
Relative Error StreamingQuantiles
Graham Cormode

University of Warwick

Coventry, UK

G.Cormode@warwick.ac.uk

Zohar Karnin

Amazon

USA

zkarnin@gmail.com

Edo Liberty

Pinecone

San Mateo, CA, USA

edo@edoliberty.com

Justin Thaler

Georgetown University

Washington, D.C., USA

justin.thaler@georgetown.edu

Pavel Veselý

Computer Science Institute

Charles University

Prague, Czech Republic

vesely@iuuk.mff.cuni.cz

ABSTRACT
Approximating ranks, quantiles, and distributions over streaming

data is a central task in data analysis andmonitoring. Given a stream

of n items from a data universe U equipped with a total order, the

task is to compute a sketch (data structure) of size poly(log(n), 1/ε).
Given the sketch and a query item y ∈ U, one should be able

to approximate its rank in the stream, i.e., the number of stream

elements smaller than or equal to y.
Most works to date focused on additive εn error approximation,

culminating in the KLL sketch that achieved optimal asymptotic

behavior. This paper investigates multiplicative (1 ± ε)-error ap-
proximations to the rank. Practical motivation for multiplicative

error stems from demands to understand the tails of distributions,

and hence for sketches to be more accurate near extreme values.

The most space-efficient algorithms due to prior work store ei-

ther O(log(ε2n)/ε2) or O(log3(εn)/ε) universe items. This paper

presents a randomized algorithm storing O(log1.5(εn)/ε) items,

which is within an O(
√
log(εn)) factor of optimal. The algorithm

does not require prior knowledge of the stream length and is fully

mergeable, rendering it suitable for parallel and distributed com-

puting environments.

ACM Reference Format:
Graham Cormode, Zohar Karnin, Edo Liberty, Justin Thaler, and Pavel

Veselý. 2021. Relative Error Streaming Quantiles. In Proceedings of the 40th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3452021.3458323

1 INTRODUCTION
Understanding the distribution of data is a fundamental task in data

monitoring and analysis. The problem of streaming quantile approx-

imation captures this task in the context of massive or distributed

datasets.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458323

The problem is as follows. Let σ = {x1, . . . , xn } be a stream of

items, all drawn from a data universeU equipped with a total order.

For any y ∈ U, let R(y;σ) = |{xi | xi ≤ y}| be the rank of y in the

stream. When σ is clear from context, we write R(y). The objective
is to process the stream while storing a small number of items, and

then use those to approximate R(y) for any y ∈ U. A guarantee

for an approximation R̂(y) is additive if |R̂(y) − R(y)| ≤ εn, and
multiplicative or relative if |R̂(y) − R(y)| ≤ ε R(y).

A long line of work has focused on achieving additive error

guarantees [2, 3, 8, 9, 12, 14, 18, 19]. However, additive error is

not appropriate for many applications. Indeed, often the primary

purpose of computing quantiles is to understand the tails of the

data distribution. When R(y) ≪ n, a multiplicative guarantee is

much more accurate and thus harder to obtain. As pointed out by

Cormode et al. [4], a solution to this problem would also yield high

accuracy when n − R(y) ≪ n, by running the same algorithm with

the reversed total ordering (simply negating the comparator).

A quintessential application that demands relative error is moni-

toring network latencies. In practice, one often tracks response time

percentiles 50, 90, 99, and 99.9. This is because latencies are heavily

long-tailed. For example, Masson et al. [16] report that for web

response times, the 98.5th percentile can be as small as 2 seconds

while the 99.5th percentile can be as large as 20 seconds. These

unusually long response times affect network dynamics [4] and are

problematic for users. Furthermore, as argued by Tene in his talk

about measuring latency [22], one needs to look at extreme per-

centiles such as 99.995 to determine the latency such that only about

1% of users experience a larger latency during a web session with

several page loads. Hence, highly accurate rank approximations are

required for items y whose rank is very large (n − R(y) ≪ n); this
is precisely the requirement captured by the multiplicative error

guarantee.

Achieving multiplicative guarantees is known to be strictly
harder than additive ones. There are comparison-based additive

error algorithms that store just Θ(ε−1) items for constant failure

probability [12], which is optimal. In particular, to achieve additive

error, the number of items stored may be independent of the stream

length n. In contrast, any algorithm achieving multiplicative er-

ror must use Ω
(
ε−1 · log(εn) · log(ε |U|)

)
bits of space, which holds

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

96

https://doi.org/10.1145/3452021.3458323
https://doi.org/10.1145/3452021.3458323
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3452021.3458323&domain=pdf&date_stamp=2021-06-20

even for offline, non-comparison-based algorithms (see [4, Theorem

2] and Appendix A).
1

The best known algorithms achieving multiplicative error guar-

antees are as follows. Zhang et al. [24] give a randomized algorithm

storing O(ε−2 · log(ε2n)) universe items. This is essentially a ε−1

factor away from the aforementioned lower bound. There is also an

algorithm of Cormode et al. [5] that storesO(ε−1 · log(εn) · log |U|)

items. However, this algorithm builds a binary tree over the data

universe U a priori and is inapplicable when U is huge or even

unbounded, e.g., if U consists of all strings of arbitrary length.

Finally, Zhang and Wang [23] designed a deterministic algorithm

requiringO(ε−1 · log3(εn)) space. Very recent work of Cormode and

Veselý [6] proves an Ω(ε−1 · log2(εn)) lower bound for the num-

ber of items stored by deterministic comparison-based algorithms,

which is within a log(εn) factor of Zhang and Wang’s upper bound.

Despite both the practical and theoretical importance of multi-

plicative error (which is arguably an even more natural goal than

additive error), there has been no progress on upper bounds, i.e.,

no new algorithms, since 2007.

In this work, we give a randomized algorithm that maintains the

optimal linear dependence on 1/ε achieved by Zhang and Wang,

with a significantly improved dependence on the stream length.

Namely, we design a comparison-based, one-pass streaming algo-

rithm that given ε > 0 and δ > 0, computes a sketch consisting

ofO
(
ε−1 · log1.5(εn) ·

√
log (1/δ)

)
universe items (for a sufficiently

small ε ; see Theorem 1), and from which an estimate R̂(y) of R(y)
can be derived for every y ∈ U. For any fixed y ∈ U, with probabil-

ity at least 1 − δ , the returned estimate satisfies the multiplicative

error guarantee |R̂(y)−R(y)| ≤ ε R(y). Ours is the first algorithm to

be strictly more space efficient than any deterministic comparison-

based algorithm (owing to the Ω(ε−1 log2(εn)) lower bound in [6])

and is within an Õ(
√
log(εn)) factor of the known lower bound

for randomized algorithms achieving multiplicative error. (In this

manuscript, the Õ notation hides factors polynomial in log(1/δ),
log logn, and log(1/ε).)

We also show that the algorithm processes the input stream

efficiently. In particular, the amortized update time of the al-

gorithm is a logarithm of the space bound, which equals

O
(
log(ε−1) + log log(n) + log log(1/δ)

)
; see Section 4 for details.

Mergeability. The ability to merge sketches of different streams

to get an accurate sketch for the concatenation of the streams is

highly significant both in theory [1] and in practice [20]. Such

mergeable summaries enable trivial, automatic parallelization and

distribution of processing massive data sets, by arbitrarily splitting

the data up into pieces, summarizing each piece separately, and

then merging the results.

We show that our sketch is fully mergeable. This means that, if a

data set is split into pieces and each piece is summarized separately,

and the resulting summaries are combined via an arbitrary sequence

1
Intuitively, the reason additive-error sketches can achieve space independent of the

stream length is because they can take a subsample of the stream of size about Θ(ε−2)
and then sketch the subsample. For any fixed item, the additive error to its rank

introduced by sampling is at most εn with high probability. When multiplicative error

is required, one cannot subsample the input: for low-ranked items, the multiplicative

error introduced by sampling will, with high probability, not be bounded by any

constant.

of merge operations, the algorithm maintains the same relative

error guarantees while using essentially the same space as if the

entire data set had been processed as a single stream (the details

are deferred to the full version
2
).

The following theorem is the main result of this paper. We stress

that our algorithm does not require any advance knowledge about

n, the total size of input, which indeed may not be available in many

applications.
3

Theorem 1. Let 0 < δ ≤ 0.5 and 0 < ε ≤ 1 be parameters
satisfying ε ≤ 4/ 4

√
2 log

2
(n). There is a randomized, comparison-

based, one-pass streaming algorithm that, when processing a data
stream consisting of n items, produces a summary S satisfying the
following property. Given S , for anyy ∈ U one can derive an estimate
R̂(y) of R(y) such that

Pr

[
|R̂(y) − R(y)| ≥ ε R(y)

]
< δ ,

where the probability is over the internal randomness of the streaming

algorithm. If ε ≤ 4 ·

√
ln

1

δ /log2(εn), then the size of S is

O
©­«ε−1 · log1.5(εn) ·

√
log

(
1

δ

)ª®¬ ;

otherwise, storing S takes O
(
log

2(εn)
)
memory words. Moreover, the

summary produced is fully mergeable.

Note that the assumption ε ≤ 4/ 4

√
2 log

2
(n) is very weak as for

anyn ≤ 2
128

, it holds that
4

√
2 log

2
(n) ≤ 4, rendering the assumption

vacuous in practical scenarios. Similarly, the space bound that holds

in the case ε ≤ 4 ·

√
ln

1

δ /log2(εn) certainly applies for values of ε

and n encountered in practice (e.g., for n ≤ 2
64

and δ ≤ 1/e , this
latter requirement is implied by ε ≤ 1/2).

All-quantiles approximation. As a straightforward corollary of

Theorem 1, we obtain a space-efficient algorithm whose estimates

are simultaneously accurate for all y ∈ U with high probability.

The proof is a standard use of the union bound combined with an

epsilon-net argument; we include the proof in Appendix B.

Corollary 1 (All-Quantiles Approximation). The error
bound from Theorem 1 can be made to hold for all y ∈ U simul-
taneously with probability 1 − δ while storing

O
©­«ε−1 · log1.5(εn) ·

√
log

(
log(εn)

εδ

)ª®¬
stream items if ε ≤ O

(√
log

1

εδ /log(εn)

)
and O

(
log

2(εn)
)
items

otherwise.

2
The full version of our paper is available at https://arxiv.org/abs/2004.01668.

3
A proof-of-concept Python implementation of our algorithm is available at GitHub:

https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.

py. A production-quality implementation in the Apache DataSketches library is

available at https://datasketches.apache.org/.

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

97

https://arxiv.org/abs/2004.01668
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://datasketches.apache.org/

Challenges and techniques. A starting point of the design of our

algorithm is the KLL sketch [12] that achieves optimal accuracy-

space trade-off for the additive error guarantee. The basic building

block of the algorithm is a buffer, called a compactor, that receives
an input stream of n items and outputs a stream of at most n/2
items, meant to “approximate” the input stream. The buffer simply

stores items and once it is full, we sort the buffer, output all items

stored at either odd or even indexes (with odd vs. even selected via

an unbiased coin flip), and clear the contents of the buffer—this is

called the compaction operation. Note that a randomly chosen half

of items in the buffer is simply discarded, whereas the other half of

items in the buffer is “output” by the compaction operation.

The overall KLL sketch is built as a sequence of at most log
2
(n)

such compactors, such that the output stream of a compactor is

treated as the input stream of the next compactor. We thus think

of the compactors as arranged into levels, with the first one at

level 0. Similar compactors were already used, e.g., in [1, 13–15],

and additional ideas are needed to get the optimal space bound for

additive error, of O(1/ε) items stored across all compactors [12].

The compactor building block is not directly applicable to our

setting for the following reasons. A first observation is that to

achieve the relative error guarantee, we need to always store the

1/ϵ smallest items. This is because the relative error guarantee

demands that estimated ranks for the 1/ε lowest-ranked items in

the data stream are exact. If even a single one of these items is

deleted from the summary, then these estimates will not be exact.

Similarly, among the next 2/ϵ smallest items, the summary must

store essentially every other item to achieve multiplicative error.

Among the next 4/ϵ smallest items in the order, the sketch must

store roughly every fourth item, and so on.

The following simple modification of the compactor from the

KLL sketch indeed achieves the above. Each buffer of size B “pro-

tects” the B/2 smallest items stored inside, meaning that these items

are not involved in any compaction (i.e., the compaction operation

only removes the B/2 largest items from the buffer). Unfortunately,

it turns out that this simple approach requires spaceΘ(ε−2·log(ε2n)),
which merely matches the space bound achieved in [24], and in

particular has a (quadratically) suboptimal dependence on 1/ε .
The key technical contribution of our work is to enhance this

simple approach with a more sophisticated rule for selecting the

number of protected items in each compaction. One solution that

yields our upper bound is to choose this number in each compaction

at random from an appropriate exponential distribution. However,

to get a cleaner analysis and a better dependency on the failure

probability δ , we in fact derandomize this distribution.

While the resulting algorithm is relatively simple, analyzing the

error behavior brings new challenges that do not arise in the addi-

tive error setting. Roughly speaking, when analyzing the accuracy

of the estimate for R(y) for any fixed item y, all error can be “attrib-

uted” to compaction operations. In the additive error setting, one

may suppose that every compaction operation contributes to the

error and still obtain a tight error analysis [12]. Unfortunately, this

is not at all the case for relative error: as already indicated, to obtain

our accuracy bounds it is essential to show that the estimate for any

low-ranked item y is affected by very few compaction operations.

Thus, the first step of our analysis is to carefully bound the num-

ber of compactions on each level that affect the error for y, using

a charging argument that relies on the derandomized exponential

distribution to choose the number of protected items. To get a suit-

able bound on the variance of the error, we also need to show that

the rank of y in the input stream to each compactor falls by about

a factor of two at every level of the sketch. While this is intuitively

true (since each compaction operation outputs a randomly chosen

half of “unprotected” items stored in the compactor), it does not

hold deterministically and hence requires a careful treatment in the

analysis. Finally, we observe that the error in the estimate for y is a

zero-mean sub-Gaussian variable with variance bounded as above,

and thus applying a standard Chernoff tail bound yields our final

accuracy guarantees for the estimated rank of y.
There are substantial additional technical difficulties to analyze

the algorithm under an arbitrary sequence of merge operations,

especially with no foreknowledge of the total size of the input.

Most notably, when the input size is not known in advance, the

parameters of the sketch must change as more inputs are processed.

This makes obtaining a tight bound on the variance of the resulting

estimates highly involved. In particular, as a sketch processes more

and more inputs, it protects more and more items, which means that

items appearing early in the stream may not be protected by the

sketch, even though theywould have been protected if they appeared
later in the stream. Addressing this issue is reasonably simple in the

streaming setting, because every time the sketch parameters need

to change, one can afford to allocate an entirely new sketch with the

updated parameters, without discarding the previous sketch(es); see

Section 5 for details. Unfortunately, this simple approach does not

work for a general sequence of merge operations, and we provide a

much more intricate analysis to give a fully mergeable summary.

A second challenge when designing and analyzing merge op-

erations arises from working with our derandomized exponential

distribution, since this requires each compactor to maintain a “state”

variable determining the current number of protected items, and

these variables need to be “merged” appropriately. It turns out that

the correct way to merge state variables is to take a bitwise OR of

their binary representations. With this technique for merging state

variables in hand, we extend the charging argument bounding the

number of compactions affecting the error in any given estimate

so as to handle an arbitrary sequence of merge operations.

Analysis with extremely small probability of failure. We close

by giving an alternative analysis of our algorithm that achieves

a space bound with an exponentially better (double logarithmic)

dependence on 1/δ , compared to Theorem 1. However, this im-

proved dependence on 1/δ comes at the expense of the exponent of

log(εn) increasing from 1.5 to 2. Formally, we obtain the following

theorem, where we also show that it directly implies a determinis-

tic space bound of O(ε−1 · log3(εn)), matching the state-of-the-art

result in [23]. For simplicity, we only prove the theorem in the

streaming setting, although we conjecture that an appropriately

modified proof of Theorem 1 would yield the same result even

when the sketch is built using merge operations. The formal proof

is deferred to the full version of our paper.
2

Theorem 2. For any parameters 0 < δ ≤ 0.5 and 0 < ε ≤ 1, there
is a randomized, comparison-based, one-pass streaming algorithm

that computes a sketch consisting ofO
(
ε−1 · log2(εn) · log log(1/δ)

)

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

98

universe items, and fromwhich an estimate R̂(y) ofR(y) can be derived
for every y ∈ U. For any fixed y ∈ U, with probability at least
1−δ , the returned estimate satisfies the multiplicative error guarantee
|R̂(y) − R(y)| ≤ ε R(y).

We remark that this alternative analysis builds on an idea

from [12] to analyze the top few levels of compactors deterministi-

cally rather than obtaining probabilistic guarantees on the errors

introduced to estimates by these levels.

Organization of the paper. Since the proof of full mergeability

in Theorem 1 is quite involved, we proceed in several steps of

increasing complexity. We describe our sketch in the streaming

setting in Section 2, where we also give a detailed but informal

outline of the analysis. We then formally analyze the sketch in

the streaming setting in Sections 3 and 4, also assuming that a

polynomial upper bound on the stream length is known in advance.

The space usage of the algorithm grows polynomially with the

logarithm of this upper bound, so if this upper bound is at most

nc for some constant c ≥ 1, then the space usage of the algorithm

remains as stated in Theorem 1, with only the hidden constant

factor changing. Then, in Section 5, we explain how to remove this

assumption in the streaming setting, yielding an algorithm that

works without any information about the final stream length.

The full description of the merge procedure and the analysis of

the accuracy under an arbitrary sequence of merge operations is

deferred to the full version of our paper
2
(for didactic purposes, we

outline a simplified merge operation in Section 2.3).

1.1 Detailed Comparison to Prior Work
Some prior works on streaming quantiles consider queries to be

ranks r ∈ {1, . . . ,n}, and the algorithmmust identify an itemy ∈ U

such that R(y) is close to r . In this work we focus on the dual prob-

lem, where we consider queries to be universe items y ∈ U and the

algorithm must yield an accurate estimate for R(y). Unless specified
otherwise, algorithms described in this section directly solve both

formulations (this holds for our algorithm as well). Algorithms are

randomized unless stated otherwise. For simplicity, randomized

algorithms are assumed to have constant failure probability δ . All
reported space costs refer to the number of universe items stored.

4

Additive Error. Manku, Rajagopalan, and Lindsay [14, 15] built

on the work of Munro and Paterson [17] and gave a deterministic

solution that stores at most O(ε−1 · log2(εn)) items, assuming prior

knowledge of n. Greenwald and Khanna [10] created an intricate

deterministic streaming algorithm that storesO(ε−1 · log(εn)) items.

This is the best known deterministic algorithm for this problem,

with a matching lower bound for comparison-based streaming al-

gorithms [6]. Agarwal, Cormode, Huang, Phillips, Wei, and Yi [1]

provided a mergeable sketch of sizeO(ε−1 · log1.5(1/ε)). This paper
contains many ideas and observations that were used in later work.

Felber andOstrovsky [8] managed to reduce the space complexity to

O(ε−1 · log(1/ε)) items by combining sampling with the Greenwald-

Khanna sketches in non-trivial ways. Finally, Karnin, Lang, and

4
Apart from storing universe items, the algorithms may store, for example, bounds on

ranks of stored items or some counters, but the number of such variables is proportional

to the number of items stored or even smaller. Thus, the space bounds are in memory

words, which can store any item or an integer withO (log(n + |U |)) bits.

Liberty [12] resolved the problem by providing an O(1/ε)-space
solution, which is optimal. For general (non-constant) failure prob-

abilities δ , the space upper bound becomes O(ε−1 · log log(1/δ)),
and they also prove a matching lower bound for comparison-based

randomized algorithms, assuming δ is exponentially small in n.

Multiplicative Error. A large number of works sought to pro-

vide more accurate quantile estimates for low or high ranks. Only

a handful offer solutions to the relative error quantiles problem

(also sometimes called the biased quantiles problem) considered

in this work. Gupta and Zane [11] gave an algorithm for relative

error quantiles that stores O(ε−3 · log2(εn)) items, and use this

to approximately count the number of inversions in a list; their

algorithm requires prior knowledge of the stream length n. As pre-
viously mentioned, Zhang et al. [24] presented an algorithm storing

O(ε−2 · log(ε2n)) universe items. Cormode et al. [5] designed a de-

terministic sketch storing O(ε−1 · log(εn) · log |U|) items, which

requires prior knowledge of the data universe U. Their algorithm

is inspired by the work of Shrivastava et al. [21] in the additive

error setting and it is also mergeable (see [1, Section 3]). Zhang

and Wang [23] gave a deterministic merge-and-prune algorithm

storing O(ε−1 · log3(εn)) items, which can handle arbitrary merges

with an upper bound on n, and streaming updates for unknown n.
However, it does not tackle the most general case of merging with-

out a prior bound on n. Cormode and Veselý [6] recently showed a

space lower bound of Ω(ε−1 · log2(εn)) items for any deterministic

comparison-based algorithm.

Other related works that do not fully solve the relative er-

ror quantiles problem are as follows. Manku, Rajagopalan, and

Lindsay [15] designed an algorithm that, for a specified number

ϕ ∈ [0, 1], stores O(ε−1 · log(1/δ)) items and can return an item y
with R(y)/n ∈ [(1 − ε)ϕ, (1 + ε)ϕ] (their algorithm requires prior

knowledge of n). Cormode et al. [4] gave a deterministic algorithm

that is meant to achieve error properties “in between” additive and

relative error guarantees. That is, their algorithm aims to provide

multiplicative guarantees only up to some minimum rank k ; for
items of rank below k , their solution only provides additive guar-

antees. Their algorithm does not solve the relative error quantiles

problem: [24] observed that for adversarial item ordering, the algo-

rithm of [4] requires linear space to achieve relative error for all

ranks. Dunning and Ertl [7] describe a heuristic algorithm called

t-digest that is intended to achieve relative error, but they provide

no formal accuracy analysis.

Most recently, Masson, Rim, and Lee [16] introduced a new

notion of error for quantile sketches (they also refer to their notion

as “relative error”, but it is quite distinct from the notion considered

in this work). They require that for a query percentile ϕ ∈ [0, 1],

if y denotes the item in the data stream satisfying R(y) = ϕn, then
the algorithm should return an item ŷ ∈ U such that |y − ŷ | ≤
ε · |y |. This definition only makes sense for data universes with a

notion of magnitude and distance (e.g., numerical data), and the

definition is not invariant to natural data transformations, such

as incrementing every data item y by a large constant. It is also

trivially achieved by maintaining a (mergeable) histogram with

buckets ((1 + ϵ)i , (1 + ϵ)i+1]. In contrast, the standard notion of

relative error considered in this work does not refer to the data

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

99

items themselves, only to their ranks, and is arguably of more

general applicability.

2 DESCRIPTION OF THE ALGORITHM
2.1 The Relative-Compactor Object
The crux of our algorithm is a building block that we call the relative-

compactor. Roughly speaking, this object processes a stream of n
items and outputs a stream of at mostn/2 items (each “up-weighted”

by a factor of 2), meant to “approximate” the input stream. It does

so by maintaining a buffer of limited capacity.

Our complete sketch, described in Section 2.2 below, is composed

of a sequence of relative-compactors, where the input of the h+1’th
relative-compactor is the output of the h’th. With at most log

2
(εn)

such relative-compactors, n being the length of the input stream,

the output of the last relative-compactor is of sizeO(1/ε), and hence
can be stored in memory.

Compaction Operation. The basic subroutine used by our relative-
compactor is a compaction operation. The input to a compaction

operation is a list X of 2m items x1 ≤ x2 ≤ . . . ≤ x2m , and the

output is a sequence Z of m items. This output is chosen to be

one of the following two sequences, uniformly at random: Either

Z = {x2i−1}
m
i=1 or Z = {x2i }

m
i=1. That is, the output sequence Z

equals either the even or odd indexed items in the sorted order,

with both outcomes equally probable.

Consider an item y ∈ U and recall that R(y;X) = |{x ∈ X |x ≤

y}| is the number of items x ∈ X satisfying x ≤ y. The following is

a trivial observation regarding the error of the rank estimate of y
with respect to the input X of a compaction operation when using

Z . We view the output Z of a compaction operation (with all items

up-weighted by a factor of 2) as an approximation to the input

X ; for any y, its weighted rank in Z should be close to its rank in

X . Observation 3 below states that this approximation incurs zero
error on items that have an even rank in X . Moreover, for items y
that have an odd rank in X , the error for y ∈ U introduced by the

compaction operation is +1 or −1 with equal probability.

Observation 3. A universe item y ∈ U is said to be even (odd)
w.r.t a compaction operation if R(y;X) is even (odd), where X is the
input sequence to the operation. If y is even w.r.t the compaction, then
R(y;X) − 2 R(y;Z) = 0. Otherwise R(y;X) − 2 R(y;Z) is a variable
taking a value from {−1, 1} uniformly at random.

The observation that items of even rank (and in particular items

of rank zero) suffer no error from a compaction operation plays an

especially important role in the error analysis of our full sketch.

Full Description of the Relative-Compactor Object. The complete

description of the relative-compactor object is given in Algorithm 1.

The high-level idea is as follows. The relative-compactor maintains

a buffer of size B = 2 · k · ⌈log
2
(n/k)⌉ where k is an even integer

parameter controlling the error and n is the upper bound on the

stream length. (For now, we assume that such an upper bound is

available; we remove this assumption in Section 5.) The incoming

items are stored in the buffer until it is full. At this point, we perform

a compaction operation, as described above.

The input to the compaction operation is not all items in the

buffer, but rather the largestL items in the buffer for a parameterL ≤

Full buffer

L largest items sortedB − L smallest items in the buffer

Output every other item

Delete top L items

Insert new item xt in the next open slot

xt

Figure 1: Illustration of the execution of a relative-
compactor when inserting a new item xt into a buffer that
is full at time t . See Lines 5-14 of Algorithm 1.

B/2 such that L is even. These L largest items are then removed from

the buffer, and the output of the compaction operation is sent to the

output stream of the buffer. This intuitively lets low-ranked items

stay in the buffer longer than high-ranked ones. Indeed, by design

the lowest-ranked half of items in the buffer are never removed. We

show later that this facilitates the multiplicative error guarantee.

The crucial part in the design of Algorithm 1 is to select the

parameter L in a right way, as L controls the number of items

compacted each time the buffer is full. If we were to set L = B/2 for
all compaction operations, then analyzing the worst-case behavior

reveals that we need k ≈ 1/ε2, resulting in a sketch with a quadratic
dependency on 1/ε . To achieve the linear dependency on 1/ε , we
choose the parameter L via a derandomized exponential distribution

subject to the constraint that L ≤ B/2.5

In more detail, one can think of Algorithm 1 as choosing L as

follows. During each compaction operation, the second half of the

buffer (with B/2 largest items) is split into ⌈log
2
(n/k)⌉ sections,

each of size k and numbered from the right so that the first section

contains the k largest items, the second one next k largest items,

and so on; see Figure 2. The idea is that the first section is involved

in every compaction (i.e., we always have L ≥ k), the second section
in every other compaction (i.e., L ≥ 2k every other time), the third

section in every fourth compaction, and so on. This can be described

concisely as follows: LetC be the number of compactions performed

so far. During the next (i.e., theC + 1-st) compaction of the relative-

compactor, we set LC = (z(C) + 1) · k , where z(C) is the number of

trailing ones in the binary representation of C . We call the variable

C the state of this “compaction schedule” (i.e., a particular way of

choosing L). See Lines 6-7 of Algorithm 1, where we also define

SC = B − LC + 1 as the first index in the compacted part of the

buffer.

Observe that LC ≤ B/2 always holds in Algorithm 1. Indeed,

there are at most n/k compaction operations (as each discards at

least k items), so the binary representation of C never has more

5
A prior version of this manuscript used an actual exponential distribution; see https:

//arxiv.org/abs/2004.01668v1. The algorithm presented here uses randomness only to

select which items to place in the output stream, not how many items to compact. This

leads to a cleaner analysis and isolates the one component of the algorithm for which

randomness is essential.

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

100

https://arxiv.org/abs/2004.01668v1
https://arxiv.org/abs/2004.01668v1

B/2 slots (never compacted) dlog2(n/k)e = 7 sections with k slots each

1234567

Figure 2: Illustration of a relative-compactor and its sections, together with the indexes of the sections.

Algorithm 1 Relative-Compactor

Input: Parameters k ∈ 2N+ and n ∈ N+, and a stream of items

x1, x2, . . . of length at most n
1: Set B = 2 · k · ⌈log

2
(n/k)⌉

2: Initialize an empty buffer B of size B, indexed from 1

3: Set C = 0 ▷ State of the compaction schedule

4: for t = 1 . . . do
5: if B is full then ▷ Compaction operation

6: Compute z(C) = the number of trailing ones in the

binary representation of C
7: Set LC = (z(C) + 1) · k and SC = B − LC + 1
8: Pivot B s.t. the largest LC items occupy B[SC : B]
9: ▷ B[SC : B] are the last LC slots of B

10: Sort B[SC : B] in non-descending order

11: Output either even or odd indexed items in the range

B[SC : B] with equal probability

12: Mark slots B[SC : B] in the buffer as clear

13: Increase C by 1

14: Store xt to the next available slot in the buffer B.

than ⌈log
2
(n/k)⌉ bits, not even after the last compaction. Thus, z(C),

the number of trailing ones in the binary representation of C , is
always less than ⌈log

2
(n/k)⌉ and hence, LC ≤ ⌈log

2
(n/k)⌉ · k =

B/2. It also follows that there is at most one compaction operation

that compacts all ⌈log
2
(n/k)⌉ sections at once. Our deterministic

compaction schedule has the following crucial property:

Fact 4. Between any two compaction operations that involve ex-
actly j sections (i.e., both have L = j ·k), there is at least one compaction
operation that involves more than j sections.

Proof. LetC < C ′
denote the states of the compaction schedule

in two steps t < t ′ with a compaction operation involving exactly j
sections. Then we can express the binary representations of C and

C ′
as (x, 0, 1j−1) and (x′, 0, 1j−1), respectively, where 1j−1 denotes

the all-1s vector of length j − 1, and x and x′ are respectively

the binary representations of two numbers y and z with y < z.
Consider the binary vector (x, 1j). This is the binary representation
of a number Ĉ ∈ (C,C ′) with strictly more trailing ones than the

binary representations ofC andC ′
. The claim follows as there must

be a step t̂ ∈ (t, t ′) when the state equals Ĉ and a compaction

operation is performed. □

2.2 The Full Sketch
Following prior work [1, 12, 14], the full sketch uses a sequence

of relative-compactors. At the very start of the stream, it consists

of a single relative-compactor (at level 0) and opens a new one

(at level 1) once items are fed to the output stream of the first

relative-compactor (i.e., after the first compaction operation, which

occurs on the first stream update during which the buffer is full).

In general, when the newest relative-compactor is at level h, the
first time the buffer at level h performs a compaction operation

(feeding items into its output stream for the first time), we open

a new relative-compactor at level h + 1 and feed it these items.

Algorithm 2 describes the logic of this sketch. To answer rank

queries, we use the items in the buffers of the relative-compactors

as a weighted coreset. That is, the union of these items is a weighted

set C of items, where the weight of items in relative-compactor at

level h is 2
h
(h starts from 0), and the approximate rank of y is the

sum of weights of items in C smaller than or equal to y.
The construction of layered exponentially-weighted compactors

and the subsequent rank estimation is virtually identical to that

explained in prior works [1, 12, 14]. Our essential departure from

prior work is in the definition of the compaction operation, not in

how compactors are plumbed together to form a complete sketch.

Algorithm 2 Relative-Error Quantiles sketch

Input: Parameters k ∈ 2N+ and n ∈ N+, and a stream of items

x1, x2, . . . of length at most n
Output: A sketch answering rank queries

1: Let RelCompactors be a list of relative-compactors

2: Set H = 0, initialize relative-compactor at RelCompactors[0],

with parameters k and n
3: for t = 1 . . . do
4: Insert(xt , 0)

5: function Insert(x ,h)
6: if H < h then
7: Set H = h
8: Initialize relative-compactor at RelCompactors[h], with

parameters k and n

9: Insert item x into RelCompactors[h]
10: for z in output stream of RelCompactors[h] do
11: Insert(z,h + 1)

12: function Estimate-Rank(y)
13: Set R̂(y) = 0

14: for h = 0 to H do
15: for each item y′ ≤ y stored in RelCompactors[h] do
16: Increment R̂(y) by 2

h

return R̂(y)

2.3 Merge Operation
We describe a merge operation that takes as input two sketches S ′

and S ′′ which have processed two separate streams σ ′
and σ ′′

, and

that outputs a sketch S that summarizes the concatenated stream

σ = σ ′ ◦ σ ′′
(the order of σ ′

and σ ′′
does not matter here). For

simplicity, we assume w.l.o.g. that sketch S ′ has at least as many

levels as sketch S ′′. Then, the resulting sketch S inherits parameters

k and n from sketch S ′. We further assume that both S ′ and S ′′

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

101

have the same value of k and that n is still an upper bound on the

combined input size. In the full version of our paper
2
, we show

how to remove the latter assumption about the knowledge of n
and provide a tight analysis of the sketch created by an arbitrary

sequence of merge operations without any advance knowledge

about the total input size, thus proving Theorem 1.

The basic idea of the merge operation is straightforward: At

each level, concatenate the buffers and if that causes the capacity of

the compactor to be exceeded, perform the compaction operation,

as in Algorithm 1. However, there is crucial subtlety: We need to

combine the states C of the compaction schedule at each level in a

manner that ensures that relative-error guarantees are satisfied for

the merged sketch. Consider a levelh and letC ′
andC ′′

be the states

of the compaction schedule at level h in S ′ and S ′′, respectively.
The new state C at level h will be the bitwise OR of C ′

and C ′′
.

The purpose of using bitwise OR is to make an extension of our

charging scheme from Section 3 work in the general setting with

merge operations. Note that while in the streaming setting, the

state corresponds to the number of compaction operations already

performed, after a merge operation this may not hold anymore. Still,

if the state is zero, this indicates that the buffer has not yet been

subject to any compactions. Algorithm 3 provides a pseudocode of

the merge operation, where we use S .H for the index of the highest

level of sketch S and similarly, S .k and S .n for the parameters k and

n of S , respectively.

Algorithm 3 Merge operation

Input: Sketches S ′ and S ′′ to be merged such that S ′.H ≥ S ′′.H
Output: A sketch answering rank queries for the combined inputs

of S ′ and S ′′

1: for h = 0, . . . , S ′′.H do ▷ Merge S ′′ into S ′

2: S ′.RelCompactors[h].C = S ′.RelCompactors[h].C OR
S ′′.RelCompactors[h].C

3: Insert all items in S ′′.RelCompactors[h] into

S ′.RelCompactors[h]

4: for h = 0, . . . , S ′.H do
5: if buffer S ′.RelCompactors[h] exceeds its capacity then
6: Perform compaction operation as in lines 6-13 of Algo-

rithm 1 and insert output items into S ′.RelCompactors[h + 1]

7: return S ′

2.4 Informal Outline of the Analysis
To analyze the error of the full sketch, we focus on the error in

the estimated rank of an arbitrary item y ∈ U. For clarity in

this informal overview, we consider the failure probability δ to

be constant, and we assume that ε−1 >
√
log

2
(εn), or equivalently,

n < ε−1 · 2ε
−2

(this assumption is loosened in the formal analysis in

Sections 3 and 4). Recall that in our algorithm, all buffers have size

B = Θ(k log(n/k)); we ultimately will set k = Θ
(
ε−1/

√
log(εn)

)
, in

which case B = O
(
ε−1

√
log(εn)

)
.

Let R(y) be the rank of item y in the input stream, and Err(y) =
R̂(y) − R(y) the error of the estimated rank for y. Our analysis of
Err(y) relies on just two properties.

(1) The level-h compactor only does at most R(y)/(k · 2h) com-

pactions that affect the error of y (up to a constant factor).

Roughly speaking, this holds by the following reasoning.

First, recall from Observation 3 that y needs to be odd w.r.t

any compaction affecting the error of y, which implies that

at least one item x ≤ y must be removed during that com-

paction. We show that as we move up one level at a time, y’s
rank with respect to the input stream fed to that level falls

by about half (this is formally established in Lemma 9). This

is the source of the 2
h
factor in the denominator. Second, we

show that each compaction operation that affects y can be

“attributed” to k items smaller than or equal toy inserted into

the buffer, which relies on using our particular compaction

schedule (see Lemma 5). This is the source of the k factor in

the denominator.

(2) Let Hy be the smallest positive integer such that 2
Hy ≳

R(y)/B (the approximate inequality ≳ hides a universal con-

stant). Then no compactions occurring at levels above Hy
affect y, because y’s rank relative to the input stream of any

such buffer is less than B/2 and no relative-compactor ever

compacts the lowest-ranked B/2 items that it stores.

Again, this holds because as we move up one level at a time,

y’s rank w.r.t each level falls by about half (see Lemma 9).

Together, this means that the variance of the estimate for y is at

most (up to constant factors):

Hy∑
h=1

R(y)

k · 2h
· 22h =

Hy∑
h=1

R(y)

k
· 2h , (1)

where in the LHS, R(y)/(k2h) bounds the number of level-h com-

paction operations affecting the error (this exploits Property 1

above), and 2
2h

is the variance contributed by each such com-

paction, due to Observation 3 and because items processed by

relative-compactor at level h each represent 2
h
items in the original

stream.

The RHS of Equation (1) is dominated by the term for h = Hy ,

and the term for that value of h is at most (up to constant factors)

R(y)

k
· 2Hy ≲

R(y)

k
·
R(y)

B
=

R(y)2

k · B
≃

R(y)2 · log(εn)

B2
. (2)

The first inequality in Equation (2) exploits Property 2 above, while

the last equality exploits the fact that B = O(k · log(εn)).6 We

obtain the desired accuracy guarantees so long as this variance

is at most ε2 R(y)2, as this will imply that the standard deviation

is at most ε R(y). This hoped-for variance bound holds so long as

B ≳ ε−1 ·
√
log

2
(εn), or equivalently k ≳ ε−1/

√
log

2
(εn).

6
In the derivations within Equation (2), there is a couple of important subtleties. The

first is that when we replace 2
Hy

with Θ(R(y)/B), that substitution is only valid if

R(y)/B ≥ Ω(1). However, we can assume w.l.o.g. that R(y) ≥ B/2, as otherwise the
algorithm will make no error on y by virtue of storing the lowest-ranked B/2 items

deterministically. The second subtlety is that the algorithm is only well-defined if

k ≥ 2, so when we replace k with Θ(B/log(εn)), that is a valid substitution only if

B ≥ Ω(log(εn)), which holds by the assumption that ε−1 >
√
log

2
(εn).

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

102

2.5 Roadmap for the Formal Analysis in the
Streaming Setting

Section 3 establishes the necessary properties of a single relative-

compactor (Algorithm 1), namely that, roughly speaking, each com-

paction operation that affects a designated item y can be charged

to k items smaller than or equal to y added to the buffer. Section 4

then analyzes the full sketch (Algorithm 2), completing the proof of

our result in the streaming setting when a polynomial upper bound

on n is known in advance. Finally, we remove the assumption of

having such an upper bound on n in Section 5.

3 ANALYSIS OF THE RELATIVE-COMPACTOR
IN THE STREAMING SETTING

To analyze our algorithm, we keep track of the error associated with

an arbitrary fixed item y. Throughout this section, we restrict our
attention to any single relative-compactor at level h (Algorithm 1)

maintained by our sketching algorithm (Algorithm 2), and we use

“time t” to refer to the t ’th insertion operation to this particular

relative-compactor.

We analyze the error introduced by the relative-compactor for

an item y. Specifically, at time t , let X t = {x1, . . . , xt } be the input
stream to the relative-compactor, Z t

be the output stream, and Bt

be the items in the buffer after inserting item xt . The error for the
relative-compactor at time t with respect to item y is defined as

Err
t
h (y) = R(y;X t) − 2 R(y;Z t) − R(y;Bt). (3)

Conceptually, Err
t
h (y) tracks the difference between y’s rank in

the input stream X t
at time t versus its rank as estimated by the

combination of the output stream and the remaining items in the

buffer at time t (output items are upweighted by a factor of 2 while

items remaining in the buffer are not). The overall error of the

relative-compactor is Err
n
h (y), where n is the length of its input

stream. To bound Err
n
h (y), we keep track of the error associated

with y over time, and define the increment or decrement of it as

∆th (y) = Err
t
h (y) − Err

t−1
h (y),

where Err
0

h (y) = 0.

Clearly, if the algorithm performs no compaction operation in

a time step t , then ∆th (y) = 0. (Recall that a compaction is an exe-

cution of lines 6-13 of Algorithm 1.) Let us consider what happens

in a step t in which a compaction operation occurs. Recall from

Observation 3 that if y is even with respect to the compaction, then

y suffers no error, meaning that ∆th (y) = 0. Otherwise, ∆th (y) is

uniform in {−1, 1}.

Our aim is to bound the number of steps t with ∆th (y) , 0, equal

to

∑n
t=1 |∆

t
h (y)|, and use this in turn to help us bound Err

n
h (y). We

call a step t with ∆th (y) , 0 important. Likewise, call an item x with

x ≤ y important. Let Rh (y) be the rank of y in the input stream to

level h; so there are Rh (y) important items inserted to the buffer at

level h (in the notation above, we have Rh (y) = R(y;Xn)). Recall

that k denotes the parameter in Algorithm 1 controlling the size

of the buffer of each relative-compactor and that B denotes the

buffer’s capacity.

Our main analytic result regarding relative-compactors is that

there are at most Rh (y)/k important steps. Its proof explains the

intuition behind our compaction schedule, i.e., why we set L as

described in Algorithm 1.

Lemma 5. Consider the relative-compactor at level h, fed an input
stream of length at most n. For any fixed item y ∈ U with rank Rh (y)
in the input stream to level h, there are at most Rh (y)/k important
steps. In particular,

n∑
t=1

|∆th (y)| ≤
Rh (y)

k
and

��
Err

n
h (y)

�� ≤ Rh (y)

k
.

Proof. We focus on steps t in which the algorithm performs a

level-h compaction operation (possibly not important), and call a

step t a j-step for j ≥ 1 if the compaction operation in step t (if any)
involves exactly j sections (i.e., LC = j · k in line 7 of Algorithm 1).

Recall from Section 2.1 that sections are numbered from the right,

so that the first section contains the k largest items in the buffer, the

second section contains the next k largest items, and so on. Note

that we think of the buffer as being sorted all the time.

For any j ≥ 1, let sj be the number of important j-steps. Further,
let Rh, j (y) be the number of important items that are either removed

from the j-th section during a compaction, or remain in the j-th
section at the end of execution, i.e., after the relative-compactor

has processed its entire input stream. We also define Rh, j (y) for
j = ⌈log

2
(n/k)⌉ + 1. In this case, we define the j-th section to be the

last k slots in the first half of the buffer (which contains B/2 smallest

items); this special section is never involved in any compaction.

Observe that

∑
j≥1 sj is the number of important steps and that∑

j≥1 Rh, j (y) ≤ Rh (y). We will show

sj · k ≤ Rh, j+1(y) . (4)

Intuitively, our aim is to “charge” each important j-step to k impor-

tant items that are either removed from section j + 1, or remain

in section j + 1 at the end of execution, so that each such item is

charged at most once.

Equation 4 implies the lemma as the number of important steps

is

n∑
t=1

|∆t (y)| =

⌈log
2
(n/k)⌉∑
j=1

sj ≤

⌈log
2
(n/k)⌉∑
j=1

Rh, j+1(y)

k
≤

Rh (y)

k
.

To show the lower bound on Rh, j+1(y) in (4), consider an im-

portant j-step t . Since the algorithm compacts exactly j sections
and ∆th (y) , 0, there is at least one important item in section j by

Observation 3. As section j + 1 contains smaller-ranked (or equal-

ranked) items than section j , section j + 1 contains important items

only. We have two cases for charging the important j-step t :

CaseA: There is a compaction operation after step t that involves at
least j+1 buffer sections, i.e., a j ′-step for j ′ ≥ j+1. Let t ′ be the first
such step. Note that just before the compaction in step t ′, the (j+1)-
st section contains important items only as it contains important

items only immediately after step t . We charge the important step t
to the k important items that are in the (j + 1)-st section just before

step t ′. Thus, all of these charged items are removed from level h
in step t ′.

Case B: Otherwise, there is no compaction operation after step t
that involves at least j + 1 buffer sections. Then, we charge step t

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

103

to the k important items that are in the (j + 1)-st section at the end

of execution.

It remains to observe that each important item x accounted for in

Rh, j+1(y) is charged at most once. (Note that different compactions

may be charged to the items which are consumed during the same

later compaction, but our charging will ensure that these are as-

signed to different sections. For example, consider a sequence of

three important compactions that compacts 2 sections, then 1 sec-

tion, then 3. The first compaction will be charged to section 3 of the

last compaction, and the second compaction is charged to section 2

of the last compaction.)

Formally, suppose that x is removed from section j + 1 during
some compaction operation in a step t ′. Item x may only be charged

by some number of important j-steps before step t ′ (satisfying the

condition of Case A). To show there is at most one such important

step, we use the crucial property of our compaction schedule (Fact 4)

that between every two compaction operations involving exactly

j sections, there is at least one compaction that involves more

than j sections. Since any important j-step is charged to the first

subsequent compaction that involves more than j sections, item x
is charged at most once.

Otherwise, x remains in section j + 1 of the level-h buffer at the

end of processing. The proof in this case is similar to the previous

case. Item x may only be charged by some number of important

j-steps (that fall into Case B) such that there are no subsequent

compaction operations involving at least j+1 buffer sections. There
is at most one such important step by Fact 4. This shows (4), which

implies the lemma as noted above. □

4 ANALYSIS OF THE FULL SKETCH IN THE
STREAMING SETTING

We denote by Errh (y) the error for item y at the end of the stream

when comparing the input stream to the compactor of level h and

its output stream and buffer. That is, letting Bh be the items in

the buffer of the level-h relative-compactor after Algorithm 2 has

processed the input stream,

Errh (y) = Rh (y) − 2 Rh+1(y) − R(y;Bh). (5)

For the analysis, we first set the value of parameter k of Algo-

rithm 2. Namely, given (an upper bound on) the stream length n, the
desired accuracy 0 < ε ≤ 1 and desired upper bound 0 < δ ≤ 0.5

on failure probability, we let

k = 2 ·


4

ε
·

√
ln

1

δ
log

2
(εn)

 . (6)

In the rest of this section, we suppose that parameters ε and δ satisfy

δ > 1/exp(εn/64) (note that this a very weak assumption as for δ ≤

1/exp(εn/64) the accuracy guarantees hold nearly deterministically

and furthermore, in the full version of our paper
2
, we provide an

analysis not requiring such an assumption). We start by showing a

lower bound on k · B.

Claim 6. If parameter k is set according to Equation (6) and B is
set as in Algorithm 1 (line 1), then the following inequality holds:

k · B ≥ 2
6 ·

1

ε2
· ln

1

δ
. (7)

Proof. We first need to relate log
2
(n/k) (used to define B, see

Line 1 of Algorithm 1) and log
2
(εn) (that appears in the definition

of k , see Equation (6)). Using the assumption δ > 1/exp(εn/64), we

have k ≤ 8ε−1 ·
√
ln(1/δ) ≤ 8ε−1 ·

√
εn/64 = ε−1 ·

√
εn, which gives

us

log
2

(n
k

)
≥ log

2

(
εn
√
εn

)
=

log
2
(εn)

2

.

Using this and the definition of k , we bound k · B as follows:

k ·B = 2·k2 ·
⌈
log

2

n

k

⌉
≥ 2·26 ·

1

ε2
·

ln
1

δ
log

2
(εn)

·
log

2
(εn)

2

= 2
6 ·

1

ε2
·ln

1

δ
.

□

We now provide bounds on the rank of y on each level, starting

with a simple one that will be useful for bounding the maximum

level h with Rh (y) > 0.

Observation 7. Rh+1(y) ≤ max{0, Rh (y) − B/2} for any h ≥ 0.

Proof. Since the lowest-ranked B/2 items in the input stream to

the level-h relative-compactor are stored in the buffer Bh and never

given to the output stream of the relative-compactor, it follows

immediately that Rh+1(y) ≤ max{0, Rh (y) − B/2}. □

Next, we prove that Rh (y) roughly halves with every level. This

is easy to see in expectation and we show that it is true with high

probability up to a certain crucial level H (y). Here, we define H (y)

to be the minimal h for which 2
2−h

R(y) ≤ B/2. For h = H (y) − 1

(assuming H (y) > 0), we particularly have 2
3−H (y)

R(y) ≥ B/2, or
equivalently

2
H (y) ≤ 2

4 ·
R(y)

B
. (8)

Below, in Lemma 9, we show that no important item (i.e., one

smaller than or equal to y) can ever reach level H (y). Recall that a
zero-mean random variable X with variance σ 2

is sub-Gaussian if

E[exp(sX)] ≤ exp(− 1

2
· s2 ·σ 2) for any s ∈ R; note that a (weighted)

sum of independent zero-mean sub-Gaussian variables is a zero-

mean sub-Gaussian random variable as well. We will use the stan-

dard (Chernoff) tail bound for sub-Gaussian variables:
7

Fact 8. LetX be a zero-mean sub-Gaussian variable with variance
at most σ 2. Then for any a > 0, it holds that

Pr[X > a] ≤ exp

(
−

a2

2σ 2

)
and Pr[X < −a] ≤ exp

(
−

a2

2σ 2

)
.

Lemma 9. Assuming H (y) > 0, with probability at least 1 − δ it
holds that Rh (y) ≤ 2

−h+1
R(y) for any h < H (y).

Proof. We prove by induction on 0 ≤ h < H (y) that, con-

ditioned on Rℓ(y) ≤ 2
−ℓ+1

R(y) for any ℓ < h, with probability

at least 1 − δ · 2h−H (y)
it holds that Rh (y) ≤ 2

−h+1
R(y). Taking

the union bound over all 0 ≤ h < H (y) implies the claim. As

R0(y) = R(y), the base case follows immediately.

Next, consider h > 0 and condition on Rℓ(y) ≤ 2
−ℓ+1

R(y) for
any ℓ < h. Observe that any compaction operation at any level ℓ

that involves a important items inserts
1

2
a such items to the input

stream at level ℓ + 1 in expectation, no matter whether a is odd

7
See, for example, Lemma 1.3 of https://ocw.mit.edu/courses/mathematics/

18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_

CourseNotes.pdf.

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

104

https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_CourseNotes.pdf

or even. Indeed, if a is odd, then the number of important items

promoted is
1

2
(a + X), where X is a zero-mean random variable

uniform on {−1, 1}. For an even a, the number of important items

that are promoted is
1

2
a with probability 1.

Thus, random variable Rℓ(y) for any level ℓ > 0 is generated

by the following random process: To get Rℓ(y), start with Rℓ−1(y)
important items and remove those stored in the level-(ℓ−1) relative-

compactor Bℓ−1 at the end of execution; there are R(y;Bℓ−1) ≤ B
important items inBℓ−1. Then, as described above, each compaction

operation at level ℓ−1 involving a > 0 important items promotes to

level ℓ either 1

2
a important items if a is even, or

1

2
(a+X) important

items if a is odd. In total, Rℓ−1(y) − R(y;Bℓ−1) important items are

involved in compaction operations at level ℓ − 1. Summarizing, we

have

Rℓ(y) =
1

2

· (Rℓ−1(y) − R(y;Bℓ−1) + Binomial(mℓ−1)) , (9)

where Binomial(n) represents the sum of n zero-mean i.i.d. random

variables uniform on {−1, 1} andmℓ−1 is the number of important

compaction operations at level ℓ − 1 (which are those involving an

odd number of important items).

To simplify (9), consider the following sequence of random vari-

ables Y0, . . . ,Yh : Start with Y0 = R(y) and for 0 < ℓ < h let

Yℓ =
1

2

· (Yℓ−1 + Binomial(mℓ−1)) . (10)

Note that E[Yℓ] = 2
−ℓ

R(y). Since variables Yℓ differ from Rℓ(y)
only by not subtracting R(y;Bℓ−1) at every level ℓ > 0, variable Yh
stochastically dominates variable Rh (y), so in particular,

Pr[Rh (y) > 2
−h+1

R(y)] ≤ Pr[Yh > 2
−h+1

R(y)] , (11)

which implies that it is sufficient to bound Pr[Yh > 2
−h+1

R(y)].
Unrolling the definition of Yh in (10), we obtain

Yh = 2
−h · R(y) +

h−1∑
ℓ=0

2
−h+ℓ · Binomial(mℓ) . (12)

Observe that Yh equals a fixed amount (2
−h ·R(y)) plus a zero-mean

sub-Gaussian variable

Zh =
h−1∑
ℓ=0

2
−h+ℓ · Binomial(mℓ) , (13)

since Binomial(n) is a sum of n independent zero-mean sub-

Gaussian variables (with variance 1).

To bound the variance ofZh , first note that for any ℓ < h, we have

mℓ ≤ Rℓ(y)/k ≤ 2
−ℓ+1

R(y)/k by Lemma 5 and by conditioning on

Rℓ(y) ≤ 2
−ℓ+1

R(y). As Var[Binomial(n)] = n, the variance of Zh is

Var[Zh] ≤
h−1∑
ℓ=0

2
−2h+2ℓ ·mℓ ≤

h−1∑
ℓ=0

2
−2h+2ℓ ·

2
−ℓ+1

R(y)

k

=

h−1∑
ℓ=0

2
−2h+ℓ+1

R(y)

k
≤

2
−h+1 · R(y)

k
.

Note that Pr[Yh > 2
−h+1

R(y)] = Pr[Zh > 2
−h

R(y)]. To bound

the latter probability, we apply the tail bound for sub-Gaussian

variables (Fact 8) to get

Pr[Zh > 2
−h

R(y)] < exp

(
−

2
−2h · R(y)2

2 · (2−h+1 · R(y)/k)

)
= exp

(
−2−h−2 · R(y) · k

)
= exp

(
−2−h+H (y)−6 · 24−H (y)

R(y) · k
)

≤ exp

(
−2−h+H (y)−6 · B · k

)
≤ exp

(
−2−h+H (y)−6 · 26 ·

1

ε2
· ln

1

δ

)
≤ exp

(
−2−h+H (y) · ln

1

δ

)
= δ2

H (y)−h
≤ δ · 2−H (y)+h ,

where the second inequality uses 2
4−H (y)

R(y) ≥ B (by the defi-

nition of H (y), cf. Equation (8)), the third inequality follows from

Claim 6, the fourth inequality uses ε ≤ 1, and the last inequality

uses δ ≤ 0.5. As explained above, this concludes the proof. □

In what follows, we condition on the bound on Rh (y) in Lemma 9

for any h < H (y).

Lemma 10. Conditioned on the bound on RH (y)−1(y) in Lemma 9,
it holds that RH (y)(y) = 0.

Proof. According to Lemma 9 and the definition of H (y) as the

minimal h for which 2
2−h

R(y) ≤ B/2,

RH (y)−1(y) ≤ 2
2−H (y)

R(y) ≤
1

2

B .

Invoking Observation 7, we get RH (y)(y) ≤ max{0, RH (y)−1(y) −
B/2} = 0. □

We are now ready to bound the overall error of the sketch for

item y, i.e., Err(y) = R̂(y) − R(y) where R̂(y) is the estimated rank

of y. It is easy to see that

Err(y) =
H∑
h=0

2
h
Errh (y),

where H is the highest level with a relative-compactor (that never

produces any output). To bound this error we refine the guarantee

of Lemma 5. Notice that for any particular relative-compactor, the

bound

∑n
t=1 |∆

t
h (y)| referred to in Lemma 5 applied to a level h is

a potentially crude upper bound on Errh (y) =
∑n
t=1 ∆

t
h (y): Each

non-zero term ∆th (y) is positive or negative with equal probability,

so the terms are likely to involve a large amount of cancellation. To

take advantage of this, we bound the variance of Err(y).

Lemma 11. Conditioned on the bound on Rh (y) in Lemma 9 for
any h < H (y), Err(y) is a zero-mean sub-Gaussian random variable
with Var[Err(y)] ≤ 2

5 · R(y)2/(k · B).

Proof. Consider the relative-compactor at any level h. By
Lemma 5, Errh (y) is a sum of at most Rh (y)/k random variables,

i.i.d. uniform in {−1, 1}. In particular, Errh (y) is a zero-mean sub-

Gaussian random variable with Var[Errh (y)] ≤ Rh (y)/k . Thus,
Err(y) is a sum of independent zero-mean sub-Gaussian random

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

105

variables, and as such is itself a zero-mean sub-Gaussian random

variable.

It remains to bound the variance of Err(y), for which we first

bound Var[Errh (y)] for each h. If Rh (y) = 0, then Observation 3

implies that Errh (y) = 0, and hence that Var[Errh (y)] = 0. Thus,

using Lemma 10, we have Var[Errh (y)] = 0 for any h ≥ H (y). For
h < H (y), we use Var[Errh (y)] ≤ Rh (y)/k to obtain:

Var[Err(y)] =

H (y)−1∑
h=0

2
2h

Var[Errh (y)] ≤

H (y)−1∑
h=0

2
2h ·

Rh (y)

k

≤

H (y)−1∑
h=0

2
h+1 ·

R(y)

k
≤ 2

H (y)+1 ·
R(y)

k
≤ 2

5 ·
R(y)2

k · B
,

where the second inequality is due to Lemma 9 and the last inequal-

ity follows from (8). □

To show that the space bound in maintained, we also need to

bound the number of relative-compactors.

Observation 12. The number of relative-compactors ever created
by the full algorithm (Algorithm 2) is at most ⌈log

2
(n/B)⌉ + 1.

Proof. Each item on level h has weight 2
h
, so there are at most

n/2h items inserted to the buffer at that level. Applying this ob-

servation to h = ⌈log
2
(n/B)⌉, we get that on this level, there are

fewer than B items inserted to the buffer, which is consequently

not compacted, so the highest level has index at most ⌈log
2
(n/B)⌉.

The claim follows (recall that the lowest level has index 0). □

We are now ready to prove themain result of this section, namely,

the accuracy guarantees in the streaming setting when the stream

length is essentially known in advance.

Theorem 13. Assume that (a polynomial upper bound on) the
stream length n is known in advance. For any parameters 0 < δ ≤ 0.5

and 0 < ε ≤ 1 satisfying δ > 1/exp(εn/64), let k be set as in (6). Then,
for any fixed item y, Algorithm 2 with parameters k and n computes
an estimate R̂(y) of R(y) with error Err(y) = R̂(y) − R(y) such that
Pr [| Err(y)| ≥ ε R(y)] < 3δ . If ε ≤ 4 ·

√
ln(1/δ)/log

2
(εn), then the

memory used by the algorithm is O
(
ε−1 · log1.5(εn) ·

√
log(1/δ)

)
;

otherwise, the algorithm uses O
(
log

2(εn)
)
memory words.

Proof. Note that k is an even positive integer as required by

Algorithm 2. By Lemma 9, with probability at least 1 − δ , we have

Rh (y) ≤ 2
−h+1

R(y) for any h < H (y) and we condition on this

event happening.

We again apply the standard (Chernoff) tail bound for sub-

Gaussian variables (Fact 8) together with Lemma 11 (for which

we need the bound on Rh (y) for any h < H (y)) and obtain

Pr [| Err(y)| ≥ ε R(y)] < 2 exp

(
−

ε2 · R(y)2

2 · 25 · R(y)2/(k · B)

)
≤ 2 exp

(
−
ε2 · 26 · ε−2 · ln 1

δ
2
6

)
= 2 exp

(
− ln

1

δ

)
= 2δ ,

where we use Claim 6 in the second inequality. This concludes the

calculation of the failure probability.

Regarding the memory usage, there are at most ⌈log
2
(n/B)⌉+1 ≤

log
2
(εn) relative-compactors by Observation 12, and each requires

B = 2 · k · ⌈log
2
(n/k)⌉ memory words. Thus, the memory needed

to run the algorithm is at most

log
2
(εn) · 2 · k ·

⌈
log

2

n

k

⌉
≤ log

2
(εn) · 2 · 2 ·


4

ε
·

√
ln

1

δ
log

2
(εn)

 ·O (log(εn)) , (14)

where we use that ⌈log
2
(n/k)⌉ ≤ O (log(εn)), which follows from

k ≥ ε−1/
√
log

2
(εn). In the case ε ≤ 4 ·

√
ln(1/δ)/log

2
(εn), we have

a := 4ε−1 ·
√
ln(1/δ)/log

2
(εn) ≥ 1, so ⌈a⌉ ≤ 2a and it follows

that (14) is bounded byO
(
ε−1 · log1.5(εn) ·

√
log(1/δ)

)
. Otherwise,

a < 1, thus (14) becomes at most O
(
log

2(εn)
)
. □

Update time. We now analyze the amortized update time of Al-

gorithm 2 and show that it can be made O(logB) = O(log(k) +
log log(εn)), i.e., the algorithm processes n streaming updates in

total timeO(n·logB). To see this, first observe that the time complex-

ity is dominated, up to a constant factor, by running Algorithm 1

for the relative-compactor at level 0. Indeed, the running time can

be decomposed into the operations done by Algorithm 2 itself, plus

the running time of Algorithm 1 for each level of the sketch, and

the former is bounded by the latter. Moreover, at level h there are

at most n/2h items added to the buffer, implying that the running

time of Algorithm 1 decreases exponentially with the level. At level

0, the update time isO(1), except for performing compaction opera-

tions (line 6-13 of Algorithm 1). To make those faster, we maintain

the buffer sorted after each insertion, which can be achieved by

using an appropriate data structure in time O(logB) per update.
Then the time to execute each compaction operation is linear in

the number of items removed from the buffer, making it amortized

constant. Hence, the amortized update time with such adjustments

is O(logB).

5 HANDLING UNKNOWN STREAM LENGTHS
The algorithm of Section 2.2 and analysis in Sections 3-4 proved

Theorem 13 in the streaming setting assuming that (an upper bound

on) n is known, where n is the true stream length. The space usage

of the algorithm grows polynomially with the logarithm of this

upper bound, so if this upper bound is at most nc for some constant

c ≥ 1, then the space usage of the algorithm will remain as stated

in Theorem 13, with only the hidden constant factor changing.

In the case that such a polynomial upper bound on n is not

known, we modify the algorithm slightly, and start with an initial

estimate N0 of n, such as N0 = O(ε
−1). As soon as the stream length

hits the current estimate Ni , the algorithm “closes out” the current

data structure and continues to store it in “read only” mode, while

initializing a new summary based on the estimated stream length of

Ni+1 = N 2

i .
8
This process occurs at most log

2
log

2
(εn) many times,

8
In a practical implementation, we suggest not to close out the current summary, but

rather recompute the parameters k and B of every relative-compactor in the summary,

according to the new estimate Ni+1 , and continue with using the summary. The

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

106

before the guess is at least the true stream length n. At the end of

the stream, the rank of any item y is estimated by summing the

estimates returned by each of the at most log
2
log

2
(εn) summaries

stored by the algorithm.

To prove Theorem 13 for unknown stream lengths, we need

to bound the space usage of the algorithm, and the probability of

having a too large error for a fixed item y. We start with some

notation. Let ℓ be the biggest index i of estimate Ni used by the

algorithm; note that ℓ ≤ log
2
log

2
(εn). Let σi denote the substream

processed by the summary with the i’th guess for the stream length

for i = 0, . . . ℓ. Let σ ′ ◦σ ′′
denote the concatenation of two streams

σ ′
and σ ′′

. Then the complete stream processed by the algorithm

is σ = σ0 ◦ σ1 ◦ · · · ◦ σℓ . Let ki and Bi be the values of parameters

k and B computed for estimate Ni .

Space bound. We claim that the sizes of summaries for the sub-

streams σ0,σ1, . . . ,σℓ sum up to O
(
ε−1 · log1.5(εn) ·

√
log(1/δ)

)
,

as required. Here, we assume for simplicity that ε ≤

4 ·
√
ln(1/δ)/log

2
(εn); the other case can be handled simi-

larly. By Theorem 13, the size of the summary for σi is

O
(
ε−1 · log1.5(εNi) ·

√
log(1/δ)

)
. In the special case ℓ = 0, the

size of the summary for σ0 satisfies the bound provided that

N0 = O(ε−1). For ℓ ≥ 1, since Nℓ−1 < n and Nℓ = N 2

ℓ−1
, it holds

that Nℓ ≤ n2 and thus, the size of the summary for σℓ satisfies

the claimed bound. As Ni+1 = N 2

i , the log
1.5(εNi) factor in the

size bound from Theorem 13 increases by a factor of 2
1.5

when we

increase i . It follows that the total space usage is dominated, up to

a constant factor, by the size of the summary for σℓ . □

Failure probability. We need to show that | Err(y)| = |R̂(y) −
R(y)| ≤ ε R(y) with probability at least 1 − δ for any fixed item y.

Note that R(y) = R(y;σ) =
∑ℓ
i=0 R(y;σi).

We apply the analysis in Section 4 to all of the summaries at

once. Observe that for the tail bound in the proof of Theorem 13,

we need to show that Err(y) is a zero-mean sub-Gaussian random

variable with a suitably bounded variance. Let Err
i (y) be the er-

ror introduced by the summary for σi . By Lemma 11, Err
i (y) is

a zero-mean sub-Gaussian random variable with Var[Erri (y)] ≤

2
5 ·R(y;σi)

2/(ki ·Bi). As Err(y) =
∑
i Err

i (y) and as the summaries

are created with independent randomness, variable Err(y) is also
zero-mean sub-Gaussian and its variance is bounded by

Var[Err(y)] =
ℓ∑
i=0

Var[Erri (y)] ≤
ℓ∑
i=0

2
5 ·

R(y;σi)
2

ki · Bi
≤

ε2 · R(y)2

2 · ln(1/δ)

where the last inequality uses that

∑ℓ
i=0 R(y;σi)

2 ≤ R(y)2, which

follows from R(y) =
∑ℓ
i=0 R(y;σi), and thatki ·Bi = Ω(ε−2 ·ln(1/δ)),

which holds by Claim 6. Applying the tail bound for sub-Gaussian

variables similarly as in the proof of Theorem 13 concludes the

proof of Theorem 13 for unknown stream lengths. □

analysis in full version of our paper (which applies in the more general mergeability

setting) shows that the same accuracy guarantees as in Theorem 13 hold for this

variant of the algorithm. Here, we choose to have one summary for each estimate of n
because it is amenable to a much simpler analysis (it is not clear how to extend this

simpler analysis from the streaming setting to the general mergeability setting).

6 DISCUSSION AND OPEN PROBLEMS
For constant failure probability δ , we have shown an O(ε−1 ·

log
1.5(εn)) space upper bound for relative error quantile approxi-

mation over data streams. Our algorithm is provably more space-

efficient than any deterministic comparison-based algorithm, and

is within a Õ
(√

log(εn)
)
factor of the known lower bound for ran-

domized algorithms (even non-streaming algorithms, see Appendix

A). Moreover, the sketch output by our algorithm is fully mergeable,

with the same accuracy-space trade-off as in the streaming setting,

rendering it suitable for a parallel or distributed environment. The

main remaining question is to close this Õ(
√
log(εn))-factor gap.

Acknowledgments. The research is performed in close collab-

oration with DataSketches https://datasketches.apache.org/, the

Apache open source project for streaming data analytics. Work

done while P. Veselý was at University of Warwick. G. Cormode

and P. Veselý were supported by European Research Council grant

ERC-2014-CoG 647557. J. Thaler was supported by NSF SPX award

CCF-1918989, and NSF CAREER award CCF-1845125.

REFERENCES
[1] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei

Wei, and Ke Yi. Mergeable summaries. ACM Transactions on Database Systems
(TODS), 38(4):26, 2013.

[2] Rakesh Agrawal and Arun Swami. A one-pass space-efficient algorithm for

finding quantiles. In Proc. 7th Intl. Conf. Management of Data (COMAD-95), Pune,
India, 1995.

[3] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles

over sliding windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’04, pages 286–296. ACM,

2004.

[4] Graham Cormode, Flip Korn, , S. Muthukrishnan, and Divesh Srivastava. Effective

computation of biased quantiles over data streams. In Proceedings of the 21st
International Conference on Data Engineering, ICDE ’05, pages 20–31, Washington,

DC, USA, 2005. IEEE Computer Society.

[5] GrahamCormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava. Space-and

time-efficient deterministic algorithms for biased quantiles over data streams. In

Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, PODS ’06, pages 263–272. ACM, 2006.

[6] Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based

quantile summaries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS’20, page 81–93, New York,

NY, USA, 2020. ACM.

[7] Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using

t-digests. CoRR, abs/1902.04023, 2019.
[8] David Felber and Rafail Ostrovsky. A randomized online quantile summary in

O(1/epsilon * log(1/epsilon)) words. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), vol-
ume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages 775–785,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[9] Sumit Ganguly. A nearly optimal and deterministic summary structure for update

data streams. arXiv preprint cs/0701020, 2007.
[10] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of

quantile summaries. In ACM SIGMOD Record, volume 30, pages 58–66. ACM,

2001.

[11] Anupam Gupta and Francis X. Zane. Counting inversions in lists. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03,

pages 253–254, Philadelphia, PA, USA, 2003. Society for Industrial and Applied

Mathematics.

[12] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal quantile approximation in

streams. In Proceedings of the 57th Annual Symposium on Foundations of Computer
Science (FOCS ’16), pages 71–78. IEEE, 2016.

[13] Ge Luo, Lu Wang, Ke Yi, and Graham Cormode. Quantiles over data streams:

Experimental comparisons, new analyses, and further improvements. The VLDB
Journal, 25(4):449–472, August 2016.

[14] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate

medians and other quantiles in one pass and with limited memory. In ACM
SIGMOD Record, volume 27, pages 426–435. ACM, 1998.

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

107

https://datasketches.apache.org/

[15] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random

sampling techniques for space efficient online computation of order statistics of

large datasets. In ACM SIGMOD Record, volume 28, pages 251–262. ACM, 1999.

[16] Charles Masson, Jee E. Rim, and Homin K. Lee. DDSketch: A fast and fully-

mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195–
2205, 2019.

[17] J Ian Munro and Michael S Paterson. Selection and sorting with limited storage.

Theoretical computer science, 12(3):315–323, 1980.
[18] Ira Pohl. A minimum storage algorithm for computing the median. IBM TJ Watson

Research Center, 1969.

[19] Viswanath Poosala, Venkatesh Ganti, and Yannis E. Ioannidis. Approximate

query answering using histograms. IEEE Data Eng. Bull., 22(4):5–14, 1999.
[20] Lee Rhodes, Kevin Lang, Alexander Saydakov, Edo Liberty, and Justin Thaler.

DataSketches: A library of stochastic streaming algorithms. Open source software:

https://datasketches.apache.org/, 2013.

[21] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash

Suri. Medians and beyond: new aggregation techniques for sensor networks.

In Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 239–249. ACM, 2004.

[22] Gil Tene. How NOT to measure latency. https://www.youtube.com/watch?v=

lJ8ydIuPFeU, 2015.

[23] Qi Zhang and Wei Wang. An efficient algorithm for approximate biased quantile

computation in data streams. In Proceedings of the 16th ACM conference on
Conference on information and knowledge management, pages 1023–1026, 2007.

[24] Ying Zhang, Xuemin Lin, Jian Xu, Flip Korn, and Wei Wang. Space-efficient rela-

tive error order sketch over data streams. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06), pages 51–51. IEEE, 2006.

A A LOWER BOUND FOR NON-COMPARISON
BASED ALGORITHMS

Cormode and Veselý [6, Theorem 6.5] proved an Ω(ε−1 · log2(εn))
lower bound on the number of items stored by any deterministic

comparison-based streaming algorithm for the relative-error quan-

tiles problem. Below, we provide a lower bound which also applies

to offline, non-comparison-based randomized algorithms, but at

the (necessary) cost of losing a log(εn) factor in the resulting space

bound. This result appears not to have been explicitly stated in

the literature, though it follows from an argument similar to [4,

Theorem 2]. We provide details in this appendix for completeness.

Theorem 14. For any randomized algorithm that processes a data
stream of items from universeU of size |U| ≥ Ω(ε−1 · log(εn)) and
outputs a sketch that solves the all-quantiles approximation problem
for multiplicative error ε with probability at least 2/3 requires the
sketch to have size Ω

(
ε−1 · log(εn) · log(ε |U|)

)
bits of space.

Proof. We show that any multiplicative-error sketch for

all-quantiles approximation can be used to losslessly encode

an arbitrary subset S of the data universe U of size |S | ≥

Ω
(
ε−1 log(εn)

)
. This requires log

2

(|U |

|S |
)
= Θ

(
log((|U|/|S |) |S |)

)
=

Θ (|S | log (ε |U|)) bits of space. The theorem follows.

Let ℓ = 1/(8ε) and k = log
2
(εn); for simplicity, we assume

that both ℓ and k are integers. Let S be a subset of U of size

s := ℓ ·k . We will construct a stream σ of length less than ℓ · 2k ≤ n
such that a sketch solving the all-quantiles approximation problem

for σ enables reconstruction of S . To this end, let {y1, . . . ,ys } de-
note the elements of S in increasing order. Consider the stream σ
where items y1, . . . ,yℓ each appear once, items yℓ+1, . . . ,y2ℓ ap-

pear twice, and in general items yiℓ+1, . . . ,y(i+1)ℓ appear 2
i
times,

for i = 0, . . . ,k − 1. Let us refer to all universe items in the interval

[yiℓ+1,y(i+1)ℓ] as “Phase i” items.

The construction of σ means that the multiplicative error ε in
the estimated rank of any Phase i item is at most 2

i+1/8 < 2
i−1

.

This means that for any phase i ≥ 0 and integer j ∈ [1, ℓ], one can

identify item yiℓ+j by finding the smallest universe item whose

estimated rank is strictly greater than (2i − 1) · ℓ + 2
i · j − 2

i−1
.

Here, (2i − 1) · ℓ is the number of stream updates corresponding to

items in Phases 0, . . . , i − 1, while 2
i−1

is an upper bound on the

error of the estimated rank of any Phase i item. Hence, from any

sketch solving the all-quantiles approximation problem for σ one

can obtain the subset S , which concludes the lower bound. □

Theorem 14 is tight up to constant factors, as an optimal sum-

mary consisting ofO(ε−1 · log(εn)) items can be constructed offline.

For ℓ = ε−1, this summary stores all items of rank 1, . . . , 2ℓ ap-

pearing in the stream and assigns them weight one, stores every

other item of rank between 2ℓ + 1 and 4ℓ and assigns them weight

2, stores every fourth item of rank between 4ℓ + 1 and 8ℓ and

assigns them weight 4, and so forth. This yields a weighted core-

set S for the relative-error quantiles approximation, consisting of

|S | = Θ (ℓ · log(εn)) many items. Such a set S can be represented

with log
2

(|U |

|S |
)
= Θ

(
ε−1 · log(εn) · log(ε |U|)

)
many bits.

B PROOF OF COROLLARY 1
Corollary 1 (All-Quantiles Approximation). The error

bound from Theorem 1 can be made to hold for all y ∈ U simul-
taneously with probability 1 − δ while storing

O
©­«ε−1 · log1.5(εn) ·

√
log

(
log(εn)

εδ

)ª®¬
stream items if ε ≤ O

(√
log

1

εδ /log(εn)

)
and O

(
log

2(εn)
)
items

otherwise.

Proof. Let S∗ be the offline optimal summary of the streamwith

multiplicative error ε/3, i.e., a subset of items in the stream such

that for any item x , there is y ∈ S∗ with | R(y) −R(x)| ≤ (ε/3) ·R(x).
Here, y is simply the closest item to x in the total order that is an

element of S∗. Observe that S∗ has O(ε−1 · log(εn)) items; see the

remark below Theorem 14 in Appendix A for a construction of S∗.
Thus, if our sketch with parameter ε ′ = ε/3 is able to compute

for any y ∈ S∗ a rank estimate R̂(y) such that |R̂(y) − R(y)| ≤

(ε/3) · R(y), then we can approximate R(x) by R̂(y) using y ∈ S∗

with | R(y) − R(x)| ≤ (ε/3) · R(x) and the multiplicative guarantee

for x follows from

|R̂(y) − R(x)| ≤ |R̂(y) − R(y)| + | R(y) − R(x)|

≤
ε

3

· R(y) +
ε

3

· R(x)

≤

(ε
3

· (1 +
ε

3

) +
ε

3

)
· R(x)

≤ ε · R(x) .

It remains to ensure that our algorithm provides a good-enough

rank estimate for any y ∈ S∗. We apply Theorem 1 with error

parameter ε ′ = ε/3 and with failure probability set to δ ′ = δ/|S∗ | =
Θ (δ · ε/log(εn)). By the union bound, with probability at least 1 −

δ , the resulting sketch satisfies the (1 ± ε/3)-multiplicative error

guarantee for any item in S∗. In this event, the previous paragraph

implies that the (1 ± ε)-multiplicative guarantee holds for all x ∈

U. The space bound follows from Theorem 1 with ε ′ and δ ′ as
above. □

Session: Best Paper Award and Data Streams

PODS ’21, June 20–25, 2021, Virtual Event, China

108

https://datasketches.apache.org/
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.youtube.com/watch?v=lJ8ydIuPFeU

	Abstract
	1 Introduction
	1.1 Detailed Comparison to Prior Work

	2 Description of the Algorithm
	2.1 The Relative-Compactor Object
	2.2 The Full Sketch
	2.3 Merge Operation
	2.4 Informal Outline of the Analysis
	2.5 Roadmap for the Formal Analysis in the Streaming Setting

	3 Analysis of the Relative-Compactor in the Streaming Setting
	4 Analysis of the Full Sketch in the Streaming Setting
	5 Handling Unknown Stream Lengths
	6 Discussion and Open Problems
	References
	A A Lower Bound for Non-Comparison Based Algorithms
	B Proof of Corollary 1

