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Abstract

Probabilistic databases (PDBs) are probability spaces over database instances. �ey pro-
vide a framework for handling uncertainty in databases, as occurs due to data integration,
noisy data, data from unreliable sources or randomized processes. Most of the existing
theory literature investigated finite, tuple-independent PDBs (TI-PDBs) where the occur-
rences of tuples are independent events. Only recently, Grohe and Lindner (PODS ’19)
introduced independence assumptions for PDBs beyond the finite domain assumption. In
the finite, a major argument for discussing the theoretical properties of TI-PDBs is that
they can be used to represent any finite PDB via views. �is is no longer the case once the
number of tuples is countably infinite. In this paper, we systematically study the repre-
sentability of infinite PDBs in terms of TI-PDBs and the related block-independent disjoint
PDBs.
�e central question is which infinite PDBs are representable as first-order views over

tuple-independent PDBs. We give a necessary condition for the representability of PDBs
and provide a sufficient criterion for representability in terms of the probability distribu-
tion of a PDB. With various examples, we explore the limits of our criteria. In addition,
we show that conditioning on first-order properties yields no additional power in terms
of expressivity, and we discuss the relation between purely logical and arithmetic reasons
for (non-)representability. Finally, we inspect the relative expressivity of additional rep-
resentations, where the views are restricted to be fragments of first-order logic (such as
conjunctive queries with or without self-joins and unions of conjunctive queries).

1 Introduction

Probabilistic databases (PDBs) provide a framework for dealing with uncertainty in databases,

as could occur due to data integration, the acquisition of noisy data or data from unreliable

sources or as outputs of randomized processes. O�en the appropriate probability spaces are
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infinite. For example, fields in a fact may contain measurements from a noisy sensor, which

we model as real numbers with some error distribution, or approximate counters, modeled

by some probability distribution over the integers, or text data scraped from unreliable web

sources, modeled by a probability distribution over the strings over a suitable finite alphabet.

Formally, PDBs are probability spaces over (relational) database instances. A key issue when

working with PDBs in practice is the question of how to represent them. For finite PDBs, this

is always possible in principle (ignoring numerical issues)by just listing all instances in the

PDB and their probabilities. But of course, it is usually infeasible to store the whole sample

space of a probability distribution over reasonably sized database instances. Instead, various

compact representation systems have been proposed. Arguably the simplest is based on tuple-

independent PDBs. In a tuple-independent PDB (TI-PDB) the truths of all facts 5 are regarded

as independent events that hold with a probability ?5 ∈ [0, 1]. �e sample space of a TI-

PDB with = facts has size 2= , but we can represent the TI-PDB by just listing the = marginal

probabilities ?5 of the facts 5 . Much of the theoretical work on PDBs is concerned with TI-

PDBs. A justification for this focus on TI-PDBs is the following nice �eorem [56]: every finite

PDB can be represented by a first-order view over a (finite) TI-PDB. In other words: first-order

views over TI-PDBs form a complete representation system for finite PDBs.

In this paper, we investigate similar questions in a broadened scope. Our main focus lies

on probabilistic databases with a countably infinite sample space. �e idea of modeling uncer-

tainty in databases by viewing them as infinite collections of possible worlds has been around

for quite some time in the context of incomplete databases [35]. While existing PDB systems

are already using infinite domains and sample spaces, such as [23, 52, 4, 39, 36, 14], a formal

framework of probabilistic databases with infinite sample spaces has only been introduced re-

cently [31, 33]. Let us emphasize that in an infinite PDB, it is the sample space of the probability

distribution that is infinite; every single instance of an infinite PDB is still finite. As a special

case, it is natural to consider infinite PDBs of bounded instance size, which means that all in-

stances have size at most 1 for some fixed bound 1. A simple example that can be modeled

as a PDB of bounded size is a table describing a fixed number of samples of the fermentation

process when brewing Guinness beer, containing the date of each sample and the number of

yeast cells in the sample. �is number is known to be Poisson distributed [11].

For infinite PDBs, the issue of representing them becomes even more difficult, because

clearly, not every infinite PDB has a finite or computable representation. In this paper, we

set out to study representations of infinite PDBs by considering representations over infinite

TI-PDBs. Infinite TI-PDBs have been considered in [31], and it has been observed there that

it is not the case that every countably infinite PDB can be represented by a first-order view

over an infinite TI-PDB. �e reason for this is relatively simple: it can be shown that the ex-

pected instance size in a TI-PDB is always finite, but there exist infinite PDBs with an infinite

expected instance size. As first-order views preserve instance size up to a polynomial factor,

such infinite PDBs with an infinite expected instance size cannot be represented by first-order

views over TI-PDBs.

Let us denote the class of all PDBs that can be represented by a first-order view over a TI-

PDB by FO(TI). We prove that the class FO(TI) is quite robust: somewhat unexpectedly,

conditioning a TI-PDB on a first-order constraint prior to applying a first-order view does not

yield additional expressive power, i. e. FO(TI | FO) = FO(TI). �is allows us to show that
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all block-independent disjoint PDBs (BID-PDBs) are in FO(TI). A BID-PDB is a PDB where

the set of facts is partitioned into blocks, such that facts from different blocks are independent,

while facts from the same block are disjoint. BID-PDBs form a practically quite relevant class of

PDBs that includes PDBs of the form described in the yeast cell example above, where specific

fields of facts in a table store the outcome of a random variable.

In [31], the authors exploited that TI-PDBs have finite expected instance size to construct

a PDB that is not contained in FO(TI). We generalize this idea and prove that for every PDB

in FO(TI), all size moments, that is, moments of the random variable that maps each instance

to its size, are finite. �is imposes a fairly strong restriction on the probability distribution of

PDBs in FO(TI). In addition, we give an example showing that there are even PDBs that have

finite size moments but that are still not in FO(TI). Complementing these non-representability

results, we prove that all PDBs of bounded instance size are in FO(TI). Furthermore, we give a

sufficient criterion on the growth rate of the probabilities of PDBs for membership in FO(TI).

All the non-representability results mentioned so far are caused by unwieldy probability

distributions. We say that the reasons for these non-representability results are arithmetical.

We asked ourselves if it can also happen that a PDB is not in FO(TI) for logical reasons, for

example, because there are large gaps in the range of instance sizes. We formalize this question

by saying that a PDB is not in FO(TI) for logical reasons if there is no probability distribution

that assigns positive probabilities to all instances in the sample space such that the resulting

PDB is in FO(TI). �us, being not representable for logical reasons is a property of the sam-

ple space and not of the probability measure. Arguably, this notion is closer to the theory of

incomplete databases than to probabilistic databases. Surprisingly, we prove that there are no

logical reasons for non-representability.

As we have seen that various classes of first-order views over TI- and BID-PDBs coincide

with FO(TI), one might wonder about the consequences of allowing only fragments of first-

order logic in representation. We investigate such classes and show that, while most of these

classes collapse in the finite se�ing, they remain separated in the infinite.

Related Work By now, there exists an abundance of theoretical work on finite PDBs (see

the surveys [56, 57] as well as [18, 55]). �e most prominent theoretical problem regarding

finite representation systems is probabilistic query evaluation (PQE) complexity [19, 21, 25, 6],

typically subject to independence assumptions. In particular, [5] considers PQE on structurally

restricted BID-PDBs. Among query languages, conjunctive queries and unions of conjunctive

queries received the most a�ention [21]. On the side of expressiveness, [10, 28, 51, 7] consider

more sophisticated PDB representations built upon independence assumptions. Probabilistic

models for sensor networks typically feature a finite number of facts with continuously dis-

tributed a�ributes [24, 23, 53]. Overviews over representation formalisms for probabilistic

databases can be found in [28, 59, 50, 56, 57].

Conditioning PDBs has been considered before in order to introduce correlations or depen-

dencies [48, 37], for updates of probabilistic data [42], for making queries tractable [47], in

cleaning problems [30, 49] and for introducing ontologies [38, 12]. In [20], the authors con-

sider limit probabilities of conjunctive queries over conditioned PDBs.

�ere already exist PDB systems supporting infinite probability spaces [23, 52, 4, 39, 36, 14].
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�e investigations in these works are generally directly tied to their representation mecha-

nisms, which complicates an abstract comparison. However, all of the mentioned approaches

directly transition to a uncountable se�ing with continuous distributions, which is differ-

ent from our se�ing of countably infinite PDBs. �e formal possible worlds semantics have

been extended towards infinite probability spaces, allowing for instances of unbounded size

in [31, 33]. Allowing for distributions over worlds of unbounded size is strongly motivated by

incorporating the open-world assumption into PDBs [16, 31, 12, 26]. Semi-structured models

(probabilistic XML [40]) have been extended towards infinite spaces as well [1, 9].

As discussed by [28], incomplete databases [35, 2, 58] are closely related to PDBs. In [22],

the authors study expressiveness among classes of incomplete databases with strong associa-

tions with TI- and BID-PDBs. Recent work on incomplete databases considers (probabilistic)

measures of certainty for infinite domains [45, 17].

It has been noticed that there are strong connections between PDBs and probabilistic mod-

els in AI research [57], in particular probabilistic graphical models [43] and weighted model

counting (WMC) [29]. �ere exist well-established modeling formalisms that support infinite

spaces, for example [46, 54, 34]. Recently, WMC has also been introduced for infinite universes

[8].

Paper Outline We review the background of probabilistic databases in Section 2. In Sec-

tion 3, we explore the limits of tuple-independent representations by first-order views. We

extend the aforementioned non-representability result that relies on the expected instance size

to apply to all size moments, and we provide a new necessary condition for representability

that applies also in the case of finite moments. In Section 4, we show that FO(TI) is closed

under conditioning under first-order constraints. Section 5 contains positive results. In Sec-

tion 5.1 we establish a sufficient criterion on the growth rate of the probabilities and conclude

also that PDBs of bounded instances size are in FO(TI). In Section 5.2, we show the same for

BID-PDBs. In Section 6, we consider logical reasons. In Section 6.1, we demonstrate how the

logic alone can be used to show non-representability of PDBs in the infinite. In Section 6.2,

we show that, when the instance size is unbounded, any argument regarding representability

using TI-PDBs with FO-views must take the instance probabilities into account. In Section 7,

we consider various important fragments of first-order logic and investigate their relative ex-

pressive power for representations over PDBs with independence assumptions. We close the

paper with concluding remarks in Section 8.

�is paper is the journal version of the paper [15] that was presented at PODS 2021. It

contains detailed proofs and examples that were excluded from the conference version (�eo-

rems 3.2, 3.10, 5.1, 5.9, 5.10 and 6.6). Some of the arguments have been streamlined and simpli-

fied. In addition to the main body of results from the conference version, this paper contains a

new section (Section 7) that focuses on representations using fragments of FO and their relative

expressiveness. �is answers open questions from the original paper.
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2 Preliminaries

In this section, we provide definitions and state known results that we use throughout this

paper.

We denote the set of non-negative integers by ℕ, whereas the set of positive integers is

denotedℕ+. We write (0, 1), [0, 1), (0, 1] and [0, 1] for the open, half-open and closed intervals

of real numbers between 0 and 1.

2.1 Probability Spaces

A discrete probability space is a pair S = (�, %) where � is a non-empty, countable set, called

the sample space and % is a probability measure (or probability distribution) on �. �at is,

% : 2� → [0, 1] with the property that % (�) =
∑

B∈� %
(
{B}

)
for all � ⊆ �, and % (�) = 1. We

denote probability spaces with curly le�ers and their sample spaces with double-struck le�ers.

We denote probability distributions with variants of % . �roughout this paper, all probability

spaces are assumed to be discrete.

We write ( ∼ S to indicate that ( is a random element, drawn from � according to distribu-

tion % . If % is anonymous, or whenwe want to emphasize this perspective of drawing a random

element, we write

Pr
(∼S

(
( has property i

)
≔ %

(
{( ∈ � : ( has property i}

)
.

Subsets of � are called events. A collection (�8 )8∈� of events inS is called (mutually) independent

if % (
⋂

8∈� �8 ) =
∏

8∈� % (�8) for all finite subsets � of � . It is called (mutually) exclusive if % (�8 ∩

� 9 ) = 0 for all 8 ≠ 9 .

A random variable - on S = (�, %) is a function - : � → ℝ. Its expectation is E(- ) ≔∑
B∈�- (B) · % ({B}) and, in general, its :th moment is E(-: ). We write ES for the expectation

in S if the probability space is not clear from the context.

If S = (�, %S) is a probability space, � a (countable) set and 5 : � → � a function, then 5

introduces a probability distribution on � via %T ({C}) ≔ %S ({B ∈ � : 5 (B) = C}).

2.2 Relational Databases

We fix some non-empty set � (called the universe). A database schema g is a finite, nonempty

set of relation symbols with arities ar(') ∈ ℕ for all ' ∈ g . A (g-)fact is an expression of the

shape '(D1, . . . , Dar(') ) where ' ∈ g and D8 ∈ � for all 1 ≤ 8 ≤ ar('). A g-instance � is a

finite set of g-facts. �e active domain of � , denoted by adom(�), is the set of elements of

� appearing among the facts of � . �roughout this paper, we assume that the universe � is

countably infinite.

In general, a view may be any function that maps database instances of an input schema

g to instances of an output schema g ′. A query is a view whose output schema consists of a

single relation symbol. �en, a view may also be thought of as a finite collection of queries,

one per each relation in the output schema. In this paper, we focus on views and queries that

are expressed in first-order logic.
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2.3 First Order Logic, Relational Calculus, and Fragments

Let g be a database schema. A relational atom is an expression '(u) where u is a tuple over

variables or constants from �. An equality atom is an expression G = D where G is a variable

and D is a variable or a constant. A formula of first-order logic FO over g is built from atoms

using the standard Boolean connectives and existential and universal quantification. When

using first-order logic as a database query language, we assume the active domain semantics in

this paper, see [2].1 �at is, when a formula Φ is evaluated on a g-instance � , the quantifiers,

and all valuations are taken to range over adom(�,Φ) ≔ adom(�)∪adom(Φ), where adom(Φ)

is the set of constants appearing in Φ.

We denote the free variables of an FO-formula Φ by free(Φ) and write Φ = Φ(x) where

x consists of pairwise distinct variables to indicate that Φ has exactly the free variables x . A

formula Φ is called a sentence or Boolean if free(Φ) = ∅. Essentially, we employ first-order logic

in the guise of relational calculus. �at is, if � is a g-instance, and Φ(x) is an FO-formula over

g , the result of Φ = Φ(G1, . . . , G=) on � is given as

Φ(�) ≔
{
'Φ (a) : a = (01, . . . , 0=) ∈ adom(�,Φ)= such that � |= Φ[x/a]

}
, (1)

where |= refers to the active domain semantics, and Φ[x/a] is the sentence that emerges from

Φ by replacing G8 with the constant 08 for all 8 = 1, . . . , =. Moreover, 'Φ is a designated relation

symbol of the output database schema. �us, we treat Φ(�) as a database instance. Of course,

(1) depends on the order imposed on the free variables. We make this order explicit by writing

Φ = Φ(x).

In general, a tuple x may contain repeated variables or constants, like in Φ(G, G, ~, 0, ~). �is

is equivalent to the first-order formula Φ′(G, G ′, ~, G ′′, ~′′) that emerges from Φ by conjoining

the formula with G ′ = G , G ′′ = 0 and ~′ equals ~, where G ′, G ′′, ~′ are new variables.

A first-order formula is a conjunctive query (CQ) if it is built from atoms by only using ∃

and ∧. Every CQ is equivalent to a formula in the shape ∃~ :
∧<

8=1 Φ8 where the Φ8 are atomic

formulae (hence, the name CQ). A CQ is called self-join free (sjfCQ), if every relation symbol

occurs at most once in the formula. Note that we can rewrite every satisfiable conjunctive

query Φ(x) into a conjunctive query Φ
′(x ′) without equality atoms using substitutions. �is

might then introduce constants or repeated variables in x ′ (see [2, Chapter 4]).

A first-order formula is a union of conjunctive queries (UCQ) if it is built from atoms by only

using ∃ and ∧ and ∨. Every UCQ is equivalent to a formula in the shape
∨=

8=1 Φ8 where the Φ8

are CQs.

For more background on first-order logic, relational calculus and the fragments introduced

above, see [2, 44].

2.4 Probabilistic Databases

A probabilistic database is a probability space over a set of database instances.

1We could equivalently restrict ourselves to domain-independent formulae and use the standard semantics of

first-order logic [2, pp. 77ff]. As we will construct a plethora of formulae in this paper, using the active domain

semantics is more convenient though.
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Definition 2.1. A probabilistic database (PDB) of database schema g over� is a discrete prob-

ability spaceD = (�, %) where� is a set of g-instances. We denote the class of PDBs by PDB.

If D is a class of PDBs and D ∈ D, we call D a D-PDB.

Note that while |�|may be (countably) infinite,� still only contains database instances, that

is, finite sets of facts. We call a PDB finite if |�| is finite. �e class of finite PDBs is denoted by

PDBfin.

Remark 2.2. As seen in�eorem 2.1, all probabilistic databases that are considered in this pa-

per have a sample space of at most countable size. In general, a PDBmay also be an uncountable

probability space over some uncountable domain [31, 33].

In a (discrete) probabilistic databaseD, the instances of positive probability are o�en called

its possible worlds. We denote the set of possible worlds of the PDB D by worlds(D).2 We let

facts(D) ≔
⋃

�∈worlds(D) � denote the set of all facts appearing among the instances of D.

For all 5 ∈ facts(D), themarginal probability of 5 is Pr�∼D

(
5 ∈ �

)
, and is usually denoted by

?5 .

2.4.1 Instance Size

In every probabilistic databaseD = (�, %), the instance size | · | is a random variable | · | : � →

ℕ that maps every database instance � to the number |� | of facts it contains. Its expectation

is given by

E( | · |) =
∑

�∈�

|� | · %
(
{�}).

Definition 2.3 (Finite Moments Property). A PDBD = (�, %) has the finite moments property

if for all : ∈ ℕ+, the :th moment of the instance size is finite, that is,

E
(
| · |:

)
=

∑

�∈�

|� |: · %
(
{�}

)
< ∞.

A class D of PDBs has the finite moments property, if every D ∈ D does.

2.4.2 Probabilistic �ery Semantics

Applying a view on a PDB yields a new output PDB: IfD = (�, %) is a PDB,�′ a set of database

instances and+ : � → �′ a view, then+ (D) = (�′, % ′) is a PDB where

% ′({� ′}) = % ({� ∈ � : + (�) = � ′})

for all � ′ ∈ �′.

If V is a class of views and D is a class of PDBs, then V(D) denotes the class of images of

PDBs of D under views of V. We call D closed under V if V(D) = D.

An FO-view is a view that consists of an FO-formula for each relation symbol in the target

schema. �en, FO(D) denotes the class of PDBs that are the image of a D-PDB under an

FO-view. �ese notions are defined analogously for sjfCQ, CQ and UCQ.

2In most cases, we can just assume that � contains no instances of probability zero. However, the notation we

introduce here proves convenient later in the paper.
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2.4.3 Independence Assumptions

Even when leaving out probabilities, the number of possible worlds existing over a fixed set of

= facts is exponential in =. In the finite se�ing, this motivates the introduction of simplifying

structural assumptions that allow for succinct representations of PDBs. While for infinite PDBs

such a representation might still be infinite, its description still enjoys the simple structure and

thus may have advantages with respect to approximate query answering.

For ease of reading, we denote PDBs that obey independence assumptions by I = (�, %)

rather than D = (�, %). Instances are then denoted by � accordingly.

Definition 2.4 (Tuple-Independent PDBs). A PDB I is called tuple-independent if for all : ∈ ℕ

and all pairwise distinct facts 51, . . . , 5: ∈ facts(I) it holds that

Pr
�∼I

(
51 ∈ �, . . . , 5: ∈ �

)
=

:∏

8=1

Pr
�∼I

(
58 ∈ �

)
.

We let TI and TIfin denote the class of tuple-independent PDBs and finite tuple-independent

PDBs, respectively.3

�e following provides a necessary and sufficient criterion for the existence of TI-PDBs in

terms of its marginal probabilities.

�eorem 2.5 ([31, �eorem 4.8]). Let � be a set of facts over a schema g and let (?5 )5 ∈� with

?5 ∈ [0, 1] for all 5 ∈ � . �e following are equivalent:

1. �ere exists I ∈ TI with facts(I) = � and marginal probabilities Pr�∼I
(
5 ∈ �

)
= ?5 for

all 5 ∈ � .

2. It holds that
∑

5 ∈� ?5 < ∞.

TI-PDBs are a special case of the following, more general model.

Definition 2.6 (Block-Independent Disjoint PDBs). A PDB I is called block-independent dis-

joint if there exists a partition B of facts(I) into blocks such that:

1. for all : ∈ ℕ and all 51, . . . , 5: from pairwise different blocks,

Pr
�∼I

(
51 ∈ �, . . . , 5: ∈ �

)
=

:∏

8=1

Pr
�∼I

(
58 ∈ �

)
.

2. for all � ∈ B and all 5 , 5 ′ ∈ � with 5 ≠ 5 ′ it holds that Pr�∼I
(
5 ∈ � and 5 ′ ∈ �

)
= 0.

We letBID andBIDfin denote the class of block-independent disjoint and finite block-independent

disjoint PDBs, respectively.

3Usually, tuple-independent PDBs are defined by the property that the events “5 ∈ � ” are stochastically indepen-

dent. �is definition only makes sense for countable PDBs, as in every PDB there are at most countably many

facts with positive marginal probability (see [31, Proposition 3.4]). �ere is an extension of tuple-independent

PDBs to uncountable domains [32].
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A theorem similar to �eorem 2.5 exists for BID-PDBs:

�eorem 2.7 ([31, �eorem 4.15]). Let � be a set of facts over a schema g , let (?5 )5 ∈� with

?5 ∈ [0, 1], and let B be a partition of � such that
∑

5 ∈� ?5 ≤ 1 for all � ∈ B. �e following are

equivalent:

1. �ere exists I ∈ BID with facts(I) = � , blocks B and marginal probabilities Pr�∼I
(
5 ∈

�
)
= ?5 for all 5 ∈ � .

2. It holds that
∑

5 ∈� ?5 =
∑

�∈B

∑
5 ∈� ?5 < ∞.

We note that both TI-, and BID-PDBs are, in case of existence, uniquely determined by their

marginals (and partition into blocks) [32, Section 4].

3 Limitations of Tuple-Independent Representations

Recall that every finite probabilistic database can be represented as an FO-view over a finite

TI-PDB [56, Proposition 2.16]. A similar statement does not hold for infinite PDBs.

Proposition 3.1 ([31, Proposition 4.9]). FO(TI) ( PDB.

In this section, we investigate classes of PDBs for which we can prove that they do not

belong to FO(TI). �e argument of [31] that establishes the proposition above, shows that in

any FO(TI)-PDB the expected instance size is necessarily finite (while there exist well-defined

PDBs of infinite expected instance size). In Section 3.1, wewill first generalize their argument to

show that for membership in FO(TI) it is even necessary that all moments of the instance size

are finite, that is, that the PDB satisfies the finite moments property. In Section 3.2, however, we

show that this requirement is not sufficient for membership in FO(TI) by giving constructions

of non-FO(TI)-PDBs that nevertheless exhibit the finite moments property.

3.1 Infinite Moments

Before considering the class FO(TI) directly, we show that allTI-PDBs have the finite moments

property. �is relies upon the following observation about independent {0, 1}-valued random

variables.

Lemma 3.2. Suppose
(
-8

)
8∈ℕ is a family of {0, 1}-valued, independent random variables and let

- ≔
∑∞

8=1-8 with E(- ) < ∞. �en for all : ∈ ℕ+, : ≥ 2 it holds that

E
(
-:

)
≤ E

(
-:−1 ) ·

(
: − 1 + E(- )

)
. (2)

Proof. Let : ∈ ℕ+ be arbitrary with : ≥ 2. It holds that4

E
(
-: )

= E

(( ∞∑

8=1

-8

): )
= E

( ∑

81,...,8:

-81 · . . . · -8:

)
=

∑

81,...,8:

E
(
-81 · . . . · -8:

)

4�e calculation is not as trivial as it may seem, since we sum up infinitely many random variables. However, the

equalities can easily be verified using [41, �eorem 5.3].
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(with the indices of sums on the right ranging over non-negative integers). Now consider

the product -81 · . . . · -8: for arbitrary 81, . . . , 8: ∈ ℕ. Using that the -8 are {0, 1}-valued and

independent, it holds that

E
(
-81 · . . . · -8:

)
=

{
E

(
-81 · . . . · -8:−1

)
if 8: ∈ {81, . . . , 8:−1} and

E
(
-81 · . . . · -8:−1

)
· E

(
-8:

)
otherwise.

Using this to continue our calculation from before, we get

E
(
-:

)
=

∑

81,...,8:

E
(
-81 · . . . · -8:

)

=

∑

81,...,8:−1

( ∑

8:

E
(
-81 · . . . · -8:

))

=

∑

81,...,8:−1

( ∑

8: ∈{81,...,8:−1 }

E
(
-81 · . . . · -8:−1

)
+

∑

8:∉{81,...,8:−1 }

E
(
-81 · . . . · -8:−1

)
· E

(
-8:

) )

=

∑

81,...,8:−1

E
(
-81 · . . . · -8:−1

)
·

( ∑

8: ∈{81,...,8:−1 }

1 +
∑

8:∉{81,...,8:−1 }

E
(
-8:

) )

≤

( ∑

81,...,8:−1

E
(
-81 · . . . · -8:−1

))
·

(
: − 1 +

∑

8:

E
(
-8:

))

= E
(
-:−1 ) ·

(
: − 1 + E(- )

)
. �

In our application, the random variables -8 from the previous lemma will correspond to the

indicator random variables of the facts of a TI-PDB.

Proposition 3.3. TI has the finite moments property.

Proof. Suppose facts(I) = {50, 51, . . .} and let -8 : � → {0, 1} be the indicator random variable

of the event {58 ∈ � } for � ∼ I. Since the size of any instance � ∈ � is exactly the number

of facts in � , we can express the instance size random variable | · | using the indicator random

variables -8 as follows:

| · | =

∞∑

8=1

-8 .

For simplicity, we write E for EI . Since -8 is {0, 1}-valued, we know that

E
(
-8

)
= Pr

�∼I

(
-8 (� ) = 1

)
= Pr

�∼I

(
58 ∈ �

)
= ?8

for all 8 ∈ ℕ, where ?8 is the marginal probability of 58 in I. �us,

E
(
| · |

)
= E

( ∞∑

8=1

-8

)
=

∞∑

8=1

E
(
-8

)
=

∞∑

8=1

?8 .

By�eorem 2.5 the last sum is finite, so E
(
| · |

)
< ∞. In order to obtain this for higher moments

| · |: with : > 1, we proceed inductively (going from : − 1 to :) using �eorem 3.2. �is yields

E
(
| · |:

)
≤ E

(
| · |:−1

)
·
(
: − 1 + E

(
| · |

))
.

10



�e right-hand side of the above is finite by the induction hypothesis, i. e. E
(
| · |:

)
< ∞. �

Remark 3.4. �e same argument can be employed to show that BID has the finite moments

property. For this, -8 needs to be taken as the indicator random variable of the 8th block of the

BID-PDB. �en one can proceed analogously to the proof of �eorem 3.3.

We next show that FO-views over classes with the finite moments property preserve the

finite moments property. �is is because FO-views can only cause a polynomial blowup in the

instance size per individual possible world.

Lemma 3.5. If D is a PDB with the finite moments property and Φ is an FO-view, then Φ(D)

also has the finite moments property.

Proof. Let D be a PDB with the finite moments property and let Φ be an FO-view over the

schema ofD. Suppose thatΦ consists of< first-order formulaeΦ1, . . . ,Φ< with aritiesA1, . . . , A< ,

respectively. Observe that due to the active domain semantics, for all � ∼ D we have

��Φ(�)
�� =

<∑

8=1

��Φ8 (�)
�� ≤

<∑

8=1

��adom(�,Φ8 )
��A8 ≤< ·

��adom(�,Φ)
��A ≤ < ·

(
Amax · |� | + |adom(Φ) |

)A

where A = max8=1,...,< A8 and Amax is the maximum arity of a relation symbol in the schema of

D. �us, for all : ∈ ℕ+ it follows that

EΦ(D)

(
| · |:

)
≤ ED

(
<: ·

(
| · |Amax+|adom(Φ) |

)A: )
=<: ·

A:∑

9=0

(
A:

9

)
·A

9
max ·|adom(Φ) |A:−9 ·ED

(
| · | 9

)
,

using the binomial formula and linearity of expectation. SinceD has the finite moments prop-

erty, all the ED

(
| · | 9

)
with 9 = 0, 1, . . . , A: are finite. �us, EΦ(D)

(
| · |:

)
is finite as well. �

We note, however, that the property of having a finite :th moment (but not necessarily a

finite (: + 1)st moment) for fixed : , is in general not preserved under FO-views.

Example 3.6. Consider the schema that only contains a single unary relation symbol ' and

let �8 =
{
'(1), . . . , '(8)

}
for all 8 ∈ ℕ+. Let %

(
{�8 }

)
=

/
83
where / =

∑∞
8=1

1
83
is the normalizing

constant. �en D = (�, %) is a PDB with expected instance size
∑∞

8=1 8 ·
/
83

= / ·
∑∞

8=1
1
82

< ∞.

Note, however, that the second moment of the instance size of D is infinite.

Now consider the viewΦ(G, ~) = '(G)∨'(~). �en
��Φ(�8)

�� = |�8 |
2. �us, Φ(D) has expected

instance size
∑∞

8=1 8
2 · /

83
= / ·

∑∞
8=1

1
8 = ∞.

With�eorem3.5 the finitemoments property ofTI (�eorem3.3) directly extends toFO(TI).

Proposition 3.7. FO(TI) has the finite moments property.

�is insight yields numerous new examples of PDBs that are not in FO(TI).
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Example 3.8. LetD = (�, %) be a PDB with� = {�1, �2, . . .}, where |�8 | = 28 and %
(
{�8 }

)
=

3
48
. �en,

ED

(
| · |

)
=

∑

�∈�

|� | · %
(
{�}

)
= 3 ·

∞∑

8=1

28 ·
1

48
= 3 ·

∞∑

8=1

1

28
= 3,

but

ED

(
| · |2

)
=

∑

�∈�

|� |2 · %
(
{�}

)
= 3 ·

∞∑

8=1

228 ·
1

48
= 3 ·

∞∑

8=1

1 = ∞.

�at is, D is a PDB of finite expected instance size where the second moment of the instance

size is infinite. According to �eorem 3.7, D ∉ FO(TI).

3.2 Balancing the Marginal Probabilities

In this subsection, we show that the finite moments property is not a sufficient condition for

membership in FO(TI). �at is, the main result of this subsection is the following.

�eorem 3.9. �ere are PDBs having the finite moments property that are not in FO(TI).

�e proof of this theorem is quite involved. However, it may be skipped by the reader, as

the techniques are not essential for the understanding of the rest of the paper.

To obtain �eorem 3.9, we essentially aim to break a balance in fact probabilities that is

required for representations: On the one hand, in TI-PDBs, the sum of fact probabilities must

converge, meaning that these probabilities have to approach zero fast enough. On the other

hand, fact probabilities in theTI-PDBneed to be sufficiently high in order to represent instances

of a certain probability with respect to an FO-view on Φ. �is is due to the fact that images of

FO-views only use domain elements that either appeared in the input instance, or as constants

in the view itself. While the first part of this (the convergence of fact probabilities in the TI-

PDB) is clear, this section focuses first on formalizing the second part of our statement. In

particular, we start by turning this idea into an upper bound for the probabilities of instances

in the image of an FO-view on a TI-PDB.

Lemma 3.10. Let I be a TI-PDB and let Φ be an FO-view over the schema of I. �en for all

instances � of Φ(� ) it holds that

Pr
�∼I

(
Φ(� ) = �

)
≤ |�∗

� | ·

(
A 2 · |�∗

� |
A−1 ·

∑

5 ∈� ∗
�

?5

) |�∗
�
|/A

,

where �∗
� is the set of domain elements appearing in � that are not constants in Φ, � ∗

� is the set

of facts in � that contain at least one element from �∗
� and A is the maximum arity among the

relations of I.

�e idea behind this auxiliary result connects to the previous discussion as follows: If � is

an instance in the image of Φ on I, then the active domain elements of � must appear either

in the active domain of an input instance from I or as a constant in Φ. Summing over all the

possible ways to “cover” the active domain of � (minus the constants of Φ) with facts from the

I can thus be turned into an upper bound for the probability of� being the output of the view.

12



Proof. Let I = (�, %) be a TI-PDB and let Φ be an FO-view over the schema of I. We let

� ≔
⋃

� ∈� adom(� ) be the set of domain elements appearing among the instances of I and

� ≔ facts(I). We say that a set � ⊆ � covers a finite set � ⊆ � if for all 0 ∈ � there exists a

fact 5 ∈ � such that 0 appears in 5 . In that case, we call � a fact cover of�. A fact cover � ⊆ �

of � is called minimal if no proper subset of � is a fact cover of �. Note that every fact cover

contains a minimal fact cover. �e set of all fact covers of� is denoted by FC(�) and the set of

all minimal fact covers of � is denoted by FCmin (�).

We start by bounding the probability of representing an instance in terms of minimal fact

covers.

Claim 3.11. For all instances � of Φ(I) it holds that

Pr
�∼I

(
Φ(� ) = �

)
≤

∑

� ∈FCmin (�
∗
�
)

∏

5 ∈�

?5 , (3)

where �∗
� = adom(�) \ adom(Φ).

Proof. Let � be an arbitrary instance of Φ(I). For all instances � ∈ � with Φ(� ) = � we have

adom(�) ⊆ adom(� ) ∪ adom(Φ), that is, � is a fact cover of �∗
� . �erefore,

Pr
�∼I

(
Φ(� ) = �

)
≤ Pr

�∼I

(
� ∈ FC

(
�∗
�

) )
=

∑

� ∈FC(�∗
�
)

Pr
�∼I

(
� = �

)
≤

∑

� ′∈FCmin (�
∗
�
)

∑

� ⊆�\� ′

Pr
�∼I

(
� = � ′∪� ′′

)
.

�e last step above is not an equality, because any fact cover can contain multiple minimal fact

covers, so we might be double counting on the right-hand side.

Now, for any set � of facts, we let I[� ] denote the restriction of the TI-PDB I to the fact

set � . �is is again a TI-PDB that retains the marginal probabilities of the facts of � (and has

marginal probability 0 for all other facts). By spli�ing instances into a minimal fact cover and

the remaining facts, we then get

∑

� ′∈FCmin (�
∗
�
)

∑

� ′′⊆�\� ′

Pr
�∼I

(
� = � ′ ∪ � ′′

)
=

∑

� ′∈FCmin (�
∗
�
)

∑

� ′′⊆�\� ′

Pr
�∼I [� ′ ]

(
� = � ′

)
· Pr
�∼I [�\� ′]

(
� = � ′′

)

=

∑

� ′∈FCmin (�
∗
�
)

Pr
�∼I [� ′ ]

(
� = � ′

)
·

∑

� ′′⊆�\� ′

Pr
�∼I [�\� ′]

(
� = � ′′

)

︸                           ︷︷                           ︸
=1

=

∑

� ′∈FCmin (�
∗
�
)

Pr
�∼I [� ′ ]

(
� = � ′

)

=

∑

� ′∈FCmin (�
∗
�
)

∏

5 ∈� ′

?5 . y

From now on, let � be an arbitrary but fixed instance of Φ(I). We let � ∗
� denote the set

of facts of I that contain at least one element from �∗
� = adom(�) \ adom(Φ) and define a

function B∗� : � ∗
� → 2�

∗
� as follows:

B∗�
(
5
)
≔ {0 ∈ �∗

� : 0 occurs in 5 }.
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Essentially, B∗� turns 5 into the set of the occurring domain elements (by forge�ing the order

and multiplicities) and restricts this set to �∗
� . �e function B∗� is li�ed to sets of facts � by

le�ing B∗� (� ) =
{
B∗� ( 5 ) : 5 ∈ �

}
⊆ 2�

∗
� .

Let � be the hypergraph with vertex set �∗
� and (hyper)edge set

B∗�
(
� ∗
�

)
=

{
4 ⊆ �∗

� : 4 = B∗� ( 5 ) for some 5 ∈ � ∗
�

}
.

A set of hyperedges � is an edge cover of � if every vertex appears in at least one of the

hyperedges from �. Such an edge cover � is called minimal if no proper subset of � covers all

vertices. We let ECmin (� ) denote the set of minimal edge covers of� . �e connection between

minimal fact covers of �∗
� and minimal edge covers of � is a follows.

Claim 3.12. A set of facts � ⊆ � ∗
� is a minimal fact cover of �∗

� , if and only if the set B
∗
� (� ) is a

minimal edge cover of � with |� | = |B∗� (� ) |.

Proof. First, let � be a minimal fact cover of �∗
� . Since � is a fact cover of �∗

� , the hyperedges

B∗� (� ) are an edge cover of � . Note that B∗� is injective on � : if there were 5 ≠ 5 ′ with B∗� ( 5 ) =

B∗� ( 5
′), then � \ {5 ′} would be a fact cover of �∗

� , contradicting the minimality of � . �us,

|B∗� (� ) | = |� |. We still have to show that B∗� (� ) is aminimal edge cover. If B∗� (� ) is not minimal,

then there exists 4 ∈ B∗� (� ) such that B∗� (� ) \ {4} is still an edge cover of � . �en there exists

5 ∈ � with B∗� ( 5 ) = 4 such that the domain elements occurring in 5 are already covered by

other facts from � . But this means that � \ {5 } is a fact cover of�∗
� in contradiction to � being

minimal. �us, B∗� (� ) is a minimal edge cover of � .

For the other direction, suppose that � ⊆ � ∗
� is a set of facts such that B∗� (� ) is a minimal

edge cover of � with |� | = |B∗� (� ) |. First note that � is a fact cover of �∗
� . Suppose � is

not minimal. �en there exists � ′ ( � such that � ′ is a minimal fact cover of �∗
� . But then

B∗� (�
′) ⊆ B∗� (� ) is a minimal edge cover of � by the first part of this proof. �is contradicts

|B∗� (�
′) | = |� ′| < |� | = |B∗� (� ) |. y

From the above, it follows that

FCmin

(
�∗
�

)
=

⋃

�∈ECmin (� )

{� ⊆ � ∗
� : B∗� (� ) = � and |� | = |� |}.

We emphasize that the union on the right-hand side is disjoint, since B∗� is a function. Next, we

transform the bound from (3) into a bound in terms of minimal edge covers.

Claim 3.13. �e probability of representing � is bounded as follows:

Pr
�∼I

(
Φ(� ) = �

)
≤

∑

�∈ECmin (� )

(
1

|� |

∑

5 ∈� ∗
�

?5

) |� |

.

Proof. We continue our calculation of an upper bound for Pr�∼I
(
Φ(� ) = �

)
from (3) as follows:

Pr
�∼I

(
Φ(� ) = �

) (3)
≤

∑

� ∈FCmin (�
∗
�
)

∏

5 ∈�

?5 =

∑

�∈ECmin (� )

∑

� ∈FCmin (�
∗
�
)

B∗
�
(� )=�

∏

5 ∈�

?5 =

∑

�∈ECmin (� )

∑

� ⊆� ∗
�

B∗
�
(� )=�

|� |= |� |

∏

5 ∈�

?5 .
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Suppose now that � = {41, . . . , 4: } is a minimal edge cover of size : . �en

∑

� ⊆� ∗
�

B∗
�
(� )=�

|� |= |� |

∏

5 ∈�

?5 =

∑

51∈�
∗
�

B∗
�
(51)=41

· · ·
∑

5: ∈�
∗
�

B∗
�
(5: )=4:

?51 · · · ?5: =

( ∑

51∈�
∗
�

B∗
�
(51)=41

?51

)
· · ·

( ∑

5: ∈�
∗
�

B∗
�
(5: )=4:

?5:

)
=

∏

4∈�

( ∑

5 ∈� ∗
�

B∗
�
(5 )=4

?5

)
.

Applying the inequality of arithmetic and geometric means, we get that

∏

4∈�

( ∑

5 ∈� ∗
�

B∗
�
(5 )=4

?5

)
≤

(
1

|� |

∑

4∈�

∑

5 ∈� ∗
�

B∗
�
(5 )=4

?5

) |� |

≤
∑

�∈ECmin (� )

(
1

|� |

∑

5 ∈� ∗
�

?5

) |� |

. y

Finally, we are ready to complete the proof of�eorem 3.10. Let A denote the maximum arity

of any relation in the schema ofI. �en each hyperedge in� contains atmost A elements. �us,

the size of any minimal edge cover of �∗
� is at least ⌈|�∗

� |/A⌉ ≥ |�∗
� |/A and (trivially) at most

|�∗
� |.

�e number of hyperedges in � is at most
∑A

8=1

( |�∗
�
|

8

)
≤

∑A
8=1 |�

∗
� |

8 ≤ A · |�∗
� |

A . In particular,

there are at most
(A · |�∗

�
|A

:

)
≤

(
A · |�∗

� |
A
):

minimal edge covers of size : in � . �erefore,

Pr
�∼I

(
Φ(� ) = �

)
≤

∑

�∈ECmin (�
∗
�
)

(
1

|� |

∑

5 ∈� ∗
�

?5

) |� |

=

|�∗
�
|∑

:= ⌈ |�∗
�
|/A ⌉

∑

� ∈FCmin (�
∗
�
)

|� |=:

(
1

:

∑

5 ∈� ∗
�

?5

):

≤

|�∗
�
|∑

:= ⌈ |�∗
�
|/A ⌉

(
A · |�∗

� |
A ): ·

(
1

:

∑

5 ∈� ∗
�

?5

):

≤

|�∗
�
|∑

:= ⌈ |�∗
�
|/A ⌉

(
A 2 · |�∗

� |
A−1

∑

5 ∈� ∗
�

?5

):

�e inequality remains intact if we decrease the value of the exponent on the right-hand side

to a smaller non-negative number: if the value inside the parentheses is larger than 1, the

complete right-hand side will still be larger than 1 as well. If the expression in the parentheses

is at most one, then making the exponent smaller can only increase the value. �us, we can

infer that

Pr
(
Φ(� ) = �

)
≤

|�∗
�
|∑

:= ⌈ |�∗
�
|/A ⌉

(
A 2 · |�∗

� |
A−1

∑

5 ∈� ∗
�

?5

) |�∗
�
|/A

≤ |�∗
� | ·

(
A 2 · |�∗

� |
A−1

∑

5 ∈� ∗
�

?5

) |�∗
�
|/A

.

for all instances � of Φ(I), concluding the proof of �eorem 3.10. �

We can think of�eorem 3.10 as another necessary condition for representability in FO(TI).

However, it is tied to a concrete representation Φ(I). In the next step, we turn this into a

general necessary condition for the represented probabilistic database that holds regardless of
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the choice of representation. For this, we also include the convergence requirement of fact

probabilities in any TI-PDB that serves as a base for the representation. To cast this into re-

quirement over the probabilities of the probabilities of possible world, we consider the class

of domain disjoint PDBs: A probabilistic database D = (�, %) is called domain disjoint if

adom(�) ∩ adom(� ′) = ∅ for all �,� ′ ∈ � with � ≠ � ′. Investigating this class allows

us to identify a connection between the probabilities of possible worlds and the size of their

active domains.

Lemma 3.14. Let D = (�, %) ∈ FO(TI) be domain-disjoint with instances � = {�1, �2, . . .}.

Let 3= ≔ |adom(�=) |. �en there exists a constant A ∈ ℕ+ such that for every divergent series∑∞
==1 0= = ∞ of non-negative integers 0= there are infinitely many = ∈ ℕ+ with

Pr
�∼D

(
� = �=

)
< 3=

(
0= · 3A−1=

)3=/A .

Proof. Suppose D = Φ(I) where I is a TI-PDB and Φ is an FO-view over the schema of I.

Let A be the maximum arity among the relations of the schema I. For all = ∈ ℕ+, we define

�= ≔ adom(�=) \ adom(Φ) and let �= ⊆ � = facts(I) denote the set of facts in I that contain

at least one domain element from �= . Note that the �= are pairwise disjoint.

In the following, we abuse notation and write 0 ∈ 5 if 0 is a domain element appearing in the

fact 5 . We know that for every 0 ∈
⋃

� ∈worlds(I) adom(� ) = � there exists at most one = ∈ ℕ+

such that 0 ∈ �= . �us, it holds that

∞∑

==1

∑

5 ∈�=

?5 ≤

∞∑

==1

∑

0∈�=

∑

5 ∈�
0∈5

?5 ≤
∑

0∈�

∑

5 ∈�
0∈5

?5 =

∑

5 ∈�

∑

0∈�
0∈5

?5 ≤
∑

5 ∈�

A · ?5 = A ·
∑

5 ∈�

?5 < ∞, (4)

sinceI is a well-definedTI-PDB.We claim that for infinitelymany= ∈ ℕ+ we have
∑

5 ∈�= ?5 <

0=
A 2
. Assume otherwise. �en for all but finitely many = it holds that

∑
5 ∈�= ?5 ≥ 0=

A 2
. Let #0

denote the set of these =. Of course,
∑

=∈#0
0= still diverges. But then

∑
=∈#0

∑
5 ∈�= ?5 ≥ 1

A 2
·∑

=∈#0
0= = ∞, whichmeans that

∑∞
==1

∑
5 ∈�= ?5 contains a divergent subseries in contradiction

to (4).

Recall that the active domains of distinct possible worlds of D are disjoint. �is means that

for all large enough= it holds that adom(�=)∩adom(Φ) = ∅ and, in particular,�= = adom(�=)

and 3= = |�= |. Let # be the (infinite) set of indices = for which
∑

5 ∈�= ?5 <
0=
A 2
. �en, with

�eorem 3.10, for all = ∈ # it holds that

Pr
�∼D

(
� = �=

)
= Pr

�∼I

(
Φ(� ) = �=

)
≤ |�= | ·

(
A 2 · |�= |

A−1 ·
∑

5 ∈�=

?5

) |�= |/A

< 3= ·
(
0= · 3

A−1
=

)3=/A . �

Remark 3.15. �e argument from the proof of �eorem 3.14 remains valid also in the case

where the active domains of the instances�= are not disjoint, but there exists a constant bound

on the number of worlds �= that contain a domain element 0 ∈ �.

�e condition from�eorem 3.14 is a necessary condition for the representability of domain-

disjoint PDBs in FO(TI). We can now construct a domain-disjoint PDB that violates this con-

dition, despite having the finite moments property.
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Example 3.16. Let D = (�, %) be a domain-disjoint PDB such that � = {�1, �2 . . .} with

3= ≔
��adom(�=)

�� =
⌈
log(=)

⌉
and %

(
{�=}

)
=

/
=2 for all= ∈ ℕ+, where/ =

6
c 2 is the normalizing

constant that makes % is a probability distribution. Note that3= =
⌈
log(=)

⌉
∈ > (=Y) for all Y > 0.

�us, for all Y > 0 there exists =(Y) ∈ ℕ such that for all = > =(Y) it holds that 3= ≤ =Y .

First, note that this PDB has the finite moments property. To see this, let : ∈ ℕ+ be arbitrary

but fixed and let Y ≔ 1
2: . �en

ED

(
| · |:

)
=

∞∑

==1

/ · 3:=
=2

≤

= (Y)∑

==1

/ · 3:=
=2

+
∑

=>= (Y)

/ · =Y:

=2
=

= (Y)∑

==1

/ · 3:=
=2

+ / ·
∑

=>= (Y)

=−3/2,

which is finite, since the first sum has only finitely many terms and the second sum is well-

known to converge.

Now towards a contradiction, assume that D ∈ FO(TI). As
∑∞

==1
1
= diverges, by �eo-

rem 3.14 there exists a constant A ∈ ℕ+ such that infinitely many = ∈ ℕ+ satisfy

/

=2
= Pr

�∼D

(
� = �=

)
< 3= ·

(3A−1=

=

)3=/A
. (5)

For all = > =
(
1
A

)
, it holds that 3= ≤ =1/A . We fix such an = that additionally satisfies = >

1
/

and 3= ≥ 3A 2 + A . �en it holds that

3= ·
(3A−1=

=

)3=/A
≤ =1/A

(
(=1/A )A−1·=−1

)3=/A
= =1/A

(
=−1/A

)3=/A
=

(
=1/A

)1−3=
A = = (A−3= )/A

2

≤ =−3 <
/

=2
,

contradicting (5).

�e PDB from �eorem 3.16 is a PDB with the finite moments property that has no repre-

sentation in FO(TI). In particular, it proves the main theorem (�eorem 3.9) of this section.

4 Conditional Views

In this section, we define conditional representations: representations of PDBs as views over

TI-PDBs conditioned on an FO-sentence. �e possible worlds are restricted to those satisfying

the condition, and the probability mass of the valid instances is scaled to add up to one. As the

next sections demonstrate, when constructing a representation for a given PDB, conditional

representations are o�en simpler to identify and explain compared to unconditional ones. We

show the equivalence between the PDBs that admit an FO-representation and those that admit

a conditional FO-representation. As a consequence, we obtain a tool for showing that a PDB

has a representation as an FO-view over a TI-PDB: it is enough to identify such a representation

that is conditioned on an FO-sentence.

We start by defining conditional views. Given a PDBD = (�, %) and an FO-sentencei such

that Pr�∼D

(
� |= i

)
> 0, we denote by D | i the PDB (�i, %

′) where

�i ≔
{
� ∈ � | � |= i

}

17



and for all � ∈ �i ,

% ′
(
{�}

)
≔ %

(
{�} | �i

)
=
%
(
{�}

)

%
(
�i

) .

Given a class D of PDBs, we denote by D | FO the class of all PDBs obtained by conditioning

a PDB of D on an FO-sentence. �at is,

D | FO ≔
{
(D | i) : D ∈ D and i ∈ FO sentence with Pr

�∼D
(� |= i) > 0

}
.

�e following is the main result of this section, stating that the class of PDBs that can be

represented as FO-views over FO-conditioned TI-PDBs coincides with the class of PDBs that

can be represented by an FO-view of a TI-PDB alone.

�eorem 4.1. FO(TI | FO) = FO(TI).

Remark 4.2. Note that FO(TI | FO) ⊆ FO(TI) is by no means trivial. In particular, we

cannot simply merge the condition given as an FO-sentence into the FO-view. Composing

them cannot work, as the condition is a sentence, and so the composition can only result in

two outcomes and cannot represent PDBs with more than two possible worlds. Intersecting

them will not work either. �e conditional view removes the possible worlds that do not meet

the condition from the sample space and scales the probability mass of the remaining possible

worlds up to one, while intersecting the FO-viewwith the condition keeps the probabilitymass

of the invalid possible worlds but renders these worlds empty.

Proof (�eorem 4.1). �e direction FO(TI) ⊆ FO(TI | FO) is immediate. Instead of showing

FO(TI |FO) ⊆ FO(TI), we prove the equivalent statement TI |FO ⊆ FO(TI) (this is equivalent

due toTI|FO ⊆ FO(TI|FO) andFO(TI) = FO(FO(TI))). �us, letI =
(
�, %I

)
be aTI-PDB and

let i be an FO-sentence for which I |i is well-defined (that is, %I (i) > 0). Our goal is to show

that Ii ≔ I | i ∈ FO(TI). If %I (i) = 1, then we are done, since then Ii = I ∈ TI ⊆ FO(TI).

�erefore, for the remainder of the proof, we assume that

?i ≔ %I (i) ∈ (0, 1).

We fix some instance �0 ∈ � of positive probability in Ii . If Pr�∼Ii (� = �0) = 1, then �0 is the

only instance of positive probability in Ii . �is means that Ii is a TI-PDB where any fact '(t)

has marginal probability 1 if '(t) ∈ �0, and marginal probability 0 otherwise. Consequentially,

Ii ∈ TI ⊆ FO(TI) and we are done. �us, from now on, assume that

?0 ≔ Pr
�∼Ii

(
� = �0) ∈ (0, 1).

Before we continue we want to convey the main idea of the proof. We are going to construct

a new TI-PDB consisting of multiple independent copies of the TI-PDB I. We define how

instances of the new PDB represent instances of the PDB Ii other than �0. �is representation

will change instance probabilities by a constant factor greater than 1. All remaining instances

of the new PDB are taken as the representation of �0. Since the other probabilities are scaled

up, the probability mass of these instances is smaller than the probability of �0 in Ii . �erefore,
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we install a gadget that acts like a switch between the two cases and carefully configure its

probability to reconstruct the probability distribution of Ii . Finally, we show that the original

instances can be reobtained from our representation by the means of an FO-view.

Assume that �0 =
⋃#

==1{'= (a=8 ) : 8 = 1, . . . , A=}where# is the number of relations ('1, . . . , '# )

in the schema of I and for each = = 1, . . . , # , the number A= is the arity of the relation symbol

'= . �en �0 can be exactly characterized by an FO-sentence i0 as follows:

i0 ≔

#∧

==1

(
∀x : '= (x) ↔

A=∨

8=1

x = a=8

)
.

�at is, for all � ∈ � it holds that � |= i0 if and only if � = �0. We let

k ≔ i ∧ ¬i0

and

?k ≔ %I (k ).

Claim 4.3 (Separating �0). It holds that

?k =
(
1 − ?0

)
· ?i ∈ (0, 1) (6)

and for all � ∈ � \ {�0} it holds that

%I
(
{� } | k

)
=
%Ii

(
{� }

)

1 − ?0
. (7)

Proof. We start by calculating the probability ofk being true in I, given that i holds:

%I
(
k | i

)
= %I

(
¬i0 | i

)
= 1 − %I

(
i0 | i

)
= 1 − ?0.

Moreover, for all � ∈ � \ {�0} it holds that

%I
(
{� } | k

)
=
%I

(
{� }, k

)

%I (k )
=
%I

(
{� }, i

)

%I (k,i)
=
%I

(
{� } | i

)

%I
(
k | i

) =
%Ii

(
{� }

)

1 − ?0
. (8)

�erein, for the second equality we used thatk ≡ k ∧i in the denominator. For the numerator,

we used the fact that if � 6 |= i0 (which is the case since � ≠ �0), then � |= k if and only if � |= i .

�e probability of the conditionk being satisfied in I is thus calculated as follows:

?k ≔ %I
(
k
)
= %I

(
k | i

)
· %I

(
i
)
=

(
1 − ?0

)
· ?i . y

Note that since ?0, ?i ∈ (0, 1), it follows that ?k =
(
1−?0

)
·?i ∈ (0, 1). �us, we can choose

: ∈ ℕ large enough such that

(
1 − ?k

):
=

(
1 − %I

(
k
) ):

< ?0.

We fix such a number : and construct a new TI-PDB J = (�, %J) with schema and marginal

probabilities as follows:
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1. Schema of J :

• Per relation symbol ' of arity A of the schema of I, the schema of J contains a

distinguished relation symbol '′ of arity A + 1.

• We add the set {1, . . . , :} to the domain of J (assuming, without loss of generality,

that these are new domain elements that do not exist in I.

2. Marginal probabilities in J :

• For every fact '(a) appearing in I with marginal probability ?, J contains the

facts '′(1, a), . . . , '′(:, a), each with marginal probability ?.

• All other facts have marginal probability 0.

Since I is well-defined, so is J , as the sum of all fact probabilities in J is bounded from above

by : · EI

(
| · |

)
< ∞. �e TI-PDB J can be thought of as consisting of : independent copies of

the original TI-PDB I. �e copies in J can be distinguished by the identifier 8 ∈ {1, . . . , :} in

its facts.

If � is an instance of J , and 8 ∈ {1, . . . , :}, we let

� [8] ≔
{
'(a) : '′(8, a) ∈ �

}
.

�is is then an instance in �. Intuitively, � [8] is obtained from � by selecting the facts with copy

identifier 8, and projecting the identifier out. We introduce the following terminology:

• We call � a representation if there exists some 8 ∈ {1, . . . , :} such that � [8] |= k .

• We say � represents � ∈ �\ {�0} if � is a representation such that for 8
∗ = min{8 : � [8] |= k }

we have � [8∗] = � .

Note that we excluded the special instance �0 from the definition above, and that the set of

instances � we can represent in J is exactly the set of instances in I that satisfy i (minus the

instance �0). �e reason for this is that we tie representations to the sentencek = i ∧¬i0, and

that � [8] |= k entails that � [8] ≠ �0. Observe that for all 8 ∈ {1, . . . , :} it holds that

Pr
� ∼J

(
� [8] |= k

)
= Pr

�∼I

(
� |= k

)
= ?k (9)

and

Pr
� ∼J

(
� [8] = � | � [8] |= k

)
= %I

(
{� } | k

) (7)
=

%Ii
(
{� }

)

1 − ?0
(10)

for all � ∈ � \ {�0}. �e probability that an instance � ∼ J is a representation is given by

?rep ≔ Pr
� ∼J

(
� is a representation

)
= 1 − Pr

� ∼J

(
� [8] 6|= k for all 8 = 1, . . . , :

)

= 1 −
(
1 − ?k

):
> 1 − ?0, (11)

by the choice of : . Note that ?rep < 1, as ?k < 1.
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Claim 4.4 (Representations in J ). For all � ∈ � \ {�0} it holds that

Pr
� ∼J

(
� represents �

)
=
%Ii

(
{� }

)

1 − ?0
· ?rep ∈

(
%Ii ({� }), 1

)

Proof. Let � ∈ � \ {�0}, and first consider the probability of the event “� represents �”, condi-

tioned on � being a representation:

Pr
� ∼J

(
� represents � | � is a representation

)

=

:∑

8∗=1

Pr
� ∼J

(
� [8∗] = � | � [8∗] |= k and � [8] 6|= k for all 8 < 8∗

)

· Pr
� ∼J

(
� [8∗] |= k and � [8] 6|= k for all 8 < 8∗ | � is a representation

)

=

:∑

8∗=1

Pr
� ∼J

(
� [8∗] = � | � [8∗] |= k

)

· Pr
� ∼J

(
� [8∗] |= k and � [8] 6|= k for all 8 < 8∗ | � is a representation

)

(10)
=
%Ii

(
{� }

)

1 − ?0
·
∑

� ∼J

(
� [8∗] |= k and � [8] 6|= k for all 8 < 8∗ | � is a representation

)
.

In the above, in the first step, we used that the events
(
� [8∗] |= k and � [8] 6|= k for all 8 < 8∗

)
8∗

form a partition of � . In the second step, in addition to (10), we exploited that statements about

� [8] are independent of statements about the � [8 ′] with 8 ′ ≠ 8. Furthermore, it follows from∑
� ∼J

(
� [8∗] |= k and � [8] 6|= k for all 8 < 8∗ | � is a representation

)
= 1 that

Pr
� ∼J

(
� represents � | � is a representation

)
=
%Ii

(
{� }

)

1 − ?0
.

Combining this with (11), we conclude that for � ∈ � \ {�0} it holds that

Pr
� ∼J

(
� represents �

)
= Pr

� ∼J

(
� represents � | � is a representation

)
· Pr
� ∼J

(
� is a representation

)

=
%Ii

(
{� }

)

1 − ?0
· ?rep ∈

(
%Ii ({� }), 1

)
. y

Starting from J , we construct yet another TI-PDB J⊥ that emerges from J . We add a new,

independent dummy fact 5⊥ = '⊥ (⊥) to J (where '⊥ is a new unary relation symbol and ⊥ is

a new domain element), with marginal probability

?⊥ ≔
?rep − (1 − ?0)

?rep
,

leaving all other facts and their marginal probabilities unchanged. Note that it follows from

(11) that 0 < ?⊥ < 1. Note that for all � ∼ J⊥ it holds that � \{5⊥} is an instance of J . With the

new TI-PDB J⊥, we now incorporate the representation of the special instance �0 as follows:

we say that � ∼ J⊥
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• represents �0 if either � \ {5⊥} is not a representation in J or 5⊥ ∈ � and � \ {5⊥} is a

representation in J ,

• represents � ≠ �0 if � does not represent �0 and � \ {5⊥} represents � in J .

Observe that every instance � ofJ⊥ represents exactly one instance ofI. A sketch of the overall

situation that we have so far is shown in Figure 1. We now show that in J⊥, the probability of

the set of instances representing � ∈ � corresponds to the probability of � in Ii :

Claim 4.5 (Representations in J⊥). For all � ∈ � it holds that

Pr
� ∼J⊥

(
� represents �

)
= %Ii

(
{� }

)
= %I

(
{� } | i

)
.

Proof. �is is easily verified by direct calculation. It holds that

Pr
� ∼J⊥

(
� represents �0 (in J⊥)

)

= Pr
� ∼J⊥

(
� \ {5⊥} is no representation in J

)
+ Pr

� ∼J⊥

(
5⊥ ∈ � and � \ {5⊥} is a representation in J

)

=
(
1 − ?rep

)
+

(
?⊥ · ?rep

)
=

(
1 − ?rep

)
+

(
?rep − (1 − ?0)

)
= ?0 = %Ii

(
{�0}

)
.

Moreover, for all � ∈ � \ {�0} it holds that

Pr
� ∼J5⊥

(
� represents � (in J⊥)

)

= Pr
� ∼J⊥

(
5⊥ ∉ � and � \ {5⊥} represents � (in J )

)

=
(
1 − ?⊥

)
·
%Ii

(
{� }

)

1 − ?0
· ?rep =

(1 − ?0) − ?rep

?rep
·
%Ii

(
{� }

)

1 − ?0
· ?rep = %Ii

(
{� }

)
. y

I copy 1

×

copy 2

× · · · ×

copy :

×
{Ë
∅ ,

é

{5⊥}
}�0

¬i

i0

k = i ∧ ¬i0

�

· · ·

Figure 1: �e above figure shows a sketch of the situation. On the le�-hand side it shows the

original PDB I with its restriction to i and the special instance �0. On the right-hand

side it shows the structure of the PDB J⊥ we constructed. Every instance � ∼ J⊥

is essentially a tuple of : instances followed by a flag. �e instance � represents �0
if either all of its parts are taken from the darker part of the copies, or it contains

the flag fact 5⊥. Otherwise, � represents the instance corresponding to the first part

residing in the lighter shaded part of the copies.
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At this point, all that remains to show is that there exists an FO-view Φ that maps each

� ∼ J⊥ to the instance � ∈ � (with � |= i ) it represents. IfΦ has this property, thenΦ(J⊥) = I|i ,

proving our claim. Suppose that the relations ofI are'1, . . . , '# . Let ĩ be any FO-formula over

the schema of I. We assume that ĩ [8] is rewri�en so that it contains neither ∨, nor universal

quantification (this can be done in an equivalence preserving and domain-independent way, cf.

[2, p. 82]). �en, for all 8 = 1, . . . , : , the formula ĩ [8] is defined from ĩ by structural induction

as follows:

ĩ [8] ≔




'′
= (8, u) if ĩ = '= (u)

G = 0 if ĩ = (G = 0)

(G = ~) ∧
(
G ≠ ⊥ ∧

∧:
9=1 G ≠ 9

)
if ĩ = (G = ~)

¬ĩ ′[8] ∧
∧

G ∈free(i′)

(
G ≠ ⊥ ∧

∧:
9=1 G ≠ 9

)
if ĩ = ¬ĩ ′

ĩ1 [8] ∧ ĩ2[8] if ĩ = ĩ1 ∧ ĩ2

∃G : ĩ ′[8] if ĩ = ∃G : ĩ ′.

�at is, in essence we change the atoms '= (u) into '′
= (8, u) and guard all free variables in

negated subformulae and in equalities between variables. �en, for all 8 = 1, . . . , : and all

� ∼ J⊥ it holds that ĩ ( � [8]) = ĩ [8] ( � ). �is can easily be verified over the structure of ĩ .

Applying this construction to the FO-sentencek leaves us with FO-sentencesk [8] over the

schema of J⊥ such that for all � ∼ J⊥ and all 8 = 1, . . . , : it holds that

� [8] |= k ⇔ � |= k [8].

Now for all = = 1, . . . , # we define the query

Φ= (x) ≔

[(
5⊥∨

:∧

8∗=1

¬k [8∗]

)
∧

( ∨

'= (a) ∈�0

x = a

)]
∧

[( :∨

8∗=1

¬5⊥∧k [8
∗]∧

8∗−1∧

8=1

¬k [8∗]

)
∧

(
'′
= (8

∗, x)

)]
.

�en for all = = 1, . . . , # and all � ∼ J⊥, it holds that Φ= ( � ) is equal to the restriction of � to the

relation '= where � is the instance from I that is represented by � . By �eorem 4.5, it follows

that Φ(J⊥) = I | i where Φ = {Φ1, . . . ,Φ# }. �at is, I | i ∈ FO(TI), concluding the proof of

�eorem 4.1. �

Remark 4.6. An implication of �eorem 4.1 is that FO(TI) is closed under FO-conditioning,

regardless of whether the conditioning is done before or a�er applying the view. �is holds

since FO(TI) ⊆ FO(TI) | FO ⊆ FO(TI | FO) ⊆ FO(TI). To prove the middle containment,

an FO-sentence over the view’s output schema can be translated to an FO-sentence over the

input schema by replacing every relation with the FO-view defining it.

5 Power of Tuple-Independent Representations

In this section, we establish some positive results regarding representability. In Section 5.1, we

prove a sufficient criterion on the growth rate of the probabilities and conclude also that PDBs

of bounded instances size are in FO(TI). Section 5.2 is devoted to BID-PDBs.
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5.1 A Condition on Sizes and Probabilities

Towards characterizing representability of PDBs using FO-views over TI-PDBs, so far we have

from�eorem 3.7 that the finite moments property is a necessary condition. In this subsection,

we present a sufficient condition for membership in FO(TI), taking the detour over member-

ship in FO(TI |FO). At the end of this subsection, we discuss the implications of this condition.

Lemma 5.1. Let D = (�, %) be a PDB. If there exists some constant 2 ∈ ℕ+ such that

∑

�∈�\{∅}

|� | · %
(
{�}

) 2
|� |

< ∞, (†)

then D ∈ FO(TI | FO).

Note that (†) looks quite similar to the requirement that the expected instance size of D be

finite. However, instead of weighting with the original probabilities of the possible worlds, in

(†) the probability of a world � is raised to the power of 2
|� |

. �is makes (†) more restrictive

than the finite moments property.

�e statement of the lemma was chosen to involve FO(TI | FO) rather than the equivalent

FO(TI), since in FO(TI | FO) we can also use conditioning which facilitates finding a rep-

resentation. Before starting with the proof, let us introduce the main idea. So suppose that

D = (�, %) is the probabilistic database we are given. We want to show that if there exists a

constant 2 such that (†) holds, then D ∈ FO(TI | FO). For the moment, assume that 2 = 1, so

that the condition (†) becomes
∑

�∈�\{∅} |� | · % ({�})1/ |� |
< ∞. We first want to construct a

TI-PDB that serves as a base for the FO(TI | FO)-representation. For this, whenever � ∈ �

and 5 ∈ � , then we create a new fact that is a copy of 5 , tagged with an identifier for the

instance � . In particular, this creates a copy of 5 for every instance in which it appears. We

say that a subset of the constructed facts is a representation if there exists exactly one instance

for which all tagged facts appear. We construct the FO-condition in such a way that it filters

out the possible worlds that are representations. Our FO-view then reconstructs the original

instance from the tagged facts. �e probabilities of the new facts have to be tuned in such

a way that every possible world of the representation has the correct probability. �e facts

we constructed, together with their probabilities, have to adhere to the convergence condition

from �eorem 2.5. Considering the representation mechanism, we end up with the condition

(†) (for 2 = 1). �e condition can be relaxed to the general form with a constant 2 by encoding

2 original facts into a single new fact.

Proof of �eorem 5.1. Let D = (�, %) be a PDB with instances � =
{
�0, �1, �2, . . .

}
where

�0 = ∅ is the empty instance. Let B8 ≔ |�8 | denote the size of �8 and ?8 ≔ %
(
{�8 }

)
its

probability in D for all 8 ∈ ℕ. Without loss of generality, we assume that ?8 > 0 for all 8 ∈ ℕ.

(If ?0 = 0, we just need to consider 8 ∈ ℕ+. �e proof then works the same way without the

special treatment of 8 = 0.) For simplicity, we assume that the schema of D consists of a single

A -ary relation symbol '. �e proof can easily be generalized to arbitrary schemas.

Let 2 ∈ ℕ+ be some fixed constant (we will determine the value of 2 later). We now construct

the TI-PDB I used in our representation. �e schema of I consists of a single relation symbol

24



'̂ of arity 3 + 2 · A . We let �̂ ≔ �∪ {⊥} be the underlying universe of I, which is the universe

of D, (disjointly) augmented with a new dummy symbol ⊥.

For all 8 ∈ ℕ, suppose that �8 =
{
'(a8,1), . . . , '(a8,B8 )

}
where a8, 9 ∈ �A for all 1 ≤ 9 ≤ B8 . For

9 > B8 , we set a8, 9 ≔
(
⊥, . . . ,⊥

)
. We define

#8, 9 ≔

{
9 + 1 if ( 9 + 1) · 2 < B8 and

⊥ if ( 9 + 1) · 2 ≥ B8 .

Using this notation we define a set � of facts over the new schema
{
'̂
}
and the new universe

�̂ by le�ing

� ≔
{
'̂
(
8, 9, #8, 9 , a8, 92+1, . . . , a8, 92+2

)
: 8, 9 ∈ ℕ and 9 ≤ max

(⌈B8
2

⌉
− 1, 0

)}

Essentially, we chop up every instance�8 into segments containing 2 facts each (where the last

segment may contain < 2 facts). Every individual fact of � corresponds to such a segment of

(up to) 2 facts in a database instance of�. �e structure of these facts is shown in Figure 2. �e

first entry of such a fact is the index of the original instance in which the encoded facts appear

(instance identifier). �e second entry contains the index of the segment (segment identifier)

whereas the third entry contains the index of the next segment (next segment identifier). �e

A ·2 remaining entries contain the 2 facts of the segment from the original instance. If there are

not enough facts le� to fill the 2 fact slots, they are padded with dummy entries (⊥, . . . ,⊥).

8 9 #8, 9 a8, 92+1 · · · a8, 92+2

segment of ≤ 2 facts from �8

next segment identifier

segment identifier

instance identifier

Figure 2: Structure of the new facts, and meaning of their individual components.

We now define the TI-PDB I =
(
�, %I

)
such that facts(I) = � , giving every fact from �

a positive probability (that we specify later) so that I is well-defined. Let us first finalize the

representation mechanism. For all 8 ∈ ℕ we let �̂8 ∈ � be the instance from I that contains

precisely the facts that have instance identifier 8. We say that an instance � ∈ � represents

�8 ∈ � if 1. it contains all the facts from �̂8 (that is, �̂8 ⊆ � ), and 2. it does not contain all

facts of some other �̂ 9 (that is, �̂ 9 * � for all 9 ≠ 8). In general, we call an instance � ∈ � a

representation, if there exists some 8 ∈ ℕ such that � represents �8 .

Next, we define the marginal probabilities for I. For this, first note that for 8 ∈ ℕ, the

instances �̂8 are pairwise disjoint as their facts have different instance identifiers. �us, by the

construction of � , for all 5 ∈ � , there exists a unique 8 = 8 ( 5 ) such that 5 ∈ �̂8 . For the sizes

B̂8 =
���̂8

�� of these instances, it holds that B̂8 =
⌈
B8
2

⌉
≥ 1 for all 8 > 0 and B̂0 = 1. Recall that ?8 is the

probability of �8 in D for all 8 ∈ ℕ. For every fact 5 ∈ � , we define the marginal probability

@5 of 5 by se�ing

@5 ≔
( ?8 (C)

1 + ?8 (5 )

)1/B̂8 ( 5 )
.
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Recall that everything we have done so far depends on the constant 2.

Claim 5.2. If 2 fulfills the condition that

∞∑

8=1

⌈B8
2

⌉
· ?

1
⌈B8 /2⌉

8 < ∞ (‡)

then I is a well-defined TI-PDB.

Proof. Suppose that (‡) holds for 2. It holds that

∑

5 ∈�

@5 =
?0

1 + ?0
+

∞∑

8=1

( ?8

1 + ?8

) 1
⌈B8 /2⌉

≤ 1 +

∞∑

8=1

?
1

⌈B8 /2⌉

8 ≤ 1 +

∞∑

8=1

⌈B8
2

⌉
· ?

1
⌈B8 /2⌉

8 < ∞.

By �eorem 2.5, the TI-PDB I is well-defined. y

Although (‡) differs slightly from (†), we can work with (‡) instead of (†) by the following

claim.

Claim 5.3. �e following statements are equivalent:

1. �ere exists 2 ∈ ℕ+ such that (‡) holds.

2. �ere exists 2 ∈ ℕ+ such that (†) holds.

Proof. We start with the direction (1) ⇒ (2). Suppose that 2 is a constant for which (‡) holds.

For all �8 with 8 > 0 it holds that B8
2

≤
⌈
B8
2

⌉
. In particular, B8 ≤ 2 ·

⌈
B8
2

⌉
and 2

B8
≥ 1/

⌈
B8
2

⌉
. As

?8 ∈ [0, 1], it follows from the la�er inequality that ?
2/B8
8 ≤ ?

1/ ⌈B8/2 ⌉
8 . Hence,

∞∑

8=1

B8 · ?
2
B8

8 ≤ 2 ·

∞∑

8=1

⌈B8
2

⌉
· ?

1
⌈B8 /2⌉

8 < ∞,

so (†) also holds for 2.

For the other direction, suppose (†) holds for the constant 2. For all �8 with B8 > 22 we have

⌈ B8
22

⌉
<

B8

22
+ 1 =

22 + B8
22

<

2B8
22

=
B8

2
.

�us, 1/
⌈
B8
22

⌉
≥ 2

B8
and therefore ?

1/ ⌈B8/22 ⌉
8 ≤ ?

2/B8
8 whenever B8 > 22. For the instances �8 with

0 < B8 ≤ 22, it holds that
⌈
B8
22

⌉
= 1 which yields

∞∑

8=1

⌈ B8
22

⌉
· ?

1
⌈B8 /22⌉

8 ≤
∑

8>0 :
B8 ≤22

?8 +
∑

8>0 :
B8>22

B8
2 ?

2
B8

8 ≤ 1 + 1
2 ·

∞∑

8=1

B8 · ?
2
B8

8 < ∞,

so (‡) holds for 22. y
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Given �eorem 5.3, we fix the value of 2 such that (‡) holds. Recall from�eorem 5.2 that I

is then well-defined.

Let @8 ≔
?8
1+?8

and observe that for all 8 > 0 we have

Pr
�∼I

(
�̂8 ⊆ �

)
=

∏

5 ∈�̂8

@5 =
(
@
1/B̂8
8

) B̂8
= @8

as well as

Pr
�∼I

(
�̂0 ⊆ �

)
= @50 = @0

where 50 is the unique fact in �̂0. Moreover, note that 0 < @8 < 1 for all 8 ∈ ℕ. Since the sum

over all @8 is finite because of
∑∞

8=0 @8 ≤
∑∞

8=0 ?8 < ∞, it holds that

/ ≔

∞∏

8=0

(1 − @8) ∈ (0, 1].

�en for all 8 ∈ ℕ we have

Pr
�∼I

(
� represents �8) = @8 ·

∏

9≠8

(1 − @ 9 ) = / ·
@8

1 − @8
= / · ?8 ,

which yields

Pr
�∼I

(
� is a representation) =

∞∑

8=0

/ · ?8 = / ,

and, moreover,

Pr
�∼I

(
� represents �8 | � is a representation) =

Pr�∼I
(
� represents �8

)

Pr�∼I
(
� is a representation

) = ?8 . (12)

In order to establish D ∈ FO(TI | FO), it now suffices to prove the following claim.

Claim 5.4. 1. �ere exists an FO-sentence i such that for all � ∈ � it holds that � |= i if and

only if � is a representation.

2. �ere exists an FO-view Φ that, for all � ∈ � that are representations, maps � to the instance

of � it represents.

Proof. 1. In order to check whether � is a representation, we need to check whether there

exists some 8 such that � represents 8. Now � represents 8 if and only if � contains all facts

of �̂8 but does not contain all facts of �̂ 9 for all 9 ≠ 8. One can check if �̂8 ⊆ � (and thus

if �̂ 9 * � for 9 ≠ 8) by checking the following:

• � needs to contain a fact starting with instance identifier 8 and segment identifier 0;

and

• whenever � contains a fact with instance identifier 8, segment identifier 9 and next

segment identifier 9 ′ ≠ ⊥, then � contains a fact with instance identifier 8 and

segment identifier 9 ′ (9 ′ will be 9 + 1 by the definition of � ).
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2. Recall that the facts of � contain up to 2 original facts in succession. �ese can be recov-

ered by a union of 2 projections, under omi�ing the ⊥ entries. y

Le�ing Φ and i be as in �eorem 5.4, the equality Equation (12) implies that

Pr
�∼I

(
Φ(� ) = �8 | � |= i

)
= ?8 = %

(
{�8 }

)

for all 8 ∈ ℕ and hence, D ∈ FO(TI | FO). �is concludes the proof of �eorem 5.1. �

As alreadymentioned, due to�eorem4.1 we directly obtain the following from�eorem 5.1.

�eorem 5.5. Let D = (�, %) be a PDB. If there exists 2 ∈ ℕ+ such that (†) holds, then D ∈

FO(TI).

�eorem 5.5 easily yields a representability result for the class of PDBs of bounded instance

size: We say that a PDB is of bounded instance size if there exists some fixed bound 2 such that

all possible worlds have size at most 2. (Note that carrying out the construction from the proof

of �eorem 5.1, every instance of the size-bounded PDB can be encoded by a single fact.)

Corollary 5.6. Every PDB of bounded instance size is in FO(TI).

Proof. Let D = (�, %) be a PDB and take 2 to be the bound on its instance sizes. �en, by

�eorem 5.5, D ∈ FO(TI) since

∑

�∈�\{∅}

|� | · %
(
{�}

) 2
|� | ≤ 2 ·

∑

�∈�

%
(
{�}

)
= 2 < ∞. �

Remark 5.7. PDBs of bounded instance size are not to be confused with finite PDBs. In par-

ticular, they can have infinite domains. As an example, consider the PDB D = (�, %) over a

schema consisting of a single unary relation symbol ' with � = {�1, �2, . . .}, where �= con-

tains a single fact '(=) and % ({�=}) =
6

=2c 2 . In this example, the instance size is bounded by 1

although the domain and, in particular, the number of possible worlds is infinite.

�e following example shows that the condition from�eorem 5.5 can also be applicable to

some PDBs with unbounded instance size.

Example 5.8. Let G ≔
∑∞

8=1 2
−82 . �en 0 < G <

∑∞
8=1 2

−8 = 1. Now define D = (�, %) with

� = {�1, �2, . . .} with |�8 | = 8 and let %
(
{�8 }

)
=

1
G · 2−8

2
. Since

∑
�∈� %

(
{�}

)
= 1, D is a PDB.

Note that
(
1
G

)U
≤ 1

G for all U ∈ (0, 1] because 1
G > 1. �en

∑

�∈�

|� | · %
(
{�}

) 1
|� | =

∞∑

8=1

8 ·
(
1
G · 2−8

2 ) 1
8 ≤ 1

G

∞∑

8=1

8 · 2−8 = 2
G < ∞.

�erefore, D satisfies the condition of �eorem 5.5 for 2 = 1, so D ∈ FO(TI). Yet, D is of

unbounded instance size.
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Unfortunately, we have no full characterization of FO(TI) yet. We know that the condition

from�eorem 5.5 implies membership in FO(TI) and that membership in FO(TI) implies the

finite moments property (�eorem 3.3). As we have seen in �eorem 3.16, the finite moments

property does not imply membership in FO(TI). Our next example shows that membership in

FO(TI) does not imply that the condition from �eorem 5.5 is satisfied. �at is, the converse

of �eorem 5.5 does not hold. In fact, even though every TI-PDB is trivially in FO(TI), some

TI-PDBs violate the condition of the theorem:

Example 5.9. Consider the TI-PDB I = (�, %) with fact set facts(I) =
{
'(8) : 8 ∈ ℕ+

}
and

marginal probabilities

?8 = Pr
�∼I

(
'(8) ∈ �

)
=

1

82 + 1
∈ (0, 1).

First, note that I is indeed well-defined as
∑∞

8=1
1

82+1
< ∞. Let / ≔

∏∞
8=1

(
1 − ?8

)
. Since∑∞

8=1 ?8 < ∞, it holds that 0 < / < 1. By the definition of tuple-independence, for all � ∈ � it

holds that

%
(
{� }

)
=

∏

' (8) ∈�

?8 ·
∏

' (8)∉�

(
1 − ?8

)
= / ·

∏

' (8) ∈�

?8

1 − ?8
.

Let � ≠ ∅. Recall that the geometric mean of a finite set of numbers is at least the minimum of

the numbers. �us,

%
(
{� }

) 1
|� | = /

1
|� | ·

( ∏

' (8) ∈�

?8

1 − ?8

) 1
|� |

≥ /
1
|� | · min

' (8) ∈�

?8

1 − ?8

As our sequence (?8)8∈ℕ+
is monotonically decreasing, it holds that min' (8) ∈� ?8 = ?8 (� ) where

8 (� ) = max
{
8 : '(8) ∈ �

}
. Because the function G ↦→ G

1−G is monotonically increasing on (0, 1),

we get

min
' (8) ∈�

?8

1 − ?8
=

min' (8) ∈� ?8

1 −min' (8) ∈� ?8
=

?8 (� )

1 − ?8 (� )
.

Using /
1
|� | ≥ min{1, / }, we conclude

%
(
{� }

) 1
|� | ≥ /

1
|� | min

' (8) ∈�

?8

1 − ?8
≥ min{1, / } ·

?8 (� )

1 − ?8 (� )
.

Partitioning the instances according to their value of 8 (� ), we get the following for all 2 ∈ ℕ+:

∑

�≠∅

|� | · %
(
{� }

) 2
|� | ≥

∑

�≠∅

%
(
{� }

) 2
|� |

=

∞∑

8=1

∑

� : 8 (� )=8

(
%
(
{� }

) 1
|� |

)2

≥

∞∑

8=1

∑

� : 8 (� )=8

(
min{1, / } ·

?8

1 − ?8

)2

= min{1, / }2 ·

∞∑

8=1

( ?8

1 − ?8

)2
· 28−1,
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because
��� ∈ � : 8 (� ) = 8

�� = 28−1. Note that
?8

1−?8
=

1
82
, since ?8 =

1
82+1

. �us,

∑

�≠∅

|� | · %
(
{� }

) 2
|� | ≥ min{1, / }2 ·

∞∑

8=1

( ?8

1 − ?8

)2
· 28−1 =

min{1, / }2

2
·

∞∑

8=1

28

822
= ∞,

since 28 grows faster than any polynomial. �is shows that for I there exists no 2 ∈ ℕ+ for

which (†) holds, so �eorem 5.5 is not applicable. Nevertheless, I is in TI, so in particular it is

in FO(TI).

�us, we still exhibit a proper gap between our conditions for containment in FO(TI).

5.2 Block-Independent Disjoint Databases

In this section, we prove that every BID-PDB can be represented as an FO view over a TI-PDB.

First, note that this does not follow from the previous section, as there are BID-PDBs that are

not naturally tuple-independent and such that �eorem 5.5 does not apply to them.

Example 5.10. Consider the BID-PDB I = (�, %) with blocks �1, �2, . . . such that for all 8,

the block �8 contains exactly the two facts '1 (8) and '2 (8), both with marginal probability

?8 =
1

2(82+1)
. As I is BID-PDB, it is also contained in FO(BID). However, we now show that

I does not satisfy the condition from �eorem 5.5.

Let J = (�, % ′) be the TI-PDB from�eorem 5.9. Recall that the facts of J were of the shape

'(8) with 8 ∈ ℕ+. We say an instance � of J and an instance � of I are similar, denoted � ≃ �

if for all 8 ∈ ℕ it holds that

'(8) ∈ � ⇔ � ∩ �8 = � ∩
{
'1 (8), '2 (8)

}
≠ ∅.

For every instance � ∈ �, there are exactly 2 | � | instances � ∈ � with � ≃ � . Each such instance �

has probability %
(
{� }

)
= 2−| � |% ′

(
{� }

)
. �en it holds that

∑

�≠∅

|� | · %
(
{� }

) 2
|� | =

∑

� ≠∅

∑

� : � ≃�

| � | · % ′
(
{� }

) 2
| � |

=

∑

� ≠∅

∑

� : � ≃�

| � | ·
(
2−| � | · % ′

(
{� }

) ) 2
| � |

=

∑

� ≠∅

2 | � | · | � | · 2−2 · % ′
(
{� }

) 2
| � |

≥ 2−2 ·
∑

� ≠∅

| � | · % ′
(
{� }

) 2
| � | .

It follows from �eorem 5.9 that this sum diverges for all 2 ∈ ℕ+. �erefore, I is a BID-PDB

for which there exists no 2 ∈ ℕ+ such that (†) holds.

Again, we take the detour via conditional representations and show that every BID-PDB

can be represented as an FO-view of an FO-conditioned TI-PDB.

Lemma 5.11. BID ⊆ FO(TI | FO).
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�e basic idea of the proof is as follows. We start with a BID-PDB and forget about its

block structure. To compensate, every fact is equipped with an identifier indicating to which

block it belongs. �e resulting PDB is then treated as a TI-PDB. We define the condition to

reject the instances that violate the intended block structure (using the block identifiers to

find violations), and then the view can simply project out the block identifiers. �e marginal

probabilities are carefully chosen to guarantee that this process results in the same probability

distribution as in the original PDB.

Proof. Let I = (�, %I) be a BID-PDB with blocks {�1, �2, . . .} such that block �8 consists of

the facts {58,1, 58,2, . . .}. To simplify notation, assume that �8 is countably infinite for all 8 ∈ ℕ+.

�is is without loss of generality, since we can add infinitely many artificial facts of marginal

probability 0 to every block of D. For all 8, 9 ∈ ℕ+, let ?8, 9 ≔ Pr�∼I ( 58, 9 ∈ � ). By �eorem 2.7,∑∞
9=1

∑∞
8=1 ?8, 9 < ∞.

�e probability to choose no fact from block �8 is A8 = 1−
∑∞

9=1 ?8, 9 , called the residual (prob-

ability mass) in �8 . for all Y ∈ (0, 1), there are only finitely many residuals A8 with A8 < Y

(otherwise, the sum over all fact probabilities in I would diverge in contradiction to �eo-

rem 2.7). We assume that the blocks of I are indexed in increasing order of the A8 . �at is,

A8 ≤ A 9 whenever 9 ≥ 8. Let< be the non-negative integer with A8 = 0 if and only if 1 ≤ 8 ≤ <.

We construct a conditional, tuple-independent representation of I by altering every relation

in the schema of I to contain an additional block identifier a�ribute. �e facts of our new TI-

PDBJ = (�, %J) are the facts fromI, augmented by the number of their block in the additional

a�ribute. �at is, for every fact 5 = '(a) from a block �8 , we construct a fact 5̃ = '′(a, 8). Note

that for 5 ≠ 5 ′ we have 5̃ ≠ 5̃ ′. We let �̃8 = { 5̃8, 9 : 9 ∈ ℕ+}. �en adding, respectively removing

the block identifier 8 in the facts yields a one-to-one correspondence between �8 and �̃8 .

�e marginal probabilities @8, 9 = Pr� ∼J ( 58, 9 ∈ � ) of 5̃8, 9 in J are defined in the following

way:

@8, 9 ≔




?8, 9

1 + ?8, 9
if A8 = 0 and

?8, 9

A8 + ?8, 9
if A8 > 0.

We show that these marginal probabilities indeed span a well-defined TI-PDB. Consider 5̃8, 9
with 8 and 9 arbitrary. �en,

• if A8 > 0, it holds that @8, 9 =
?8, 9

A8 + ?8, 9
≤

?8, 9

A8
≤

?8, 9

A<+1
, and

• if A8 = 0, it holds that @8, 9 =
?8, 9

1 + ?8, 9
≤

?8, 9

1
≤

?8, 9

A<+1
.

Since
∞∑

8=1

∞∑

9=1

@8, 9 ≤

∞∑

8=1

∞∑

9=1

?8, 9

A<+1
=

1

A<+1
·

∞∑

8=1

∞∑

9=1

?8, 9 < ∞,

it follows that J is well-defined. �e instances of interest in J are those that obey the block

structure of I. �e following claim asserts that this property is FO-definable.
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Claim 5.12. �ere exists an FO-sentence i such that for all � ∈ � it holds that � |= i if and only

if 1. � contains at most one fact with block identifier 8 for all 8 ∈ ℕ+; and 2. � contains exactly one

fact with block identifier 8 for all 8 ≤ <.

Proof. For simplicity, assume that the schema of I consists of a single, unary relation symbol

'. Let

i ≔
(
∀9 ∃≤1G : '′(G, 9)

)
∧

<∧

8=1

∃=1G : '′(G, 8)

where '′ is the augmented version of '. Note that the ∃≤1 and ∃=1 quantifiers are expressible

in plain FO. �e formula above can easily be generalized to arbitrary schemas. y

Let Φ be the view that projects the block identifier out of the facts of �. �e PDB J together

with the condition i and the FO-view Φ is our representation of I = (�, %I). It is le� to show

that the probability distribution we obtain this way is the same as in the original PDB. �at is,

we need to show that for all � ∈ � it holds that

Pr
� ∼J

(
Φ( � ) = � | � |= i

)
= %I

(
{� }

)
.

We first show that it suffices to check every block independently. Given an instance � of I,

we denote by � [8] the restriction of � to �8 . For the instances � of J , we similarly let � [8] denote

the restriction of � to �̃8 . Since the blocks are independent in I, for all � ∈ � it holds that

%I
(
{� }

)
= Pr

� ′∼I

(
� ′[8] = � [8] for all 8 ∈ ℕ+

)
=

∞∏

8=1

Pr
� ′∼I

(
� ′[8] = � [8]

)
.

Let us now inspect the conditional representation. We denote by i8 the condition that if A8 > 0,

there is at most one element of �8 , and if A8 = 0, there is exactly one element of �8 . It holds that

� ∼ J satisfies i if and only if � |= i8 for all 8 ∈ ℕ+.
5

Let � ∈ � be an instance with positive probability in I. Note that for all � ∈ � with � 6 |= i ,

the instance Φ( � ) can not be an instance of positive probability in I since it either contains

two distinct facts from the same block, or does not contain a fact from one of the blocks with

residual 0. �us, if Φ( � ) = � for any instance � of positive probability in I, then � |= i . Since

the facts and therefore also the blocks are independent in J , it holds that

Pr
� ∼J

(
Φ( � ) = � | � |= i

)
=
Pr� ∼J (Φ( � ) = � and � |= i)

Pr� ∼J ( � |= i)

=
Pr� ∼J (Φ( � ) [8] = � [8] for all 8 ∈ ℕ+)

Pr� ∼J ( � [8] |= i8 for all 8 ∈ ℕ+)

=

∏∞
8=1 Pr� ∼J (Φ( � ) [8] = � [8])∏∞

8=1 Pr� ∼J ( � [8] |= i8)
.

5Although i8 is expressible as an FO-sentence, this is not required here. We use the name i8 and the notation |=

for convenience.
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�erefore, in order to show that the probability distribution over the conditional representation

is the same as the original PDB, it is enough to show that for all � ∈ � and every block �8 it

holds that
Pr� ∼J (Φ( � ) [8] = � [8])

Pr� ∼J ( � [8] |= i8)
= Pr

� ′∼I
(� ′[8] = � [8]). (13)

�us, fix an arbitrary instance � ∈ � with positive probability in I and let 8 ≥ 1. We denote

/8 ≔
∏

58,9 ∈�8

(
1 − @8, 9

)
. Recall that �̃8 is identical to �8 apart from the block identifier 8 that

has been appended to the facts. Note that in J , the probability of selecting only 5̃8, 9 among the

facts of �̃8 is

@8, 9 ·
∏

58,: ∈�8

:≠9

(
1 − @8,:

)
=

@8, 9

1 − @8, 9
/8 .

We distinguish cases according to whether �8 has a positive residual and, if so, whether �

contains a fact from �8 .

1. If A8 = 0, then the probability of having only fact 5̃8, 9 from �̃8 is

@8, 9

1 − @8, 9
· /8 =

?8, 9

1 + ?8, 9
·
(
1 −

?8, 9

1 + ?8, 9

)−1
· /8 = ?8, 9 · /8 .

Suppose that 58,: is the unique fact from �8 in � . �en

Pr� ∼J (Φ( � ) [8] = � [8])

Pr� ∼J ( � [8] |= i8)
=

?8,: · /8∑∞
9=1 ?8, 9 · /8

=
?8,:∑∞
9=1 ?8, 9

= ?8,: = Pr
� ′∼I

(
� ′[8] = � [8]

)
.

2. If A8 > 0, then the probability of having no fact from �̃8 in J is /8 , and the probability of

having only fact 5̃8, 9 from �̃8 is

@8, 9

1 − @8, 9
· /8 =

?8, 9

A8 + ?8, 9
·
(
1 −

?8, 9

A8 + ?8, 9

)−1
· /8 =

?8, 9

A8
· /8 .

�erefore, the probability of satisfying the condition i8 is:

Pr
� ∼J

(
� [8] |= i8

)
= /8 +

∞∑

9=1

?8, 9

A8
· /8 =

/8

A8
·
(
A8 +

∞∑

9=1

?8, 9

)
=
/8

A8
.

We distinguish two subcases.

a) In case there exists a fact 58,: from �8 in � , it holds that

Pr� ∼J (Φ( � ) [8] = � [8])

Pr� ∼J ( � [8] |= i8)
=

?8,:
A8

· /8

/8

A8

= ?8,: = Pr
� ′∼I

(
� ′[8] = � [8]

)
.

b) In case no fact from �8 appears in � , it holds that

Pr� ∼J (Φ( � ) [8] = � [8])

Pr� ∼J ( � [8] |= i8)
=
/8

/8

A8

= A8 = Pr
� ′∼I

(
� ′[8] = � [8]

)
.
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Since 8 is arbitrary, this holds for all 8. Together, we have verified Equation (13). �us, I is

an FO-view of an FO-conditioned TI-PDB, witnessed by J , Φ and i , concluding the proof of

�eorem 5.11. �

From�eorem 5.11 and�eorem 4.1 we get the desired representability result forBID-PDBs.

�eorem 5.13. BID ⊆ FO(TI).

Remark 5.14. Since

FO(BID) ⊆ FO(FO(TI)) = FO(TI) ⊆ FO(BID),

this yields FO(BID) = FO(TI). �is also entails that FO(BID) (andBID in particular) inherits

the finite moments property from FO(TI).

Similarly to �eorem 4.6, FO(BID) is also closed under FO-conditioning, regardless of

whether the conditioning is done before or a�er applying the view. So in particular it holds

that

FO(BID | FO) = FO(BID) | FO = FO(BID).

�e first equality above stems from the fact that

FO(BID) ⊆ FO(BID | FO) ⊆ FO
(
FO(TI) | FO

)
= FO(TI) = FO(BID).

6 Seeking Logical Reasons

In the previous sections, we mainly investigated the question whether a given PDB is repre-

sentable in a particular way without much focus on the “why”. �e arguments concerned the

probability distributions of probabilistic databases and, in particular, on convergence issues

regarding the marginal probabilities of facts. For example, in Section 3 we showed probabilis-

tic databases violating the finite moments property can not be in FO(TI). In essence, this

is an arithmetical reason for non-representability that only takes the probabilities of possible

worlds into account. �ere could, however, be purely logical reasons for non-representability

in FO(TI) that emerge when we forget about the probabilities and are just interested in the

mere possible worlds. In this section, we aim to separate “arithmetical” arguments from “purely

logical” ones.

Discarding the probabilities, we are le� with sets of possible worlds such as they occur in the

study of incomplete databases [35, 3]. Given a probabilistic database D = (�, %), we focus on

worlds(D), the set of instances� ∈ �with positive probability %
(
{�}

)
. IfD is a class of PDBs,

then worlds(D) ≔
{
worlds(D) | D ∈ D

}
. We now investigate what we can conclude about

the possible representations of a probabilistic database based solely on its set of possible worlds.

In Section 6.1, we show how this point of view can be used to establish the non-representability

of infinite PDBs. In Section 6.2, we discuss the implications for the class FO(TI).
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6.1 Proving Non-Representability

A tool that falls into the category of logical arguments is the monotonicity of certain classes

of views: A view + : �1 → �2 is called monotone if, for any instances �,� ′ in �1, we have

that � ⊆ � ′ implies+ (�) ⊆ + (� ′). For example, UCQ- and Datalog views are monotone [2].

In [56, Proposition 2.17] the monotonicity of UCQ-views is exploited to show that some fi-

nite probabilistic databases can not be represented by a UCQ-view over a finite TI-PDB. �is

argument only needs to consider the sets of possible worlds and is oblivious to the concrete

probability distributions. More precisely, they use the existence of a unique (inclusion-wise)

maximal possible world in any finite TI-PDB and infer that a UCQ-view over such will also

contain a maximal possible world:

Proposition 6.1 ([56, proof of Proposition 2.17]). Let V be any class of monotone views. �en

for every PDB D ∈ V(TIfin) there exists �max ∈ worlds(D) such that � ⊆ �max for all � ∈

worlds(D).

It is then easy to construct probabilistic databases without a unique maximal possible world,

and it directly follows that such PDBs cannot belong to UCQ
(
TIfin

)
. �is proof does not di-

rectly carry over to the infinite se�ing though, as infinite TI-PDBs in general may not have

maximal possible worlds at all. However, a simple argument that works in both the finite and

the infinite se�ing demonstrates how monotonicity can be used with respect to the set of pos-

sible worlds in order to conclude non-representability in general. For this, we start with some

easy observations regarding the structure of the possible worlds of TI-PDBs.

Observation 6.2. Let I be a TI-PDB, and let ?5 denote the marginal probability of fact 5 . �en

facts(� ) is partitioned into the sets �always ≔ {5 : ?5 = 1}, �sometimes ≔ {5 : ?5 ∈ (0, 1)} and

�never ≔ {5 : ?5 = 0} and it holds that worlds(I) =
{
�always ∪ � : � ⊆ �sometimes and |� | < ∞

}
.

We next inspect the effect of applying views over PDBs and observe that stripping PDBs of

their probabilities commutes with applying views. �at is, the diagram in Figure 3a commutes.

D + (D)

worlds(D) �′

+

worlds worlds

+

(a) Discarding probabilities in PDBs commutes
with applying views.

D =
{
D8

}
8

V(D)

worlds(D)
{
�′

8

}
8

V

worlds worlds

V

(b) Discarding probabilities in classes of PDBs
commutes with a applying views from a
class.

Figure 3: Commutative diagrams illustrating �eorem 6.3 and �eorem 6.4.

Observation 6.3. Let D = (�1, %) be a PDB, let �2 be a set of database instances, and let + be

a view + : �1 → �2. �en, it holds that +
(
worlds(D)

)
= worlds

(
+ (D)

)
.

Proof. If �2 ∈ +
(
worlds(D)

)
, then there exists �1 ∈ worlds(D) such that + (�1) = �2. As

%
(
{�1}

)
> 0, this implies that %+ (D)

(
{�2}

)
> 0. �us, +

(
worlds(D)

)
⊆ worlds

(
+ (D)

)
.
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If �2 ∈ worlds
(
+ (D)

)
, then %D

(
+ −1

(
{�2}

) )
= %+ (D)

(
{�2}

)
> 0. �us, there exists an

instance �1 ∈ + −1
(
{�2}

)
with %D (�1) > 0. In particular, �2 ∈ +

(
worlds(D)

)
, which shows

worlds
(
+ (D)

)
⊆ +

(
worlds(D)

)
. �

�eorem 6.3 directly implies the following.

Proposition 6.4. Let D be a class of PDBs and let V be a class of views. �en, it holds that

V
(
worlds(D)

)
= worlds

(
V(D)

)
. In particular, worlds(D) ∈ V

(
worlds(D)

)
holds for all D ∈

V(D).

�efirst part of�eorem 6.4 states that the diagram in Figure 3b commutes. �e la�er part of

the proposition can be understood as a purely logical necessary condition for representability:

if worlds(D) ∉ V
(
worlds(D)

)
, then it follows immediately that D ∉ V(D). We now build

on �eorem 6.4 and�eorem 6.2, and demonstrate how monotonicity can be used to conclude

non-representability in the se�ing of infinite PDBs.

Proposition 6.5. LetV be a class of monotone views, and letD be a PDB such that there exist two

facts 51 and 52 of positive marginal probability that are mutually exclusive (that is, Pr�∼D ( 51, 52 ∈

�) = 0). �en D ∉ V(TI).

Proof. Assume by contradiction that D ∈ V(TI) and let �1, �2 ∈ worlds(D) with 51 ∈ �1 and

52 ∈ �2. By �eorem 6.4, we know that worlds(D) ∈ V
(
worlds(TI)

)
. Hence, there exists a set

of instances � ∈ worlds(TI) and a view + ∈ V such that + (�) = worlds(D). �us, let �1, �2 ∈ �

such that + (�1) = �1 and + (�2) = �2. By �eorem 6.2, we also have �1 ∪ �2 ∈ � and, thus,

+ (�1 ∪ �2) ∈ worlds(D). Since + is monotone, it holds that

+
(
�1 ∪ �2

)
⊇ + (�1) ∪+ (�2) = �1 ∪ �2 ⊇

{
51, 52

}
,

in contradiction to 51 and 52 being mutual exclusive. �

�eorem 6.5 immediately yields that UCQ(TI) does not contain any BID-PDBs that are not

already tuple-independent.

6.2 First-Order Views

�eorem 6.5 demonstrates that it is possible to determine non-representability of an infinite

PDB based on purely logical reasons. However, in the following, we show that there are no

logical reasons to show that a PDB is not in FO(TI). More precisely, for any collection of

possible worlds (over the same schema), we can a�ach probabilities to the worlds in such a

way that we end up with a PDB in FO(TI).

Lemma 6.6. Let � be any set of database instances over the same schema. �en there exists a

PDB D ∈ FO(TI) such that worlds(D) = �.

Proof. Let� =
{
�1, �2, . . .

}
and define

I8 ≔

{(
2−8 · |�8 |

−1
) |�8 | if �8 ≠ ∅ and

1 otherwise.
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Note that I8 ∈ (0, 1]. It holds that

0 <

∞∑

8=1

I8 ≤ 1 +
∑

8,�8≠∅

( 1

28 · |�8 |

) |�8 |

≤ 1 +
∑

8,�8≠∅

1

28 · |�8 |
≤ 1 +

∑

8,�8≠∅

1

28
≤ 2.

�us, 1
/

∈
[
1
2 ,∞

)
for / ≔

∑∞
8=1 I8 . We now define probability distribution % : � → [0, 1] by

le�ing %
(
{�8 }

)
≔

I8
/
for all 8 ∈ ℕ+. �en it holds that

∑

�∈�\∅

|� | ·%
(
{�}

)1/ |� |
=

∑

8,�8≠∅

|�8 | ·
(I8
/

)1/ |�8 |

=

∑

8,�8≠∅

1

28
·
( 1
/

)1/ |�8 |

≤

∞∑

8=1

1

28
·max

{
1, 1

/

}
< ∞.

�is means that D = (�, %) satisfies the condition from �eorem 5.5, and thus, D ∈ FO(TI).

�

�eorem 6.6 shows that in order to prove that a PDB is not in FO(TI), it is not enough to only

consider the set of its possible worlds. Any such proof must take probabilities of the possible

worlds into account.

Similar to the terminology for PDBs, we call a set � of database instances of unbounded

instance size, if for all= ∈ ℕ there exists some� ∈ �with |� | ≥ =. Recall that we already know

from�eorem 5.6, that if the underlying set of possible worlds of a PDB is of bounded instance

size, then the PDB is in FO(TI), regardless of the probabilities. �eorem 6.6 says that for any

tentative set of possible worlds of unbounded instance size, we can always find a probability

distribution such that the resulting PDB is in FO(TI). �e following result, however, states that

in this se�ing we can also always find probability distributions such that the resulting PDBwill

not be in FO(TI).

Lemma 6.7. Let � be a set of instances over the same schema such that � is of unbounded

instance size. �en there exists a PDB D with E
(
| · |

)
= ∞ such that worlds(D) = �.

Proof. Since the size of instances in � is unbounded, there exists an infinite sequence of non-

empty instances
(
�8:

)
:∈ℕ+

such that
���8:

�� is strictly increasing and, in particular,
���8:

�� ≥ : . For

all : ∈ ℕ+, we define

%
({
�8:

})
≔

3

c 2 · :2
.

�en
∑∞

:=1 %
({
�8:

})
=

1
2 . We assign positive probabilities to the instances in�\

{
�8: : : ∈ ℕ+

}

such that they also add up to 1
2 . �en % : � → [0, 1] is a probability distribution andD = (�, %)

is a probabilistic database. However, the expected instance size of D is infinite:

ED

(
| · |

)
=

∑

�∈�

|� | · %
(
{�}

)
≥

∞∑

:=1

���8:

�� · %
({
�8:

})
≥

∞∑

:=1

: ·
3

c 2 · :2
=

3

c 2
·

∞∑

:=1

1

:
= ∞. �

�e following theorem summarizes our results regarding the class FO(TI) that emerged

from the inspection of the underlying sets of possible worlds.

�eorem 6.8. Let � be a set of database instances over the same schema.
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1. If � has bounded instance size, then D ∈ FO(TI) for every D with worlds(D) = �.

2. If � has unbounded instance size, then there exist PDBs D1 ∈ FO(TI) and D2 ∉ FO(TI)

such that worlds(D1) = worlds(D2) = �.

Proof. �e first statement directly follows from �eorem 5.6. For unbounded instance size,

�eorem 6.6 shows the existence of D1 and�eorem 6.7 shows the existence of D2, where the

la�er is not in FO(TI) due to �eorem 3.7. �

In short, assume we are given a PDB D and want to determine whether D ∈ FO(TI). If

worlds(D) has bounded instance size, then D ∈ FO(TI). Otherwise, we have to investigate

the instance probabilities to se�le the question.

7 Views Using Fragments of First Order-Logic

7.1 The Situation for Finite Probabilistic Databases

In this section, we review the relative expressive power of classes of views over finite PDBs. Re-

call that FO(TIfin) = PDBfin, as shown in [56, Proposition 2.16], but UCQ(TIfin) ( PDBfin, as

shown in [56, Proposition 2.17]. �e following two examples show that the classesUCQ(TIfin),

CQ(TIfin) and sjfCQ(TIfin) are incomparable to BIDfin (with respect to ⊆).

Example 7.1. Consider the BID-PDB I that consists of only a single block containing two

facts 5 and 5 ′, each with marginal probability 1
2 . �en worlds(I) =

{
{5 }, {5 ′}

}
and both

worlds {5 } and {5 ′} are maximal. It follows from �eorem 6.1 that I ∉ V
(
TIfin

)
for any class

V of monotone views. In particular, I ∉ TIfin.

Example 7.2. Consider theTI-PDBI = (�, %)with facts(I) =
{
'(1, 1), '(1, 2), '(2, 2), ( (1), ( (2)

}
,

where the marginal probability of all '-facts is 1 and the marginal probability of both (-facts

is 1
2 . Now consider the sjfCQ-view Φ(G) ≔ ∃~ : '(G, ~) ∧ ( (~). �en Φ(I) ∈ sjfCQ(TIfin).

Note that the PDB I has possible worlds and images according to Φ as shown in Table 1. �us,

Table 1: Possible worlds of the PDB I.

� Φ(� )
{
'(1, 1), '(1, 2), '(2, 2)

}
∅{

'(1, 1), '(1, 2), '(2, 2), ( (1)
} {

'Φ (1)
}

{
'(1, 1), '(1, 2), '(2, 2), ( (2)

} {
'Φ (1), 'Φ (2)

}
{
'(1, 1), '(1, 2), '(2, 2), ( (1), ( (2))

} {
'Φ (1), 'Φ (2)

}

Φ(I) has exactly three possible worlds: the empty instance ∅ with probability 1
4 , the instance{

'Φ (1)
}
, also with probability 1

4 , and the instance
{
'Φ (1), 'Φ (2)

}
with probability 1

2 . Since the

facts 'Φ (1) and 'Φ (2) are neither independent nor mutually exclusive in Φ(I), it holds that

Φ(I) ∉ BIDfin.
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Note that the la�er example also shows that sjfCQ(TIfin) ) TIfin. Remarkably, it turns out

that the classes CQ(TIfin) and UCQ(TIfin) collapse to sjfCQ(TIfin). �is is a consequence of

the following, more general insight.

Proposition 7.3. Let D = + (I) where I ∈ TIfin and + is a monotone view. �en D ∈

sjfCQ(TIfin).

Proof. We show this for the case where+ = {&} is a single query with output relation symbol

'& = '. �is generalizes directly to general monotone views. As earlier, for I = (�, %I), we

let �always(I) and �sometimes (I) denote the sets of facts that appear with probability 1 and > 0,

respectively. Suppose that �sometimes (I) = {51, . . . , 5=} (with 58 pairwise different). We construct

a TIfin-PDB J = (�, %J) over the same universe as I, augmented (disjointly) by {0, 1}. �e

schema of J consists of = new unary relation symbols (1, . . . , (= , and a separate new = + A -ary

relation symbol ( , where A is the arity of the query & . �e marginal probabilities of the facts

in J are given as follows:

• �e fact (8 (0) has marginal probability 1 for all 8 = 1, . . . , =.

• �e fact (8 (1) has marginal probability %I ( 58) for all 8 = 1, . . . , =.

• For all 01, . . . , 0= ∈ {0, 1} and all facts '(11, . . . , 1A ) ∈ &
(
�always(I) ∪ {58 : 08 ≠ 0}

)
, the

fact ( (01, . . . , 0=, 11, . . . , 1A ) has marginal probability 1.

• All other facts have probability 0.

Consider the following sjfCQ-query Φ with output relation symbol 'Φ = ' defined by

Φ(~1, . . . , ~A ) = ∃G1 . . . ∃G= : (1 (G1) ∧ · · · ∧ (= (G=) ∧ ( (G1, . . . , G=, ~1, . . . , ~A ).

We claim that Φ(J) = & (I). We show this by constructing a bijection V between the worlds

of I and the worlds of J with the properties that 1. %I (� ) = %J (V (� )); and 2. & (� ) = Φ( � ).

Let � be any possible world of I. �en � = �always (I) ∪ {581, . . . , 58: } for some distinct facts

581, . . . , 58: ∈ �sometimes (I). We let V (� ) be the instance of J that contains all facts of marginal

probability 1, along with (precisely) the facts (81 (1), . . . , (8: (1). Clearly, V is both injective and

surjective, i. e., a bijection. Moreover, we have that

%I
(
{� }

)
=

:∏

9=1

%I
(
58 9

)
=

:∏

9=1

%J

(
(8 9 (1)

)
= %J

(
{� }

)
.

�erefore, it only remains to show that for all � ∈ worlds(I), it holds that& (� ) = Φ(V (� )).

Let � = �always(I) ∪ {581 , . . . , 58: } as before and suppose that '(11, . . . , 1A ) ∈ & (� ). By con-

struction, the instance V (� ) contains the facts (81 (1), . . . , (8: (1). Moreover, as '(11, . . . , 1A ) ∈

& (� ), by definition, the fact ( (01, . . . , 0=, 11, . . . , 1A ) where

08 =

{
1 if 8 ∈ {81, . . . , 8: }

0 otherwise.
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for all 8 = 1, . . . , = is one of the facts with marginal probability 1 in J . Together this shows

that � |= Φ(11, . . . , 1A ), i. e. '(11, . . . , 1A ) ∈ Φ( � ).

For the other direction, suppose that '(11, . . . , 1A ) ∈ Φ
(
V (� )

)
. �is means that there exist

01, . . . , 0= such that (1 (01), . . . , (= (0=) ∈ V (� ) and '(11, . . . , 1A ) ∈ &
(
�always (I) ∪ {59 : 0 9 ≠ 0}

)
.

Note that {
59 : 0 9 ≠ 0

}
⊆

{
59 : ( 9 (1) ∈ V (� )

}
.

As & is monotonous, we have that

&
(
�always (I) ∪

{
59 : 0 9 ≠ 0

})
⊆ &

(
�always (I) ∪

{
59 : 0 9 ≠ 0

})
= & (� ),

which finally yields '(11, . . . , 1A ) ∈ & (� ). �

Corollary 7.4. sjfCQ(TIfin) = CQ(TIfin) = UCQ(TIfin).

For finite BID-PDBs, the classes sjfCQ(BIDfin), CQ(BIDfin) and UCQ(BIDfin): in [56,

Proposition 2.18] it is shown that PDBfin = CQ(BIDfin). In fact, the conjunctive query used in

the proof is self-join free, showing that PDBfin = sjfCQ(BIDfin).

Proposition 7.5. �e classes of views over finite probabilistic databases have the relative expres-

sive power shown in the Hasse diagram of Figure 4.

PDBfin = FO
(
TIfin

)
= sjfCQ

(
BIDfin

)
(5)

sjfCQ
(
TIfin

)
= UCQ

(
TIfin

)
(6) BIDfin

TIfin

(1)(2)

(3) (4)

Figure 4: Hasse diagram for the relative expressive power of views over finite probabilistic

databases.

Proof. Consider Figure 4. �e inclusions depicted therein (shown as solid lines) are trivial.

We now give arguments for (1) throughout (4) that these inclusions are proper and that the

remaining classes (5) and (6) collapse.

1. �is is witnessed by �eorem 7.1.

2. �is is witnessed by �eorem 7.2.

3. �is is shown in [56, Proposition 2.17].

4. �is is shown in [56, Chapter 2.7], another example is given by �eorem 7.2.

5. �is is shown in [56, Propositions 2.16 and 2.18].

6. �is is the statement of �eorem 7.4. �
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7.2 The Situation for Countably Infinite Probabilistic Databases

In the previous section, we discussed finite TI- and BID-PDBs and views in the UCQ-, CQ-

and sjfCQ-fragment of first-order logic. We nowwant to investigate the corresponding classes

in the countably infinite se�ing. Interestingly, the different classes that collapse in the finite

se�ing do no longer collapse in the infinite se�ing, yielding pairwise different classes of prob-

abilistic databases. A reason for is intuitively that in a representation, we can no longer hard-

code the complete structure of possible worlds using facts of probability one. �is was possible

in the finite se�ing, and is essentially what is done in the proofs of the respective statements

[56, Propositions 2.16 and 2.18].

�e tools we have seen and developed so far are ineffective for a possible separation of the

classesUCQ(TI),CQ(TI) and sjfCQ(TI) and the corresponding classes forBID-PDBs as they

only concern the class FO(TI) and we already know from�eorems 5.13 and 6.5 thatUCQ(TI)

is strictly weaker than FO(TI). �us, we have to develop new methods.

�e separations we find in this section rely on the varying level of capability for the re-

spective classes to represent symmetries. For our arguments, we thus focus on a special class

of probabilistic databases that facilitates such discussions. A graph database � is a database

instance over a single binary relation � with universe�2. It is called

• simple, if it contains no fact � (0, 0) and

• undirected, if � (0,1) ∈ � implies � (1, 0) ∈ � .

A probabilistic graph is a PDB whose possible worlds are graph databases.

Definition 7.6. Consider the class G of probabilistic databases D over ordered, countably

infinite universes (�, <) satisfying all of the following properties:

• every possible world of D is a simple and undirected graph database,

• it is edge-independent, that is, for any sequence of pairwise distinct two-element subsets

{01, 11}, . . . , {0: , 1: } of�, the facts � (01, 11), . . . , � (0: , 1: ) are stochastically independent

in D, that is,

Pr
�∼D

(
� (08, 18 ) ∈ � ∈ � for all 8 = 1, . . . , :

)
=

:∏

8=1

?08 ,18 .

and

• it is unbounded, that is, for every = ∈ ℕ there exists � ∈ worlds(D) with |� | > =.

If D is a PDB in G , we let ?0,1 denote the marginal probability of the fact � (0,1), that is,

?0,1 = Pr�∼D

(
� (0,1) ∈ �

)
. Since every possible world of D is an undirected (and simple)

graph database, we have ?0,1 = ?1,0 for all 0 and 1. Note that D is uniquely determined by

(?0,1)0≠1 .

Remark 7.7. Intuitively, every PDB D in G represents a random graph with vertex set �

and edges {0, 1} ⊆
(
�

2

)
where all edges are independent, and the probability of the edge {0, 1}

being present is precisely ?0,1 . �us, these PDBs are tightly connected to a particular model

that arises in the study of random graphs [27, Chapter 10.1].
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Naturally, despite not being tuple-independent, the PDBs of G are strongly related to TI-

PDBs.

Proposition 7.8. Let
(
?0,1

)
0<1 be a family of numbers in [0, 1] and let ?1,0 = ?0,1 for all0,1. �en(

?0,1
)
0≠1 defines a probabilistic graph in G if and only if

(
?0,1

)
0<1 , taken as marginal probabilities

for the facts
{
� (0,1)

}
0<1

, defines a TI-PDB.

In particular,
(
?0,1

)
0≠1 defines a probabilistic graph in G if and only if

∑
0≠1 ?0,1 is finite.

Proof. First, letD ∈ G . We construct a new PDBD ′ by restrictingD to the facts
{
� (0,1)

}
0<1

.

In detail, for every world � ∈ worlds(D) we only keep the facts � (0,1) with 0 < 1. Note

that this transformation is a one-to-one-correspondence between worlds(D) and worlds(D ′).

�erefore,D ′ is well-defined. Moreover, all the facts inD ′ are independent and have the same

marginal probabilities as before, renderingD ′ a TI-PDB with marginal probabilities
(
?0,1

)
0<1 .

Second, let I be a TI-PDB over
{
� (0,1)

}
0<1

with marginal probabilities
(
?0,1

)
0<1 . Inverting

the construction from the first step, we defineD by adding � (1, 0) to every possible world that

contains � (0, 1) for every 0 < 1. �

It is quite easy to see that every PDB in G admits a UCQ(TI)-representation.

Lemma 7.9. If D ∈ G , then D ∈ UCQ(TI).

Proof. Let D = (�, %D) be a probabilistic graph from G over �, and let I be the TI-PDB

constructed fromD as in�eorem 7.8. We show thatD can be reconstructed from I using the

UCQ-view Φ(G, ~) ≔ � (G, ~) ∨ � (~, G). �at is, we claim that Φ(I) = D. To see this, consider

any possible world � ∈ worlds(D). Note that

%D (�) =
∏

0<1 and
� (0,1) ∈�

?0,1 ·
∏

0<1 and
� (0,1)∉�

(
1 − ?0,1

)
. (14)

�e preimage of � under Φ consists of only the single instance

� =
{
� (0,1) : 0 < 1 and � (0,1) ∈ �)

}
∈ �.

By construction, the probability of this instance in I is equal to (14) as well. �at is, Φ is a

probability preserving one-to-one correspondence between the worlds of I and the worlds of

D, so Φ(I) = D. �

�e next lemma gives an example of the other extreme: no PDB in G admits a sjfCQ(BID)-

presentation.

Lemma 7.10. If D ∈ G , then D ∉ sjfCQ(BID).

�e idea behind the proof of this lemma is as follows. We start by assuming that we have

a sjfCQ(BID)-representation of some D ∈ G . �e property we exploit is that facts in the

underlying BID-PDB can only be either independent or mutually exclusive. We pick a partic-

ularly chosen instance from the BID-PDB and show that we can modify it in such a way that

the resulting instance still has positive probability, but its image necessarily contains exactly

one of the edges � (0,1) or � (1, 0) for some (0,1). �is then contradicts the assumption that

we started with a representation of a PDB from G .
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Proof of �eorem 7.10. Let D = (�, %D) be a probabilistic graph in G over �. Assume that

there exists a BID-PDB I = (�, %I) and a self-join free CQ-view of the following shape

Φ(G, ~) ≔ ∃I1 . . . ∃I< : '1 (t1) ∧ · · · ∧ '= (t=)

such that D = Φ(I). �is can be assumed since equality atoms can be removed using sub-

stitution and, as the PDBs in G are simple and undirected, Φ can not be of the shape Φ(G, G)

or Φ(G, 0). Without loss of generality, we can assume that all the variables I1, . . . , I< appear

among '1 (t1) ∧ · · · ∧ '= (t=). In the following, we let

58 [0;1; c ] ≔ '8
(
t8 [G/0;~/1;I1/21; . . . ;I</2<]

)

for all 0, 1 ∈ � and all c = (21, . . . , 2<) ∈ �<.

Observe that for all � ∈ � it holds that

� |= Φ(0, 1) ⇐⇒ there exists c such that for all 8 = 1, . . . , = it holds that 58 [0;1; c ] ∈ � ; (15)

and

� |= Φ(1, 0) ⇐⇒ there exists c ′ such that for all 8 = 1, . . . , = it holds that 58 [1;0; c
′] ∈ � .

(16)

From now on, let 8 ∈ {1, . . . , =} be fixed such that '8 (t8 ) contains at least one of the variables G

or ~. Without loss of generality, we assume that '8 (t8 ) contains G (the argument for ~ follows

analogously).

Let (0,1), (0′, 1 ′) ∈ �2. We say that a block � from I is full, if the marginal probabilities of

the facts in � add up to 1. We say that � is (0,1)-saturated if � is a full block such that every fact

of � is of the shape 58 [0;1; c ] for some c ∈ �<. Note that if (0,1) and (0′, 1 ′) have 0 ≠ 0′, then

no block � is both (0,1)- and (0′, 1 ′)-saturated, since 58 contains the variable G which yields

58 [0;1; c ] ≠ 58 [0
′;1 ′; c ′] for all c, c ′ ∈ �<.

SinceD is unbounded, there exists a family) of infinitelymanypairs (0, 1) with pairwise dif-

ferent values of0 such that� (0,1) appears among the instances of worlds(D). SinceI contains

at most finitely many full blocks, by the pigeonhole-principle, there exists a pair (0∗, 1∗) ∈ )

with 0∗ ≠ 1∗ such that no block of � is (0∗, 1∗)-saturated.

Let � be one of the instances in worlds(D) that contain both � (0∗, 1∗) and � (1∗, 0∗), and

let � ∈ worlds(I) be an arbitrary preimage of � under Φ. �en both � |= Φ(0∗, 1∗) and � |=

Φ(1∗, 0∗). In particular, � contains facts 58 [0
∗;1∗; c] and 58 [1

∗ ;0∗; c ′] for some (possiblymultiple)

c, c ′ ∈ �<.

Let � (0∗, 1∗) ≔ {58 [0
∗;1∗, c] : c ∈ �<}. We can partition � into

� = � ′ ∪ �=1 (0
∗, 1∗) ∪ �<1 (0

∗, 1∗) (17)

such that

• � ′ ≔ � \ � (0∗, 1∗),

• �=1 (0
∗, 1∗) ≔ � ∩ � (0∗, 1∗) ∩

⋂
� full block �, and

• �<1 (0
∗, 1∗) ≔ � ∩ � (0∗, 1∗) ∩

⋂
� not full �.
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Recall that no block of � is (0∗, 1∗)-saturated. Hence, if 5 ∈ �=1 (0
∗, 1∗), then there exists 5 ′

in the same block as 5 such that 5 ′ ∉ � (0∗, 1∗). We simply drop all facts from �<1 (0
∗, 1∗) and

transform �=1 (0
∗, 1∗) into a new set of facts � ′′ by replacing every fact 5 in �=1 (0

∗, 1∗) with such

an 5 ′. �is yields a new set of facts

� ≔ � ′ ∪ � ′′ ∈ worlds(I),

Now, � 6 |= Φ(0∗, 1∗), since Φ is self-join free and � does not contain any of the facts � (0∗, 1∗).

However, � ∩ � (1∗, 0∗) ⊆ � ∩ � (1∗, 0∗) (where � (1∗, 0∗) is defined analogously to � (0∗, 1∗)),

since � (0∗, 1∗) ∩ � (1∗, 0∗) = ∅. �is la�er disjointness stems from the fact that 58 contains the

variable G and the property that Φ is self-join free. �erefore, using the monotonicity of Φ, it

follows from (16) that � |= Φ(1∗, 0∗).

Together we have that (1∗, 0∗) ∈ Φ( � ) but (0∗, 1∗) ∉ Φ( � ), contradicting Φ( � ) ∈ worlds(D).

�

Remark 7.11. �e above proof is similar to the discussions of Section 6 in the sense that it

only concerns the sets of possible worlds and is, apart from this, oblivious to probabilities.

Note that as sjfCQ(BID) contains sjfCQ(TI),�eorem7.10 in particular shows that sjfCQ(TI)

contains none of the PDBs from G . Recall that, on the contrary,UCQ(TI) contains all the PDBs

from G . Naturally, the class CQ(TI) should be investigated next. In fact, when it comes to the

representation of PDBs from G , the classCQ(TI) proves to constitute amiddle ground between

the previous two extreme cases.

Lemma 7.12. Let D1 be a probabilistic graph in G with edge set � = {08 , 18 }8∈ℕ where the

marginal probabilities of the edges � (08 , 18 ) are given by ?08 ,18 = ?18 ,08 =
1
84
. �en D1 ∈ CQ(TI).

Proof. First, note that
∑∞

8=1
1
84

< ∞, so D1 is well-defined. We will now construct a TI-PDB I

and a CQ Φ such that D1 = Φ(I). For this, we define I to be the TI-PDB over the fact set{
� (08, 18 ) : 8 = 1, 2, . . .

}
∪

{
� (18 , 08 ) : 8 = 1, 2, . . .

}
such that the marginal probability of � (08, 18 )

and � (18 , 08 ), respectively, is given as 1
82
. As

∑∞
8=1

1
82

< ∞, this makes I a well-defined PDB.

Consider the CQ

Φ(G, ~) = � (G, ~) ∧ � (~, G).

We claim that Φ(I) = D1. For this, it suffices to establish that Φ(I) has the correct marginal

probabilities and that Φ(I) ∈ G . For all � ∈ worlds(I) and all 8 = 1, 2, . . . , it holds that

� |= Φ(08 , 18 ) if and only if � contains both � (08, 18 ) and � (18 , 08 ). �e probability of this event

is precisely 1
82
· 1
82
= 1

84
, which is the marginal probability of � (08, 18 ) in D1.

It remains to show that Φ(I) ∈ G . It is clear that every possible world of Φ(I) is an undi-

rected and simple graph database. Because the presence of any double edge {� (08 , 18 ), � (18 , 08 )}

in Φ(I) is determined solely by the presence of the facts � (08 , 18 ) and � (18, 08 ) in I, the

PDB Φ(I) is also edge-independent. Moreover, Φ(I) is unbounded, since the there are in-

finitely many facts of positive marginal probability and the edges are independent. Together,

Φ(I) = D1. �

Our current status is that UCQ(TI) contains all PDBs from G , that sjfCQ(TI) contains no

PDB from G , and that CQ(TI) contains some PDBs of G . Our next lemma yields, in particular,
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that CQ(TI) is strictly weaker than UCQ(TI) by giving an example of a PDB in G that is not

contained in CQ(BID).

Lemma 7.13. Let D2 be the probabilistic graph representing a countably infinite set of pair-

wise disjoint edges, where the 8-th edge {08 , 18 } has probability ?08 ,18 = ?18 ,08 =
1
82
. �en D2 ∉

CQ(BID).

�e structure of this counterexample is strikingly similar to the G -PDB we investigated in

�eorem 7.12. We comment on this a�er the proof.

Proof of �eorem 7.13. We assume otherwise and let I be a BID-PDB and Φ a CQ-view

Φ(G, ~) = ∃I1 . . . ∃I< : '1 (t1) ∧ · · · ∧ '= (t=)

such thatD2 = Φ(I). �at we can assume Φ to be of the above shape has the same reason as in

the proof of �eorem 7.10. We also reuse the notation from there and let 59 [0;1; c ] denote the

fact originating from ' 9 (t 9 ) by replacing G, ~, z with 0, 1 and c , respectively, for 9 = 1, . . . , =.

Note that the equivalences from (15) and (16) still hold. Again, we pick an index 9 ∈ {1, . . . , =}

such that G or ~ or both appear in ' 9 (t 9 ).

Let

� (0,1) ≔
{
59 [0;1; c ] : c ∈ �

<
}

for all 0, 1 ∈ �. BecauseI is aBID-PDB, for all sets � of facts (in particular, for the sets � (0,1)),

it holds that

Pr
�∼I

(
� ∩ � = ∅

)
=

∏

� block of I

(
1 −

∑

5 ∈�∩�

?5

)
.

Let 8 ∈ ℕ+ be arbitrary. Since 59 contains G or ~, we have � (08, 18 ) ∩ � (18 , 08 ) = ∅. Moreover,

for any distinct 81, 82 ∈ ℕ+, it holds that

(
�
(
081 , 181

)
∪ �

(
181 , 081

) )
∩

(
�
(
082 , 182

)
∪ �

(
182 , 082

) )
= ∅, (18)

since the edges ofD2 are pairwise disjoint. We now want to show that
∑

5 ∈� (08 ,18 )∪� (18 ,08 ) ?5 ≥
1
8
which, together with (18), leads to

∑

5 ∈facts(I)

?5 ≥

∞∑

8=1

∑

5 ∈� (08 ,18 )∪� (18 ,08 )

?5 ≥

∞∑

8=1

1

8
= ∞.

�is is a contradiction to the assumption that I is a well-defined BID-PDB via �eorem 2.7.

To prove
∑

5 ∈� (08 ,18 )∪� (18 ,08 ) ?5 ≥ 1
8 , we first observe that

1

82
= Pr

�∼D

(
� (08, 18 ) ∈ � and � (18, 08 ) ∈ �

)
= Pr

�∼I

(
� |= Φ(08, 18 ) and � |= Φ(18 , 08 )

)

≤ Pr
�∼I

(
� ∩ � (08, 18 ) ≠ ∅ and � ∩ � (18, 08 ) ≠ ∅

)

Suppose that the blocks of I are �1, �2, . . . . For : = 1, 2, . . . , we define events -: , .: as follows:

-: ≔
{
� ∈ worlds(I) : �∩�:∩� (08, 18 ) ≠ ∅

}
and .: ≔

{
� ∈ worlds(I) : �∩�:∩� (18 , 08 ) ≠ ∅

}
.
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Because I is BID, all events -: are independent, and so are all .: . Moreover, the two events

-: and .: are mutually exclusive for all : . We let G: and ~: denote the probabilities of -: and

.: in I, respectively. As the events -: , respectively .: , only concern facts in the block �: , we

have

G: =

∑

5 ∈� (08 ,18)∩�:

?5 and ~: =

∑

5 ∈� (18 ,08 )∩�:

?5 .

Now, since
∑

5 ∈� (08 ,18 )∪� (18 ,08 )

?5 =

∞∑

:=1

G: +

∞∑

:=1

~: ,

it remains to show that
∑∞

:=1 G: +
∑∞

:=1 ~: ≥ 1
8
. For this, we proceed using the inclusion-

exclusion-formula to get

Pr
�∼I

(
� ∩ � (08, 18 ) ≠ ∅ and � ∩ � (18, 08 ) ≠ ∅

)

= 1 − Pr
�∼I

(
� ∩ � (08, 18 ) = ∅ or � ∩ � (18 , 08 ) = ∅

)

= 1 − Pr
�∼I

(
� ∩ � (08, 18 ) = ∅

)
− Pr

�∼I

(
� ∩ � (18 , 08 ) = ∅

)
+ Pr

�∼I

(
� ∩ � (08, 18 ) = � ∩ � (18 , 08 ) = ∅

)

= 1 −

∞∏

:=1

(1 − G: ) −

∞∏

:=1

(1 − ~: ) +

∞∏

:=1

(1 − G: − ~: )

≤ 1 −

∞∏

:=1

(1 − G: ) −

∞∏

:=1

(1 − ~: ) +

∞∏

:=1

(1 − G: − ~: + G:~: )

= 1 −

∞∏

:=1

(1 − G: ) −

∞∏

:=1

(1 − ~: ) +

∞∏

:=1

(1 − G: )

∞∏

:=1

(1 − ~: )

=

(
1 −

∞∏

:=1

(1 − G: )

)
·

(
1 −

∞∏

:=1

(1 − ~: )

)
.

�ere are two cases. If one of
∑∞

:=1 G: or
∑∞

:=1 ~: is larger than or equal to 1, then we are done.

In the other case, when both sums are smaller than 1, we can apply a Weierstrass inequality

(cf. [13, Chapter VI]) to get

(
1 −

∞∏

:=1

(1 − G: )

)
·

(
1 −

∞∏

:=1

(1 − ~: )

)
≤

( ∞∑

:=1

G:

)
·

( ∞∑

:=1

~:

)
.

Together with the inequalities from before, we get

1

82
≤

( ∞∑

:=1

G:

)
·

( ∞∑

:=1

~:

)
. (19)

�erefore, one of
∑∞

:=1 G: and
∑∞

:=1 ~: is at least 1
8 , so in particular

∞∑

:=1

G: +

∞∑

:=1

~: ≥
1

8
. �

46



Let us now reconsider �eorems 7.12 and 7.13 in direct comparison. First, we note that, the

view from the proof of �eorem 7.12, given�eorem 7.10 had to make use of a self-join. Look-

ing deeper into the proof, we can see that this self-join essentially brought about a squaring

of the marginal probabilities when applying the view to the underlying TI-PDB. �is is why

the marginal probabilities in �eorem 7.12 were chosen to be 1
84
, since taking the root leaves

us with 1
82
, leading to a convergent series. Note that instead, the marginal probabilities of the

edges in the example from �eorem 7.13 were chosen to be 1
82
, where taking the root leaves

us with 1
8
, leading to a divergent series. At the beginning of the proof, it is not clear why we

would end up with the consideration of this root. However, our arguments led us to the re-

lated situation of (19). All in all, the salient point is that in�eorem 7.12 the series of marginal

probabilities converges fast enough for our argument to go through, whereas the series from

�eorem 7.13 converges too slowly to admit a representation in the desired class.

To complete the picture, we still need to determine whether the classes UCQ(BID) and

FO(BID) are separated or equal. �is is done in the next proposition.

Proposition 7.14. UCQ(BID) ( FO(BID).

Proof. We show that there exists a FO(TI)-PDB D such that D ∉ UCQ(BID). Consider the

database schema with a single unary relation ' over a countably infinite domain �. We let

� = {�1, �2, . . .} be a set of pairwise disjoint fact sets over this schema such that for all= ∈ ℕ+,

the set�= has size |�= | ≥ =. An easy example is�= = {'(08 ) : 8 = =2, =2+1, . . . , (=+1)2−1}. We

know from �eorem 6.8, that there exists a PDB D ∈ FO(TI) = FO(BID) with worlds(D) =

�.

We now show that D ∉ UCQ(BID). Assume otherwise and let I be a BID-PDB and Φ

be a UCQ-view such that D = Φ(I). Recall that a full block of I is a block in which all

marginal probabilities sum to 1. We call an instance � from I minimal, if it only contains facts

from full blocks. Note that if � is an instance of positive probability in I, then it is a superset

of a minimal instance, and that all minimal instances themselves have positive probability.

Moreover, all minimal instances have the same cardinality, say<, which is equal to the number

of full blocks in I. As Φ is (in particular) first-order,
��Φ(� )

�� ≤ @
(
|� |

)
for some fixed polynomial

@ (we saw that in the proof of �eorem 3.5). �erefore,
��Φ(� )

�� ≤ @(<) for all minimal instances

� . Let = > @(<) and pick an arbitrary instance � from the preimage of �= under Φ. Let � ′ be

the restriction of � to the facts from the full blocks of I. �en � ′ is a minimal instance with

� ′ ⊆ � . Since Φ is monotone, it holds that Φ(� ′) ⊆ Φ(� ) = �= . Note that Φ(� ′) ≠ ∅, since

� ′ has positive probability, but D does not contain the empty instance. Since D is domain-

disjoint, this implies Φ(� ′) = Φ(� ) = �=. �en, however,
��Φ(� ′)

�� ≤ @(<) < = ≤ |�= | contradicts

Φ(� ′) = �= . �

Combining all the previous results from this subsection, we are now finally ready to state

the main result of our investigation of the relative expressive power of views over PDBs.

�eorem 7.15. �e classes of views of probabilistic databases have exactly the relative expressive

power as shown in the Hasse diagram of Figure 5a.

Proof. Consider the diagram shown in Figure 5b. �e thick lines indicate the trivial inclusions

that arise from TI ⊆ BID ⊆ PDB and {Id} ⊆ sjfCQ ⊆ CQ ⊆ UCQ ⊆ FO where Id denotes
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PDB

FO(TI) = FO(BID) = FO(TI | FO)

UCQ(BID)

UCQ(TI) CQ(BID)

CQ(TI) sjfCQ(BID)

sjfCQ(TI) BID

TI

(a) Hasse diagram for the relative expressive
power of views over countable PDBs.

PDB

FO(TI) = FO(BID) = FO(TI | FO)

UCQ(BID)

UCQ(TI) CQ(BID)

CQ(TI) sjfCQ(BID)

sjfCQ(TI) BID

TI

(1)

(2)

(3)

(4)

(5)

(6)

(b) �e central relationships in the proof of
�eorem 7.15. Gray lines indicate trivial
inclusions. A do�ed arrow from D to D′

means D * D′.

Figure 5: Diagrams for the proof of �eorem 7.15.

the identity view. It remains to show that these are proper inclusions and that no other inclu-

sions hold. For this purpose, consider the do�ed arrows. Once they are shown, all remaining

relationships are entailed by transitivity as follows:

• If D1 * D2 and D′
2 ⊆ D2, then D1 * D′

2.

• If D1 * D2 and D1 ⊆ D′
1, then D′

1 * D2.

�e relationships of the do�ed arrows follow from previous results as follows.

1. �is follows from�eorem 6.5.

2. �is is witnessed by �eorem 7.2.

3. �eorem 7.10 states that no PDB from G are in sjfCQ(BID). However, �eorem 7.12

presents an example of a PDB from G that is in CQ(TI).

4. �eorem 7.9 states that all PDBs from G are in UCQ(TI), yet �eorem 7.13 gives an

example of a PDB from G that is not in CQ(BID).

5. See �eorem 7.14.
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6. See �eorem 3.1 (which is a restatement of [31, Proposition 4.9]). �

Concluding this section, we point out that apart from�eorems 7.12 and 7.13 the arguments

we found for the separations are of a purely logical nature. In�eorems 7.12 and 7.13, however,

the argument depended on our choice of probabilities that allowed us to find a well-defined

representation in the first case, and enabled us to rule out the existence of such in the second

case. It is not clear whether this separation can also be obtained using an argument that only

involves the structure of the possible worlds rather than their probabilities.

8 Concluding Remarks

�is article initiates research on representations of infinite probabilistic databases. Our focus

is on studying representability by first-order views over tuple-independent PDBs. Although it

is known that FO(TI) ( PDB, we show that FO(TI) is quite robust, as FO(TI) = FO(BID) =

FO(TI | FO), and it can represent any bounded size PDB. In addition, while the finite moments

property is necessary for membership in FO(TI), we show that it is not sufficient. We also

study how restricting the expressive power of the views (using fragments of first-order logic)

affects the PDBs that can be represented. We show that the different classes obtained using

sjfCQ-, CQ- and UCQ-views over TI- and BID-PDBs are distinct (even though many of them

collapse for finite PDBs). We establish the concrete relationships between these classes, as

shown in Figure 6. In our analysis, we pay a�ention to the causes for (non-)representability.

�ese can be twofold in general: arithmetical or purely logical. �e class FO(TI), however,

(unlike some of its fragments) eludes purely logical arguments for non-representability. When

considering logical reasons, the mentioned relationships to just sets of possible worlds (in the

context of incomplete databases) extend existing work to infinite PDBs [10, 28].

Our characterization of FO(TI) is only partial, as there is a gap between our necessary and

sufficient conditions for membership. �us, a natural direction for future work is obtaining a

complete characterization of this class or the other classes of PDBs that appeared in this paper.

�is is especially challenging since, even in the finite se�ing, we know of no algorithm to

decide whether a given finite PDB is a UCQ(TIfin)-PDB. Regarding the causes for (non-)rep-

resentability, most of our separations have been purely logical. It remains open whether such

a separation of CQ(TI) and UCQ(TI) exists. Further possible extensions of our work include

conditioning with respect to fragments of FO or using first-order views with inbuilt relations

(e.g., over ordered universes). Further research could also investigate which of our results can

be extended to uncountable PDBs. Other interesting insights might be obtained by relating our

work to recent notions of measuring uncertainty in incomplete databases [45, 17]. Regarding

query evaluation in infinite PDBs, beyond preliminary results on TI-PDBs [31], an abstract

investigation remains open.
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Figure 6: Hasse diagrams of PDB classes with independence assumptions in the finite and the

countable se�ing. Edges and their upwards closure mean proper inclusion. All re-

maining pairs of classes are incomparable. Areas of the same shade indicate which

classes from the countable se�ing collapse in the finite se�ing.

References

[1] Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nu�, and Pierre Senel-

lart. Capturing Continuous Data and Answering Aggregate�eries in Probabilistic XML.

ACM Transactions on Database Systems, 36(4), 2011. doi:10.1145/2043652.2043658.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, Boston, MA, USA, 1st edition, 1995.

[3] Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. On the Representation and
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nas. A Formal Framework for Probabilistic Unclean Databases. In 22nd International Con-

ference on Database �eory (ICDT 2019), volume 127 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 6:1–6:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik. doi:10.4230/LIPIcs.ICDT.2019.6.

54

https://doi.org/10.1007/978-3-642-35176-1_12
https://doi.org/10.1109/ICDE.2010.5447879
https://doi.org/10.1007/978-3-642-37509-5_3
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.14778/1453856.1453894
https://doi.org/https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/3196959.3196983
https://doi.org/10.1109/ICDE.2009.123
https://doi.org/10.4230/LIPIcs.ICDT.2019.6


[50] Sumit Sarkar and Debabrata Dey. Relational Models and Algebra for Uncertain Data.

In Managing and Mining Uncertain Data, chapter 3. Springer, Boston, MA, USA, 2009.

doi:10.1007/978-0-387-09690-2\_3.

[51] Prithviraj Sen, Amol Deshpande, and Lise Getoor. PrDB: Managing and Exploiting

Rich Correlations in Probabilistic Databases. �e VLDB Journal, 18(5):1065–1090, 2009.

doi:10.1007/s00778-009-0153-2.

[52] Sarvjeet Singh, Chris Mayfield, Sagar Mi�al, Sunil Prabhakar, Susanne Hambrusch, and

Rahul Shah. Orion 2.0: Native Support for Uncertain Data. In Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008),

pages 1239–1242, New York, NY, USA, 2008. Association for Computing Machinery.

doi:10.1145/1376616.1376744.

[53] Sarvjeet Singh, Chris Mayfield, Rahul Shah, Sunil Prabhakar, Susanne E. Hambrusch, Jen-

nifer Neville, and Reynold Cheng. Database Support for Probabilistic A�ributes and Tu-

ples. In Proceedings of the 24th International Conference on Data Engineering (ICDE 2008),

pages 1053–1061, 2008. doi:10.1109/ICDE.2008.4497514.

[54] Parag Singla and Pedro Domingos. Markov Logic in Infinite Domains. In Proceedings

of the Twenty-�ird Conference on Uncertainty in Artificial Intelligence (UAI 2007), pages

368–375, Arlington, Virginia, USA, 2007. AUAI Press.

[55] Dan Suciu. Probabilistic Databases for All. In Proceedings of the 39th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2020),

pages 19–31, New York, NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3375395.3389129.
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