] use GCNs to reason on the image regions for image
captioning, while [32, 61] use GCN with attention mechanisms to produce the scene graph from
plain images.

Cross-Modal Retrieval Evaluation Metrics
All the works involved with image-caption matching evaluate their results by measuring how good
the system is at retrieving relevant images given a query caption (image-retrieval) and vice-versa
(caption-retrieval).

Usually the Recall@K metric is used [9, 29, 30, 39, 45], where typically 𝐾 = {1, 5, 10}. On the
other hand, [3] introduced a novel metric able to capture non-exact results by weighting the ranked
documents using a caption-based similarity measure.
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Fig. 1. A high-level view of the transformer encoder layer. Every arrow carries 𝑠 fixed-sized vectors.

We extend the metric introduced in [3], giving rise to a powerful evaluation protocol that handles
non-exact yet relevant matches. Relaxing the constraints of exact-match similarity search is an
important step towards an effective evaluation of real search engines.

3 REVIEW OF TRANSFORMER ENCODERS
Our proposed architecture is based on the well established Transformer Encoder (TE) architecture,
which heavily relies on the concept of self-attention. The self-attention mechanism tries to weight
every vector of the sequence using a scalar value normalized in the range [0, 1] computed as a
function of the input vectors themselves. In particular, the attention is computed by using a query
vector 𝑄 and a set of key-value (𝐾 , 𝑉 ) pairs derived from data using simple feed-forward networks,
and processed as shown in Equation 1. More in detail, the attention-aware vector in output from
the attention module is computed for every input element as a weighted sum of the values, where
the weight assigned to each value is computed as a similarity score (scaled dot-product) between
the query with the corresponding key:

Att(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 . (1)

𝑄,𝐾,𝑉 are the query, the key, and the value respectively, while the factor
√
𝑑𝑘 is used to mitigate

the vanishing gradient problem of the softmax function in case the inner product assumes too
large values. In real implementations, a multi-head attention is used: the input vectors are chunked,
and every chunk is processed independently using a different instantiation of the above-described
mechanism. This helps in capturing the relationships between the different portions of every input
vector.

Finally, the output from the TE is computed through a simple feed-forward layer applied to
the 𝐴𝑡𝑡 (𝑄,𝐾,𝑉 ) vectors, with a ReLU activation function. This simple feed-forward layer casts
in output a set of features having the same dimensionality of the input sequence. Two residual
connections followed by layer normalization are also present around the self-attention and the
feed-forward sub-modules. An overview of the transformer encoder architecture is shown in
Figure 1.
Although the TE was initially developed to work on sequences, there are no architectural

constraints that prevent its usage on sets of vectors instead of sequences. In fact, the TE module has
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not any built-in sequential prior which considers every vector in a precise position in the sequence.
This makes the TE suitable for processing visual features coming from an object detector.

We argue that the transformer encoder self-attention mechanism can drive a simple but powerful
reasoning mechanism able to spot hidden relationships between the vector entities, whatever
nature they have (visual or textual). Also, the encoder is designed in a way that multiple instances
of it could be stacked in sequence. Using multiple levels of attention helps in producing a deeper
and more powerful reasoning pipeline.

4 TRANSFORMER ENCODER REASONING AND ALIGNMENT NETWORK (TERAN)
Our Transformer Encoder Reasoning and Alignment Network (TERAN) leverages our previous work
[43] that introduced the TERN architecture. TERAN modifies the learning objective of our previous
work by forcing a fine-grained alignment between the region and word features in output from the
last transformer encoder (TE) layers so that meaningful fine-grained concepts are produced.
As TERN, our TERAN reasoning engine is built using a stack of TE layers, both for the visual

and the textual data pipelines. The TE takes as input sequences or sets of entities, and it can reason
upon these entities disregarding their intrinsic nature. In particular, we consider the salient regions
in an image as visual entities, and the words present in the caption as textual entities.

More formally, the input to our reasoning pipeline is a set 𝐼 = {𝑟0, 𝑟1, . . . , 𝑟𝑛} of 𝑛 image regions
(visual entities) representing an image 𝐼 and a sequence 𝐶 = {𝑤0,𝑤1, . . . ,𝑤𝑚} of𝑚 words (textual
entities) representing the corresponding caption 𝐶 . Thus, the reasoning module continuously
operates on sets and sequences of 𝑛 and𝑚 objects respectively for images and captions.

The TERN architecture in [43] produces summarized representations of both images and words
by employing special I-CLS and T-CLS tokens that are forwarded towards the layers of the TEs.
In the end, the processed I-CLS and T-CLS tokens gather important global knowledge from both
modalities. Contrarily, TERAN does not produce aggregated fixed-sized representations for images
and sentences. For this reason, it does not employ the global features constructed inside the I-CLS
and T-CLS tokens. Instead, it tries to impose a global matching loss defined on the variable-length
sets in output from the last TE layers that is able, as a side effect, to produce also good and
interpretable region-word alignments.

The overall architecture is shown in Figure 2. We left in the scheme the I-CLS and T-CLS tokens
connections for comparison with the TERN architecture presented in [43]. These tokens are still
used for a targeted experiment that exploits the combination of the TERN and TERAN losses (more
details in Section 7). However, they are not used in the main TERAN experiments.

The visual features extracted from Faster-RCNN are conditioned with the information related to
the geometry of the bounding-boxes. This is done through a simple fully-connected stack in the
early visual pipeline before the reasoning steps. The two linear projection layers within the TE
modules are used to project the visual and textual concepts in spaces having the same dimensionality.
Then, the latest TE layers perform further processing before outputting the final features that are
used to compute the final matching loss.

Differently from TERN, we initially do not share the weights of the last TE layers. We will discuss
the effect of weight sharing in our ablation study, in Section 8.1.
In our novel TERAN architecture, the features in output from the last TE layers are used to

compute a region-word alignment matrix 𝐴 ∈ R |𝑔𝑘 |× |𝑔𝑙 | , where 𝑔𝑘 is the set of indexes of the region
features from the 𝑘-th image and 𝑔𝑙 is the set of indexes of the words from the 𝑙-th sentence. We
use cosine similarity for measuring affinity between the 𝑖-th region and the 𝑗-th word. If {𝒗𝑖 } and
{𝒔 𝑗 } are the sets of contextualized region and word vectors in output from the network for the k-th
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Fig. 2. The proposed TERAN architecture. TEs stands for Transformer Encoders, and it indicates a stack of
TE layers whose internals are recalled in Section 3 and explained in detail in [53]. Region and word features
are extracted through a bottom-up attention model based on Faster-RCNN and BERT, respectively. The final
image-text (I-T) similarity score is obtained by pooling a region-word (R-W) similarity matrix. Note that the
special I-CLS and T-CLS are not used in the basic formulation of TERAN.

image and the l-th sentence respectively, then 𝐴 is constructed as:

𝐴𝑖 𝑗 =
𝒗𝑇𝑖 𝒔 𝑗

∥𝒗𝑖 ∥∥𝒔 𝑗 ∥
𝑖 ∈ 𝑔𝑘 , 𝑗 ∈ 𝑔𝑙 (2)

At this point, the global similarity 𝑆𝑘𝑙 between the 𝑘-th image and the 𝑙-th sentence is computed
by pooling this similarity matrix through an appropriate pooling function. Inspired by [24] and
[28], we employ the max-sum pooling, which consists in computing the max over the rows of 𝐴
and then summing or, equivalently, max-over-regions sum-over-words (𝑀𝑟𝑆𝑤) pooling. We explore
also the dual version, as in [28], by computing the max over the columns and then summing, or
max-over-words sum-over-regions (𝑀𝑤𝑆𝑟 ) pooling:

𝑆
𝑀𝑟𝑆𝑤
𝑘𝑙

=
∑︁
𝑗 ∈𝑔𝑙

max
𝑖∈𝑔𝑘

𝐴𝑖 𝑗 𝑜𝑟 𝑆
𝑀𝑤𝑆𝑟
𝑘𝑙

=
∑︁
𝑖∈𝑔𝑘

max
𝑗 ∈𝑔𝑙

𝐴𝑖 𝑗 (3)

Since both these similarity functions are not symmetric due to the diverse outcomes we obtain by
inverting the order of the sum and max operations, we introduce also the symmetric form, obtained
by summing the two:

𝑆
Symm
𝑘𝑙

= 𝑆
𝑀𝑟𝑆𝑤
𝑘𝑙

+ 𝑆𝑀𝑤𝑆𝑟
𝑘𝑙

(4)

4.1 Learning Objective
Given the global image-sentence similarities 𝑆𝑘𝑙 computed through alignments pooling, we can
proceed as in previous works [9, 30] using a contrastive learning method: we use a hinge-based
triplet ranking loss, focusing the attention on hard negatives, as introduced by [9]. Therefore, we
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used the following loss function:

𝐿𝑘𝑙 = max
𝑙 ′

[𝛼 + 𝑆𝑘𝑙 ′ − 𝑆𝑘𝑙 ]++

max
𝑘′

[𝛼 + 𝑆𝑘′𝑙 − 𝑆𝑘𝑙 ]+
(5)

where [𝑥]+ ≡𝑚𝑎𝑥 (0, 𝑥) and 𝛼 is a margin that defines the minimum separation that should hold
between the truly matching word-region embeddings and the negative pairs. The hard negatives 𝑘 ′
and 𝑙 ′ are computed as follows:

𝑘 ′ = argmax
𝑗≠𝑘

𝑆 ( 𝑗, 𝑙)

𝑙 ′ = argmax
𝑑≠𝑙

𝑆 (𝑘,𝑑)
(6)

where (𝑘, 𝑙) is a positive pair. As in [9], the hard negatives are sampled from the mini-batch and
not globally, for performance reasons.

4.2 Region and Word Features Extraction
The 𝐼 = {𝑟0, 𝑟1, . . . , 𝑟𝑛} and 𝐶 = {𝑤0,𝑤1, . . . ,𝑤𝑚} initial descriptions for images and captions
come from state-of-the-art visual and textual pre-trained networks, Faster-RCNN with Bottom-Up
attention and BERT respectively.

Faster-RCNN [47] is a state-of-the-art object detector. It has been used in many downstream tasks
requiring salient object regions extracted from images. Therefore, Faster-RCNN is one of the main
architectures implementing human-like visual perception. The work in [2] introduces bottom-up
visual features by training Faster-RCNN with a Resnet-101 backbone on the Visual Genome dataset
[27]. Using these features, they can reach remarkable results on the two downstream tasks of image
captioning and visual question answering.
Concerning text processing, we use BERT [7] for extracting word embeddings. BERT already

uses a multi-layer transformer encoder to process words in sentences and capture their functional
relationships through the same powerful self-attention mechanism. BERT embeddings are trained
on some general natural language processing tasks such as sentence prediction or sentence classifi-
cation and demonstrated state-of-the-art results in many downstream natural language tasks. BERT
embeddings, unlike word2vec [44], capture the context in which each word appears. Therefore,
every word embedding carries information about the surrounding context, that could be different
from caption to caption.

Since the transformer encoder architecture does not embed any sequential prior in its architecture,
words are given a sequential order by mixing some positional information into the learned input
embeddings. For this reason, the authors in [53] add sine and cosine functions of different frequencies
to the input embeddings. This is a simple yet effective way to transform a set into a sequence.

5 COMPUTATIONAL EFFICIENCY OF TERAN
A principled objective of our work is efficient feature extraction for cross-modal retrieval applica-
tions. In these scenarios, it is mandatory to have a separable network that can produce visual and
textual features by independently forwarding the two disentangled visual and textual pipelines.
Furthermore, the similarity function should be simple, so that it is efficient to compute.

TERAN, as well as TERN [43] and other works in literature [30, 46, 59] adhere to this principle.
In fact, if 𝐾 is the number of images and 𝐿 the number of sentences in the database, these methods
have a feature space complexity, as well as a feature extraction time complexity, of 𝑂 (𝐾) +𝑂 (𝐿).
Other works that entangle the visual and textual pipelines, such as [4, 56, 60] require a feature

space, and a number of network evaluations, scaling with 𝑂 (𝐾𝐿). These methods are impractical
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to deploy to real-world scalable search engines. Some of these works partially solve this issue
by keeping the two representations separated up until a certain point in the network, so that
these intermediate representations can be cached, as proposed in [40]. In all these cases, a new
incoming query to the system needs𝑂 (𝐾) or𝑂 (𝐿) re-evaluations of the whole network (depending
on whether we are considering image or sentence retrieval); in the best case, we need to re-evaluate
the last attention layers, which could be similarly expensive.
Regarding the similarity computation, TERN uses simple dot products that enable quick and

efficient document rankings in modern search engines. TERAN implements also a very simple
similarity function, built of simple dot products and summationswithout including complex layers of
memories or attentions. This possibly enables an implementation that uses metric space approaches
to prune the search space and obtain very efficient image or sentence rankings for a given query.
However, the implementation of the TERAN similarity function in real-world search engines is left
for future research.

6 NDCG METRIC FOR CROSS-MODAL RETRIEVAL
As of now, many works in the computer vision literature treating image-text matching measure
the retrieval abilities of the proposed methods by employing the well known Recall@K metric. The
Recall@K measures the percentage of queries able to retrieve the correct item among the first K
results. This is a metric perfectly suitable for scenarios where the query is very specific and thus
we expect to find the elements that match perfectly among the first search results. However, in
common search engines, the users are not asked to input a very detailed query, and they are often
not searching for an exact match. They expect to find in the first retrieved positions some relevant
results, with relevance defined using some pre-defined and often subjective criterion.
For this reason, inspired by the work in [3] and following the novel ideas introduced by our

previous work on TERN [43], we employ a common metric often used in information retrieval
applications, the Normalized Discounted Cumulative Gain (NDCG). The NDCG is able to evaluate
the quality of the ranking produced by a certain query by looking at the first 𝑝 positions of the
ranked elements list. The premise of NDCG is that highly relevant items appearing lower in a
search result list should be penalized as the graded relevance value is reduced proportionally to the
position of the result.

The NDCG until position 𝑝 is defined as follows:

NDCG𝑝 =
DCG𝑝

IDCG𝑝

, where 𝐷𝐶𝐺𝑝 =

𝑝∑︁
𝑖=1

rel𝑖
log2 (𝑖 + 1) ; (7)

rel𝑖 is a positive number encoding the affinity that the 𝑖-th element of the retrieved list has
with the query element, and IDCG𝑝 is the DCG𝑝 of the best possible ranking. Thanks to this
normalization, NDCG𝑝 acquires values in the range [0, 1].
The rel𝑖 values can be computed using well-established sentence similarity scores between a

sentence and the sentences associated with a certain image. More formally, we could think of
computing rel𝑖 = 𝜏 (𝐶𝑖 ,𝐶 𝑗 ), where 𝐶𝑖 is the set of all captions associated to the image 𝐼𝑖 , and
𝜏 : S×S→ [0, 1] is a similarity function defined over a pair of sentences returning their normalized
similarity score. With this simple expedient, we could efficiently compute quite large relevance
matrices using similarities defined over captions, which are in general computationally much
cheaper than similarities computed between images and sentences directly.

We thus compute the 𝑟𝑒𝑙𝑖 value in the following ways:

• rel𝑖 = 𝜏 (𝐶𝑖 ,𝐶 𝑗 ) in case of image retrieval, where 𝐶 𝑗 is the query caption
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• rel𝑖 = 𝜏 (𝐶 𝑗 ,𝐶𝑖 ) in case of caption retrieval, where 𝐶 𝑗 is the set of captions associated to the
query image 𝐼 𝑗 .

In our work, we use ROUGE-L[33] and SPICE[1] as sentence similarity functions 𝜏 for computing
caption similarities. These two scoring functions capture different aspects of the sentences. In
particular, ROUGE-L operates on the longest common sub-sequences, while SPICE exploits graphs
associated with the syntactic parse trees, and has a certain degree of robustness against synonyms.
In this way, SPICE is more sensitive to high-level features of the text and semantic dependencies
between words and concepts rather than to pure syntactic constructions.

7 EXPERIMENTS
We trained the TERAN architecture and we measured its performance on the MS-COCO [34] and
Flickr30k datasets [64], computing the effectiveness of our approach on the image retrieval and
sentence retrieval tasks. We compared our results against state-of-the-art approaches on the same
datasets, using the introduced NDCG and the already-in-use Recall@K metrics.

The MS-COCO dataset comes with a total of 123,287 images. Every image has associated a set of 5
human-written captions describing the image. We follow the splits introduced by [24] and followed
by the subsequent works in this field [9, 10, 30]. In particular, 113,287 images are reserved for
training, 5,000 for validating, and 5,000 for testing. Differently, Flickr30k consists of 31,000 images
and 158,915 English texts. Like MS-COCO, each image is annotated with 5 captions. Following the
splits by [24], we use 29,000 images for training, 1,000 images for validation, and the remaining
1,000 images for testing. For MS-COCO, at test time the results for both 5k and 1k test-sets are
reported. In the case of 1k images, the results are computed by performing 5-fold cross-validation
on the 5k test split and averaging the outcomes.
We computed caption-caption relevance scores for the NDCG metric using ROUGE-L[33] and

SPICE[1], as explained in Section 6, and we set the NDCG parameter 𝑝 = 25 as in [3] in our
experiments. We employed the NDCG metrics measured during the validation phase for choosing
the best performing model to be used during the test phase.
For a better comparison with our previous TERN approach, we included three more targeted

experiments. In the first two, called TERN 𝑀𝑤𝑆𝑟 Test and TERN 𝑀𝑟𝑆𝑤 Test we used the best-
performing TERNmodel, trained as explained in [43], testing it using the𝑀𝑤𝑆𝑟 and𝑀𝑟𝑆𝑤 alignments
criteria respectively. TERN is effectively able to output features for every image region or word;
however, it is never constrained to produce meaningful descriptions out of these sets of features;
hence, this trial is aimed at checking the quality of the alignment of the concepts in output from
the previous TERN architecture. In the third experiment, called TERN w. Align, we tried to integrate
the objectives of both TERN and TERAN during training, by combining their losses using the
uncertainty weighting method proposed in [25], and testing the model using the TERN inference
protocol. Thus, in this experiment, we effectively reuse the I-CLS and T-CLS tokens as global
descriptions for images and sentences, as described in [43]. This experiment aimed to evaluate if the
TERAN alignment objective can help TERN learn better fixed-sized global vectorial descriptions.

7.1 Implementation Details
We employ the BERT model pre-trained on the masked language task on English sentences, using
the PyTorch implementation by HuggingFace 1. These pre-trained BERT embeddings are 768-D.
For the visual pipeline, we extracted the bottom-up features from the work by [2], using the code
and pre-extracted features provided by the authors 2. Specifically, for MS-COCO we used the

1https://github.com/huggingface/transformers
2https://github.com/peteanderson80/bottom-up-attention
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already-extracted bottom-up features, while we extracted from scratch the features for Flickr30k
using the available pre-trained model.
In the experiments, we used the bottom-up features containing the top 36 most confident

detections, although our pipeline already handles variable-length sets of regions for each image by
appropriately masking the attention weights in the TE layers.

Concerning the reasoning steps, we used a stack of 4 TE layers for visual reasoning. We found the
best results when fine-tuning the BERT pre-trained model, so we did not add further reasoning TE
layers for the textual pipeline. The final common space, as in [9], is 1024-dimensional. We linearly
projected the visual and textual features to a 1024-d space and then we processed the resulting
features using 2 final TEs before computing the alignment matrix.
All the TEs feed-forward layers are 2048-dimensional and the dropout is set to 0.1. We trained

for 30 epochs using Adam optimizer with a batch size of 40 and a learning rate of 1𝑒−5 for the
first 20 epochs and 1𝑒−6 for the remaining 10 epochs. The 𝛼 parameter of the hinge-based triplet
ranking loss is set to 0.2, as in [9, 30].

7.2 Results
We compare our TERAN method against the following baselines: JGCAR [55], SAN [21], VSE++ [9],
SMAN [22], M3A-Net [20], AAMEL [57], MRNN [24], SCAN [28], SAEM [59], CASC [60], MMCA
[58], VSRN [30], PFAN [56], Full-IMRAM [4], and CAMERA [46]. We clustered these methods
based on the visual feature extractor they use: VGG, ResNet, or Region CNN (e.g., Faster-RCNN).
To have a better comparison with our method, we also annotated in the tables whenever they use
BERT as the textual model, or if they use disentangled visual-textual pipelines for efficient feature
computation, as explained in Section 5. Also note that many of the listed methods report the results
using an ensemble of two models having different training initialization parameters, where the
final similarity is obtained by averaging the scores in output from each model. Hence, we reported
also our ensemble results, for a better comparison with these baselines. In the tables, we indicate
ensemble methods postponing "(ens.)" to the method name.

We used the original implementations from their respective GitHub repositories to compute the
NDCG metrics for the baselines, where possible. In the case of missing pre-trained models, we were
not able to produce consistent results with the original papers. In this case, we do not report the
NDCG metrics ("-").
On both the 1K and 5K test sets, our novel TERAN approach reaches state-of-the-art results

on almost all the metrics. Concerning the results reported in Table 1 regarding 1K test set, the
best performing TERAN model is the one implementing the max-over-regions sum-over-words
(𝑀𝑟𝑆𝑤) pooling method, although the model using the symmetric loss reaches comparable results.
We chose the same TERAN 𝑀𝑟𝑆𝑤 model to evaluate the ensemble, reaching an improvement of
5.7% and 3.5% on the Recall@1 metric on image and sentence retrieval respectively, with respect to
the best baseline using ensemble methods, which is CAMERA [46]. Notice, however, that even the
basic TERAN model without ensemble is able to surpass CAMERA in many metrics. This confirms
the power of the TERAN model despite its overall simplicity.

Table 2 reports the results for the 5K test set, which confirm the superiority of TERAN𝑀𝑟𝑆𝑤 over
all the baselines also on the full test set. In this scenario, we increase the Recall@1 performance
by 11.3% and 7.6% on image and sentence retrieval with respect to the CAMERA approach. On
the other hand, the max-over-words sum-over-regions (𝑀𝑤𝑆𝑟 ) method loses around 10% on the
Recall@1 metrics with respect to the best performing TERAN non-ensemble model. In this case,
the Recall@K metric does not improve over top results obtained by the current state-of-the-art
approaches. Nevertheless, this model loses only about 1.5% during image-retrieval and about
3.5% during sentence-retrieval as far as the SPICE NDCG metric is concerned, reaching perfectly
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Table 1. Results on the MS-COCO dataset, on the 1K test set.

Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(VGG)
JGCAR [55] 40.2 74.8 85.7 - - 52.7 82.6 90.5 - -
SAN [21] 60.8 90.3 95.7 - - 74.9 94.9 98.2 - -

(ResNet)
VSE++ [9] † 52.0 84.3 92.0 0.712 0.617 64.6 90.0 95.7 0.705 0.658
SMAN [22] 58.8 87.4 93.5 - - 68.4 91.3 96.6 - -
M3A-Net [20] 58.4 87.1 94.0 - - 70.4 91.7 96.8 - -
AAMEL [57] 59.9 89.0 95.1 - - 74.3 95.4 98.2 - -

(Region CNN)
MRNN [24] 27.4 60.2 74.8 - - 38.4 69.9 80.5 - -
SCAN (ens.) [28] 58.8 88.4 94.8 - - 72.7 94.8 98.4 - -
SAEM (ens.)[59] §† 57.8 88.6 94.9 - - 71.2 94.1 97.7 - -
CASC [60] 58.9 89.8 96.0 - - 72.3 96.0 99.0 - -
MMCA [58] § 61.6 89.8 95.2 - - 74.8 95.6 97.7 - -
VSRN [30] † 60.8 88.4 94.1 0.723 0.621 74.0 94.3 97.8 0.737 0.690
VSRN (ens.) [30] † 62.8 89.7 95.1 0.732 0.637 76.2 94.8 98.2 0.748 0.704
PFAN (ens.) [56] 61.6 89.6 95.2 - - 76.5 96.3 99.0 - -
Full-IMRAM [4] 61.7 89.1 95.0 - - 76.7 95.6 98.5 - -
CAMERA [46] §† 62.3 90.1 95.2 - - 75.9 95.5 98.6 - -
CAMERA (ens.) [46] §† 63.4 90.9 95.8 - - 77.5 96.3 98.8 - -

TERN [43] 51.9 85.6 93.6 0.725 0.653 63.7 90.5 96.2 0.716 0.674
TERN𝑀𝑟𝑆𝑤Test 51.5 84.9 93.1 0.722 0.642 26.6 70.3 86.3 0.568 0.530
TERN𝑀𝑤𝑆𝑟Test 51.2 84.6 92.9 0.722 0.643 61.9 88.9 95.7 0.713 0.666
TERN w. Align 54.5 86.9 94.2 0.724 0.643 65.5 91.0 96.5 0.720 0.675

TERAN Symm. 63.5 91.1 96.3 0.739 0.666 76.3 95.3 98.4 0.741 0.701
TERAN𝑀𝑤𝑆𝑟 57.5 88.4 94.9 0.730 0.658 70.8 93.5 97.3 0.725 0.681
TERAN𝑀𝑟𝑆𝑤 65.0 91.2 96.4 0.741 0.668 77.7 95.9 98.6 0.746 0.707
TERAN𝑀𝑟𝑆𝑤 (ens.) 67.0 92.2 96.9 0.747 0.680 80.2 96.6 99.0 0.756 0.720
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines

comparable results with our state-of-the-art method. In light of these results, we deduce that the
𝑀𝑤𝑆𝑟 model is not so effective in retrieving the perfect-matching elements; however, it is still very
good at retrieving the relevant ones.
As far as image retrieval is concerned, in the TERN𝑀𝑤𝑆𝑟Test and TERN𝑀𝑤𝑆𝑟Test experiments

we can see that the TERN architecture trained as in [43] performs fairly good when the similarity
is computed as in the novel TERAN architecture, using the region and words outputs and not the
I-CLS and T-CLS global descriptions. In particular, the use of max-over-words sum-over-regions
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Table 2. Results on the MS-COCO dataset, on the 5K test set.

Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(ResNet)
VSE++ [9] † 30.3 59.4 72.4 0.656 0.577 41.3 71.1 81.2 0.597 0.551
M3A-Net [20] 38.3 65.7 76.9 - - 48.9 75.2 84.4 - -
AAMEL [57] 39.9 71.3 81.7 - - 51.9 84.2 91.2 - -

(Region CNN)
MRNN [24] 10.7 29.6 42.2 - - 16.5 39.2 52.0 - -
SCAN (ens.) [28] 38.6 69.3 80.4 - - 50.4 82.2 90.0 - -
VSRN [30] † 37.9 68.5 79.4 0.676 0.596 50.3 79.6 87.9 0.639 0.598
VSRN (ens.) [30] † 40.5 70.6 81.1 0.684 0.609 53.0 81.1 89.4 0.652 0.612
Full-IMRAM [4] 39.7 69.1 79.8 - - 53.7 83.2 91.0 - -
MMCA [58] § 38.7 69.7 80.8 - - 54.0 82.5 90.7 - -
CAMERA [46] §† 39.0 70.5 81.5 - - 53.1 81.3 89.8 - -
CAMERA (ens.) [46] §† 40.5 71.7 82.5 - - 55.1 82.9 91.2 - -

TERN [43] 28.7 59.7 72.7 0.665 0.599 38.4 69.5 81.3 0.601 0.556
TERN𝑀𝑟𝑆𝑤Test 28.3 59.1 72.2 0.663 0.592 6.8 28.4 46.7 0.406 0.372
TERN𝑀𝑤𝑆𝑟Test 28.1 58.6 71.8 0.663 0.592 35.5 67.5 78.9 0.600 0.551
TERN w. Align 31.4 62.5 75.3 0.667 0.597 40.2 71.1 81.9 0.606 0.561

TERAN Symm. 41.0 71.6 82.3 0.680 0.607 54.8 82.7 90.9 0.641 0.601
TERAN𝑀𝑤𝑆𝑟 34.1 65.7 77.8 0.669 0.596 45.3 76.3 86.2 0.611 0.564
TERAN𝑀𝑟𝑆𝑤 42.6 72.5 82.9 0.682 0.610 55.6 83.9 91.6 0.643 0.606
TERAN𝑀𝑟𝑆𝑤(ens.) 45.1 74.6 84.4 0.689 0.622 59.3 85.8 92.4 0.658 0.624
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines

similarity still works quite well compared to the similarity computed through I-CLS and T-CLS
global visual and textual features as it is in TERN.

Notice instead that on the sentence retrieval task, the TERN𝑀𝑟𝑆𝑤 Test experiment obtains a very
low performance. This is the consequence of the fact that TERN is trained to produce global-scale
image-sentence matchings, while it is never forced to produce meaningful fine-grained aligned
concepts. This is further supported by the evidence that if we visualize the region-words alignments
as explained in the following Section 8.5 we obtain random word groundings on the image, meaning
that the concepts in output from TERN are not sufficiently informative.
In order to better compare TERAN with our previous TERN approach, in Figure 3 we report

the validation curves for both NDCG and Recall@1 metrics, for both methods. We can notice how
the NDCG metric overfits in our previous TERN model, especially when using the SPICE metric,
while the Recall@ keeps increasing. On the other hand, TERAN demonstrates better generalization
abilities on both metrics. This is a clear indication that TERAN is better able to retrieve relevant
items in the first positions, as well as exact matching elements. Instead, TERN is more prone to
overfitting to the SPICEmetric, meaning that at a certain point in training, the network still searches
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Fig. 3. Validation metrics on sentence-to-image retrieval, measured during the training phase, for the average-
over-sentences scenario. TERN overfits on the NDCG metrics, while Recall@1 still improves. TERAN instead
generalizes better on both metrics.

for the top matching element, but with a tendency to push away possible relevant results compared
to the novel TERAN approach.
However, looking at the results from the TERN w. Align experiment, we can notice that by

augmenting the TERN objective with the TERAN alignment loss, we can slightly increase the TERN
overall performance. This confirms that a more precise and meaningful region-word alignment has
a visible effect also on the quality of the fixed-sized global embeddings produced by TERN.

In Table 3 we report the results on the Flickr30k dataset. Our single-model TERAN𝑀𝑟𝑆𝑤 method
outperforms the best baseline (CAMERA) on the image retrieval task while approaching the single-
model CAMERA performance on the sentence retrieval task. Nevertheless, even on Flickr30k our
TERAN 𝑀𝑟𝑆𝑤 method with model ensemble obtains state-of-the-art results with respect to all
the baselines on all the metrics, gaining 4.6% and 1.5% on the Recall@1 metric on the image and
sentence retrieval tasks respectively.
On the MS-COCO dataset, our system powered by a single GTX 1080Ti can compute a single

image-to-sentence query in ∼ 0.12𝑠 on 5k sentences of the test split; in the sentence-to-image
scenario, it can produce scores and rank the 1K images in ∼ 0.02𝑠 . These timings allow the TERAN
scores to be effectively used, for example, in a re-ranking phase, where the first 1k images - 5k
sentences have been previously retrieved using a faster descriptor (e.g., the one from TERN).

7.3 Qualitative Analysis for Image Retrieval
The visualization of image retrieval results is a good way to qualitatively appreciate the retrieval
abilities of the proposed TERAN model. Figures 4 and 5 show examples of images retrieved given
a textual caption as a query, with scores computed using the max-over-regions sum-over-words
method. In particular, Figure 4 shows image retrieval results for a couple of flexible query captions.
The red-marked images represent the exact-matching elements from the ground-truth. We can
therefore conclude that the retrieved images in these examples are incorrect results for the Recall@1
metric (and for the first query even for Recall@5). However, in the very first positions, we find
non-matching yet relevant images, due to the ambiguity of the query caption. These are common
examples where NDCG succeeds over the Recall@K metric since we need a flexible evaluation for
not-too-strict query captions.

Figure 5 reports instead image retrieval results for a couple of very specific query captions. For
the first two queries, the network succeeds in positioning the only really relevant image in the
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Table 3. Results on the Flickr30k dataset.

Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

(VGG)
JGCAR [55] 35.2 62.0 72.4 - - 44.9 75.3 82.7 - -
SAN [21] 51.4 77.2 85.2 - - 67.0 88.0 94.6 - -

(ResNet)
VSE++ [9] † 39.6 70.1 79.5 0.631 0.494 52.9 80.5 87.2 0.601 0.514
TIMAM [50] §† 42.6 71.6 81.9 - - 53.1 78.8 87.6 - -
SMAN [22] 43.4 73.7 83.4 - - 57.3 85.3 92.2 - -
M3A-Net [20] 44.7 72.4 81.1 - - 58.1 82.8 90.1 - -
AAMEL [57] 49.7 79.2 86.4 - - 68.5 91.2 95.9 - -

(Region CNN)
MRNN [24] 15.2 37.7 50.5 - - 22.2 48.2 61.4 - -
SCAN (ens.) [28] 48.6 77.7 85.2 - - 67.4 90.3 95.8 - -
PFAN (ens.) [56] 50.4 78.7 86.1 - - 70.0 91.8 95.0 - -
SAEM (ens.)[59] §† 52.4 81.1 88.1 - - 69.1 91.0 95.1 - -
VSRN [30] † 53.0 77.9 85.7 0.673 0.545 70.4 89.2 93.7 0.676 0.592
VSRN (ens.) [30] † 54.7 81.8 88.2 0.680 0.556 71.3 90.6 96.0 0.688 0.606
Full-IMRAM [4] 53.9 79.4 87.2 - - 74.1 93.0 96.6 - -
MMCA [58] § 54.8 81.4 87.8 - - 74.2 92.8 96.4 - -
CASC [60] 60.2 78.3 86.3 - - 68.5 90.6 95.9 - -
CAMERA [46] §† 58.9 84.7 90.2 - - 76.5 95.1 97.2 - -
CAMERA (ens.) [46] §† 60.3 85.9 91.7 - - 78.0 95.1 97.9 - -
TERN [43] 41.1 71.9 81.2 0.647 0.512 53.2 79.4 86.0 0.624 0.529

TERAN Symm. 55.7 83.1 89.3 0.678 0.555 71.8 90.5 94.7 0.676 0.603
TERAN𝑀𝑤𝑆𝑟 49.4 78.3 85.9 0.664 0.536 60.5 85.1 92.2 0.651 0.558
TERAN𝑀𝑟𝑆𝑤 59.5 84.9 90.6 0.686 0.564 75.8 93.2 96.7 0.687 0.614
TERAN𝑀𝑟𝑆𝑤 (ens.) 63.1 87.3 92.6 0.695 0.577 79.2 94.4 96.8 0.707 0.636
§ Uses BERT as language model
† Uses disentangled visual-textual pipelines

first position (a dog sitting on a bench on the upper query, and Pennsylvania Avenue, uniquely
identifiable by the street sign, on the lower query). In this case, the Recall@1 metric also succeeds,
given that the query captions are very selective. The third example, instead, evidences a failure
case where the model cannot deal with very subtle details. The (only) correct result is ranked 6th in
this case; in the first ranking positions, the model can find images with a vase used as a centerpiece,
but the table is not often visible, and when it is visible, it is not in the corner of the room.
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Query: A large jetliner sitting on top of an airport runway.

Query: An eating area with a table and a few chairs.

Fig. 4. Example of image retrieval results for a couple of flexible query captions. These are common examples
where NDCG succeeds over the Recall@K metric. The ground-truth matching image is not among the very
first positions; however, the top-ranked images are also visually very relevant.

Query: A large white dog is sitting on a bench beside an elderly man.

Query: An old black and white photo of Pennsylvania Avenue.

Query: Table situated in corner of room with a vase for a center piece.

Fig. 5. Example of image retrieval results for a couple of very specific query captions.

8 ABLATION STUDY
8.1 The Effect of Weight Sharing
We tried to apply weight sharing for the last 2 layers of the TERAN architecture, those after the
linear projection to the 1024-d space. Weight sharing is used to reduce the size of the network
and enforce a structure able to perform common reasoning on the high-level concepts, possibly
reducing the overfitting and increasing the stability of the whole network. We experimented with
the effects of weight sharing on the MS-COCO dataset with 1K test set, for both the max-over-words
sum-over-regions and the max-over-regions sum-over-words scenarios.
Results are shown in the 2-nd and 6-th rows of Table 4. It can be noticed that the values are

perfectly comparable with the TERAN results reported in Table 1, suggesting that at this point in
the network the abstraction is high enough that concepts coming from images and sentences can
be processed in the exact same way. This result shows that vectors at this stage have been freed
from any modality bias and they are fully comparable in the same representation space.

Also, in the max-over-words sum-over-regions scenario (6-th row), there is a small gain both in
terms of Recall@K and NDCG. This confirms the slight regularization effect of the weight sharing
approach.
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Fig. 6. Validation metrics measured during the training phase, for the average-over-sentences scenario. This
model overfits on the NDCG metrics on the image-retrieval task, while Recall@1 still improves.

8.2 Averaging Versus Summing
We tried to do average instead of sum during the last pooling phase of the alignment matrix. We
consider only the case in which we average-over-sentences; in fact, since in our experiments the
number of visual concepts is always fixed to the 36 more influent ones during the object detection
stage, average-over-regions and sum-over-regions do not differ substantially.

Thus, we considered the case of max-over-regions average-over-words (𝑀𝑟Avg𝑤):

𝑆𝑘𝑙 =

∑
𝑗 ∈𝑔𝑙 max𝑖∈𝑔𝑘 𝐴𝑖 𝑗

|𝑔𝑙 |
. (8)

If we compute the average instead of the sum in the max-over-regions sum-over-words scenario,
the final similarity score between the image and the sentence is no more dependent on the number
of concepts from the textual pipeline: the similarities are averaged and not accumulated.
In the 3-rd row of Table 4 we can notice that by averaging we lose an important amount of

information with respect to the max-over-regions sum-over-words scenario (1-st row). This insight
suggests that the complexity of the query is beneficial for achieving high-quality matching.

Another side effect of using average instead of the max is the premature clear overfitting on the
NDCG metrics as far as image-retrieval is concerned. The effect is shown in Figure 6. The clear
overfitting of the NDCG metrics resembles the training curve trajectories of TERN (Figure 3). This
result demonstrates that although this model can correctly perform exact matching, it is pulling
away relevant results from the head of the ranked list of images, during the validation phase.

8.3 Removing Stop-Words During Alignment
Some words may carry no substantial meaning by themselves, such as articles or prepositions.
These words with a high and diffuse frequency of use are typically called stop-words and are usually
removed in classical text analysis processes. In this context, removing stop-words may help the
architecture to focus only on the important concepts. Doing so, the training process is simplified as
the noise introduced by possibly irrelevant words is removed. Results are reported in the 4-th row
of Table 4. The overall performance, both in terms of Recall@ and NDCG is comparable, yet with
a small decrease, with the one obtained without stop-words removal (1-st row of the table). This
suggests that in this context stop-words are linguistic elements that bring some useful information
to distinguish ambiguous scenes. Prepositions and adverbs often indicate the spatial arrangement
of objects, thus "chair near the table" is not the same as "chair over the table"; distinguishing these
fine-grained differences is beneficial for obtaining a precise image-text matching.
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Table 4. Results for the ablation study experiments. We organize the methods in the table clustering them by
the pooling method, for an easier comparison (max-over-regions methods in the upper part and max-over-
words methods on the lower part). In the first row of both sections we report the TERAN results from Table 1.
Experiments are computed on the MS-COCO dataset, 1K test set.

Image Retrieval Sentence Retrieval

Recall@K NDCG Recall@K NDCG

Model K=1 K=5 K=10 ROUGE-L SPICE K=1 K=5 K=10 ROUGE-L SPICE

𝑀𝑟𝑆𝑤 (from Table 1) 65.0 91.2 96.4 0.741 0.668 77.7 95.9 98.6 0.746 0.707
𝑀𝑟𝑆𝑤 Shared-W 64.5 91.3 96.3 0.740 0.667 77.3 95.9 98.4 0.746 0.706
𝑀𝑟Avg𝑤 57.2 87.6 93.6 0.705 0.587 68.6 92.4 96.7 0.721 0.671
𝑀𝑟𝑆𝑤 StopWordsFilter 64.2 91.1 96.3 0.737 0.658 76.8 95.9 98.6 0.745 0.705
𝑀𝑟𝑆𝑤 Bi-LSTM 55.6 86.9 93.9 0.734 0.666 67.4 92.5 96.9 0.717 0.677
𝑀𝑟𝑆𝑤 Bi-GRU 56.3 87.1 94.0 0.735 0.666 69.1 93.4 97.1 0.720 0.678

𝑀𝑤𝑆𝑟 (from Table 1) 57.5 88.4 94.9 0.730 0.658 70.8 93.5 97.3 0.725 0.681
𝑀𝑤𝑆𝑟 Shared-W 58.1 88.4 95.0 0.730 0.657 71.1 93.1 97.7 0.728 0.683

8.4 Using Different Language Models
Despite the power of BERT [7] for obtaining contextualized representations for the words in a
sentence, many works use recurrent bidirectional networks instead, such as Bi-GRU or Bi-LSTMs.

In the 5-th and 6-th row of Table 4 we report the results for the TERAN model with Bi-GRU and
Bi-LSTM in substitution of the BERT model for language processing. We used 300-dimensional
word embeddings, and a hidden size of 512 so that the final bi-directional sentence feature is a
1024-dimensional description; we used the same training protocol and hyper-parameters used for
the main experiments. The results suggest that BERT is an essential ingredient for reaching top
results on the Recall@K metrics, especially when K={1, 5}. In particular, Bi-LSTM and Bi-GRU lose
around 14% on image retrieval and 12% on sentence retrieval on the Recall@1 metric compared to
the TERAN 𝑀𝑟𝑆𝑤 single-model method. However, we can notice that TERAN with these recurrent
language models still maintains a comparable performance with respect to the NDCG metric,
especially on the image retrieval task.

8.5 Visualizing the Visual-Word Alignments
Inspired by the work in [24], we try to visualize the region-word alignments learned by TERAN on
some images from the test set of MS-COCO dataset. We recall that no supervision was used at the
region-word level during the training phase.

In Figure 7, we report some figures where every sentence word has been associated with the top-
relevant image region. The affinity between visual concepts (region features) and textual concepts
(word features) has been measured through cosine similarity, just as during the training phase.

We can see that the words have overall plausible groundings on the image they describe. Some
words are really difficult to ground, such as articles, verbs, or adjectives. However, we can notice that
phrases describing a visual entity and composed of nouns with the related articles and adjectives
(e.g. "a green tie", or "a wooden table") are often grounded to the same region. This further confirms
that the TERAN architecture can produce meaningful concepts, and it is also able to cluster them
under the form of complete reasonable phrases.
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Fig. 7. Visualization of the word-region alignments. Near each word, we report the cosine similarity computed
between that word and the top-relevant image region associated with it. We slightly offset the overlapping
bounding-boxes for a better visualization.

We can notice some wrong word groundings in the images, such as the phrase "eyes closed"
that is associated with the region depicting the closed mouth. In this case, the error seems to lie
on some localized misunderstanding of the scene (in this case the noun "eyes" has probably been
misunderstood since the mouth and the eyes are both closed). Overall, however, complex scenes
are correctly broken down into their salient elements, and only the key regions are attended.

9 CONCLUSIONS
In this work, we introduced the Transformer Encoder Reasoning and Alignment Network (TERAN).
TERAN is a relationship-aware architecture based on the Transformer Encoder (TE) architecture,
exploiting self-attention mechanisms, able to reason about the spatial and abstract relationships
between elements in the image and in the text separately.

Differently from TERN [43], TERAN forces a fine-grained alignment among the region and word
features without any supervision at this level. We demonstrated that by enforcing this fine-grained
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word-region alignment at training time we can obtain state-of-the-art results on the popular MS-
COCO and Flickr30K datasets. Besides, thanks to the overall simplicity of the proposed model, we
can obtain effective visual and textual features for use in scalable retrieval setups.

We measured the performance of our TERAN architecture in the context of cross-modal retrieval
using both the already-in-use Recall@K metric and the newly introduced NDCG with the ROUGE-L
and SPICE textual relevance measures. In spite of its simplicity, TERAN can outperform current
state-of-the-art models on these two retrieval metrics, competing with the currently very effective
entangled visual-textual matchingmodels, which on the contrary are not able to produce features for
scalable retrieval. Furthermore, we showed that TERAN can successfully output visually-pleasant
word-region alignments. We also observed that a further reduction of the network complexity can
be obtained by sharing the weights of the last TE layers. This has important benefits also on the
stability and in the generalization abilities of the whole architecture.

In the end, we think that this work proposes an interesting path towards efficient and effective
cross-modal information retrieval.
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